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Abstract 29 

This study characterizes the spatiotemporal variability and relative contribution of different 30 

types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as 31 

derived from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) satellite 32 

instruments. For this purpose, a 0.1o x 0.1o gridded MODIS dataset was compiled and 33 
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validated against sunphotometric observations from the AErosol RObotic NETwork 1 

(AERONET). The high spatial resolution and long temporal coverage of the dataset allows for 2 

the determination of local hot spots like megacities, medium sized cities, industrial zones and 3 

power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 4 

nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and 5 

seasonal variabilities that can be attributed to precipitation, photochemical production of 6 

secondary organic aerosols, transport of pollution and smoke from biomass burning in Central 7 

and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The 8 

MODIS data were analyzed together with data from other satellite sensors, reanalysis projects 9 

and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region 10 

and capable of estimating the contribution of different aerosol types to the total AOD550. The 11 

spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over 12 

land and anthropogenic, dust and marine aerosols over the sea is examined. The relative 13 

contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal 14 

variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine 15 

mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, 16 

while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % 17 

of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.   18 

 19 

1 Introduction 20 

For more than fifteen years, two MODIS (Moderate Resolution Imaging Spectroradiometer) 21 

satellite sensors monitor tropospheric aerosols at a global scale on a daily basis. The retrieved 22 

aerosol optical properties have been used in numerous air quality studies as well as studies 23 

related to the effect of airborne particles on various climatic parameters (e.g. radiation, clouds, 24 

precipitation, etc.). The 1o x 1o daily gridded level-3 dataset is primarily used for global as well 25 

as regional studies while the single pixel level-2 data with a 10 km resolution (at nadir) are 26 

mostly used for regional and local scale studies. Nevertheless, the use of the coarse resolution 27 

MODIS data has predominated even in regional studies. The reasons for this could be the 28 

smaller file size which makes their processing and storage easier or the fact that they are easily 29 

accessible through user-friendly data bases which also allow for a very basic analysis like e.g. 30 

NASA's GIOVANNI website (http://giovanni.gsfc.nasa.gov/giovanni/) (Acker and Leptoukh, 31 

2007).  32 
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The same holds for studies focusing on the Mediterranean Basin, an area which is considered of 1 

particular sensitivity as far as air pollution and climate change is concerned (Lelieveld et al., 2 

2002; Giorgi, 2006). The Mediterranean basin is one of the regions with the highest aerosol 3 

optical depths (AODs) in the world (Husar et al., 1997; Ichocku et al., 2005; Papadimas et al., 4 

2008), causing significant climate forcing especially in summer, which is characterized by low 5 

cloudiness and high incoming solar radiation levels (Papadimas et al., 2012; Alexandri et al., 6 

2015). The Mediterranean is also recognized as a crossroads between three continents where 7 

aerosols of various types accumulate (Lelieveld et al., 2002). Marine aerosols from the 8 

Mediterranean Sea and even the Atlantic Ocean combine with aerosols from continental Europe 9 

(urban and rural), dust particles transported from the Sahara Desert and Middle East as well as 10 

biomass burning aerosols from occasional wild fires and agricultural burning (Lelieveld et al., 11 

2002). Specifically, as discussed in Hatzianastassiou et al. (2009), Eastern Mediterranean, the 12 

region under investigation here, is located at a "key" point of this crossroads. There is a 13 

significant number of ground and satellite-based studies on the abundance and optical properties 14 

of tropospheric aerosols in the area; however, these studies are either focused on specific spots 15 

or used a coarse spatial and temporal resolution.  16 

The ground-based instrumentation used in studies focusing on the aerosol load and optical 17 

properties over the Eastern Mediterranean includes active and passive sensors such as Lidars 18 

(e.g. Papayannis and Balis, 1998; Balis et al., 2004; Papayannis et al., 2005, 2009; Amiridis et 19 

al., 2005, 2009; Mamouri et al., 2013; Kokkalis et al., 2013; Nisantzi et al., 2015), Cimel 20 

sunphotometers (e.g. Israelevich et al., 2003; Kubilay et al., 2003; Derimian et al., 2006; 21 

Kalivitis et al., 2007; Kelektsoglou and Rapsomanikis, 2011; Nikitidou and Kazantzidis, 2013), 22 

Brewer spectrophotometers (e.g. Kazadzis et al., 2007; Koukouli et al., 2010), Multi-Filter 23 

Radiometers (e.g. Gerasopoulos et al., 2009, 2011; Kazadzis et al., 2014), ceilometers (e.g. 24 

Tsaknakis et al., 2011), Microtops sunphotometers (e.g. El-Metwally and Alfaro, 2013), etc. 25 

However, these and other studies not referenced here either refer to specific spots with the 26 

majority of the ground stations being situated in large urban centers (e.g. Athens, Thessaloniki, 27 

Cairo) or to specific events (e.g. Sahara dust intrusions, biomass burning events, etc.). 28 

On the other hand, AOD and other aerosol optical properties have been studied over the greater 29 

Eastern Mediterranean region based on data from Meteosat (Moulin et al., 1998), SeaWIFS 30 

(Koren et al., 2003; Antoine and Nobileau, 2006; Mélin et al., 2007; Nabat et al., 2013), TOMS 31 

(Alpert and Ganor, 2001; Israelevich et al., 2002; Koukouli et al. 2006; Hatzianastassiou et al., 32 

2009; Koukouli et al., 2010, Israelevich et al., 2012, Kaskaoutis et al., 2012a; Nabat et al., 2013; 33 
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Gkikas et al., 2013, 2014; Varga et al., 2014), MODIS Terra and Aqua (Barnaba and Gobbi, 1 

2004; Papayannis et al., 2005; Kaskaoutis et al., 2007, 2008, 2010, 2011, 2012a,b,c,d; 2 

Kosmopoulos et al., 2008; Papadimas et al., 2008, 2009; Rudich et al., 2008; Carmona and 3 

Alpert, 2009; Karnieli et al., 2009; Gkikas et al., 2009, 2013; Hatzianastassiou et al., 2009; El-4 

Metwally et al., 2010; Koukouli et al., 2010; Kanakidou et al., 2011; Gerasopoulos et al., 2011; 5 

de Meij and Lelieveld, 2011; Marey et al., 2011; de Meij et al., 2012; Nabat et al., 2012, 2013; 6 

Nikitidou and Kazantzidis, 2013; Athanasiou et al., 2013; Benas et al., 2011, 2013; Sorek-7 

Hamer et al., 2013; Kabatas et al., 2014; Kourtidis et al., 2014; Mishra et al., 2014; Flaounas et 8 

al., 2015; Kloog et al., 2015), OMI/AURA (Kaskaoutis et al., 2010; El-Metwally et al., 2010; 9 

Marey et al., 2011; Kaskaoutis et al., 2012b,c, Gkikas et al., 2013, 2014; Sorek-Hamer et al., 10 

2013; Varga et al., 2014; Flaounas et al., 2015), CALIOP/CALIPSO (Amiridis et al., 2009, 11 

2013, Mamouri et al., 2009; Marey et al., 2011; Kaskaoutis et al., 2012c; de Meij et al., 2012; 12 

Nabat et al., 2012, 2013; Mamouri and Ansmann, 2015), MISR/Terra (Kanakidou et al., 2011; 13 

Marey et al., 2011; de Meij and Lelieveld, 2011; de Meij et al., 2012; Nabat et al., 2013; 14 

Kabatas et al., 2014; Abdelkader et al., 2015) as well as NOAA/AVHRR, MERIS/ENVISAT, 15 

AATSR/ENVISAT, PARASOL/POLDER, MSG/SEVIRI, and Landsat satellite data (see 16 

Retalis and Sifakis, 2010; Nabat et al., 2013; Benas et al., 2013; Sifakis et al., 2014). To our 17 

knowledge, these studies comprise the majority of works focusing on tropospheric aerosols over 18 

the Eastern Mediterranean by means of satellite remote sensing, published in peer reviewed 19 

journals the last ~ 15 years. As shown in Fig. 4 of this work, the publication rate of satellite-20 

based studies focusing on the Eastern Mediterranean aerosols nearly doubled every three years 21 

during the period 1997-2014 which is indicative of the increasing scientific interest in the area.  22 

In a very large fraction of the satellite-based studies referenced above, the used data are either of 23 

coarse mode (usually 1o which is ~ 100 km for the mid-latitudes) or focus on specific spots for 24 

validation purposes. In a few cases, high resolution data were used in spatiotemporal studies; 25 

however, either these studies are restricted over surfaces covered by water or examine a short 26 

period only. For example, Moulin et al. (1998) investigated the dust AOD patterns over the 27 

oceanic areas of the Mediterranean Basin at a resolution of 35 x 35 km2 for a period of 11 years 28 

(1984-1994) using Meteosat observations. A 7-year climatology (1998-2004) of total and dust 29 

AOD for the same regions at a resolution of 0.16o x 0.16o was compiled by Antoine and 30 

Nobileau (2006) using observations from SeaWIFS. Mélin et al. (2007) merged SeaWIFS and 31 

MODIS data and presented high resolution AOD patterns (2 x 2 km2) for May 2003. As far as 32 

MODIS is concerned, only Barnaba and Gobbi (2004) presented a high resolution (0.1o x 0.1o) 33 
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spatiotemporal analysis for a period of 1 year (2001) over sea only. In a recent paper, 1 

Athanasiou et al. (2013) presented in detail a method for compiling a 0.5-degree resolution 2 

AOD gridded dataset using level-2 MODIS Terra data for the greater region of Greece (2000-3 

2008). However, the spatial resolution they used (~ 50 km) is not high enough to reveal local 4 

sources (e.g. cities, islands, river banks, etc.). Overall, there has not been so far any detailed 5 

high resolution spatiotemporal study of the AOD over the Eastern Mediterranean. 6 

In this paper, the AOD550 spatiotemporal variability over the Eastern Mediterranean (30oN-7 

45oN, 17.5oE-37.5oE) is presented at a high spatial resolution (0.1o x 0.1o) based on MODIS 8 

Terra and Aqua observations. Level-2 MODIS data are used for the compilation of a 0.1-degree 9 

gridded dataset which is validated against ground-based observations. In order to calculate the 10 

contribution of different aerosol types to the total AOD, the MODIS data were analyzed 11 

together with other satellite data, ERA-Interim and MACC reanalysis data and the Goddard 12 

Chemistry Aerosol Radiation and Transport (GOCART) model using an algorithm optimized 13 

for the surface properties of the Eastern Mediterranean region. The different datasets used in 14 

this research are presented in detail in Sect. 2 while a detailed description of the method is given 15 

in Sect. 3. Sect. 4 includes the results from the MODIS validation procedure, the annual and 16 

seasonal variability of AOD550 over the region with a discussion on the local aerosol sources 17 

and the differences between Terra and Aqua, and the annual and seasonal contribution of 18 

different aerosol types to the total AOD550. Finally, in Sect. 5, the main conclusions of the paper 19 

are presented along with a short discussion on how these results could contribute to future 20 

studies in the area.      21 

 22 

2 Observations, reanalysis data and model simulations 23 

2.1 MODIS Terra and Aqua satellite observations 24 

The main data used in this work come from the level-2 MODIS Terra (MOD04_L2) and 25 

MODIS Aqua (MYD04_L2) Collection 051 dataset and have been acquired through NASA's 26 

Level 1 and Atmosphere Archive and Distribution System (LAADS) 27 

(http://ladsweb.nascom.nasa.gov). MODIS Terra and Aqua have a daytime equator crossing 28 

time at 10:30 LT (morning) and 13:30 LT (noon), respectively. MODIS instruments with a 29 

viewing swath of 2330 km measure backscattered radiation at 36 spectral bands between 30 

0.415 and 14.235 μm with a spatial resolution of 250, 500 and 1000 m, providing a nearly 31 

global coverage on a daily basis. Aerosol optical properties for the standard MODIS aerosol 32 

product are retrieved using two different "Dark Target" (DT) algorithms. The one is used over 33 
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land surfaces (Kaufman et al., 1997; Levy et al., 2007a, b; Remer et al., 2005; Levy et al., 1 

