Distribution and Sources of Air pollutants in the North China Plain Based on On-Road Mobile Measurements

Yi Zhu¹, Jiping Zhang², Junxia Wang¹, Wenyuan Chen¹, Yiqun Han¹, Chunxiang Ye³, Yingruo Li¹, Jun Liu¹, Limin Zeng¹, Yusheng Wu¹, Xinfeng Wang⁴, Wenxing Wang⁴, Jianmin Chen⁴, and Tong Zhu¹,⁵*

¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

²Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

³School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

⁴Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji’nan 250100, China

⁵The Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China

*Corresponding Author: tzhu@pku.edu.cn
Abstract. The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from June 11 to July 15, 2013. High median concentrations of sulphur dioxide (SO\textsubscript{2}) (12 ppb), nitrogen oxides (NO\textsubscript{x}) (NO+NO\textsubscript{2}; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 μg m-3) and ultrafine particles (28350 cm3) were measured. Most of the high values, i.e., 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO\textsubscript{2} and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside would have a diluting effect on pollutants, while south winds would bring in pollutants accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south–north winds over the NCP and partly by local emissions.

Keywords: North China Plain, Air pollution, Distribution, On-road mobile measurements
1. Introduction

The North China Plain (NCP) is a geographically flat region in the northern part of Eastern China, which includes Beijing, Tianjin, most of Hebei, Henan and Shandong provinces, and the northern parts of Anhui and Jiangsu provinces. This region is surrounded by the Yan Mountains to the north, the Taihang Mountains to the west and the Bohai Sea to the east. The NCP covers an area of 300,000 km2, which corresponds to about 1/32 of the total area of China, but is home to approximately 1/5 of the Chinese population. The NCP is the political, economic and agricultural centre of China. Along with rapid economic growth and urbanisation, the NCP has been experiencing severe air pollution problems (Donkelaar et al., 2010). On a global scale, the NCP is a hotspot of nitrogen dioxide (NO$_2$), carbon monoxide (CO), sulphate and particulate matter (PM) concentrations, according to both satellite observations and model simulations (Chin et al., 1996; Yu et al., 2010; Bechle et al., 2011; Streets et al., 2013; Bucsela et al., 2013). The concentrations of PM with an aerodynamic diameter ≤ 2.5 µm (PM$_{2.5}$) and PM$_{10}$ in the NCP are much higher compared to other rapidly developing areas in China, such as the Yangtze River Delta (Hu et al., 2014). According to the air-quality report published by the Chinese Ministry of Environmental Protection, in 2013, 9 of the 10 most polluted cities in China were located in the NCP. Severe pollution events occur frequently in this area. Therefore, studies of air pollution problems in the NCP are essential to obtain general insights into the unique patterns of air pollution in this area and for management of emissions control policies by the government.
Over the past decade, there have been a number of investigations of air pollution in the NCP taking advantage of observation sites, aircraft measurement platforms, mobile laboratories, satellite data and air quality models. In the NCP, a network of observation sites has been built for air pollution research, mostly located in and around large cities, particularly Beijing (Xu et al., 2011; Xu et al., 2014; Wang et al., 2013; Meng et al., 2009; Shen et al., 2011; Lin et al., 2011). Variability, sources, meteorological and chemical impacts of air pollutants have been discussed by analysing these observational results. The concentrations of long-lived pollutants have been shown to be significantly influenced by wind, particularly the south and north winds, indicating that regional transport plays an important role in urban air pollution.

In addition, model studies have yielded similar results in various areas of the NCP (An et al., 2007; Zhang et al., 2008; Liu et al., 2013). Satellite data have indicated that regional transport has a significant impact on the haze period in the NCP (Wang et al., 2014). Thus, it is necessary to understand regional transport to address air pollution problems in the NCP, which will require data on the distribution of air pollutants in this region.

However, observational data from a single or limited number of measurement sites cannot present the whole picture of air pollution in the NCP. A number of mobile laboratory measurements (Johansson et al. 2008; Li et al., 2009; Wang et al., 2009; Wang et al., 2011) and aircraft measurements (Huang et al. 2010; Zhang et al. 2011; Zhang et al. 2009; Zhang et al. 2014) have been used to determine pollution distributions mainly within the megacity of Beijing. There have been several reports
of model and satellite studies on the air pollution distribution in the NCP, or even the whole of China (Wei et al., 2011; Zhao et al., 2013; Ying et al., 2014; Ding et al., 2015; Ding et al., 2009). However, there are disagreements between these results, e.g., regarding the distributions of NO$_2$ in several hotspot areas produced from model (CMAQ) and satellite (SCIAMACHY) measurements (Shi et al., 2008). Uncertainties in model simulations such as emissions inventories, and in satellite measurements such as the influence of clouds, can only be evaluated by measuring the spatial distributions of pollutants over a large geographical area, which are still lacking.

