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Abstract. Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics and es-

timates of the social cost of carbon, often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric

concentrations and global temperature changes. An essential requirement of such a model is to reproduce the behaviour of

more Earth System Models as well as an ability to sample their range of response in a transparent, accessible and reproducible

form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC-AR5)5

to explicitly represent the state-dependence of the CO2 airborne fraction and reproduce the range of behaviour shown in full

and intermediate complexity Earth System Models under several idealised carbon-cycle experiments. We find that a simple

linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change is both

necessary and sufficient to represent the response of the climate system to CO2 on a range of timescales and under a range of

experimental designs. Quantified ranges of uncertainty (analogous to current assessed ranges in Equilibrium Climate Sensi-10

tivity and Transient Climate Response) in integrated airborne fraction over the 21st century under a representative mitigation

scenario, and an assessed range in how much this quantity may have changed relative to pre-industrial conditions, would be

valuable in future scientific assessments.

1 Introduction

Future emissions of CO2 over the remainder of the century are uncertain and a strong function of future climate policy (Van Vu-15

uren et al., 2011). Future climate changes, and their associated impacts, will largely be determined by future cumulative carbon

dioxide emissions (Matthews et al., 2009; Allen et al., 2009; Meinshausen et al., 2009), but linking specific CO2 emission

scenarios to future transient climate change requires a model of the interacting climate-carbon-cycle system. Comprehensive

Earth System Models (ESMs) explicitly simulate the physical processes that govern the coupled evolution of atmospheric car-

bon concentrations and the associated climate response (Friedlingstein et al., 2006). However, such models are typically highly20

computationally intensive and can therefore only be run for a few representative future emission scenarios (Taylor et al., 2012).

For analysis of arbitrary emissions scenarios, as required for the integrated assessment of climate policy and calculation of the

social cost of carbon, a computationally efficient representation of the Earth system is required (Marten, 2011).

1



Simplified representations of the coupled climate-carbon-cycle system take many forms (Hof et al., 2012). A key test for

simplified ESMs is whether they correctly capture the physics of the co-evolution of atmospheric CO2 concentrations and

global mean temperature under both idealised settings and under possible projections of future emissions scenarios. Following a

CO2 pulse emission of 100GtC in present-day climate conditions, ESMs (and Earth System Models of Intermediate Complexity

– EMICs) display a rapid-draw down of CO2 with the concentration anomaly reduced by approximately 40% from peak after5

20 years and by 60% after 100 years, followed by a much slower decay of concentrations leaving approximately 25% of

peak concentration anomaly remaining after 1000 years (Joos et al., 2013). The effect of this longevity of fossil carbon in

the atmosphere, combined with the gradual “recalcitrant” thermal adjustment of the climate system (Held et al., 2010), is to

induce a global mean surface temperature (GMST) response to a pulse emission of CO2 characterised by a rapid warming

over approximately a decade to a plateau value of GMST anomaly (Joos et al., 2013). Warming does not noticeably decrease10

from this value over the following several hundred years, indicating that, short of artificial CO2 removal (CDR) or active

geoengineering, CO2-induced warming is essentially permanent on human-relevant timescales.

As computations of the social cost of carbon require the discounted summation of future climate change-induced economic

damages associated with an additional pulse emission of CO2 above a baseline scenario, the correct representation of the

temporal evolution of the warming response to the pulse emission is required from computationally-simple climate-carbon-15

cycle models. As simple climate-carbon-cycle models are not explicitly evaluated in terms of their pulse-response behaviour,

it is unclear how well this robustly simulated physics is represented in such models.

A second important feature of more complex climate-carbon-cycle models is the increase in airborne fraction (the percentage

of emitted CO2 that remains in the atmosphere after a period of time) over time in scenarios involving substantial levels of

emissions or warming (Friedlingstein et al., 2006; Millar et al., 2016). An emergent feature of the CMIP5 full-complexity20

ESMs appears to be that this increase in airborne fraction approximately cancels the logarithmic relationship between CO2

concentrations and radiative forcing, yielding an approximately linear relationship between cumulative CO2 emissions and

CO2-induced warming (Matthews et al., 2009; Gillett et al., 2013). This relationship has given rise to the concept of an all-time

cumulative ‘carbon budget’ to restrict warming to a certain level (Rogelj et al., 2016), which has quickly become an important

tool in evaluating the required energy-system transitions that are needed to limit warming to below particular thresholds (Davis25

and Socolow, 2014; Pfeiffer et al., 2016). As simple climate-carbon-cycle models are often used to compute particular carbon

budgets in integrated assessment scenarios (e.g. Meinshausen et al. (2009)), the ability to reproduce the approximate linearity

of the relationship between warming and cumulative emissions is a desirable property.

In this paper we show that the impulse-response functions that are provided for the calculation of multi-gas equivalence

metrics in IPCC-AR5 (Myhre et al., 2013), a simple and easy to use coupled climate-carbon-cycle model, are insufficient to30

fully capture these emergent responses of the climate-carbon-cycle system. Such a state-insensitive impulse-response model

cannot simultaneously reproduce the relationship between emissions, concentrations and temperatures seen over the historical

period and the projected response over the 21st century to both high-emission and mitigation scenarios as simulated by ESMs.

We therefore propose a simple extension of the standard IPCC-AR5 impulse-response model, coupling the carbon-cycle to the
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thermal response and to cumulative carbon uptake by terrestrial and marine sinks in order to reproduce the behaviour of the

ESMs under a variety of idealised experiments and future emissions scenarios.