2010) and the other over oceanic regions (Tanré et al., 1997; Levy et al., 2003; Remer et al., 2 

2005). The "Deep Blue" algorithm (DB) (Hsu et al., 2004; Hsu et al., 2006) has been used for 3 

retrievals over bright land surfaces (e.g. deserts) where the DT algorithm fails. Only recently, 4 

updates to the algorithm allowed for extending the spatial coverage of the DB aerosol product 5 

over all land areas (Hsu et al., 2013; Sayer et al., 2013; 2014). AERONET Cimel 6 

sunphotometric measurements have been extensively used for the validation of the MODIS 7 

over-land and over-ocean products (e.g. Chu et al., 2002; Remer et al., 2002; Remer et al., 8 

2005; Levy et al., 2010; Shi et al., 2013). 9 

In this work, AOD550 over both land and sea and the Fine Mode Ratio (FMR550) over sea from 10 

Collection 051 were used at a spatial resolution of 10 km (at nadir). The uncertainty of the 11 

MODIS aerosol optical depth has been estimated at ±(0.05+0.15AOD) over land (Chu et al., 12 

2002; Levy et al., 2010) and ±(0.03+0.05AOD) over ocean (Remer et al., 2002) relative to the 13 

AERONET AOD. Specifically, for the DT data used in this work only high quality retrievals 14 

are used over land. This means that the data have a Quality Assurance Confidence (QAC) flag 15 

equal to 3 (high confidence). For retrievals over sea we use data with a QAC flag of 1 16 

(marginally good), 2 (good) and 3 (see Levy et al., 2009 for details). The pre-launch 17 

uncertainty of FMR550 is ±30  % over ocean (Remer et al., 2005) while over land this 18 

parameter is by no means trustworthy and should only be used in qualitative studies (e.g. see 19 

Georgoulias and Kourtidis, 2011). In cases where DT algorithm does not provide products 20 

over land, especially over bright arid and semi-arid regions of North Africa, AOD550 values 21 

from the DB algorithm are used in our work. The expected uncertainty of the DB product 22 

used here is ±(0.05+0.2AOD) relative to the AERONET AOD (Hsu et al., 2006). The 23 

analyzed datasets cover the period from 3/2000 to 12/2012 for Terra and from 7/2002 to 24 

12/2012 for Aqua MODIS covering the region of the Eastern Mediterranean. The Collection 25 

051 DB data for Terra are available only until 12/2007 due to calibration issues; nevertheless, 26 

these data are carefully used within our analysis to get a complete image of the aerosol load 27 

over the region. 28 

 29 

2.2 AERONET ground-based observations 30 

For the evaluation of the MODIS AOD550, version 2.0 level 2.0 high quality cloud screened 31 

data from 13 AERONET Cimel network ground stations in the region of the Eastern 32 

Mediterranean have been acquired  (http://aeronet.gsfc.nasa.gov). The stations were selected 33 
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such that their operation period covers at least 2 years and there are at least 100 common days 1 

of co-localized AERONET and MODIS observations. AERONET Cimel sunphotometers 2 

measure solar radiation every 15 minutes within the spectral range from 340 to 1020 nm 3 

(Holben et al., 2001). The spectral measurements allow for the retrieval of columnar aerosol 4 

properties (see Holben et al., 1998; Dubovik and King, 2000; Dubovik et al., 2000, 2002). 5 

The AERONET AOD uncertainty is in the order of 0.01-0.02 (Eck et al., 1999), being larger 6 

at shorter wavelengths. Here, we use quadratic fits on a log-log scale to interpolate the 7 

AERONET data (AODs at 440, 500, 675 and 870 nm) to the MODIS band-effective 8 

wavelength of 550 nm (Eck et al., 1999; Levy et al., 2010). So, we can directly compare the 9 

MODIS AOD550 retrievals against AERONET observations. Simultaneous measurements of 10 

the Ångström Exponent (AE) for the spectral range 440-870 nm (AE440-870) from the 13 11 

AERONET stations mentioned above were also utilized in this work in order to account for 12 

days with dust dominance. The uncertainty of the AE is significantly higher than the AOD 13 

uncertainty, especially under low-AOD conditions. Li et al. (2014) found that the uncertainty 14 

for a typical Northern Hemispheric AERONET station (GSFC) is ~ 0.6 during winter when 15 

AODs are significantly lower compared to summer (~ 0.15).  16 

 17 

2.3 LIVAS CALIOP/CALIPSO dust climatology 18 

Dust aerosol optical depths at 532 nm (AOD532) from CALIOP/CALIPSO (Cloud-Aerosol 19 

Lidar with Orthogonal Polarization instrument aboard Cloud-Aerosol Lidar and Infrared 20 

Pathfinder Satellite Observations satellite) at a resolution of 1o x 1o are also used here for the 21 

period 2007-2012. CALIPSO measures cloud and aerosol properties flying at a 705 km sun 22 

synchronous polar orbit with a 16 day repeat cycle and an equator-crossing time close to that 23 

of the Aqua satellite (13:30 LT). The dust product used here comes from a Saharan-dust-24 

optimized retrieval scheme that was developed within the framework of the LIVAS (Lidar 25 

Climatology of Vertical Aerosol Structure for Space-Based LIDAR Simulation Studies) 26 

project (Amiridis et al. 2015) and has been presented in detail in Amiridis et al. (2013). In 27 

brief, the LIVAS dust product is optimized for Europe by applying a lidar ratio of 58 sr 28 

instead of 40 sr to Level 2 dust related backscatter products. This correction results to an 29 

improvement of the AOD532 product. Comparison against spatially and temporally co-located 30 

AERONET observations (Amiridis et al., 2013) returned an absolute bias of ~ -0.03. The 31 

corresponding reported biases for the original CALIPSO data are significantly higher (~ -32 

0.10). The bias is even lower when compared against MODIS satellite-based observations. 33 
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Other improvements of this product are related to the use of a new methodology for the 1 

calculation of pure dust extinction from dust mixtures and the application of an averaging 2 

scheme that includes zero extinction values for the non-dust aerosol types detected. Overall, 3 

this product (hereafter denoted as LIVAS dust product) exhibits better agreement with 4 

observations from MODIS and AERONET and simulations from the BSC-DREAM8b dust 5 

model over North Africa and Europe than the standard CALIPSO data hence being an ideal 6 

tool for the evaluation of other satellite-based products. 7 

 8 

2.4 Earth Probe TOMS and OMI satellite observations 9 

For this work, UV Aerosol Index (AI) data (Herman et al., 1997) from the Earth Probe TOMS 10 

(Total Ozone Mapping) spectrometer aboard Earth Probe for the period 1/2000-9/2004 at a 11 

resolution of 1o (latitude) x 1.25o (longitude) and the OMI (Ozone Monitoring Instrument) 12 

sensor aboard EOS AURA for the period 10/2004-12/2012 at a resolution of 1o x 1o were 13 

acquired through the GIOVANNI web database (http://giovanni.gsfc.nasa.gov/giovanni/). 14 

Earth Probe TOMS continued the record of the first three TOMS instruments aboard Nimbus-15 

7, Meteor-3 and ADEOS flying in a sun synchronous orbit at an altitude of 740 km with an 16 

instantaneous field of view size of 39 x 39 km2 at nadir. The instrument had an ascending 17 

node equator crossing time at 12:00 LT covering 85 % of the globe on a daily basis from 18 

7/1996 until 12/2005. The satellite was originally set to a 500 km sun synchronous orbit but 19 

was set to its final orbit after the failure of ADEOS satellite in 6/1997. OMI is a UV/VIS 20 

nadir solar backscatter spectrometer (Levelt et al., 2006) that continues the long TOMS 21 

record. OMI flies in a sun synchronous polar orbit at an altitude of 705 km with an ascending 22 

node equator crossing time at 13:45 LT. Its 2600 km viewing swath allows for almost daily 23 

global coverage while the spatial resolution of the instrument is 13 x 24 km2 at nadir. The AI 24 

(also known as Absorbing Aerosol index) which is calculated by the two instruments 25 

constitutes a qualitative indicator of the presence of UV absorbing aerosols in the atmosphere 26 

such as biomass burning and dust (Torres et al., 1998). Positive AI values generally represent 27 

absorbing aerosols while small or negative values represent non-absorbing aerosols. The 28 

Version 8 algorithm is applied to spectral measurements from both TOMS and OMI sensor to 29 

produce a consistent long-term AI timeseries (Li et al., 2009). AI is calculated from the 30 

difference in surface reflectivity derived from the 331.2 and 360 nm measurements exhibiting 31 

an uncertainty of ±30 % (Torres et al., 2007).  32 

 33 
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2.5 ERA-Interim reanalysis data 1 

Wind speed (ws) data at 10 m above surface from the ERA-Interim reanalysis (Dee et al., 2 

2011) are used for 9:00 and 12:00 UTC on a daily basis for the period 2000-2012. We use 3 

9:00 and 12:00 UTC data in order to be closer to the Terra and Aqua overpass time in the 4 

area, respectively. The various ERA-Interim reanalysis fields are produced by ECMWF's 5 

Integrated Forecast System (IFS) assimilating satellite and ground-based observations. The 6 

system includes a 4-D variational analysis with a 12-hour analysis window. The spatial 7 

resolution of the ERA-Interim data is ~ 79 km with 60 vertical levels from the surface up to 8 

0.1 hPa while the data can be acquired at various resolutions (in this work 1ox1o) through 9 

ECMWF's website (http://apps.ecmwf.int/datasets/data/interim-full-daily/). Over ocean, the 10 

10 m ERA-interim wind speed exhibits a bias of less than -0.5 m/s compared to quality-11 

controlled in situ observations on a global scale (Dee et al., 2011). Specifically, for the region 12 

of the Eastern Mediterranean examined here, the 10 m ERA-interim wind speed exhibits a 13 

bias of -0.96 m/s (-16 %) compared to satellite-based observations from QuikSCAT 14 

(Hermann et al., 2011). 15 

 16 

2.6 MACC reanalysis data 17 

The daily MACC total and dust AOD550 data for the period 2003-2012 come from the aerosol 18 

analysis and forecast system of ECMWF which consists of a forward model (Morcrette et al., 19 

2009) and a data-assimilation module (Benedetti et al., 2009). AOD550 measurements from 20 

the two MODIS instruments aboard Terra and Aqua are assimilated by the MACC forecasting 21 

system through a 4D-Var assimilation algorithm to produce the aerosol analysis, leading to an 22 

improved AOD representation compared to observations (see Benedetti et al., 2009; Mangold 23 

et al., 2011). Five aerosol species are included within MACC, namely, mineral dust, sea salt, 24 

sulfates, black carbon and organic matter. Three different size bins are used for mineral dust 25 

and sea salt particles while the black carbon and organic material are distributed to a 26 

hydrophilic and a hydrophobic mode. Dust and sea salt emissions are given as a function of 27 

surface wind speed, while the emissions of the other species are taken from inventories. The 28 

spatial resolution of the MACC reanalysis data is ~ 79 km with 60 vertical levels from the 29 

surface up to 0.1 hPa and can be acquired through: http://apps.ecmwf.int/datasets/data/macc-30 

reanalysis/ for the period 2003-2012. The MACC total and dust AODs have been evaluated 31 

against ground and satellite-based observations (see Elguindi et al., 2010; Bellouin et al., 32 

2013; Inness et al., 2013; Cesnulyte et al., 2014; Cuevas et al., 2015) showing that the MACC 33 
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aerosol products generally capture well the daily, seasonal and interannual variability of 1 

aerosols. As discussed in Bellouin et al. (2013) the uncertainties of MACC total AOD550 (~ 2 

0.03) and dust AOD550 (~ 0.014) arise from uncertainties in the MODIS retrievals which are 3 

assimilated into the model and errors in the forward modeling of total and component AODs. 4 