In this study, we measured the concentrations of nitrogen oxides (NO$_x$), CO, sulphur dioxide (SO$_2$), ultrafine particles and BC with a mobile laboratory platform in the NCP. Satellite data and field wind measurements during the observation period were also used. Our specific objectives were to collect a dataset showing the spatial distribution of air pollutants in the NCP, and to characterise the regional transport within and outside the NCP. This study was performed as part of the Campaigns of Air Pollution Research in Megacity Beijing and North China Plain (CAREBeijing-NCP 2013), and involved comprehensive stereoscopic observations, including observations of two super sites, several routine sites, mobile laboratories and model work. This paper focuses on the distribution and transport of pollutants in the NCP, mainly based on data collected from a mobile platform.
2. Experimental methods

2.1 Mobile laboratory and study area

A mobile laboratory was built by our research group, details of which were previously described (Wang et al., 2009). Briefly, this mobile laboratory was constructed in 2006 on an IVECO Turin V diesel vehicle (L = 6.6 m, W = 2.4 m, H = 2.8 m; payload = 2.7 metric tonnes). Instrumentation was powered by two sets of uninterruptible power systems (UPS), consisting of three series of 48 V/110 Ah lithium batteries, which could support all of the equipment operations without interruption for up to 5 h. The inlet systems for our mobile laboratories were specifically configured to accommodate the type of measurement requirements and the instrument suite to be employed in specific field campaigns.

Instruments deployed on the mobile laboratory included those for studying NO$_x$, CO, SO$_2$, BC and ultrafine particles. NO$_x$ was measured using an NO$_x$ analyser with an Mo-converter (Ecotech model 9841A; Ecotech, Knoxfield, Melbourne, Australia), with a detection range of 0–500 ppb and uncertainty of 10% at a time resolution of 30 s. CO was measured with a CO analyser by light absorption (Ecotech model 9830A) with a detection range of 0–9.8 ppm at a time resolution of 40 s. SO$_2$ was measured using an SO$_2$ analyser with a fluorescence cell (Ecotech model 9850A) with a detection range of 0–221.3 ppb at a time resolution of 120 s. BC was measured using a multi-angle absorption photometer (MAAP; Thermo model 5012; Thermo Scientific, Waltham, MA), with a detection range of 0–20 μg m$^{-3}$. The online measurement data
from these instruments were recorded with an industrial personal computer.

Ultrafine particles were measured with a fast mobility particle sizer (FMPS, TSI 3090; TSI, Shoreview, MN), which covers particle sizes from 5.6 nm to 560 nm in 32 channels with a time resolution of 0.1 s. The data were recorded on a dedicated computer. Other auxiliary data including temperature, relative humidity, barometric pressure and GPS coordinates were also measured. The driving speed was kept stable at around 100 ± 5 km h⁻¹ to cover as much distance as possible with the 5 h of power supplied by the lithium batteries.

To establish the spatial distribution and characterise the regional transport of air pollutants in the NCP, the routes for the mobile measurements were specially designed to cover important emissions hotspots (Fig. 1) and to map large areas of the NCP. The routes included the municipalities of Beijing and Tianjin, most of Hebei province, and part of Shandong province, which is about 300 km wide from the west to the east and 400 km long from the north to the south, covering most of the NCP. To avoid traffic jams and rough roads, only expressways were chosen for all routes. Limited by the duration of battery power and the variability of boundary layer height, we could not cover all routes in one trip. Instead, we divided the routes into five parts. Route 1 was along the Taihang Mountains from Beijing to Shijiazhuang, located in the western part of the NCP. Routes 2 and 3 were from Shijiazhuang to Dezhou and Cangzhou to Baoding, respectively, which were generally located in central NCP. Routes 4 and 5 were from Tianjin to Beijing and around the south of Beijing, located in northern NCP.
In addition, we ran each route in one day. Two days were also needed for calibration and maintenance of instruments. Therefore, it took one whole week to conduct a single experiment. In total, six experiments, including one pre-test study, were designed from June 1 to July 15, 2013. The pre-test study was conducted between June 1 and June 7, and five formal repeated experiments were conducted between June 11 and July 15 (Experiment 1 [E1], June 11–June 15; E2, June 17, June 18 and June 20; E3, June 24–June 25; E4, July 2–July 7; E5, July 11–July 15). All trips were started at about 09:00 and ended at about 14:00 to ensure that the boundary layer was relatively stable during the observation period in 1 day. Unfortunately, data were unavailable on several days because of heavy rain. The route design and trip runs are shown in Figures 1 and 2, respectively.