Section 2 describes the formalism of the models that we contrast throughout this paper. We then describe, in section 3.1,

why a state-dependence modification to the IPCC-AR5 carbon-cycle impulse-response function is required, motivating the

modified model described in section 2. Section 3.2 then evaluates these models’ ability in replicating the dependencies of the5

response to a pulse-emission on background conditions and pulse size shown in ESMs and EMICs. Section 3.3 evaluates the

models’ behaviour under a set of idealised experiments in which CO2 concentrations are increased by a fixed percentage each

year starting from pre-industrial values. Section 3.4 discusses uncertainty in the modified simple model and how probabilistic

assessments of climate response to CO2 emissions could be made. Section 4 provides a concluding summary and discussion.

2 Model descriptions10

2.1 The IPCC AR5 Impulse-Response (AR5-IR) model

The IPCC-AR5 proposed an idealised simple climate model for metric calculations, incorporating a “2-box” or “2-time-

constant” model of the temperature response to radiative forcing with a “4-time-constant” impulse-response model of the

CO2 response to emissions (Myhre et al., 2013). This model represents the evolution of atmospheric CO2 by partitioning

emissions of anthropogenic CO2 between four different reservoirs (all of which are empty in pre-industrial equilibrium) of15

atmospheric carbon anomaly that each decay with a fixed time constant. The impulse-response function for a unit emission at

time t= 0 is therefore give as,

dRi

dt
= aiE− Ri

τi
; i= 1,4 (1)

where E are annual CO2 emissions, in units of ppm/year (1 ppm = 2.12GtC). Atmospheric CO2 concentrations are given by

C = C0 +
∑

iRi , and radiative forcing by:20

F =
F2X

ln(2)
ln

(
C

C0

)
+Fext , (2)

where C0 is the pre-industrial CO2 concentration, F2X the forcing due to CO2 doubling, and Fext the non-CO2 forcing. GMST

anomalies are computed thus:

dTj
dt

=
cjF −Tj

dj
; T =

∑
j

Tj ; j = 1,2 (3)

with coefficients ai, dj and τi as given in AR5 Chapter 8, tables 8.SM.9 and 8.SM.10 (Myhre et al., 2013). cj are set to give an25

Equilibrium Climate Sensitivity (ECS) =2.75K and Transient Climate Response (TCR) =1.6K (corresponding to c1 = 0.46 and

c2 = 0.27 (Millar et al., 2015)), indicative of a typical mid-range climate response to radiative forcing in ESMs (Flato et al.,

2013). The four carbon pools, each with a fixed decay time constant, are determined to be sufficient to empirically represent the

response of atmospheric CO2 concentration anomalies following a pulse emission of 100GtC, above a specified background
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Parameter Value - AR5-IR Value - PI-IR Value - FAIR Processes

a0 0.2173 0.1266 0.2173 Geological re-absorption

a1 0.2240 0.2607 0.2240 Deep ocean invasion / equilibration

a2 0.2824 0.2909 0.2824 Biospheric uptake / ocean thermocline invasion

a3 0.2763 0.3218 0.2763 Rapid biospheric uptake / ocean mixed-layer invasion

τ0 (yr) 1x106 1x106 1x106 Geological re-absorption

τ1 (yr) 394.4 302.8 394.4 Deep ocean invasion/equilibration

τ2 (yr) 36.54 31.61 36.54 Biospheric uptake / ocean thermocline invasion

τ3 (yr) 4.304 4.240 4.304 Rapid biospheric uptake / ocean mixed-layer invasion

c1 0.46 0.46 0.46 Thermal adjustment of upper ocean

c2 0.27 0.27 0.27 Thermal equilibration of deep ocean

d1 (yr) 8.4 8.4 8.4 Thermal adjustment of upper ocean

d2 (yr) 409.5 409.5 409.5 Thermal equilibration of deep ocean

r0 (yr) - - 35 Pre-industrial iIRF100

rC (yr/GtC) - - 0.02 Increase in iIRF100 with cumulative carbon uptake

rT (yr/K) - - 4.5 Increase in iIRF100 with warming
Table 1. Default parameter values for simple impulse-response climate-carbon-cycle models used in this paper. Note that, for consistency

with (Myhre et al., 2013), the ordering of indices is fast-slow for the thermal response and slow-fast for the carbon cycle.

concentration of 389ppm, over the 1000 years following the pulse (Joos et al., 2013). As the fraction of carbon emissions

entering each reservoir (ai) and the decay time constant (τi) are determined empirically, they do not in themselves correspond

to individual physical processes and instead represent the combined effect of several carbon-cycle mechanisms. However, the

distinct range of decay timescales indicates specific physical processes that are strongly associated with the evolution of each

carbon reservoir. These are summarised in table 1.5

We use two versions of the AR5-IR model in this paper, one calibrated to the present-day (AR5-IR) and one calibrated

to the pre-industrial climate response to a pulse emission (PI-IR) respectively. The AR5-IR model is used for the calculation

of absolute Global Temperature Potentials (aGTPs) in IPCC-AR5 and has carbon-cycle coefficients that best represent the

evolution of a 100GtC pulse emission under approximately present-day conditions. The PI-IR model uses an alternative set

of coefficients that are selected to represent the evolution of a 100GtC pulse emission in pre-industrial conditions for the10

multi-model mean of the ensemble of ESMs and EMICs in Joos et al. (2013) (see table 1 for parameter values).

2.2 A “Finite Amplitude Impulse Response” (FAIR) model

In the AR5-IR model the carbon-cycle constants are not affected by rising temperature or CO2 accumulation and hence only

represent the specific response to a particular perturbation scenario. In more comprehensive models, ocean uptake efficiency
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declines with accumulated CO2 in ocean sinks (Revelle and Suess, 1957) and uptake of carbon into both terrestrial and marine

sinks are reduced by warming (Friedlingstein et al., 2006).