 5 

2.7 GOCART data 6 

Daily total and dust AOD550 data from the GOCART chemistry-aerosol-transport model 7 

simulations (version 006) are used in this study for the period 2000-2007. The GOCART 8 

model (see Chin et al., 2000, 2002, 2004, 2007; Ginoux et al., 2001, 2004) uses the 9 

assimilated meteorological fields of the Goddard Earth Observing System Data Assimilation 10 

System (GEOS DAS) which are generated by the Goddard Global Modeling and Assimilation 11 

Office (GMAO). The data which are used were acquired from an older version of NASA's 12 

GIOVANNI web database (http://disc.sci.gsfc.nasa.gov/giovanni/) and come from a 13 

simulation implemented at a spatial resolution of 2° (latitude) x 2.5° (longitude) with 30 14 

vertical sigma layers (Chin et al., 2009). The model includes physicochemical processes of 15 

major tropospheric aerosol components (sulfates, dust, black carbon, organic carbon, sea salt) 16 

and precursor gases (SO2 and dimethylsulfide) incorporating various atmospheric processes. 17 

The total AOD550 from GOCART compared to ground-based observations from the 18 

AERONET exhibits a relative mean bias [mean(GOCART)/mean(AERONET)] of 1.120, 19 

1.135 and 0.959 over Europe, North Africa and for the whole globe, respectively. 20 

 21 

2.8 Ancillary data 22 

Apart from the main datasets presented above, three additional datasets were used in order to 23 

support our findings. OMI/AURA daily gridded (Bucsela et al., 2013) tropospheric NO2 24 

columnar data (OMNO2d version 2.1) at a spatial resolution of 0.25o x 0.25o were acquired 25 

from NASA's GIOVANNI web database (http://giovanni.gsfc.nasa.gov/giovanni/) for the 26 

period 2005-2012. The quality checked data used in this work correspond to sky conditions 27 

where cloud fraction is less than 30 %. Planetary boundary layer (PBL) SO2 daily gridded 28 

columnar data (OMSO2e version 1.1.7) were also acquired from GIOVANNI for the same 29 

period. The OMSO2e gridded data (0.25o x 0.25o) used in this work are produced from best 30 

level-2 pixel data, screened for OMI row anomaly and other data quality flags. The PBL SO2 31 

column retrievals are produced with an algorithm based on principal component analysis 32 

(PCA) of the OMI radiance data (Li et al., 2013). Finally, monthly precipitation data from the 33 
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3B43 TRMM and Other Sources Monthly Rainfall Product (version 7) at a spatial resolution 1 

of 0.25o x 0.25o for the period 2000-2012 were obtained from GIOVANNI. This dataset is 2 

derived from 3-hourly precipitation retrievals from the Precipitation Radar (PR), the TRMM 3 

Microwave Imager (TMI) and the Visible and Infrared Scanner (VIRS) aboard the TRMM 4 

(Tropical Rainfall Monitoring Mission) satellite merged with other satellite-based 5 

precipitation data and the Global Precipitation Climatology Centre (GPCC) rain gauge 6 

analysis (Huffman et al., 2007). 7 

 8 

3 Methodology 9 

3.1 Compiling a MODIS 0.1o x 0.1o gridded dataset 10 

To investigate the spatial and temporal variability of aerosols over the Eastern Mediterranean 11 

we first created a 0.1o x 0.1o daily gridded aerosol dataset using single pixel level-2 AOD550 and 12 

FMR550 data from MODIS Collection 051. The same resolution has been utilized in previous 13 

studies (e.g. Barnaba and Gobbi, 2004) in the region; however, without reporting on the 14 

gridding methodology followed. In this work we present a gridding methodology that could be 15 

used as a reference for future regional studies. The methodology has been successfully applied 16 

in the past on level-2 MODIS Terra data in different cases studies, e.g. in order to examine the 17 

weekly cycle patterns of AOD550 over the region of Central Europe and the aerosol load 18 

changes observed over a cement plant in Greece due to changes in the deposition practices of 19 

the primary materials (see Georgoulias and Kourtidis, 2012; Georgoulias et al., 2012; Kourtidis 20 

et al., 2014). In the following lines we proceed to a detailed description of the method 21 

underlining the potential of being used in detailed quantitative studies like this one.  22 

First, a 0.1o x 0.1o resolution grid covering the Eastern Mediterranean (30oN-45oN, 17.5oE-23 

37.5oE) is defined which corresponds to 30000 grid cells. As already mentioned in Sect. 2.1, 24 

only level-2 single pixel AOD550 measurements with a QAC flag of 3 and a QAC flag greater 25 

than 0 were used over land and over sea, respectively, to ensure the high quality of the data. 26 

Pixels are attributed to a specific grid cell if their center falls within a 25 x 25 km2 square 27 

window around the grid cell (see Fig. S1 in the Supplement). These pixels are then used for the 28 

calculation of daily averages. As shown in Figure S1, a grid cell of 0.1o (~ 10 km) is as big as 29 

the centre of a large Mediterranean city like Thessaloniki, Northern Greece (~ 1 million 30 

inhabitants). The procedure was followed separately for MODIS Terra and Aqua data. In cases 31 

of grid cells with no DT MODIS observations, data from the DB algorithm were used (over 32 
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bright arid and semi-arid regions of North Africa) constituting only a small part of the gridded 1 

dataset. 2 

The size of the gridding window was selected following Koukouli et al. (2007). They used both 3 

10 and 25-km windows showing that the latter allows for the inclusion of more data points 4 

without undermining the ability of monitoring accurately the aerosol load over a specific spot. 5 

In addition, in cases of urban sites, a window of 25 km allows for the inclusion of pixels from 6 

the surrounding non-urban surfaces where the MODIS surface reflectance parameterization is 7 

better (Levy et al., 2010). The size of each MODIS pixel is 10 km at nadir, but at the swath 8 

edges, it may become 2-3 times larger. Hence, ideally the maximum number of pixels that could 9 

be used in the daily averaging is nine. The overlap between the windows of neighbouring grid 10 

cells does not affect the representativeness of the dataset over each grid cell. Aerosols are 11 

transported by air masses throughout the day and thus the aerosol load in neighbouring grid 12 

cells is not expected to be completely independent. 13 

In order to make sure that the use of a 25-km gridding window is optimal for capturing local 14 

pollution sources we repeated the same procedure for bigger gridding windows (50-km, 75km 15 

and 100-km) using MODIS Terra AOD550 data for the year 2004. Numerous aerosol hot spots 16 

cannot be seen as the gridding window becomes bigger and there is a significant smoothing of 17 

the aerosol patterns mainly over land (Fig. S2). The use of the MODIS gridded dataset in the 18 

detection of local aerosol hot spots is discussed in more detail in Sect. 4. In addition, we 19 

conducted a detailed validation of the MODIS data against sunphotometric data from a total of 20 

13 AERONET stations in the region (see Fig. 1). The validation procedure was repeated several 21 

times for different spatial collocation windows which were equal to the windows used for the 22 

gridding procedure (i.e. 25, 50, 75 and 100-km) and for different data quality criteria. The 23 

results of the validation procedure are presented in Sect. 4.1 while part of them is given in the 24 

Supplement of this manuscript (see Table S2). Overall, it is shown that the gridding 25 

methodology followed here offers the best compromise for studying the spatial variability of 26 

aerosols on a regional or local scale, preserving at the same time the representativeness of the 27 

real aerosol load over each specific spot. 28 

In order to generalize our results, nine different sub-regions (Fig. 1) were selected apart from 29 

the three basic regions of interest, namely, the whole Eastern Mediterranean (EMT) and the land 30 

(EML) and oceanic (EMO) areas of the region. The selection was done mainly taking into 31 

account geographical but also land type and land use criteria. The four sub-regions that 32 

correspond to the land regions of the Eastern Mediterranean are the Northern Balkans Land 33 
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(NBL), the Southern Balkans Land (SBL), the Anatolia Land (ANL) and the Northern Africa 1 

Land (NAL) region while the five sub-regions that correspond to the oceanic regions are the 2 

Black Sea Oceanic (BSO), the North-Western Oceanic (NWO), the South-Western Oceanic 3 

(SWO), the North-Eastern Oceanic (NEO) and the South-Eastern Oceanic (SEO) region. Mean 4 

values of the total AOD550 from the Terra and Aqua MODIS are reported for each one of the 5 

three basic regions of interest and their nine sub-regions in Sect. 4.   6 

 7 

3.2 Contribution of different aerosol types to AOD550 8 

3.2.1 Sea 9 

In order to quantify the contribution of different types of aerosols to the total AOD550 we 10 

followed a different approach for sea and land. This is due to the lack of reliable FMR550 11 

retrievals over land (e.g. see Levy et al., 2010; Georgoulias and Kourtidis, 2011) which are 12 

crucial for the algorithms used in this work. Over the sea we utilize wind speed data at 10 m 13 

above surface from the ERA-Interim reanalysis, AI data from TOMS and OMI along with 14 

AOD550 and FMR550 from the MODIS Terra and Aqua gridded datasets presented above. All the 15 

datasets were brought to the same 0.1 degree spatial resolution as MODIS by using bilinear 16 

interpolation. In the case of TOMS and OMI we used monthly mean AI data following Bellouin 17 

et al. (2008) in order to avoid gaps especially during the TOMS period. 18 

In general, the algorithm used over the oceanic regions (see Fig. 2) is similar with the one 19 

presented in Bellouin et al. (2008). First, the marine AOD550 (τm) is calculated from near surface 20 

wind speed using a linear relation which has been obtained from ground-based studies over 21 

pollution free oceanic regions. Bellouin et al. (2008) use the linear relation of Smirnov (2003). 22 

Then, if τm is greater or equal than AOD550 it is assumed that there are marine particles only 23 

over this region. If τm is smaller than AOD550 a decision tree is followed which is first based on 24 

FMR550
 and then on AI in order to reach a conclusion about the type of aerosols that account for 25 

AOD550. If FMR550 is smaller than the critical value of 0.35 and AI is greater than or equal to a 26 

critical value it is assumed that there are both marine aerosols (τm) and dust (τd=AOD550-τm), 27 

while, if AI is smaller than this critical value it is assumed that there are marine aerosols only. 28 

The AI critical value is equal to 1 in Bellouin et al. (2008). If FMR550 is greater than or equal to 29 

0.83 it is assumed that there are both anthropogenic (τa=AOD550-τm) and marine aerosols (τm). 30 

In the occasion of having a FMR550 equal to 0.35 or greater than 0.35 but smaller than 0.83 one 31 

has to take again AI into consideration. If AI is less than the critical value it is assumed that 32 

there are marine aerosols (τm) only while in the opposite occasion it is assumed that all the three 33 
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types of aerosols that can be defined over oceanic regions by this algorithm, namely, dust 1 

[τd=(1-FMR550)(AOD550-τm)], anthropogenic [τa=FMR550(AOD550-τm)] and marine aerosols (τm) 2 

are present. One should keep in mind that all the biomass burning aerosols are classified as 3 

anthropogenic by this method. 4 

In this work, we proceeded to a "fine-tuning" of the algorithm for the region of the Eastern 5 

Mediterranean. First, we applied the algorithm on MODIS Terra data using the same equations 6 

and critical values as in Bellouin et al. (2008). The results showed that the original Bellouin et 7 

al. (2008) method might be valid for global studies but for a "closed" sea like the Mediterranean 8 

the method leads to a large overestimation of sea salt AODs and therefore underestimation of 9 

dust and anthropogenic aerosol AODs. Indicative of this situation is Fig. S3 in the Supplement 10 

where we present the relative contribution of dust, marine and anthropogenic aerosols per 11 

month over the oceanic regions of the Eastern Mediterranean as calculated using the original 12 

Bellouin et al. (2008) method. It is shown that the marine contribution is several times higher 13 

than the values reported for the Mediterranean Basin in previous studies (e.g. see Nabat et al., 14 

2012). Evaluation of the algorithm was done using dust AOD532 data from the LIVAS 15 