2.2 The trajectories model

A Lagrangian particle dispersion model, FLEXPART-WRF version 3.1 (Brioude et al., 2013; Stohl et al., 1998; Stohl et al., 2005; Fast and Easter, 2006), was used to determine the origin and transport pathways of the air mass arriving at the vehicle-based mobile measurement laboratory. The wind field used to drive FLEXPART was the time-averaged wind provided by the WRF with temporal intervals of 10 min and horizontally spatial resolution of 2 km (The details of the mesoscale meteorological model is described in S2.1). FLEXPART simulates the transport and dispersion of tracers by calculating the backward trajectories of...
multitudinous particles, which are termed plume back trajectories. In this model, turbulence in the planetary boundary layer (PBL) is parameterised by solving the Langevin equation, and convection is parameterised using the Zivkovic Rothman scheme (Stohl et al., 2005). To improve the accuracy of the trajectory calculation, we used high-resolution WRF simulation domain 4 outputs as the input meteorological conditions for the FLEXPART model. The turbulence, convection and boundary layer height were computed along the trajectories of tracer particles using the WRF output data. Backward integration was performed every 5 min during the mobile observation period in June 2013. For each integration, 2000 stochastic particles were released initially from within a box 1 × 1 km2 in horizontal extent and 1–50 m vertical height above ground centred on the mobile measurement laboratory. A total of 2000 inert tracer particles were released about every 5 min along the route of the vehicle. For each release, the backward trajectories were simulated for at least 12 h, and the particle locations were output every 10 min for analysis. The 12 h length of the backward trajectories was chosen as a trade-off to adequately sample the history of the air masses over the region of interest, while decreasing the trajectory error (Stohl, 1998; Zhang et al., 2012).

The footprints of backward trajectories were calculated to present plume trajectories. Footprints in this context refer to the total residence times of released particles, which were calculated following Ashbaugh et al. (1985) and de Foy et al. (2009) by counting the accumulated number of particles during the integration within each cell of a 2 × 2 km2 grid. Various transport and diffusion patterns can well be
described by these footprints analyses (Zhang et al., 2012).

2.3 Stationary measurement sites and the fire data

Concentrations of air pollutants, including NO\textsubscript{x}, SO\textsubscript{2}, CO and BC, were measured simultaneously at three stationary measurement sites during CAREBeijing-NCP 2013. These were rural sites located at Gucheng, Hebei province (GC, 39.13°N, 115.67°E), Quzhou, Hebei province (QZ, 36.78°N, 114.92°E) and Yucheng, Shandong province (YC, 36.67°N, 116.37°E) (Fig. 1). The GC stationary site was near route 1, and QZ and YC stationary sites were near route 2.

The main pollutants at these sites were measured using commercial instruments. At the QZ site, gas analysers were used to measure NO\textsubscript{x} (Ecotech model 9841A), CO (Ecotech model 9830A) and SO\textsubscript{2} (Ecotech model 9850A). At GC and YC stations, gas analysers were used to measure NO\textsubscript{x} (Thermo model 42C), CO (Thermo model 48i) and SO\textsubscript{2} (Thermo model 48i), and BC was measured by MAAP (Thermo model 5012).

Fire data were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) installed in Terra and Aura. The territory passing times were 10:30 (local time) and 13:30 (local time) for Terra and Aura, respectively. Fire images were obtained from EOSDIS Worldview (NASA, https://earthdata.nasa.gov/labs/worldview).
3. Result and discussion