In an attempt to capture some of these dynamics within the simple impulse-response model structure, we here attempt a

minimal modification of the AR5-IR model to allow it to mimic the behaviour of more complex models in response to finite-

amplitude CO2 injections, which we call a Finite Amplitude Impulse-Response (FAIR) model. To introduce a state-dependent5

carbon uptake as simply as possible, we apply a single scaling factor α to all four of the time-constants in the carbon-cycle of

the AR5-IR model, such that the CO2 concentrations in the 4 “carbon reservoirs” are updated thus:

dRi

dt
= aiE− Ri

ατi
; i= 1,4 (4)

To identify a suitable state-dependence, we focus on parameterising variations in the 100-year integrated impulse response

function, iIRF100. A focus on the integrated impulse response (average airborne fraction over a period of time), as opposed10

to the airborne fraction at a particular point in time, it is more closely related to the impact of emissions on the global energy

budget, and also to other metrics such as Global Warming Potential (GWP) (Joos et al., 2013). With other coefficients fixed,

iIRF100 is a monotonic (but non-linear) function of α:

iIRF100 =
∑
i

αaiτi

[
1− exp

(
−100

ατi

)]
. (5)

Following other simplified carbon-cycle models (Meinshausen et al., 2011a; Glotter et al., 2014), we assume iIRF100 is a15

function of accumulated perturbation carbon stock in the land and ocean (equivalent to the amount of emitted carbon that

no longer resides in the atmosphere), Cacc =
∑

tE− (C −C0), and of GMST anomaly from pre-industrial conditions, T . A

simple linear relationship appears to give an adequate approximation to the behaviour of ESMs and EMICs (as will be shown

subsequently in section 3):

iIRF100 = r0 + rCCacc + rTT. (6)20

Values of r0=35 years, rC =0.02 years/GtC, recalling that 2.12 GtC = 1ppm, and rT =4.5 years/K, with ECS=2.75K and

TCR=1.6K, give a numerically-computed iIRF100 of 53 years for a 100 GtC pulse released against a background CO2 concen-

tration of 389ppm following a historical build-up, consistent with the central estimate of Joos et al. (2013). These parameters

also approximately replicate the relationship between warming-driven outgassing of carbon in the bulk of CMIP5 ESMs (see

section 3.3). The values of r0, rT and rC given here are intended to be taken only as approximate best-estimate values that25

capture important carbon-cycle dynamics in ESMs. The exact values of these parameters could be tuned (along with the other

parameters in the model) to best-reproduce the aspect of ESM/EMIC behaviour of interest (e.g. see Figure 4).

We compute iIRF100 at each time-step using Cacc and T from the previous time-step and equation 6, convert to a α using

equation 5 and apply to the carbon-cycle equations (equation 4). This means the iIRF100 is only exactly reproduced under

constant background conditions with infinitesimal perturbations. Values of iIRF100 larger than 100 years correspond to a net30

carbon source in response to a perturbation, and, as perturbations to the carbon stock in the atmosphere would grow indefinitely,

makes the model unstable. In this regime there is no solution for α, so we set iIRF100 to a maximum value of 95 years,
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corresponding with these parameters to α=65.4. This physically corresponds to a near-absence of carbon sinks in the Earth

system following a very large injection, with very slow rates of decay of atmospheric concentrations.

3 Results

In this section we initially set out the need for the FAIR model by showing that state-independent impulse-response model

cannot simultaneously reproduce the observed carbon-cycle response over the historical period and the future carbon-cycle5

evolution as projected by ESMs under possible future emissions scenarios (section 3.1). We subsequently evaluate the ability

of the FAIR model to capture the responses shown by ESMs and EMICs under a range of idealised experiments (sections

3.2 and 3.3), before discussing climate response uncertainty in the FAIR model and describing a strategy to sample climate

response uncertainty within the model structure (section 3.4).

3.1 The necessity for a state-dependent impulse-response model10

A key requirement for simple climate-carbon-cycle models is to reproduce the historical period and the present-day state of

the climate system successfully. Compatibility with the present-day climate state can be important for accurately assessing

the scale of future mitigation ambition required to achieve specific policy targets (Rogelj et al., 2011). Atmospheric CO2

concentrations increase faster than observed when computed from estimated historical emissions (Le Quéré et al., 2015) with

the AR5-IR model (Figure 1a). This leads to a bias of over 30ppm in 2011 concentrations, due to the slower than observed15

decay of CO2 from the atmosphere over the historical period. The AR5-IR displays a too-large instantaneous airborne fraction

over the entire historical period and is less consistent with the observations than the FAIR model (Figure 1c). The PI-IR model

maintains a lower instantaneous airborne fraction than the AR5-IR model throughout the historical period, and matches the

observed record much better, however neither state-independent impulse-response model matches observations as well as the

state-dependent FAIR model. Large amplitude variations in the instantaneous airborne fraction can be seen in the observational20

record that are likely to be driven in large part by unforced variability in the Earth-system and as such would not be expected

to be reproduced by any of these simple models. More complex carbon-cycle models are required to understand the drivers

of these variations and any implications that they have for future carbon-cycle responses. A similar relationship between the

models is seen for emissions derived from each model consistent with prescribed observed CO2 concentrations (Figure 1b),

where required emissions are too low relative to observed values over much of the historical period for both the AR5-IR and25

PI-IR models.

Another key test of simple coupled climate-carbon-cycle models is the ability to replicate the response of ESMs to possible

scenarios of future emissions. Commonly-used future scenarios are generally defined in terms of concentration pathways

(Van Vuuren et al., 2011) and therefore do not have a model-independent set of emissions associated with them. In this paper

we drive all three simple impulse-response climate-carbon-cycle models by a single set of emissions for each future scenario30

that are derived from the MAGICC model (Meinshausen et al., 2011b) in order to allow a comparison of both concentrations and

temperatures between simple models. MAGICC has been shown to be a good emulator of the CMIP5 ensemble and therefore
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offers a comparison by proxy to the projection of CMIP5 ESMs (Meinshausen et al., 2011a). Whilst the PI-IR model might

do a better job of reproducing historical concentrations, under high future emissions scenarios such as RCP8.5 (Riahi et al.,

2011), it underestimates end of century concentrations, relative to MAGICC, to an even greater extent than the AR5-IR model

(Figure 2a) and concentrations fall from peak even quicker than MAGICC under the high mitigation RCP2.6 scenario (Figure

2b). It is clear that any state-insensitive impulse-response model is therefore unsuitable, unless modified, for calculations of,5

for example, the social cost of carbon against realistic baseline trajectories or long integrations with historical and projected

emissions.