CALIOP/CALIPSO product. From LIVAS we only use the high quality Sahara dust product as 16 

a reference and not other aerosol type retrievals (e.g. marine aerosols) since the dust retrievals 17 

from CALIOP/CALIPSO are by far the most reliable (e.g. Burton et al., 2013). We performed 18 

several tests by changing the linear relation that connects τm with near surface wind speed and 19 

the AI critical values and compared each time the dust AOD550 seasonal variability with the 20 

LIVAS AOD532 seasonal variability for the sea covered sub-regions of the Eastern 21 

Mediterranean. Results from this algorithm-tuning procedure can be found in Figs. S4e-i of the 22 

Supplement where one can also see the underestimation of dust AOD550 from the original 23 

Bellouin et al. (2008) algorithm.  24 

The linear relation given in Kaufman et al. (2005) was finally selected (τm=0.007ws+0.02). The 25 

2000-2012 average wind speed over the sea for the region of the Eastern Mediterranean is ~ 5.3 26 

m/s. Kaufman et al. (2005) reduced the offset in the linear relation of Smirnov (2003) from 0.06 27 

to 0.02 to fit the average baseline AOD of 0.06 for the typical wind speed of 6 m/s. In addition, 28 

our tests showed that an AI critical value of 1 performs well over the region of the Eastern 29 

Mediterranean. The results did not change significantly when using other AI thresholds (e.g. 0.5 30 

which is suggested in Jones and Christopher, 2011) and therefore we decided to adopt 1 as the 31 

AI critical value. Another test, following the example of other studies (see Lehahn et al., 2010), 32 

was to assume that for wind speed less than 5 m/s there is very little or no sea-spray particle 33 
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production (limited bursting of entrained air bubbles associated with whitecap formation). In 1 

this case, τm is stable, equal to the offset of the linear relation between τm and wind speed which 2 

is indicative of the background sea salt AOD550. However, this test reveals that the effect of 3 

assuming stable τm for wind speed less than 5 m/s is insignificant and therefore we selected to 4 

follow the Kaufman et al. (2005) linear relationship for the whole wind speed range. As shown 5 

in Figs. S4e-i, the seasonal variability when applying our modified algorithm over oceanic 6 

regions is very close to the LIVAS dust AOD532 especially for the months with lower dust load 7 

(June-January). It is also shown that dust AODs from this algorithm are closer to the LIVAS 8 

dust product than dust AODs from MACC reanalysis do. The slight overestimation of dust 9 

AOD or the shift of the maximum dust load we observe for the period of high dust loads in the 10 

region (February-May) is probably connected to the narrow swath and the 16-day time of 11 

CALIPSO which means that several dust events might be not observed by the CALIOP 12 

instrument contrary to MODIS which has a daily coverage.  13 

 14 

3.2.2 Land 15 

As already mentioned in the previous paragraph a different approach is followed over the land 16 

regions of the Eastern Mediterranean due the low confidence on the MODIS FMR550 and 17 

Ångström exponent retrievals over land compared to that over ocean (e.g. see Levy et al., 2010; 18 

Georgoulias and Kourtidis, 2011). This limitation does not allow us to distinguish the 19 

contribution of fine and coarse mode aerosols in terms of AOD550. In this case, we choose to use 20 

daily model fields of the dust contribution to the total AOD (here MACC reanalysis and 21 

GOCART). We follow a method similar with the one presented in Bellouin et al. (2013). 22 

Specifically, we calculate the dust AOD550 by scaling the MODIS AOD550 data with the MACC 23 

or  GOCART dust/total AOD550 ratios [fd=τd(model)/τ(model)] on a daily basis.  24 

Since the MACC data are available only from 2003 to 2012, in order to take advantage of the 25 

full MODIS dataset (3/2000-12/2012), data from the GOCART model were used for the period 26 

2000-2002. The GOCART data were normalized in order to be consistent with the MACC data. 27 

Daily dust/total AOD550 ratios (fd) from the common GOCART-MACC period 2003-2007 were 28 

first brought to a common 1o x 1o spatial resolution using bilinear interpolation and then we 29 

calculated the regression line for each grid cell on a seasonal basis. The linear relations were 30 

afterwards used in order to normalize the 2000-2002 GOCART ratios to have a homogeneous 31 

dataset. The slopes and offsets of these regression lines and the corresponding correlation 32 

coefficients (R) can be seen in Figs. S5, S6 and S7 of the Supplement, respectively. Overall, for 33 
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the whole time period, the MACC reanalysis fd ratios are lower by ~ 26 % from the GOCART fd 1 

ratios and the linear relation connecting the two products is fdMACC=0.4964fdGOCART+0.0952 2 

with a correlation coefficient R of 0.74. The fd values of the merged GOCART-MACC (2000-3 

2012) timeseries were checked using the Standard Normalized Homogeneity Test (SNHT) as 4 

described in Alexandersson (1986). The statistical significance was checked following Khaliq 5 

and Ouarda (2007) and the fd timeseries were found to be homogeneous (see Fig. S8 of the 6 

Supplement). Hence, this test verifies that the use of the merged GOCART-MACC fd dataset 7 

will not insert any artifacts (e.g. trends or breaks) in the algorithm. Finally, the fd data were 8 

brought to the same spatial resolution with MODIS data (0.1o x0.1o) using bilinear interpolation 9 

again. 10 

After the calculation of τd with the use of fd values (τd=fdAOD550), we proceed to the calculation 11 

of the anthropogenic contribution to the total AOD550 (τa) by multiplying the non-dust part of 12 

AOD550 with the anthropogenic fraction fa for the region of Eurasia (0.77±0.20) given in 13 

Bellouin et al. (2013) [τa=fa(1-fd)AOD550]. The rest of the total AOD550 is attributed to the fine 14 

mode natural aerosols [τn=(1-fa)(1-fd)AOD550] (see Fig. 2). As discussed in Bellouin et al. 15 

(2013), the fine mode natural aerosols consist of sea salt, dimethyl sulfide from land and 16 

oceanic sources, SO2 from degassing volcanoes and secondary organic aerosols from biogenic 17 

emissions. It has to be highlighted that like in the case of oceanic regions the biomass burning 18 

aerosols are classified as anthropogenic by this algorithm. As shown in Figs. S4a-d, the seasonal 19 

variability of τd over land covered regions is very close to the LIVAS dust AOD532 which is 20 

used as a reference.   21 

Overall, the algorithm described above performs well as far as dust is concerned. This is further 22 

shown when comparing MODIS Terra and Aqua τd values with collocated AERONET 23 

observations for dust dominated days (see Fig. S9 in the Supplement). The method followed for 24 

the collocation of the data is similar to the one presented in Sect. 4.1 while dust dominated days 25 

were days with an AERONET AE smaller than 1 (see Mateos et al., 2014) and a MODIS based 26 

τd greater than τa and τn or τm. The uncertainties of the calculated τa, τd, τn and τm values which 27 

are inserted by the input data and the assumptions of the algorithm are expected to be similar 28 

with the ones presented in Bellouin et al. (2013). Bellouin et al. (2013) using a Monte-Carlo 29 

analysis indicated that τa can be specified with an uncertainty of ~ 23 % over land and ~ 16 % 30 

over the ocean, τd can be specified with an uncertainty of ~ 19 % over land and ~ 33 % over the 31 

ocean, τn can be specified with an uncertainty of ~ 41 % and τm with an uncertainty of ~ 28 %. 32 

The results of the application of the algorithm described in the paragraphs above are presented 33 
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in the following section (Sect. 4) by means of maps, pie charts, plots and tables for each one of 1 

the three basic regions of interest and their nine sub-regions.     2 

 3 

4 Results and discussion 4 

4.1 Validation of MODIS gridded data using ground-based observations 5 

As discussed in Sects. 2 and 3, the high quality (QAC: 3) DT level-2 Collection 051 MODIS 6 

data used in this work were validated in detail against data from 13 AERONET stations (see 7 

Fig. 1). The stations were selected to make sure that their version 2.0 level 2.0 high quality 8 

cloud  screened Cimel sunphotometric observations were covering at least 2 years and there 9 

were at least 100 common days of AERONET and MODIS observations. The exact 10 

geolocation of the AERONET stations is given in Table 1 (see also Fig.1) along with the 11 

period of available data, the hosting country, the type of the station (e.g. urban/rural, 12 

coastal/continental, etc.) and the corresponding mean overpass time of Terra and Aqua 13 

MODIS. First, we collocated spatially and temporally the MODIS and AERONET 14 

observations by temporally averaging AERONET measurements within ±30 min from the 15 

MODIS overpass time (see Levy et al., 2010) and spatially averaging MODIS measurements 16 

centered within a 25 x 25 km2 window around each station (see Koukouli et al., 2010). The 17 

use of a collocation window equal to the one used for the gridding procedure, practically, 18 

allows us to validate at the same time the 0.1o x 0.1o MODIS gridded product.  19 

The regression lines between MODIS and AERONET AODs are shown in Fig. 3 while 20 

details about the validation results can be found in Table 2. Overall, the MODIS Terra DT 21 

Collection 051 data overestimate AOD550 by 11.59 % (Normalized Mean Bias - NMB) with 22 

63.28 % of the data falling within the expected error (EE) envelope and 67.78% within the 23 

pre-launch expected error (plEE) envelope. The expected error envelope is define as: AOD - 24 

|EE| ≤ AODMODIS ≤ AOD + |EE| with EE being ±(0.05+0.15AOD) (Levy et al., 2010) and 25 

plEE being ±(0.05+0.20AOD) (Kaufman et al., 1997). On the other hand, the MODIS Aqua 26 

DT Collection 051 data overestimate AOD550 by 25.18 % (NMB) with 57.14 % of the data 27 

falling within the EE envelope and 61.87 % within the plEE envelope. The percentage of the 28 

MODIS Terra and Aqua data falling within the EE envelope are close to the 57 % given in 29 

Remer et al. (2005) for the Eastern Mediterranean. The validation results for each station 30 

separately can be found in Table S1 of the Supplement. The results discussed in this 31 

paragraph are comparable to the ones appearing in previous studies focusing on the 32 

Mediterranean region (see Papadimas et al., 2009; Koukouli et al., 2010). In general, it is 33 
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shown here that the MODIS Terra Collection 051 data exhibit a better agreement with the 1 

ground-based observations from AERONET than MODIS Aqua data do. Therefore, the 2 

statistics appearing for MODIS Terra throughout the paper could be considered more robust. 3 

To be in line with the global validation of the DT Collection 051 product by Levy et al. 4 

(2010) we also performed a validation with the specifications used in their work. We used a 5 

50 x 50 km2 window for the spatial collocation of the MODIS and AERONET data while 6 

only days with at least 5 MODIS retrievals and 2 AERONET measurements were taken into 7 

account. The increased size of the collocation window improves the results of the validation. 8 

As shown in Table 2, MODIS Terra DT Collection 051 data overestimate AOD550 by 5.10 %  9 

(NMB) with 70.17 % of the data falling within the EE envelope and 74.64 % within the plEE 10 

envelope. For MODIS Aqua, the NMB is 15.34%, while the percentage of the measurements 11 

falling within the EE and plEE envelope is 66.76 % and 70.45 %, respectively. These results 12 

for the Eastern Mediterranean are close to the global ones presented in Levy et al. (2010).  13 

As discussed in Sect. 3.1, data from the DB algorithm were used over bright arid and semi-14 

arid regions of North Africa for the production of the 0.1o x 0.1o MODIS gridded dataset for 15 

grid cells with no DT data. Therefore, in this work we also perform a validation of the DB 16 

Collection 051 product over the region of the Eastern Mediterranean. In the case of DB data, 17 

we first make use of all the available DB observations without any quality filtering over the 18 

13 AERONET stations. A spatial window of 25-30 km has been typically used in the past for 19 

the collocation of MODIS DB data with the AERONET observations (see Shi et al., 2011; 20 

Ginoux et al.; 2012; Sayer et al., 2013; 2014) which is in line with the 25 x 25 km2 window 21 

used here. The MODIS Terra DB data overestimate AOD550 by 21.38 % (NMB) with 51.90 % 22 

of the data falling within the expected uncertainty (EU) envelope assuming a DB expected 23 

uncertainty of ±0.05 ± 20%AODAERONET (Hsu et al., 2006). The MODIS Aqua DB Collection 24 