3.1 Distribution of air pollutants

BC, NO\textsubscript{x}, CO and SO\textsubscript{2} were measured on five routes during the experiment to determine the concentrations of air pollutants on the routes and their spatial distributions in the NCP. Figure 2 shows the results of our mobile measurements obtained in 19 trips on the five routes from June 11 to July 15. The mean and median concentrations of BC, NO\textsubscript{x}, CO and SO\textsubscript{2} were 5.8 and 5.5 μg m-3, 422 and 452 ppb, 1006 and 956 ppb and 15 and 12 ppb, respectively, in the whole study. These high values were consistent with previous measurements of most pollutants at stationary measurement sites in the NCP except for NO\textsubscript{x}. For example, the measured concentrations of NO\textsubscript{x}, SO\textsubscript{2} and CO were 62.7 ± 4.0 ppb, 31.9 ± 2.0 ppb and 1990 ± 130 ppb in an urban site in the courtyard of China Meteorological Administration in the Beijing area from November 17, 2007, to March 15, 2008 (Lin et al., 2011). These values were 13–50 ppb, 5.7–30.3 ppb and 1100–1800 ppb at an urban site in Wuqing (between Beijing and Tianjin) from July 9, 2009, to January 21, 2010 (Wu et al., 2011); and 28.4 ppb, 17.2 ppb and 1520 ppb at the GC site from July 2006 to September 2007 (Lin et al., 2009). In addition, the concentration of NO\textsubscript{2} measured at the YC site from June 18 to June 30 was about 20 ppb (Wen et al., 2015). This comparison with stationary site measurements suggested that our mobile measurements reflected the heavily polluted conditions in the NCP, which ensured its feasibility in profiling the distributions of these air pollutants.
The levels of CO, NO\textsubscript{x} and BC here were also comparable to those in previous mobile laboratory measurements in European and American cities. Bukowiecki et al. (2002) measured CO in Zürich, Switzerland, and the average concentration was about 600 ppb. Hagemann et al. (2014) measured NO\textsubscript{x} in Karlsruhe in Germany, and the average concentration was about 20 ppb. In the USA, NO\textsubscript{x} was around 50 ppb in Somerville (Padró-Martínez 2012), 200 ppb during rush hour in Boston (Kolb et al., 2004) and ranged from 230 ppb to 470 ppb in Los Angeles (Westerdahl et al., 2005). Padró-Martínez et al. (2012) also measured BC in Somerville, and reported average concentrations of about 1 μg m-3. As these measurements were obtained in heavy-traffic areas in large cities, and our results were measured over a large region, we concluded that the air pollution problems in the NCP are among the worst in the world.

In contrast to these pollutants, a low concentration of SO\textsubscript{2} was consistently measured throughout the whole study. The low levels of SO\textsubscript{2} could be attributed to the Chinese government’s effort to install desulphurisation devices in power plants and major industrial sources since 1996.

As shown in Figure 3, the concentrations of BC, NO\textsubscript{x}, CO and SO\textsubscript{2} were highly variable on the different routes in the NCP. The concentration ranges of these four species were 5–14 μg m-3 for BC, 447–891 ppb for NO\textsubscript{x}, 22.6–40.4 ppb for SO\textsubscript{2} and 1105–1652 ppb for CO. These extremely high values, i.e., 95 percentile...
concentrations, were consistently found in various plumes near these emissions hotspots in the NCP, which suggested a major influence on concentrations of measured species in these hotspot areas by local emissions. The hotspots observed here were mainly around the junction areas of our design routes, and they included but were not limited to areas of Beijing, Tianjin, Baoding, Cangzhou, Dezhou, Shijiazhuang and Zhuozhou. Previous model simulations and satellite measurements in the NCP also confirmed the high concentrations of NO\textsubscript{2} around these large cities (Shi et al., 2008). It is worth noting that these observed concentration hotspots moved around the emissions hotspots, probably as a result of the varied transport processes in different trips. For example, a pollution plume was detected 100 km to the south of Cangzhou on June 20, but 130 km to the north of Cangzhou on July 6. In addition, plumes were not always detected in different experiments around these cities, with the exception of Shijiazhuang.

During the five experiments, no clear temporal distributions of air pollutant concentrations in the NCP were seen, except for the significantly low levels of NO\textsubscript{x} and SO\textsubscript{2} observed in the last experiments. However, no connections between the decline in NO\textsubscript{x} and SO\textsubscript{2} concentrations and emissions or transport could be made. In fact, the decline could probably be attributed to a wide range of precipitation that occurred at that time.

In summary, our mobile laboratory measurements indicated spatial distributions of
the pollutants SO$_2$, CO and BC and the number density of fine particles. The concentrations of air pollutants in the NCP were among the highest in the world and extremely high concentrations were also observed around several cities.

3.2 The influence of traffic emission

The levels and distributions of air pollutants in the NCP are mainly attributable to three sources, i.e., regional transport, local emissions and traffic emissions. On-road measurements, however, could be greatly affected by traffic emissions (Wang et al., 2009). The influence of traffic emissions on our mobile laboratory measurements is discussed below.