The FAIR model compares well to MAGICC, particularly for the ambitious mitigation scenario. There is some divergence

after 2100 in the high emission scenario, but the behaviour of MAGICC (or indeed any other model) under these more extreme

forcing scenarios has not been verified. Whilst comparing the performance of one simple model to another is not as rigorous10

a test of model performance as comparing directly to the behaviour of ESMs, it is encouraging that the FAIR model shows a

close correspondence with a well-known and well-used simple model that has been used extensively to emulate the response

of ESMs (Rogelj et al., 2012).

3.2 Response to pulse emission experiments

The social cost of carbon is conventionally calculated by applying a pulse emission of a specified magnitude of carbon in near15

to present-day conditions as a perturbation on top of a certain future emission scenario (NAS, 2016). As calculating the social

cost of carbon is a key element of cost-benefit analysis of climate change policy in IAMs, simple climate-carbon-cycle models

used in IAMs should aim to reproduce the dependencies of the response to the perturbation on pulse size and background state

that has been highlighted in ESMs and EMICs (Joos et al., 2013; Herrington and Zickfeld, 2014).

Joos et al. (2013) documented the response of an ensemble of ESMs and EMICs to pulses of various sizes and against20

various different background conditions (black lines in Figure 3). In the PD100 experiment (100GtC pulse in approximately

present-day background conditions - upper two panels), future emissions are derived that stabilise concentrations at 389ppm

and held constant thereafter. A declining but sustained low level of diagnosed emissions are required to stabilise atmospheric

concentrations at a constant level (Figure 3a). In a second experiment, a 100GtC pulse is added to these calculated emissions

in the year that concentrations exceed 389ppm and the resulting concentration and temperature anomalies are compared to the25

case without the pulse emission to isolate the coupled response to the pulse emission alone (Figure 3b). After 100 years the

pulse in the concentration anomaly in the fully coupled FAIR model has decayed to 0.46 of its initial value, slightly greater than

the multi-model average of the ESM responses of 0.41, but, the iIRF100 of 53 years is consistent with the ESM multi-model

mean of 52.4 years (Joos et al., 2013). Excluding temperature feedbacks (the “biogeochemically-coupled’ version - setting

rT = 0) on the carbon-cycle increases the decay of the temperature response to the pulse over the century following the pulse30

emission which reduces the iIRF100 airborne fraction by 11%. The “fully-coupled” FAIR model shows temperature initially

adjusting rapidly followed by near-constant temperature over the remainder of the century.

Figure 3c and 3d also show the response to a 100GtC and a 5000GtC pulse respectively, applied in pre-industrial conditions

(named PI100 and PI5000 respectively). Similarly to the response shown by ESMs, the 100GtC pre-industrial pulse decays
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faster than the present-day case, due to reduced saturation of the land and ocean carbon sinks. With these parameters, the FAIR

iIRF100 is approximately 30% lower in the pre-industrial case compared to the present day, consistent with corresponding

ratio in the Joos et al. (2013) ensemble, with its value of 36 years within the 34-47 years range of the ESMs. The magnitude

of temperature response is similar in both the PD100 and PI100 cases due to the increased radiative efficiency of a pulse of

CO2 at lower background concentrations counteracting the faster decay of carbon out of the atmosphere. The 89% increase of5

iIRF100 in the 5000GtC pre-industrial pulse relative to the 100GtC pre-industrial, whilst smaller than the approximate doubling

observed in the ESMs, shows that the FAIR model can capture the dependence of the pulse-response on pulse size as well as

background conditions, whilst the AR5-IR model displays identical pulse response independent of pulse size or background

conditions.

A difference between the FAIR model and the ESMs is that restricting temperature-induced feedbacks on the carbon-cycle10

does not result in a substantial reduction in the iIRF100 for the pre-industrial 100GtC pulse experiment (the “fully-coupled”

and “biogeochemically-coupled” experiments lie on top of each other in figure 3c), whereas a 13% reduction in iIRF100 is

observed for the ESMs (Joos et al., 2013) (not shown). It is only for the 5000GtC pre-industrial pulse experiment that we see a

reduction in the iIRF100 associated with suppression of the temperature-induced feedbacks on the carbon cycle in FAIR.

Significant diversity is seen in the range of responses to the PD100 and PI100 experiments across different ESMs/EMICs15

(grey shading in Figures 3b and 3c). Whilst this diversity is ultimately attributable to a range of differences in carbon-cycle

process representations within the models, variations in just a sub-set of the FAIR parameters are sufficient to span the ranges

of responses in both the PD100 and PI100 experiments, as well as the ratio between the two responses. Figure 4 shows this by

fitting individual model responses in a two-step process. First, the carbon-cycle parameters of the FAIR model are optimised

to minimise the combined residual sum of squares of the FAIR fit to the Joos et al. (2013) multi-model mean airborne fraction20

in the PD100 and PI100 experiments (whilst maintaining the same ratio between the rT and rC parameters as the default

parameters given in section 2 and assuming fixed τi at their table 1 values). Then, as a second step, the response for individual

models are fitted by minimising the combined PD100 and PI100 residual sum of squares whilst allowing only the r0, rT and rC

parameters to vary from the model parameters found in the first stage, whilst again maintaining the same ratio between the rT

and rC parameters as the default and therefore reducing the effective degrees of freedom of the fit to just two. The timeseries25

of change in GMST are taken as given by the individual models. While a much better fit could be obtained by adjusting all

the parameters of the FAIR model, this subset appears sufficient to successfully capture much of the response to both the