051 data overestimate AOD550 by 33.03 % (NMB) with 55.30 % of the data falling within the 25 

expected uncertainty envelope. We repeated the validation procedure for DB data taking into 26 

account the highest quality data only. The sample of available measurements was diminished 27 

by a factor of 5 in the case of MODIS Terra and 6 in the case of MODIS Aqua but the results 28 

were pretty similar with the ones for the unfiltered data. Therefore, the use of unfiltered DB 29 

data during the gridding procedure does not insert any significant uncertainty. The DB results 30 

for the 13 AERONET stations examined here are not of the same agreement with the DT 31 

results and the ones presented in previous studies utilizing DB Collection 051 data for other 32 

stations and larger regions (see Shi et al., 2011; Ginoux et al., 2012). However, it has been 33 
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reported that stations in the region (e.g. Sede Boqer in Israel) are among the ones with the 1 

greatest discrepancies between MODIS DB and AERONET measurements (Ginoux et al., 2 

2012). Nevertheless, as commented in Sect. 3.1, the DB data constitute only a small fraction 3 

of the data used for the production of the MODIS gridded dataset (~ 1 % only of the 30000 4 

grid cells covering the Eastern Mediterranean has only DB retrievals) and therefore they do 5 

not affect significantly its quality. Only areas in Northern Africa are expected to be affected 6 

by the use of DB data due the extended lack of DT data there. 7 

As discussed in Sect. 3.1 the gridding procedure was repeated four times using a gridding 8 

window of 25, 50, 75 and 100-km using MODIS Terra AOD550 data for the year 2004 showing 9 

that the 25-km window is optimal for capturing local pollution sources. In order to see how the 10 

size of the gridding window affects the agreement between MODIS and AERONET data we 11 

also proceeded to a validation of MODIS DT data against AERONET measurements using 12 

different spatial collocation windows (25, 50, 75 and 100-km) and two quality criteria, a "strict" 13 

one: at least 2 AERONET measurements for each MODIS-AERONET pair and a "stricter" one: 14 

at least 5 MODIS retrievals and 2 AERONET measurements for each MODIS-AERONET pair 15 

as in Levy et al. (2010). The results for the DT MODIS Terra and Aqua data are presented in 16 

Table S2 of the Supplement. In general, it is shown that the increased size of the spatial 17 

collocation window leads to an improvement of the bias between satellite and ground-based 18 

observations. This is probably due to the inclusion of more observations into the calculations 19 

which diminishes the noise of the MODIS observations. In addition, as expected, the stricter 20 

quality criteria lead to a better agreement between MODIS DT and AERONET data. Taking 21 

into account not only the NMB but also the regression lines and the other metrics appearing in 22 

Table 2S, it is concluded that the 50-km window is the best choice for the validation procedure 23 

in line with Ichoku et al. (2002). On the other hand, the 25-km validation results are close to the 24 

50-km ones (see Table S2) and at the same time the 25-km gridding window allows for a more 25 

efficient detection of local aerosol sources as shown in Sect. 3.1. Taking this into account, we 26 

suggest that the 25-km window used for the production of the 0.1o x 0.1o gridded MODIS 27 

dataset is the optimal selection for studying the spatial variability of aerosols, preserving at the 28 

same time the representativeness of the real aerosol load over each specific spot. 29 

 30 

4.2 Aerosol spatial variability and hot spots 31 

The AOD550 spatial variability over the greater Eastern Mediterranean region for the period 32 

2000-2012 as seen from the Terra MODIS 0.1o x 0.1o dataset is presented in Fig. 4. Several 33 
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aerosol hot spots that coincide with megacities (e.g. Cairo, Istanbul), large cities (e.g. Athens, 1 

Ankara, Alexandria, Izmir, Thessaloniki) or even medium sized cities (e.g. Larissa, 2 

Limassol), industrial zones (e.g. OSTIM Industrial Zone in Ankara, Turkey), power plant 3 

complexes (e.g. Maritsa Iztok complex at the Stara Zagora Province in Bulgaria, Ptolemaida-4 

Kozani power plants in Western Macedonia, Greece), river basins (e.g. Evros river Basin at 5 

the borders between Greece and Turkey), etc, can be detected on the map. Indicatively, in Fig 6 

4 we give a list of 35 local particle pollution sources in the region; however, careful 7 

inspection of this map and the seasonal maps presented in Fig. 6 allows for the detection of 8 

many more aerosol sources. The results from the analysis of Aqua MODIS data are pretty 9 

similar as shown in Fig. S10 of the Supplement. A significant number of the local aerosol 10 

sources can also be detected on the OMI 2004-2012 tropospheric NO2 and PBL SO2 maps 11 

given in Figs. 5a and b which reveals the origin of aerosols over these regions (e.g. traffic, 12 

industrial activities, etc). However, there are regions of high aerosol load which cannot be 13 

seen in Fig. 5a and b and vice versa which is indicative of the significant role of other 14 

anthropogenic or natural processes that contribute to the local aerosol load (e.g. fires, soil dust 15 

from agricultural activities or arid regions, Sahara dust transport). 16 

The topography (Fig. 5c) and precipitation (see Fig. 5d for annual precipitation levels for the 17 

period 2000-2012 from TRMM) are also major determinants of the local AOD550 levels. For 18 

example, regions with mountain ranges in the Balkan Peninsula (e.g. Pindus mountain range 19 

in Greece, Dinaric Alps that run through Albania and the former Yugoslav republics, the 20 

Balkan mountain range in Central Bulgaria) are characterized by low AODs (see Fig. 4). On 21 

the contrary, regions of low altitude are generally characterized by higher AODs because the 22 

majority of anthropogenic activities is usually concentrated there. Also, low altitude regions 23 

surrounded by high mountains are characterized by higher AODs as aerosols cannot be easily 24 

transported by the wind (e.g. the industrialized regions in Central Bulgaria which are confined 25 

between the high Balkan and Rodopi mountain ranges). As precipitation is the major removal 26 

mechanism of pollutants in the atmosphere, regions with high AOD550 are in many cases 27 

connected to low precipitation levels and vice versa (see Figs. 4 and 5d). It has to be 28 

highlighted that the AOD550 over these regions is high primarily due to the emissions and the 29 

atmospheric processes forming aerosol particles. The low removal rates from precipitation 30 

just preserve the AOD550 levels high. A striking example is the region of Anatolia in Central 31 

Turkey which is characterized by lower precipitation levels and higher aerosol loads 32 
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compared to the surrounding regions. Also, the low precipitation levels are partly responsible 1 

for the high aerosol loads appearing over Northern Africa. 2 

Overall, the mean AOD550 for the whole period of interest is estimated at 0.215 ± 0.187 for 3 

Terra and 0.217 ± 0.199 for Aqua MODIS for the Eastern Mediterranean region which is ~ 45 4 

% higher than the global average appearing in recent studies (e.g. Kourtidis et al., 2015). Over 5 

land higher mean AODs are generally recorded (0.219 ± 0.165 for Terra and 0.239 ± 0.189 6 

for Aqua MODIS) than over the sea (0.213 ± 0.201 for Terra and 0.202 ± 0.205 for Aqua 7 

MODIS). All these values along with the mean AODs for the 9 sub-regions of interest 8 

covering the Eastern Mediterranean can be found in Table 3.  9 

The AOD550 spatial variability on a seasonal basis from MODIS Terra and Aqua is presented 10 

in Fig. 6 along with the difference between the two products. The majority of the local aerosol 11 

sources over land are more prominent in summer. The limited washout by precipitation (see 12 

also Papadimas et al., 2008) and also the enhanced photochemical production of secondary 13 

organic aerosols (Kanakidou et al., 2011 and references therein) contribute to the high AODs 14 

appearing over local sources. In addition, during summer, over the region, there is typically a 15 

significant transport of aerosols (e.g. see Kanakidou et al., 2011 and references therein) and 16 

gaseous pollutants like SO2 and NO2 (see Georgoulias et al., 2009; Zyrichidou et al., 2009) 17 

and biomass burning aerosols from Central-Eastern Europe. Over the sea, a profound 18 

maximum is observed in spring extending across the North African coast and the neighboring 19 

oceanic areas which is due to the well documented transport of significant amounts of dust 20 

from the Sahara Desert (see Barnaba and Gobbi., 2004 and the list of references given in the 21 

introduction). The seasonal variability of aerosols and the relative role of different aerosol 22 

types and various processes is discussed in more details in Sect 4.4.  23 

The difference between MODIS Terra and Aqua Collection 051 AOD550 over the Eastern 24 

Mediterranean is -0.002 (-1.40 %) for winter, -0.009 (-3.27 %) for spring, -0.011 (-4.46 %) 25 

for summer and 0.008 (4.40 %) for autumn. AOD550 levels from Terra MODIS are lower than 26 

that from Aqua MODIS over land for all seasons. Over the sea, Terra MODIS AOD550 levels 27 

are lower than that of Aqua MODIS only in winter. The fact that Terra MODIS measurements 28 

are systematically higher than that from Aqua over the sea by ~ 0.01 on an annual basis is in 29 

line with the findings of previous global studies for Collection 5 (e.g. Remer et al., 2006; 30 

2008). Locally, one can see regions with positive and negative differences between Terra and 31 

Aqua MODIS AOD550. The patterns of the Terra-Aqua difference per season are presented in 32 

Figs. 6c, f, i and l while the patterns of the percent difference are given in Fig. S11 of the 33 
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Supplement. The largest part of the Terra-Aqua MODIS differences over land and sea which 1 

are observed here may be attributed to the known calibration and sensor degradation issues of 2 

MODIS (for details see Levy et al., 2010; 2013; Lyapustin et al., 2014; Georgoulias et al., 3 

2016). A significant effort has been undertaken to address these issues in the new (Collection 4 

6) MODIS product (e.g. Levy et al., 2013; Lyapustin et al., 2014; Georgoulias et al., 2016) 5 

and a repetition of a similar analysis with Collection 6 data in the future would be a valuable 6 

contribution. Taking into account the aforementioned issues and the retrieval uncertainty of 7 

MODIS it becomes more than obvious that the attribution of observed differences between 8 

Terra and Aqua to the diurnal variability of aerosol load (e.g. over biomass burning regions) 9 

in the region is a difficult task. It is shown in Fig. S12 of the Supplement that the diurnal 10 

variability of AOD550 from AERONET ranges significantly from station to station. The 11 

average hourly departure from the daily mean for the total of the 13 stations ranges from ~ -5 12 

% to ~ 5 %. Specifically, for the MODIS Terra and Aqua overpass times, the AERONET 13 

AOD550 difference ranges from ~ -10 % to ~ 10 % (see Fig. S12b). The Terra-Aqua AOD550 14 

difference is negative for the total of the 13 stations ranging from ~ -25 % to ~ -5 %. It is 15 

shown in Fig. S12b that the two differences exhibit a similar variability from station to station 16 

which indicates that part of the observed Terra-Aqua difference is indeed due to the diurnal 17 

variability of aerosols. However, as mentioned above, the diurnal variability of aerosols is a 18 

very delicate issue and should be comprehensively addressed in a future study. The same 19 

stands for other kind of variabilities which could be connected to local and regional 20 

anthropogenic activities like e.g. the weekly cycle of aerosols (see Georgoulias and Kourtidis, 21 

2011; Georgoulias et al., 2015).     22 

  23 

4.3 Contribution of different aerosol types to the total AOD550 24 

4.3.1 Annual contribution 25 

As mentioned above, we attempt to estimate in our work the contribution of different aerosol 26 

types to the total AOD550 over the region of the Eastern Mediterranean was calculated 27 

following the methodology presented in Sect. 3.2. For the land covered areas, based on 28 

MODIS Terra observations, we estimate that 52 % (0.112±0.087) of the total AOD550 is due 29 

to anthropogenic aerosols, 32 % (0.074±0.080) due to dust and 16 % (0.034±0.026) due to 30 

fine mode natural aerosols (see Fig. 7). For the oceanic areas, 41 % (0.086±0.085) of the total 31 