According to the emissions inventories, vehicles were a considerable source of NO$_x$, BC and CO. In the Beijing-Tianjin-Hebei area, the NO$_x$ (Annual Report of Chinese Environmental Statistics [in Chinese], 2013), BC (Cao et al., 2006) and CO (Zhao et al., 2012) emissions from vehicles were 30.5 %, 2.4 % and 20 % of total emissions, respectively. SO$_2$ emissions from vehicles were negligible. Thus, the on-road measurements of NO$_x$, BC and CO would have been influenced by traffic emissions to various degrees. For example, mean and median values of NO$_x$ concentration were 487 ± 213 ppb and 493 ppb in various routes in the first four experiments and 127 ± 100 ppb and 100 ppb even in the last experiment with the presence of wet deposition. These on-road values were much higher than those observed in the monitoring sites in surrounding cities. The mean NO$_x$ concentrations were about 11 ± 6 ppb measured on June 11 at the GC site, 25 ± 10 ppb on June 12, 8.1 ± 0.91 ppb on June 18, 4.7 ± 1.2
ppb on June 25, 6.3 ± 1.3 ppb on July 3, 3.2 ± 0.79 ppb on July 12 at the QZ site, and 13 ± 4.1 ppb on June 25 and 13 ± 1.8 ppb on July 3 at the YC site (Fig. 2).

In addition, a strong correlation \(r^2 = 0.99 \) was found between on-road NO\(_x\) and NO (Fig. 4), with an average NO/NO\(_2\) ratio of 4, which was much higher than the value of 0.05–0.2 in the aged plumes (Finlayson-Pitts and Pitts, 2010). The results indicated that NO\(_x\) observed by our mobile laboratory was mostly influenced by fresh vehicle emissions. Overall, the on-road NO\(_x\) observations here were not representative of the NO\(_x\) levels in the NCP.

For BC, CO and SO\(_2\), the concentrations measured by the mobile laboratory and nearby monitoring sites were comparable to some extent (Fig. 2). The BC concentrations measured in nearby monitoring sites were 2.8 ± 1.4 μg m\(^{-3}\) (June 12, QZ), 4.9 ± 0.72 μg m\(^{-3}\) (June 18, QZ) and 4.9 ± 1.1 μg m\(^{-3}\) (June 25, YC). Compared to stationary measurements, the BC concentrations measured by the mobile laboratory were slightly higher, 4.8 ± 2.2 μg m\(^{-3}\) on June 12, 6.8 ± 2.3 μg m\(^{-3}\) on June 18 and 6.5 ± 3.3 μg m\(^{-3}\) on June 25. The CO concentrations measured at monitoring sites were 1220 ± 910 ppb (June 12, QZ), 1000 ± 140 ppb (June 18, QZ), 730 ± 210 ppb (June 25, YC) and 520 ± 190 ppb (July 3, YC). Similarly, the CO concentrations measured by the mobile laboratory were 950 ± 440 ppb on June 12, 1030 ± 530 ppb on June 18, 1020 ± 680 ppb on June 25 and 990 ± 450 ppb on July 3. The SO\(_2\) concentrations measured at monitoring sites were 10 ± 2.4 ppb (June 11, GC), 3.4 ± 0.57 ppb (July 11,
GC), 30 ± 20 ppb (June 12, QZ), 12 ± 4.2 ppb (June 25, QZ) and 10 ± 4.6 ppb (June 25, YC). Meanwhile, the SO\textsubscript{2} concentrations measured by the mobile laboratory were higher in some trips and lower in others compared to the stationary measurements. For example, lower SO\textsubscript{2} concentrations of 6.6 ± 5.5 ppb on June 11 and of 26 ± 11 ppb on June 12 were measured in these two trips, and higher SO\textsubscript{2} concentrations of 7.1 ± 2.9 ppb on July 11 and of 27 ± 16 ppb on June 25 in other trips. In addition, the concentrations of BC, CO and SO\textsubscript{2} were not correlated with those of NO. Traffic is not a major source of atmospheric CO over the NCP region, as determined by comparing CO column concentration from the satellite and traffic flux (Wu et al., 2011).

Thus, unlike NO\textsubscript{x}, gas pollutants including BC, CO and SO\textsubscript{2} were mainly affected by sources, such as local emissions and transport, other than traffic emissions. The mobile laboratory observations reported here could accurately reflect the concentrations and spatial distributions of BC, CO and SO\textsubscript{2} in the NCP.

3.3 The influence of regional transport

Local emissions and regional transport are the two main sources of pollutants in the NCP (Xu et al., 2011). As stated above, local emissions in large cities had a major impact on the air quality in their adjacent areas. Regional transport also plays a major role. Our study demonstrated that the contribution of regional transport could vary both spatially and temporally, depending on a number of parameters, such as prevalent wind, terrain and vertical mixing. We also roughly divided the NCP into two
parts according to these parameters, i.e., the northern border area and the central area, to discuss the influence of regional transport on air quality.