PD100 and PI100 experiments for individual models, as well as their range of behaviour (Figure 4). The FAIR model offers a

simple framework to emulate the range of ESM responses whilst at the same time maintaining the dependency on background

condition and pulse size for the specific model in question.30

As an final test of the FAIR model’s sensitivity to pulse size, we also consider the response of the FAIR and AR5-IR models

under the idealised pulse experiments of Herrington and Zickfeld (2014). Herrington and Zickfeld (2014) conducted several

experiments with the UVic Earth System Model of intermediate complexity (Weaver et al., 2001). We here emulate the PULSE

experiments of Herrington and Zickfeld (2014) by integrating the FAIR and AR5-IR models with historical fossil fuel and

land-use CO2 emissions (as derived from historical concentrations using the MAGICC model) together with estimates of the35
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historical radiative forcing from non-CO2 factors. Pulse emissions of various sizes were then applied over a two-year period

from 2008 in order to restrict total all time cumulative emissions to specified totals (see Herrington and Zickfeld (2014) for

details). Non-CO2 forcings are held constant at 2008 levels after following RCP8.5 (Riahi et al., 2011) trajectories for 2005-

2008.

Ricke and Caldeira (2014) used a version of the AR5-IR model to find that the maximum warming from a pulse emissions of5

CO2 occurs approximately a decade after emission, but as shown here (Figure 5) and as highlighted by Zickfeld and Herrington

(2015), not accounting for feedbacks on the carbon-cycle fails to capture the plateau of CO2-induced warming over the century

following emission. For all pulse sizes (denoted with different linestyles) contrasting the fully coupled FAIR (thick blue)

and the AR5-IR (red) models shows that including carbon-cycle feedbacks is essential to prevent a substantial decay in the

temperature anomaly over the first 100 years following the pulse emission. At higher pulse sizes, the temperature response10

in the FAIR model fails to plateau as quickly as at lower pulses, where the balance between carbon-cycle cooling and long-

timescale thermal warming takes centuries to reach balance (Figure 3 of Herrington and Zickfeld (2014)).

3.3 Response to idealised concentration increase experiments

To explore the response to sustained emissions, rather than an emission pulse, we consider the experiments of Gregory et al.

(2009) and Arora et al. (2013), in which ESMs are subjected to specified rates of increase in CO2 concentrations. Concen-15

trations were increased from pre-industrial values at 0.5%yr−1, 1%yr−1 and 2%yr−1 respectively and consistent emissions

were derived for different configurations of the ESMs: a “biogeochemically-coupled” experiment, where the carbon-cycle is

only allowed to respond to the direct effect of increasing CO2 concentrations and not to the resultant warming; a “radiatively-

coupled” experiment in which the climate system is allowed to respond to the radiative forcing of CO2 but the carbon-cycle is

only allowed to respond to the simulated warming and not to increasing CO2; and a “fully-coupled” experiment in which the20

carbon-cycle is allowed to respond to both warming and CO2 concentrations (light pastel coloured lines in Figure 6) for the

1%/yr concentration increase scenario. Such idealised scenarios can be highly informative with regard to the physical drivers of

carbon-cycle feedbacks under increased emissions. Successfully emulating the approximate balance between warming-induced

and biogeochemically-induced contributions to carbon-cycle feedbacks could be important for integrated assessment of solar

radiation management scenarios and mitigation scenarios in which the balance of contributions to warming from CO2 and25

non-CO2 sources changes significantly in the future.

Within the FAIR framework we recreate the “biogeochemically-coupled” experiment by setting rT =0, and approximate the

“radiatively-coupled” experiment by evaluating the difference between the “fully-coupled” and “biogeochemically-coupled”

experiments. Although Gregory et al. (2009) found that the relationship between the experiments was not simply a linear

summation at high CO2 concentrations, this serves as an adequate approximation for our purposes here, since our objective is30

the correct representation of aggregate feedbacks rather than a breakdown into specific contributions.

Similarly to the ESMs from Arora et al. (2013), the coupling between temperature changes and the carbon-cycle in the FAIR

model acts to suppress carbon uptake, shown by the difference between the thick and thin lines in Figure 6a, a mechanism

that is absent (by construction) in the AR5-IR model. The coupling with cumulative carbon uptake in the FAIR model also
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increases airborne fraction in the later stages of the experiment relative to earlier stages (Figure 1c), as illustrated by the

approximately linear increase in Cacc in the “biogeochemically-coupled” experiment, also consistent with ESM responses. A

constant airborne fraction necessarily gives an approximately quadratic increase in Cacc in this experiment, as illustrated by

the AR5-IR model. Figure 6b shows Cacc as a function of atmospheric CO2 concentration: again, the FAIR model captures

the concave-downward form of this diagnostic, in contrast to the AR5-IR model.5

Whilst oceanic carbon-cycle feedbacks are almost exclusively driven by biogeochemical effects (Glotter et al., 2014), for

simple climate-carbon-cycle models to be of use in representing the entire climate system, they need to capture dependencies of

the land carbon cycle on warming. Aside from 3 ESMs that display global-mean carbon-cycles insensitive to warming, Figure

6c shows a coherent relationship between temperature increases and the size of the carbon outgassing back to the atmosphere

(Arora et al., 2013). The impact of GMST increase on cumulative uptake, or the difference between the biogeochemically10

coupled and fully coupled experiments shown in Figure 6a, as a function of warming, indicating that values of rT close to

4.5yr/K allow the FAIR model to reproduce this relationship well. 1%yr−1, 0.5%yr−1 and 2%yr−1 experiments all lie along

the same line in panel (c), indicating minimal scenario dependence of this effect in FAIR, in contrast to the two ESMs analysed

in Gregory et al. (2009).