AOD550 is due to anthropogenic aerosols, 34 % (0.076±0.185) due to dust and 25 % 32 

(0.054±0.018) due to marine aerosols (see Fig. 7). The results based on observations from 33 
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MODIS Aqua are similar. Over land, 50 % (0.117±0.093) of the total AOD550 is 1 

anthropogenic, 35 % (0.090±0.102) is due to dust and 15 % (0.035±0.028) due to fine mode 2 

natural aerosols, while, over the sea, 40 % (0.079±0.080) of the total AOD550 is of 3 

anthropogenic origin, 33 % (0.070±0.181) is due to dust and 27 % (0.054±0.018) due to 4 

marine aerosols (see Fig. 7). These results along with the relative contributions and the annual 5 

τa, τd, τn and τm levels for each one of the nine sub-regions of interest (see Fig. 1) are given in 6 

Table 4.  7 

For anthropogenic aerosols, the region with the highest relative contribution is NBL (59 % for 8 

both Terra and Aqua MODIS) while the region with the lowest relative contribution is SWO 9 

(32 % for both Terra and Aqua MODIS) (see also Table 4). The spatial variability of τα is 10 

presented in Fig. 8a for Terra MODIS and Fig. S13a of the Supplement for Aqua MODIS, the 11 

patterns being similar in both cases. Over land, the annual τa patterns are similar to the 12 

AOD550 patterns, the highest values appearing over local particle pollution sources (cities, 13 

industrial zones, etc.). Over the sea, τa is higher along the coasts, while it drops significantly 14 

towards other directions. An interesting feature here is that the oceanic region of Black Sea 15 

(BSO) presents higher relative anthropogenic contributions than the rest of the oceanic sub-16 

regions but also than land areas with significant anthropogenic sources (e.g. ANL and NAL). 17 

This is indicative of the transport of atmospheric particles from Central Europe and biomass 18 

burning aerosols during the biomass burning seasons in April-May from Russia (across the 19 

latitudinal zone 45oN-55oN) and July-August from South-Western Russia and Eastern Europe 20 

(Amiridis et al., 2010). These aerosols are transported at much lower latitudes as shown in 21 

previous studies (e.g. Vrekoussis et al., 2005; Karnieli et al., 2009) reaching the Sahara Desert 22 

and the Middle East regions (Pozzer et al., 2015). The fact that τa drops gradually from the 23 

coasts is also seen in Fig. 9 where the latitudinal variability of the optical depths of the 24 

different aerosol types (τa, τd, τn and τm) is presented for four bands that cover the whole 25 

Eastern Mediterranean. An interesting feature is that τa increases nearby the shoreline 26 

(particularly along the North African coastal zone) before it gradually decreases. Over land 27 

aerosols are located within the atmospheric boundary layer, close to the emission sources, and 28 

hence, their deposition and removal from the atmosphere is more efficient than over the sea. 29 

The particles which are transported over the sea on the other hand usually reach greater 30 

heights which prolongs their lifetime.  31 

As shown in Fig. 9, the same feature is observed for dust. Indicatively, τd and the relative 32 

contribution of dust to the total AOD550 on an annual basis over the oceanic regions of SWO 33 
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and SEO are in general higher or comparable to the ones over NAL (see Table 4 for more 1 

details). In Fig. 9, the MODIS-based τd latitudinal variability is presented along with the 2 

latitudinal variability of dust AOD532 and extinction coefficients of dust at 532 nm from 3 

LIVAS. As expected, in all cases τd decreases with distance from the large dust sources in the 4 

South and South-East (Sahara Desert, Middle East deserts) with local maxima over the 5 

latitudinal zone from 35oN to 40oN (especially for band 2  and band 3). The latitudinal 6 

variability of τd is similar to the latitudinal variability of dust AOD532 for all the four bands 7 

despite the fact that the MODIS-based data have a resolution 100 times higher (0.1o vs 1o) and 8 

therefore are more sensitive to local characteristics. Dust reaches heights up to ~ 4-5 km in the 9 

area; however, the largest fraction of dust mass is confined within the first 2-3 km of the 10 

troposphere (see Fig. 9). The annual τd patterns are shown in Fig. 8b for Terra MODIS (Fig. 11 

S13b of the Supplement for Aqua MODIS). The main dust transport pathways over the 12 

oceanic areas of the Eastern Mediterranean can be seen along with various local maxima over 13 

land. The highest τd values over land appear over the regions of NAL and ANL (see Table 4) 14 

and along the coasts. The high dust concentrations appearing over these regions are not only 15 

due to the transport of dust from the nearby deserts but also due to local dust sources. A 16 

recent study by Liora et al. (2015) reports various local sources of wind blown dust along the 17 

coastal regions of Greece and Turkey, over the region of Anatolia in Turkey, over the Greek 18 

islands, Crete, Cyprus and regions close to the coastal zone of Middle East. Their results are 19 

in good agreement with the τd patterns presented in this work.  20 

As shown in Fig. 7, fine mode natural aerosols exhibit the lowest contribution to the total 21 

AOD550 compared to the other aerosol types over land. The spatial variability of τn is very low 22 

compared to τa and τd as shown in Figs. 8c and 9. It is inferred from the values appearing in 23 

Table 4 that τn increases slightly as one moves from North to South; however, the relative 24 

contribution of fine mode natural aerosols to the total AOD550 slightly decreases (i.e. 17.67 % 25 

over NBL and 14.97 % over NAL according to Terra MODIS observations). The latitudinal 26 

variability and the percentages appearing in Table 4 are in accordance to the relative 27 

contributions of biogenic aerosols to the total AOD550 appearing over the Eastern 28 

Mediterranean in a recent modeling study (Rea et., 2015).  29 

Similar to fine mode natural aerosols over land, marine aerosols generally have the lowest 30 

contribution to the total AOD550 compared to the other aerosol types over the sea (see Fig. 7 31 

and Table 4) except for BSO. The variability of τm is very low compared to τa and τd. On an 32 

annual basis, high τm values appear over the Aegean Sea and the oceanic area between Crete 33 
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and the North African coast while slightly lower values appear along the coasts of the Eastern 1 

Mediterranean (see Figs. 8d and 9). The τm patterns follow the near surface wind speed 2 

patterns in the region (see Fig. S14 of the Supplement) being in accordance to the τm, marine 3 

particulate matter concentration or sea salt emission patterns appearing in other studies (Im et 4 

al., 2012; Nabat et al., 2013; Rea et al., 2015; Liora et al., 2015). 5 

 6 

4.3.2 Seasonal contribution 7 

The contribution of different aerosol types to the total AOD550 over the Eastern Mediterranean 8 

varies from season to season. The relative contribution of each aerosol type over EML and 9 

EMO for each season is shown in Fig. 10. Over land, the relative contribution of τa, τd and τn 10 

to the total AOD550 exhibits a low seasonal variability. The relative contribution of 11 

anthropogenic aerosols to the total AOD550 ranges from 49 % in SON to 55 % in DJF based 12 

on Terra MODIS observations and from 48 % in MAM and SON to 52 % in JJA based on 13 

Aqua MODIS observations. In contrast, over the oceanic regions the relative contribution of 14 

τa, τd and τm to the total AOD550 exhibits a significant seasonal variability. The relative 15 

contribution of anthropogenic aerosols to the total AOD550 ranges from 27 % / 27 % in DJF to 16 

50 % / 47 % in JJA based on Terra/Aqua MODIS observations. The percentages appearing 17 

here are in accordance to the values appearing in Hatzianastassiou et al. (2009) where a 18 

different satellite-based approach was followed. Indicatively, for the greater Athens area, an 19 

average summertime anthropogenic contribution of ~ 50 % was found here based on Terra 20 

MODIS data which is within the summer period range of 47-61 % indicated in the study by 21 

Hatzianastassiou et al. (2009). In addition, the corresponding values for the greater 22 

Thessaloniki area, Crete, Cairo and Alexandria are 53 %, 38 %, 48 % and 41 %,  respectively, 23 

within the range of values (57-73 %, 36-52 %, 34-56 % and 23-60 %) shown in 24 

Hatzianastassiou et al. (2009). Only in the case of Ankara, our results suggest a lower 25 

anthropogenic contribution (52 % versus 71-84 %). Particularly for Athens, Gerasopoulos et 26 

al. (2011) following a different approach incorporating ground-based AOD observations and 27 

trajectory modeling reached similar results (annual contribution of ~ 62 % from local and 28 

regional sources and continental Europe which is expected to be mostly of anthropogenic 29 

origin). Similarly, for Crete, Bergamo et al. (2008) using a different approach, also utilizing 30 

ground-based data, found an annual anthropogenic contribution of ~ 43 %.  31 

The seasonal patterns of the anthropogenic aerosols (τa) over the Eastern Mediterranean based 32 

on MODIS Terra observations are presented in Figs. 11a, e, i and m while the seasonal 33 
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variability of τa over the whole region, over the land covered part and the oceanic part and 1 

over the 9 sub-regions of interest is presented in Fig. 12. The results based on MODIS Aqua 2 

observations are similar and can be found in Figs. S15a, e, i and m and Fig. S16 of the 3 

Supplement. Generally, the local hot spots are detectable throughout the year; however, they 4 

are becoming much more discernible in spring and especially in summer. As shown in Fig. 5 

12a, τa nearly doubles during the warm period of the year (spring-summer) with the seasonal 6 

variability being stronger over the sea (Fig. 12c) than over land (Fig. 12b). A clear peak is 7 

observed in summer, August being the month with highest τa levels. As discussed in Sect. 8 

4.3.1 the summer peak is mostly a result of three basic reasons. The first one is the deficiency 9 

of wet removal processes compared to the cold period. As shown in Fig. S17, based on the 10 

TRMM satellite observations, August and July are the months with the lowest precipitation 11 

levels over the land covered part (a drop of ~ 75 % compared to winter months) and over the 12 

oceanic part (a drop of ~ 90 % compared to winter months) of the Eastern Mediterranean, 13 

respectively. The second reason is the enhancement of the photochemical production of 14 

secondary organic aerosols in summer (Kanakidou et al., 2011) and the third reason is the 15 

transport of pollution aerosols from Central Europe and biomass burning aerosols from South-16 

Western Russia and Eastern Europe during the biomass burning season in July-August 17 

(Amiridis et al., 2010). The Etesians, which are persistent northerly winds that prevail over 18 

the Eastern Mediterranean during summer, bring dry and cool air masses and aerosols from 19 

the regions mentioned above while blocking at the same time the transport of desert dust in 20 

the region and dispersing local pollution in urban areas to levels typical for rural areas (see 21 

Tyrlis and Lelieveld, 2013 and references therein). As seen in Figs. 12a-l, a smaller but 22 

distinct in most cases τa peak appears in April mostly as a result of the transport of biomass 23 

burning aerosols from Russia (across the latitudinal zone 45oN-55oN). This is in line with the 24 

findings of Sciare et al. (2008) who detected traces of these biomass burning aerosols at the 25 

island of Crete in Southern Greece.  26 

As discussed above, the relative contribution of dust to the total AOD550 over land exhibits a 27 

low seasonal variability ranging from 29 % in DJF to 36 % in SON based on Terra MODIS 28 

observations and from 33 % in JJA to 38 % in SON  based on Aqua MODIS observations (see 29 

Fig. 10). Over the oceanic regions the relative contribution of dust to the total AOD550 ranges 30 

significantly throughout a year from 26 % / 28 % in JJA to 42 % / 39 % in MAM based on 31 

Terra/Aqua MODIS observations. The percentages appearing here are in accordance to model 32 

and observational studies. For example, de Meij et al. (2012) using the atmospheric chemistry 33 
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general circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry) showed that 1 

dust contributes on an annual level ~ 30 % to the total AOD550 over stations located in the 2 

area of the Eastern Mediterranean. Gerasopoulos et al. (2011) found a ~ 23 % percent 3 

contribution of North African dust to the total AOD over Athens using ground-based AOD 4 

observations and trajectory modeling. Taking into account that part of the ~ 39 % local and 5 

regional sources appearing in Gerasopoulos et al. (2011) is due to local dust sources, 6 

especially in summer, turns out that their results are in agreement with the ~ 33 % relative 7 

contribution found in this work for the greater Athens area based on Terra MODIS 8 

observations. The seasonal patterns of dust (τd) over the region based on Terra MODIS 9 

observations are shown in Figs. 11b, f, j and n while the seasonal variability of τd over the 10 

whole region, over land, over the sea and over the 9 sub-regions of interest is shown in Fig. 11 