3.3.1 The border areas of NCP

The northern border area of the NCP included major parts of routes 4 and 5 and the western border areas of the NCP included a major part of route 1. The area is surrounded by the Taihang Mountains to the west and the Yan Mountains to the north. The north wind prevailed in the winter and the south wind prevailed in the summer in this area.

During the measurements, the three routes experienced both north and south winds. Specifically, northwest winds and east winds brought outside air masses from Northeast China and the Bohai Sea to the northern border area on July 2 and July 7, respectively (Fig. 5). In both trips, the concentrations of SO$_2$, CO and BC were 4.5 ± 2.3 ppb, 550 ± 240 ppb and 5.0 ± 2.6 μg m$^{-3}$, respectively, on July 2 and 7.0 ± 3.0 ppb, 1090 ± 320 ppb and 6.5 ± 2.7 μg m$^{-3}$, respectively, on July 7 (Fig. 2), which were the lowest values observed here in the border areas of the NCP. These observations were reasonable as areas including the Bohai Sea to the west, north and east of the NCP were regions of low emissions and the clean air brought by northeast and east winds could dilute the air pollutants in the border areas of the NCP.

It is worth noting that the BC concentration was not lowest on July 2, which was...
the opposite of the observations for the gas pollutants, SO$_2$ and CO. Satellite images showed that there were many fire plots near route 1 on July 2 (Fig. S2). A featured single peak of aerosol number density at around 50 nm (Fig. S3) further confirmed that BC emissions from agricultural crop residue burning contributed significantly to the BC levels on July 2 (Zhang et al., 2011; Hays et al., 2005; Li et al., 2007).

On June 24, June 14 and June 15, the air masses were transported inside the NCP from the southern NCP to the northern border areas by south winds (Fig. 5). Under these wind conditions, the concentrations of SO$_2$, CO and BC were 15 ± 5.8 ppb, 1300 ± 330 ppb and $8.0 \pm 1.4 \, \mu g \, m^{-3}$, respectively, on June 24, 26 ± 7.9 ppb, 1200 ± 230 ppb and $6.5 \pm 1.5 \, \mu g \, m^{-3}$, respectively, on June 14 and 28 ± 7.1 ppb, 1600 ± 370 ppb and $7.0 \pm 1.9 \, \mu g \, m^{-3}$, respectively, on June 15 (Fig. 2), which were among the highest levels detected on these routes. According to the emissions inventories (Fig. 3), most emissions hotspots were located in the central and southern parts of the NCP. Pollutants could be easily accumulated in air masses of south and central NCP origin. In addition, the Yan Mountains to the north of the border area stopped the possible transport pathway of these air masses, which further enhanced the accumulation of long-lived air pollutants in the northern border area of the NCP.

Although route 4 on July 6 was under the influence of south winds, as on June 14 (Fig. 5), the concentrations of SO$_2$ and BC on July 6 were 14 ± 7.6 ppb and $4.6 \pm 1.8 \, \mu g \, m^{-3}$, respectively, on July 6, which were much lower than the values of 26 ± 7.9 ppb and $6.5 \pm 1.5 \, \mu g \, m^{-3}$, respectively, on June 14. Meanwhile, the CO levels on these
two days were similar. One possible cause of the low concentrations of both SO\(_2\) and BC was the slightly higher boundary layer height on July 6 compared to June 14. The precipitation that occurred on July 6, but not on June 14, appeared to be a more important contributing factor. The solubility of CO is less than that of SO\(_2\). Therefore, the wet deposition lifetime of SO\(_2\) would be much shorter, thus limiting the transport distance of SO\(_2\). Meanwhile, the wet deposition of BC particles would also prohibit its long-range transport. This may explain the similar CO levels and low SO\(_2\) and BC levels on July 6 at the same time.

In conclusion, for the northern border area, local emissions and regional transport from other NCP areas due to south winds were two main sources of long-lived pollutants; both north and east winds had significant dilution effects on the concentrations of gas pollutants. The wind dependency scatter plots for SO\(_2\) were used to show the contribution of regional transport to air pollution in the northern border area of the NCP (Fig. 6). The results indicated that the high concentration was connected to the south wind at a wind speed from 4 to 10 m s\(^{-1}\). Similar results for SO\(_2\) and CO were reported for several sites in the northern NCP (Wu et al., 2011; Lin et al., 2011; Lin et al., 2009). As the south wind usually prevailed in the summer and north wind in the winter, the regional transport of long-lived pollutants within the NCP from the central and southern parts to the northern parts should be prevalent in the summer; while the dilution of air pollutants mainly by north winds and occasionally east winds should be prevalent for the northern parts of the NCP in the winter.
3.2.2 The central NCP

The central NCP consisted of routes 2 and 3, where numerous heavily polluted cities are located. The area was surrounded by the Taihang Mountains to the west or emissions hotspots in other directions. While the north wind prevailed in the winter, as for the northern border areas, low pressure prevailed in the summer with south and northeast winds in this area.