The initial decrease in cumulative airborne fraction (the time-integrated instantaneous airborne fraction) followed by a15

subsequent increase (Figure 6d) displayed by the FAIR model is a feature of the response of many ESMs under a 1%/yr

increasing CO2 scenario. In contrast, the IPCC-AR5 model shows a steady decrease in the cumulative airborne fraction with

higher concentrations due to the state-invariant rates at which a pulse of carbon is removed from the atmosphere. The initial

decrease in cumulative airborne fraction followed by subsequent increase can be understood in terms of the saturation of carbon

sinks. If atmospheric anomalies of carbon decay with fixed timescales, τi (as in the AR5-IR model case), then instantaneous20

airborne fraction remains constant in time, which necessarily means that cumulative airborne fraction must decline over time

(as emissions from previous years decay further, so the cumulative fraction of the emitted carbon continually decays from

the instantaneous airborne fraction). However, if carbon sinks become saturated, the instantaneous airborne fraction would

be expected to increase with time (this is represented in the FAIR model by increases to the decay timescales through the

parameterised increase in iIRF100). As more recent emissions (which increase monotonically under the 1%/yr scenario) have25

a higher instantaneous airborne fraction, the initial decrease in cumulative airborne fraction stops and then begins to increase

as this accelerating saturation becomes the dominant effect.

3.4 Uncertainty and probabilistic parameter sampling within the FAIR model

Uncertainty is a crucial factor in the integrated assessment of climate policies. Despite significant advances in climate system

understanding, non-negligible uncertainties remain in the responses of the coupled climate-carbon-cycle system to emissions30

of CO2 (Gillett et al., 2013). Uncertainty in aspects of the climate response to CO2 remains broad and climate policies have

to be constructed and assessed in the light of this continued uncertainty (Millar et al., 2016). Integrated assessment activities

require a representation of the physical climate system that can transparently and simply sample physically-consistent modes

of climate response uncertainty.
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The impulse-response formulation of the physical climate response to radiative forcing used by both the AR5-IR and FAIR

models offers a convenient structure for simply sampling plausible ranges of TCR and ECS, as a unique combination of TCR

and ECS (for fixed response time-scales dj) are associated with a unique combination of the model parameters cj (see Millar

et al. (2015) for details). Panels a) and b) in figure 7 show how the likely range of TCR and ECS as assessed by IPCC-AR5

(TCR: 1.0-2.5K and ECS: 1.5-4.5K) can spanned for assessing the climate response to any radiative forcing scenario.5

A robust feature of the carbon-cycle response in all ESMs is an increase in the cumulative airborne fraction over time

associated with a saturation of carbon sinks (upward curving black lines in Figure 7c imply that a rising fraction of cumulative

emissions remain resident in the atmosphere). Unlike the AR5-IR model, which displays a slowly declining cumulative airborne

fraction over time due to the state-independence of its response function, coherent perturbations of +/-13% (approximately

equivalent to a present-day iIRF100 change of +/- 7 years ) to the r0 ,rT and rC parameters (combined with perturbations to c110

and c2 consistent with the IPCC-AR5 likely ranges) in the FAIR model all show increasing cumulative airborne fraction over

time (blue shading in Figure 7c) and approximately span the range of responses seen in the CMIP5 models under a 1%yr−1

concentration increase scenario.

Crucially, the FAIR model also captures the straight-line relationship between cumulative carbon emissions and human-

induced warming (Figure 7d) that was highlighted in the IPCC 5th Assessment, and is becoming an integral part of climate15

change policy analysis (Millar et al., 2016). When integrated, the FAIR model, with parameter settings given in section 2, has

a Transient Response to Cumulative Emissions (TCRE) =1.5K/TtC (thick blue line in Figure 7d). Perturbations to the model

parameters as described above (and identical to Figure 7c) allow the IPCC-AR5 likely TCRE range of 0.8-2.5K/TtC to be

spanned (Figure 7d). In contrast, the AR5-IR model, with a constant airborne fraction, shows a clear concave-downward shape

in a plot of realised warming against cumulative carbon emissions, because the decline of the cumulative airborne fraction is20

unable to compensate (as it does in more complex models) for the logarithmic relationship between CO2 concentration and

radiative forcing (Millar et al., 2016). The FAIR model also displays some curvature at high cumulative emissions, consistent

with the behaviour of ESMs (Leduc et al., 2015).

Integrated assessment of climate change often requires probabilistic projections of the climate response to CO2 emissions,

partly in order to capture and assess the possibility of extreme, and highly costly, sensitivities within the Earth system (often25

called “fat-tailed” outcomes) (Weitzman, 2011). Uncertainty in the global climate response to emissions of CO2 is associated

with several factors, which are each considered in turn here.

Uncertainty in the thermal response to radiative forcing typically tends to dominate uncertainty in the response of the global

climate system to CO2 emissions (Gillett et al., 2013). ECS and TCR co-vary in global climate models (Knutti et al., 2005;

Millar et al., 2015), with TCR typically considered the more policy-relevant parameter and the parameter better constrained by30

climate observations to date (Frame et al., 2006; Gillett et al., 2013). Hence varying ECS alone in a probabilistic assessment

risks introducing an implicit distribution for TCR that is inconsistent with available observations. Millar et al. (2015) observed

that, within the coupled models of the CMIP5 ensemble, TCR and the ratio TCR/ECS (referred to as the Realised Warming

Fraction or RWF) are approximately independent. IPCC-AR5 provided formally assessed uncertainty ranges for TCR and ECS
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(Collins et al., 2013) but not for their ratio. RWFs for the CMIP5 models lie within the range 0.45-0.7, while observationally-

constrained estimates typically lie in the upper half of this range (Millar et al., 2015).