12. The corresponding results based on MODIS Aqua observations are pretty similar and can 12 

be found in Figs. S15b, f, j and n and Fig. S16 of the Supplement.  13 

As seen in Fig. 11f, in spring, mostly due to the strong Sahara dust events, very high τd values 14 

appear over land regions in North Africa, Middle East, Anatolia and oceanic areas across the 15 

Eastern Mediterranean (especially below 35oN). Dust loading over the sea exhibits two 16 

maxima, one at the coastal zone of Libya and one across the coastal zone of Middle East. The 17 

same two maxima but with much lower τd values appear in summer (Fig. 11j) and autumn 18 

(Fig. 11n). Over land, the τd patterns are similar in summer and autumn, the maximum values 19 

appearing over the Anatolian Plateau and areas of North Africa and Middle East. During 20 

winter, dust maxima appear across the coastal zone of Northern Africa with relatively low τd 21 

values across the coastal zone of Middle East (Fig. 11b). In winter τd levels are low over land 22 

compared to the other seasons (Figs. 11b, f, j and n) as precipitation levels (see Fig. S17 of the 23 

Supplement) and hence wet scavenging of aerosols peak. At the same time, the local 24 

emissions of dust are low for regions away from the large area sources in the South (Liora et 25 

al., 2015). In contrast, over the sea τd levels in winter are similar or slightly higher for some 26 

areas than that in summer and autumn (see Figs. 11 and 12) as this is the season with the 27 

second highest frequency (after spring) of strong (~ 21 %) and extreme (~ 26 %) desert dust 28 

episodes in the region (see Gkikas et al., 2013 for details). February is by far the winter month 29 

with the highest τd levels (see Fig. 12) in line with the findings of Pey et al. (2013) who 30 

showed that the intensity of African dust episodes over stations in Greece and Cyprus peaks 31 

in February. Dust exhibits a strong peak in spring, April being the month with the highest τd 32 

levels in line with other studies (e.g. Israelevic et al., 2012; Varga et al., 2014). The peak in 33 
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April is a result of the high cyclonic activity over North Africa during this month as shown by 1 

Flaounas et al. (2015). According to the same study, low pressure systems are responsible for 2 

~ 10-20 % of moderate and ~ 40-50 % of high and extreme Sahara dust transport events over  3 

the Eastern Mediterranean. North Africa (Sharav) cyclones develop mainly in spring and 4 

summer while Mediterranean cyclones develop in winter and autumn. The Mediterranean 5 

cyclones are more intense than Sharav cyclones. The region, is also affected by events 6 

bringing particles from dust source regions in the eastern part of the Mediterranean basin 7 

(Negev desert in Israel, Sinai in Egypt, Anatolian Plateau in Turkey) and the Arabian deserts 8 

(Basart et al. 2009; Pey et al., 2013; Abdelkader et al., 2015). Dust remains in the atmosphere 9 

for a period of 1-4 days undergoing chemical aging before being removed (see Abdelkader et 10 

al. 2015 and references therein). The seasonal variability of τd is much stronger and the spring 11 

maxima much more prominent over the sea (see Fig. 12). This is expected, as dust is only 12 

occasionally transported over the sea during episodic events, while over land, local sources 13 

also contribute to the dust burden especially in summer due to the dryness of soil. For 14 

example, over NBL, a broad spring-summer peak is observed, June being the month with the 15 

highest τd levels. As one moves south (SBL, ANL and NAL) the April peak becomes more 16 

prominent. 17 

The relative contribution of fine mode natural aerosols to the total AOD550 over land exhibits 18 

a very low seasonal variability ranging from 15 % in MAM and SON to 16 % in DJF and JJA 19 

based on Terra MODIS observations and from 14 % in DJF and SON to 15 % in MAM and 20 

JJA based on Aqua MODIS observations (see Fig. 10). The seasonal variability is also very 21 

low, the highest values appearing in spring and summer (Fig. 12). Despite the generally low 22 

contribution of fine mode natural aerosols to the total AOD550 over the Eastern 23 

Mediterranean, τn levels are similar to τd levels during winter months over specific regions 24 

(NBL and SBL). The low seasonal variability can also be seen in Figs. 11c, g, k and o where 25 

the patterns of fine mode natural aerosols (τn) are presented.  26 

The seasonal relative contribution of marine aerosols to the total AOD550 over the oceanic 27 

regions of the Eastern Mediterranean is shown in Fig. 10. τm ranges from 20 % in MAM to 35 28 

% in DJF based on Terra MODIS observations and from 21 % in MAM to 36 % in DJF based 29 

on Aqua MODIS observations (see Fig. 10). Like in the case of fine mode natural aerosols, 30 

the seasonal variability is very low, but here the highest values appear in winter (Fig. 12). Due 31 

to the linear relation of τm and near surface wind speed within our algorithm (see Fig. 2) the 32 

τm seasonal variability and patterns follow the wind speed ones (see Figs. 11d, h, l, p and 33 
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S14). Marine aerosol concentrations are lower close to the coastlines while the highest 1 

concentrations (see Liora et al., 2015) and τm values within the Eastern Mediterranean appear 2 

over the Aegean Sea (see Fig. 11). Overall, the τm patterns are in accordance to the τm, marine 3 

particulate matter concentration and sea salt emission patterns from previous studies (Im et 4 

al., 2012; Nabat et al., 2013; Rea et al., 2015; Liora et al., 2015). 5 

 6 

5 Summary and conclusions 7 

In this work, satellite data from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) 8 

were analyzed separately in order to examine the spatial and temporal variability of aerosols 9 

over the Eastern Mediterranean. A high resolution (0.1o x 0.1o) MODIS gridded dataset was 10 

compiled using a method that could be used in future regional studies. A number of tests were 11 

implemented and the dataset was validated in detail using sunphotometric observations from 12 

13 AERONET stations. According to the validation, the statistics appearing for MODIS Terra 13 

throughout the paper could be considered more robust while areas in Northern Africa are 14 

expected to be affected by the extended use of DB data which do not exhibit a very good 15 

matching with the ground-based observations. It is shown that the gridding method we use 16 

offers the best compromise for studying the spatial variability of aerosols on a regional or 17 

local scale, preserving at the same time the representativeness of the real aerosol load over 18 

each specific spot. 19 

Based on MODIS observations the average AOD550 levels over the region of the Eastern 20 

Mediterranean are ~ 0.22 ± 0.19 which is ~ 45 % higher than the global mean. A number of 21 

aerosol hot spots that coincide with megacities, large and even medium size cities, industrial 22 

zones, power plant complexes, river basins, etc., can be detected on the AOD maps. A 23 

number of local aerosol sources can also be seen on satellite retrieved tropospheric NO2 and 24 

planetary boundary layer SO2 maps from OMI/AURA. This is indicative of the strong 25 

presence of anthropogenic aerosols over these regions. Topography and precipitation also 26 

play an important role. Generally, regions with mountain ranges are characterized by low 27 

AODs while regions of low altitude are characterized by higher AODs. Regions with high 28 

AOD550 are in many cases connected to low precipitation levels and vice versa. Precipitation 29 

is the major washout mechanism of atmospheric pollutants. Low removal rates from 30 

precipitation contribute in preserving high the AOD550 levels which are a result of emissions 31 

and other atmospheric processes.  32 
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The AOD550 patterns over the Eastern Mediterranean exhibit a significant seasonal variability 1 

which is mostly driven by precipitation, photochemical production of secondary organic 2 

aerosols, transport of pollution and biomass burning aerosols from Central and Eastern 3 

Europe and transport of dust from the Sahara Desert and the Middle East. Differences 4 

between the MODIS Terra and Aqua Collection 051 AOD550 over the Eastern Mediterranean 5 

are generally small (~ -8 % over land and ~ 5 % over the sea). The comparison of the Terra-6 

Aqua differences with diurnal variabilities from the AERONET stations showed that only a 7 

part of the observed differences is due to the diurnal variability of aerosols.  8 

The MODIS data were combined with data from other satellites (Earth Probe TOMS, 9 

ΟΜΙ/AURA), reanalysis projects (ERA-Interim, MACC) and a chemistry-aerosol-transport 10 

model (GOCART) to calculate the contribution of different types of aerosols to the total 11 

AOD550. The algorithm used was optimized for the Eastern Mediterranean through a number 12 

of tests and comparison with LIVAS CALIOP/CALIPSO dust retrievals and AERONET 13 

ground-based observations. A different approach is used for land and sea as there is not any 14 

reliable satellite retrieved quantity to separate the contribution of fine and coarse mode 15 

aerosols over water surfaces. 16 

Overall, for the land areas, based on MODIS Terra observations, 52 % (0.112±0.087) of the 17 

total AOD550 is due to anthropogenic aerosols, 32 % (0.074±0.080) due to dust and 16 % 18 

(0.034±0.026) due to fine mode natural aerosols (see Fig. 7). For the oceanic areas, 41 % 19 

(0.086±0.085) of the total AOD550 is due to anthropogenic aerosols, 34 % (0.076±0.185) due 20 

to dust and 25 % (0.054±0.018) due to marine aerosols. The results based on observations 21 

from MODIS Aqua are similar to the MODIS Terra ones and in accord with previous studies.  22 

Over land, the τa maxima are detected over local particle pollution sources (cities, industrial 23 

zones, etc.). Over the sea, τa is higher along the coasts being significantly lower at greater 24 

distance. Very high τd values appear over land regions in North Africa, Middle East, Anatolia 25 

and oceanic areas across the Eastern Mediterranean, especially for latitudes below 35oN. Over 26 

the sea, dust loading exhibits two maxima, one at the coastal zone of Libya and one across the 27 

coastal zone of the Middle East. τd decreases with distance from the large dust sources in the 28 

South and South-East. Generally, dust reaches heights up to ~ 4-5 km in the area, the largest 29 

fraction of dust mass being confined within the first 2-3 km of the troposphere. The spatial 30 

variability of τn and τm is very low compared to τa and τd, following the total AOD550 patterns 31 

and the near surface wind speed patterns, respectively. 32 
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Over land, the relative contribution of anthropogenic aerosols, dust and fine mode natural 1 

aerosols to the total AOD550 exhibits a low seasonal variability, while over the sea the relative 2 

contribution of anthropogenic aerosols, dust and marine aerosols shows a significant seasonal 3 

variability.  4 

τa nearly doubles during the warm period of the year (spring-summer), August and April 5 

being the months with the highest τa levels. The summer peak is mostly the result of low 6 

precipitation levels, enhancement of the photochemical production of secondary organic 7 

aerosols and transport of pollution aerosols from Central Europe and biomass burning 8 

aerosols from South-Western Russia and Eastern Europe during the biomass burning season 9 

in July-August. The spring maximum in April is mostly the result of transport of biomass 10 

burning aerosols from Russia in line with previous studies. Dust exhibits a strong peak in 11 

spring (April), especially over the southern regions. April is the month with the highest τd 12 

levels as a result of the high cyclonic activity over North Africa. The seasonal variability of 13 

dust is much stronger and the spring maxima much more prominent over the sea as dust is 14 

only occasionally transported there during episodic events, while over land, local sources 15 

contribute to the dust burden, especially in summer due to the soil dryness. The seasonal 16 

variability of fine mode natural aerosols is very low, the highest values appearing in spring 17 

and summer. Marine aerosols also present a very low seasonal variability, the highest values 18 

appearing in winter due to the high near surface wind speeds.  19 

Overall, it is suggested that the AOD550, τa, τd, τn and τm high resolution gridded dataset which 20 

was compiled in this work could be used in a number of future atmospheric and biological 21 

studies focusing on the region of the Eastern Mediterranean (e.g. satellite and ground-based 22 

studies on aerosol-cloud-radiation interactions, experimental and field campaign studies on 23 

aerosols and clouds and research on the impact of aerosols on human health and nature). It is 24 

also acknowledged that a future update of the results presented here using more recent 25 

releases of MODIS aerosol data (e.g. Collection 6) and aerosol reanalysis datasets (e.g. 26 