During the observation period, the measurements along the two routes experienced different wind fields, including southwest winds on June 12 and July 3, northeast winds on June 18 and a low-pressure system with south and northeast winds on June 25 (Fig. S4). Unlike the northern border area of the NCP where strong north winds had a dilution effect, the concentrations of gas pollutants were mostly high regardless of the wind direction in the central NCP, e.g., on June 18 and July 3 (Fig. S4). Generally, our observations were reasonable according to the unique terrain and emissions map in central NCP. Due to the heavy emissions level in the central NCP and surrounding areas, pollutants readily accumulated to high levels on their ways to the central NCP in air masses from all directions, such as the clean air masses from the Bohai Sea, West China and Northeast China, and polluted air masses from Southeast China.

The situation was slightly different in areas along route 3, particularly for those off...
the coast of the Bohai Sea. Route 3 experienced east winds on July 14 (Fig. S4), and the concentrations of pollutants were low (Fig. 2). This was not only because of the wet deposition from the rain on that day, but also the transport of clean air from the Bohai Sea. A featured peak of aerosol number density at around 20 nm (Fig. S3) further confirmed the incoming air from the Bohai Sea (Haaf and Jaenicke, 1980; Hoppel et al., 1986).

Vertical mixing can also affect the concentrations of pollutants. For example, while the wind fields were similar on June 13 and July 4 (Fig. 7), the concentration of pollutants on June 13 was lower than that on July 4 (Fig. 2). This was because the boundary layer was much higher on June 13 (976 m) than on July 4 (626 m), and the strong vertical convection diluted the air pollutants.

Specifically, the relative contributions of emissions and regional transport to the local air pollution levels were slightly different on different routes. At the junction of routes 1 and 2 around Shijiazhuang area, the concentrations of air pollutants were always high, except in the last experiment when wet precipitation occurred. The local emissions contributed significantly to the air pollution levels in this area. The city of Shijiazhuang is known as an emissions hotspot with heavy coal consumption. Previous model result showed that Shijiazhuang is an important emissions hotspot of SO₂ even in the whole NCP area (He et al., 2012). Meanwhile, the Taihang Mountains to the west of the city prevented the diffusion of air pollutants. On the other hand, transport convergence in front of the Taihang Mountains and Yan Mountains was
proposed in a previous study (Su et al., 2004), as a result of a low-pressure system along the Taihang Mountains and Yan Mountains. Although the transport convergence moved around in the north end, it always passed by the Shijiazhuang area. As shown in Figure 3, high levels of pollutants, particularly relatively long-lived species such as SO$_2$ and CO, were consistently observed at the western end of route 2 near Shijiazhuang area. Broad peaks of SO$_2$ and CO concentrations, indicators of regional transport plumes, were present near Shijiazhuang area (Fig. S5).

Similar to the situation in Shijiazhuang area, transport convergence would occasionally pass through other cities along routes 2 and 3. In a typical case on June 13 (Fig. 7), air masses were transported far from the southwest of the NCP along the transport convergence through Shijiazhuang and reached the area on route 3, with air pollutants accumulating during transport and showing high concentrations.

Overall, in most areas in central NCP, regional transport would play essential roles in determining the local air pollution levels, although the underlying mechanisms were different for the transport convergence area, central NCP area and coastal area. The wind dependence scatter plots for SO$_2$ and CO were used as examples to show the contribution of regional transport on air pollution in central NCP (Fig. 6). The results indicated that the prevailing winds were southwest and northeast in central NCP during our observation period. The concentrations of CO were independent of wind direction and wind speed. In addition, the high concentrations of SO$_2$ were
related to southeast winds with high speed, which was about 5–10 m s\(^{-1}\). This may have been because of transport convergence. Due to the strong interaction of different areas in central NCP, emissions control policies must consider the whole emissions budget to achieve the air quality aims.

4. Conclusion

A mobile laboratory was employed to obtain snapshots of the spatial distributions of air pollutants in the NCP. The concentrations observed were at the highest levels in the world and were distributed unevenly in the NCP. Most high concentrations, i.e., 95 percentile concentrations, of air pollutants were found near emissions hotspots, which suggested the influence of local emissions. However, regional transport of air pollutants was also considered significant in determining the air quality in the NCP. Back trajectory analysis, satellite data and tracer pollutants were combined to recognise various cases of regional transport in both the northern border and central NCP. Where the border areas would occasionally be diluted by winds from outside the NCP, the central NCP was affected by regional transport of air pollutants with a few exceptions, such as when precipitation occurred. To achieve the aims of air quality locally, emissions control policies must consider the whole emissions budget in the NCP.
The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see:

http://www.textcheck.com/certificate/bENNRx

Data availability. The data of mobile and stationary measurements are available upon requests.