As IPCC-AR5 likely (>66% probability) ranges for a physical climate parameter attempt to capture structural uncertainties

that might be present in all studies, therefore, IPCC-AR5 likely intervals are generally comparable to the 90% confidence

intervals in the underlying studies. IPCC-AR5 gives no assessment of the shape of the distribution associated with structural5

uncertainty as, by definition, this encompasses “unknown unknowns” that are not included in any model or study available.

For quantitative modelling purposes, likely ranges are best interpreted as 5-95 percentiles of input distributions for IPCC-AR5

assessed parameters, provided a similar “structural degradation” is applied to interpret the 5-95 percentiles of output quantities

as corresponding only to a likely range, propagating the possibility of structural uncertainty in the assessed parameter through

the study. We here assume a bounded (between 0 and 1) Gaussian distribution for RWF and a log-normal distribution for TCR,10

reproducing the positive skewness (fat high tail) of many estimated distributions for this parameter. A log-normal distribution

has some theoretical justification for a so-called “scale parameter”, or one in which uncertainty increases with parameter size,

which is arguably the case for TCR (Pueyo, 2012). Convolving a bounded Gaussian RWF distribution (with 5-95 percentiles of

0.45-0.75) with a log-normal TCR distribution (with 5-95 percentiles of 1.0-2.5K), gives a corresponding ECS 5-95 percentile

range of 1.6-4.5K, in good agreement with the IPCC-AR5 assessed likely range (1.5-4.5K). A sample of 300 ECS and TCR15

values drawn from these distributions are shown in figure 8a.

Another key uncertainty is the short thermal response timescale, d1, an important determinant of the Initial Pulse-adjustment

Time (IPT), the initial e-folding adjustment time of the temperature response to a pulse emission of CO2 (NAS, 2016). This

can be approximated for the FAIR model as IPT=d1(1−a3). Throughout this paper we have used the IPCC-AR5 default value

for d1 of 8.4 years, but this is longer than indicated by most climate models (Geoffroy et al., 2013). We therefore sample the20

short thermal response timescale using a Gaussian distribution with a median value of 4 years and a 5-95% probability interval

of 2-8 years. This corresponds to an approximate median estimate of 2.8 years with 5-95 percentile range of 1.4-5.6 years for

the IPT.

We consider uncertainties in the carbon cycle by sampling r0, rT and rC with Gaussian distributions of 5-95% probability

intervals equal to +/- 13% (present-day iIRF100 +/- 7 years) of their default value. Combined with the thermal response uncer-25

tainty sampling, the emergent 5-95% range (based on 300 draws from the input parameter distributions) for TCRE (figure 8c)

of 1.0-2.5K/TtC is broadly consistent with the IPCC-AR5 likely range (0.8-2.5K/TtC).

Sampling these parameters independently, as described above, produces a range of responses to a 100 GtC pulse emissions

in 2020 against the background of the RCP2.6 scenario (figure 8d). However, we consistently observe a rapid warming on the

order of a decade followed by an approximate warming plateau (at differing values) that persists for a century or more. Such30

behaviour is broadly consistent, in all cases, with the range of pulse-response behaviour observed across the ensemble of ESMs

in Joos et al. (2013).
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4 Conclusions

In this paper we have presented a simple Finite Amplitude Impulse Response (FAIR) climate-carbon-cycle model, which

adjusts the carbon-cycle impulse-response function based on feedbacks from the warming of the climate and cumulative CO2

uptake, through a parameterisation of the 100-year integrated impulse-response function, iIRF100. This metric provides a

potential parallel to those used to assess the thermal response to radiative forcing, namely the Transient Climate Response5

(TCR) and the Equilibrium Climate Sensitivity (ECS). Although a useful composite metric for the coupled climate-carbon-

cycle system exists, the Transient Climate Response to Cumulative Emissions (TCRE), future studies of carbon cycle behaviour

could report on ranges of iIRF100, and importantly for carbon cycle feedbacks, the evolution of this metric over time under

specific emissions scenarios, in order to isolate the changing response of the carbon cycle.

We have shown that including both explicit CO2 uptake- and temperature- induced feedbacks are essential to capture ESM10

behaviour. Important dependences of the carbon-cycle response to pulse size, background conditions and the suppression of

temperature-induced feedbacks are generally well captured by the FAIR model. As present-day pulse responses are an essential

part of calculations of the social cost of carbon (Marten, 2011), the inclusion of climate-carbon-cycle feedbacks in the FAIR

model offers an improvement on several simple and transparent climate-carbon-cycle models that have been proposed for policy

analysis which either incorporate no feedbacks on the carbon-cycle or do not fully capture the operation of these feedbacks in15

ESMs.

We believe that the FAIR model could be a useful tool for offering a simple and transparent framework for assessing

the implications of CO2 emissions for climate policy analyses. It offers a structure that both replicates the essential physical

mechanisms of the climate system’s response to cumulative emissions, whilst at the same time can easily be modified to sample

representative climate response uncertainty in either the thermal climate response component, the unperturbed carbon-cycle or20

the coupled climate-carbon-cycle response to anthropogenic CO2 emissions. Tuning of parameters within the FAIR framework

allows the range of ESM behaviour to be emulated whilst maintaining the physically-understood dependency of pulse-response

on background conditions and pulse size exhibited by a particular ESM. This model structure could thus be adapted to be an

effective emulator of CMIP6 ESM responses under a variety of scenarios.