Author contribution. T. Zhu, Y. Zhu, Y. Han and W. Chen designed the experiments. T. Zhu secured the research grants. Y. Zhu, Y. Han and W. Chen carried out the experiments. J. Zhang developed the model code and performed the simulations. J. Wang managed the data in the program. J. Liu provided the emission maps. L. Zeng, Y. Wu, X. Wang, W. Wang and J. Chen provided the data of stationary measurements. Y. Zhu analyzed the data with contributions from all co-authors. Y. Zhu prepared the manuscript with helps from T. Zhu, C. Ye and Y. Li.

Acknowledgement. This study was supported by the National Natural Science Foundation Committee of China (21190051, 41121004, 41421064), the European 7th Framework Programme Project PURGE (265325), the Collaborative Innovation Center for Regional Environmental Quality.

5. References

Donkelaar, V. A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P. J.: Global estimates of ambient Fine particulate matter concentrations...

Lin, W., Xu, X., Ge, B., and Liu, X.: Gaseous pollutants in Beijing urban area during
the heating period 2007–2008: variability, sources, meteorological, and chemical

Lin, W., Xu, X., Ge, B., and Zhang, X.: Characteristics of gaseous pollutants at
Gucheng, a rural site southwest of Beijing, J. Geophys. Res., 114, doi:

Liu, X., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T.,
haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13,
4501-4514, 2013.

Meng, Z., Xu, X., Yan, P., Ding, G., Tang, J., Lin, W., Xu, X., and Wang, S.:
Characteristics of trace gaseous pollutants at a regional background station in

Padró-Martínez, L. T., Patton, A. P., Trull, J. B., Zamore, W., Brugge, D., and Durant,
J. L.: Mobile monitoring of particle number concentration and other traffic-related
air pollutants in a near-highway neighborhood over the course of a year, Atmos.

Peters, J., Theunis, J., Poppel, M. V., and Berghmans, P.: Monitoring PM10 and
Ultrafine Particles in Urban Environments Using Mobile Measurements, Aerosol
Qu, L., Li, M., Chen, D., Lu, K., Jin, T., and Xu, X.: Multivariate analysis between driving condition and vehicle emission for light duty gasoline vehicles during rush hours, Atmos. Environ., 110, 103-110, 2015.

Ying, Q., Wu, L., and Zhang, H.: Local and inter-regional contributions to PM$_{2.5}$ nitrate and sulfate in China, Atmos. Environ., 94, 582-592, 2014.

Fig. 1. The study area in NCP. The red track shows route 1, from Beijing to Shijiazhuang. The purple track shows route 2, from Shijiazhuang to Dezhou. The black track shows route 3, from Dezhou to Baoding. The blue track shows route 4, from Cangzhou to Zhuozhou. The yellow track shows route 5, from Zhuozhou to Beijing. The red round dots on the map present the major cities near the routes. The yellow five-pointed stars present the monitoring sites.
Fig. 2. The concentrations of \(\text{SO}_2 \), \(\text{CO} \), \(\text{BC} \) and \(\text{NO}_x \) in each trip in different routes. The red boxes were the results in the last experiment. Values marked were the 5th and 95th percentile (-), standard deviation (lower and upper box lines), median (middle box line), and mean (■). The blue dots were results of GC station. The purple dots were results of QZ station. And the red dots were results of YC station.
Fig. 3. The spatial distributions of the measured concentrations in our study and the emission maps of \(\text{SO}_2 \), \(\text{NO}_x \), CO and BC. The colored tracks were average concentrations measured in this mobile observation. The black and white maps were emission maps of the year 2010 derived from MEIC model (Zhao et al., 2013).
Fig. 4. The regression curve of the means of concentrations of NO$_x$ and NO and the error bars in all 19 trips.

Fig. 5. The back trajectories of observed air masses in the borders of NCP in June 14, June 15, June 24, July 2, July 6 and July 7.
Fig. 6. Wind dependency scatter plots of concentrations of SO$_2$ and CO in border and central areas in NCP (a. SO$_2$ in border area; b. CO in border area; c. SO$_2$ in central area; d. CO in central area).

Fig. 7. The back trajectories of observed air masses in the central NCP in June 13 and July 4.