Author contributions. RJM, ZRN and MRA developed the FAIR model formulation. PF and MRA identified the need for the feedback term25

in the AR5-IR model while RJM developed the final formulation. MRA designed the tests and RJM made the figures, except Figure 4 which

was made by ZRN. RJM wrote the first draft of the manuscript and all authors contributed to the editing and revisions of the paper.
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Figure 1. Historical validation of the FAIR (blue), AR5-IR (red) and PI-IR (orange) models. Panel a) shows the CO2 concentration response

when integrated under historical emissions (and historical non-CO2 radiative forcing for the RCP scenarios). Panel b) shows the derived CO2

emissions consistent with historical concentrations. Panel c) shows the evolution of annual airborne fraction (smoothed with a 7-year running

mean for the observations) in the models when driven by historical emissions (as in panel a)). Panel d) shows the warming anomaly in the

models when driven by historical emissions. Historical observations are shown as black dots in all panels. Panels a), b) and c) all show data

from Le Quéré et al. (2015) and panel d) shows the HadCRUT4 (Morice et al., 2012) dataset. All simulations are commenced from assumed

quasi-equilibrium carbon-cycle states in 1850.
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Figure 2. Panels a) and b) shows the CO2 concentrations under RCP8.5 and RCP2.6 respectively for the FAIR (blue), AR5-IR (red), PI-

IR (orange) and MAGICC (green) models. Panel c) shows the temperature response under both RCP2.6 and RCP8.5. Panel d) shows the

evolution of total warming (full) and CO2-induced warming (dashed) as a function of cumulative carbon emissions.
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Figure 3. Response to pulse emission experiments of Joos et al. (2013). Panel a) shows the “baseline” emissions (left-hand axis, solid)

and warming (right-hand axis, dashed) when concentrations are stabilised at 389ppm for the FAIR (blue) and AR5-IR (red) models. Panel

b) shows the response to a 100GtC imposed on present-day (389ppm) background conditions (PD100 experiment). Panel c) shows the

response to a 100GtC pulse in pre-industrial conditions (PI100 experiment). Panel d) shows the response to a 5000GtC pulse in pre-industrial

conditions (PI5000 experiment), with the warming normalised by the increase in pulse size between panels c) and d). The black lines in

panels b), c) and d) shows the Joos et al. (2013) multi-model mean for airborne fraction (solid) and warming (dashed), with the black shading

indicating one standard deviation uncertainty across the ensemble.
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Figure 4. Fitting individual models from Joos et al. (2013) with FAIR. Panel a) shows the remaining airborne fraction for the PD100

experiment and panel b) for those models that additionally completed the PI100 experiment. Solid lines show the original model response

coloured by the iIRF100 values. Emulations with FAIR are shown by the same coloured dashed lines. The multi-model mean is shown by a

solid black line with the FAIR fit denoted by a dashed grey line.
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Figure 5. Panel a) shows the global mean surface temperature (GMST) response to the pulse experiments of Herrington and Zickfeld (2014).

Pulse emissions are applied over a 2-year period from 2008, with differing total cumulative carbon emissions denoted by different line styles.

Responses are shown for the FAIR (blue) and AR5-IR (red) models. Panel b) shows the corresponding concentration response.
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Figure 6. Response to idealised concentration increase experiments from Gregory et al. (2009) for the FAIR (blue) and AR5-IR (red) models.

Light pastel colours show the ESMs from Joos et al. (2013) for the 1%/yr concentration increase scenario only. Panel a) shows the cumulative

total carbon uptake over time in the “fully coupled” 1%yr−1 concentration increase scenario. Panel b) shows the evolution of cumulative

total carbon uptake as a function of atmospheric concentration in the “biogeochemically coupled” experiment for 1%yr−1 (solid), 2%yr−1

(dashed) and 0.5%yr−1 (dotted) experiments. Panel c) shows the cumulative uptake as a function of temperature in the “radiatively coupled”

experiment. Panel d) shows the evolution of the cumulative airborne fraction as a function of the proportional concentration increase for the

“fully coupled” experiments.
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Figure 7. Climate response uncertainties in the FAIR (blue), AR5-IR (red) and CMIP5 (black) models. Panel a) shows the temperature

responses to a 1%/yr concentration increase scenario. The purple bar indicates the IPCC-AR5 TCR likely range. The blue shading in panels

a) and b) shows the response of FAIR under IPCC-AR5 upper and lower likely TCR and ECS ranges. Panel b) shows the responses to an

instantaneous quadrupling of atmospheric CO2 which is held fixed subsequently. The purple bar indicates the assessed equilibrium warming

compatible with the IPCC-AR5 ECS likely range. Panel c) shows concentrations as a function of cumulative emissions in the 1%/yr scenario.

Upward curving lines indicate an increase cumulative airborne fraction. The plumes in panels c) and d) show the response for the IPCC-AR5

likely TCR and ECS ranges, with an additional +/-10% perturbation to the r0, rT and rC parameters for the high/low end the likely ranges

respectively in the FAIR model. The dashed grey line indicates a constant cumulative airborne fraction that is consistent with the present-day

state o the climate system (green diamond). Panel d) shows warming as a function of cumulative emissions in the 1%/yr scenario. Straight

lines indicate a constant TCRE. The purple bar shows the IPCC-AR5 likely 0.8-2.5K/TtC assessed range for TCRE.

23



Figure 8. Probabilistic sampling in the FAIR model. Grey lines show 300 random draws from the input parameter distributions, as described

in the text. Panel (a) shows the joint distribution of TCR and ECS. Panel (b), the concentration response under MAGICC-derived RCP2.6

emissions. Panel (c), warming as a function of cumulative emissions in the 1%yr−1 concentration increase experiment. The brown bar in

panel c) represent the IPCC-AR5 likely TCRE range. Panel (d), the warming response to a 100GtC pulse emitted in 2020 on top of the

MAGICC-derived RCP2.6 emissions. The purple line/dot represents the median estimate in all panels.
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