NASA's Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-27 

analysis) would be a useful contribution.  28 
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Table 1. Full name, abbreviation, geolocation, host country and type of the 13 AERONET 1 

Cimel sunphotometer sites used for the validation of MODIS Terra and Aqua Collection 051 2 

observations. The common measurement period of MODIS and AERONET data and the 3 

corresponding overpass time of MODIS Terra and Aqua (Italics) over each station are also 4 

given. 5 

 6 

AERONET Station  Lat ( oN) Lon (oE) Period of study Country Type TERRA overpass AQUA overpass 

ATHENS-NOA (ATH) 37.988 23.775 05/2008-10/2012 Greece Urban (coastal) 9:23±22min UT 11:32±22min UT 
Bucharest Inoe (BUC) 44.348 26.030 07/2007-09/2012 Romania Sub-urban (coastal) 9:17±24min UT 11:15±20min UT 
CUT-TEPAK (CUT) 34.675 33.043 04/2010-12/2012 Cyprus Urban (coastal) 8:43±25min UT 10:55±25min UT 
Eforie (EFO) 44.075 28.632 09/2009/12/2012 Romania Rural (coastal) 9:09±21min UT 11:04±21min UT 
FORTH Crete (FOR) 35.333 25.282 01/2003-08/2011 Greece Rural (coastal) 9:12±24min UT 11:25±25min UT 
IMS-METU-ERDEMLI (IMS) 36.565 34.255 01/2004-01/2012 Turkey Rural  (coastal) 8:39±23min UT 10:48±22min UT 
Lecce University (LEC) 40.335 18.111 03/2003-12/2012 Italy Sub-urban (coastal) 9:44±25min UT 11:49±25min UT 
Nes ziona (NES) 31.922 34.789 02/2000-12/2012 Israel Sub-urban (coastal) 8:38±24min UT 10:44±25min UT 
SEDE BOKER (SED) 30.855 34.782 01/2000-04/2012 Israel Rural (semi-arid) 8:30±27min UT 10:50±25min UT 
Sevastopol (SEV) 44.616 33.517 05/2006-12/2012 Ukr.-Crimea Urban (coastal) 8:51±21min UT 10:40±21min UT 
Thessaloniki (THE) 40.630 22.960 09/2005-12/2012 Greece Urban (coastal) 9:28±25min UT 11:32±22min UT 
TUBITAK UZAY Ankara (TUB) 39.891 32.778 12/2009-04/2012 Turkey Urban (continental) 8:48±26min UT 10:56±24min UT 
Xanthi (XAN) 41.147 24.919 01/2008-10/2010 Greece Rural (coastal) 9:18±25min UT 11:24±21min UT 
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Table 2. Results of the comparison of spatially (using a spatial window around each station) 1 

and temporally (±30 min from the MODIS overpass time) collocated MODIS Terra and Aqua 2 

(Italics) Collection 051 level-2 and AERONET sunphotometric (quadratically interpolated) 3 

AOD550 observations for the Eastern Mediterranean stations. The algorithms used for the 4 

production of the validated MODIS data (DT and DB), the spatial window used for the spatial 5 

collocation (25 x 25 km2 or 50 x 50 km2 window around each station) with the AERONET 6 

data, the average MODIS and AERONET AOD550 and the corresponding ±1σ values, the 7 

mean difference between them, the normalized mean bias (NMB) and the corresponding root 8 

mean square (RMS) error, the percentage of the collocation points that fall within the 9 

expected error (EE) envelope and the pre-launch expected error (plEE) envelope (Expected 10 

Uncertainty - EU envelope for DB data), the correlation coefficient R, the slope (a) and the 11 

intercept of the regression line (b) and the number of the collocation points are given in the 12 

table. L10 denotes the use of a collocation window of 50o x 50o as in Levy et al. (2010) while 13 

HQ denotes the use of high quality data only.   14 

 15 

Alg. Window 
MODIS TERRA 
MODIS AQUA 

AERONET Mean Diff. NMB % RMS err. in EE % in pl EE % R a b Obs 

DT 25 km 0.223±0.163 0.200±0.123 0.023±0.106 11.59 0.11 63.28 67.78 0.76 1.007 0.022 6697 
DT 25 km 0.247±0.173 0.197±0.121 0.050±0.109 25.18 0.12 57.14 61.87 0.78 1.113 0.027 6283 
DT 50 km (L10) 0.204±0.152 0.194±0.124 0.010±0.085 5.10 0.09 70.17 74.64 0.83 1.016 0.007 6054 
DT 50 km (L10)  0.224±0.155 0.194±0.125 0.030±0.088 15.34 0.09 66.76 70.45 0.82 1.018 0.026 5557 
DB 25 km 0.226±0.177 0.186±0.128 0.040±0.162 21.38 0.17 - 51.90 0.47 0.657 0.104 2580 
DB 25 km 0.242±0.217 0.182±0.118 0.06±0.196 33.03 0.20 - 55.30 0.44 0.815 0.094 5345 
DBHQ 25 km 0.229±0.158 0.186±0.132 0.043±0.141 22.82 0.15 - 52.41 0.54 0.651 0.108 498 
DBHQ 25 km 0.260±0.220 0.186±0.138 0.074±0.204 39.84 0.22 - 52.34 0.42 0.670 0.136 896 
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Table 3. AOD550 levels, the corresponding ±1σ values and the number of gridded values used 1 

for the calculations over the Eastern Mediterranean (EMT), over the land covered part (EML), 2 

over the oceanic part and over the 9 sub-regions of the Eastern Mediterranean appearing in 3 

Fig. 1 based on the MODIS Terra and Aqua (Italics) observations. 4 

 5 

Region 
MODIS TERRA 
AOD550 

Num. of values 
MODIS AQUA 
AOD550 

Num. of values 

EMT 0.215±0.187 61496654 0.217±0.199 49522934 
EML 0.219±0.165 25923766 0.239±0.189 21008713 
EMO 0.213±0.201 35572888 0.202±0.205 28514221 
NBL 0.183±0.163 5563495 0.187±0.162 3853688 
SBL 0.197±0.152 7345829 0.207±0.152 5272449 
ANL 0.223±0.146 7948817 0.228±0.148 5539261 
NAL 0.282±0.192 5065625 0.306±0.238 6343315 
BSO 0.198±0.150 6433951 0.183±0.134 5262438 
NWO 0.209±0.162 11645069 0.197±0.154 9231630 
SWO 0.226±0.266 6202893 0.223±0.310 4925665 
NEO 0.214±0.196 4807910 0.199±0.166 3896554 
SEO 0.221±0.236 6483065 0.210±0.239 5197934 
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Table 4. Relative contribution of anthropogenic aerosols, dust, fine mode natural and marine 1 

aerosols to the total AOD550 (bold) and the corresponding τa, τd, τn, τm levels with their ±1σ 2 

values (in parentheses) over the Eastern Mediterranean (EMT), over the land covered part 3 

(EML), over the oceanic part and over the 9 sub-regions of the Eastern Mediterranean 4 

appearing in Fig. 1 based on the MODIS Terra and Aqua (Italics) observations. The sum of 5 

the aerosol type AODs per region does not necessarily correspond to the total AOD550 values 6 

appearing in Table 3 as these results were for the total of the days with aerosol retrievals even 7 

for days when our aerosol type separation algorithm was not applicable. 8 

 9 

Region Satellite Contribution to MODIS TERRA/AQUA AOD550 

  Anthropogenic Dust Fine mode natural Marine 

EML TERRA 52 % (0.112±0.087) 32 % (0.074±0.080) 16 % (0.034±0.026) - 
 AQUA 50 % (0.117±0.093) 35 % (0.090±0.102) 15 % (0.035±0.028) - 
EMO TERRA 41 % (0.086±0.085) 34 % (0.076±0.185) - 25 % (0.054±0.018) 
 AQUA 40 % (0.079±0.080) 33 % (0.070±0.181) - 27 % (0.054±0.018) 
NBL TERRA 59 % (0.108±0.101) 23 % (0.042±0.046) 18 % (0.032±0.030) - 
 AQUA 59 % (0.110±0.100) 24 % (0.045±0.047)  17 % (0.033±0.030) - 
SBL TERRA 55 % (0.109±0.088) 28 % (0.056±0.058) 17 % (0.033±0.026) - 
 AQUA 55 % (0.113±0.088) 29 % (0.060±0.060) 16 % (0.034±0.026) - 
ANL TERRA 51 % (0.113±0.075) 34 % (0.076±0.068) 15 % (0.034±0.023) - 
 AQUA 50 % (0.114±0.075) 35 % (0.079±0.070) 15 % (0.034±0.023) - 
NAL TERRA 50 % (0.113±0.083) 35 % (0.083±0.085) 15 % (0.034±0.025) - 
 AQUA 48 % (0.118±0.091) 38 % (0.099±0.108) 14 % (0.035±0.027) - 
BSO TERRA 53 % (0.108±0.103) 22 % (0.044±0.101) -  25 % (0.051±0.016) 
 AQUA 51 % (0.094±0.087) 22 % (0.042±0.085) - 27 % (0.051±0.016) 
NWO TERRA 41 % (0.087±0.090) 33 % (0.071±0.142) - 26 % (0.055±0.020) 
 AQUA 40 % (0.079±0.083) 32 % (0.066±0.127) - 28 % (0.055±0.020) 
SWO TERRA 32 % (0.071±0.070) 42 % (0.097±0.257) - 26 % (0.058±0.018) 
 AQUA 32 % (0.093±0.288) 41 % (0.072±0.080) - 27 % (0.059±0.018) 
NEO TERRA 48 % (0.098±0.094) 28 % (0.061±0.144) - 24 % (0.050±0.016) 
 AQUA 46 % (0.086±0.082) 28 % (0.057±0.115) - 26 % (0.050±0.016) 
SEO TERRA 36 % (0.079±0.070) 39 % (0.087±0.224) - 25 % (0.055±0.016) 
 AQUA 36 % (0.075±0.071) 38 % (0.080±0.217) - 26 % (0.055±0.016) 
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Figure 1. Eastern Mediterranean map with the 9 sub-regions selected for the generalization of 3 

our results and the location of the AERONET stations used for the validation of MODIS 4 

satellite data. The 9 sub-regions are: NBL (Northern Balkans Land), SBL (Southern Balkans 5 

Land), ANL (Anatolia Land), NAL (Northern Africa Land), BSO (Black Sea Oceanic), NWO 6 

(North-Western Oceanic), SWO (South-Western Oceanic), NEO (North-Eastern Oceanic) and 7 

SEO (South-Eastern Oceanic). The full names and the geolocation of the 13 AERONET 8 

stations appearing in the map are available in Table 1.   9 
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Figure 2. Flowchart with the methodology followed for the calculation of the anthropogenic 3 

aerosol, dust and marine aerosol optical depths (τa, τd and τm) over the sea (blue color) and the 4 

anthropogenic aerosol, dust and fine mode natural aerosol optical depths (τa, τd and τn) over 5 

land (brown color).  6 



 59

 1 

 2 

Figure 3. Comparison of spatially (using a 25 x 25 km2 window around each station) and 3 

temporally (±30 min from the MODIS overpass time) collocated MODIS Collection 051 4 

level-2 and AERONET sunphotometric (quadratically interpolated) AOD550 observations for 5 

the Eastern Mediterranean stations: (a) for MODIS Terra DT data, (b) for MODIS Aqua DT 6 

data, (c) for MODIS Terra DB data and (d) for MODIS Aqua DB data. The color scale 7 

corresponds to the number of MODIS-AERONET collocation points that fall within 0.02 x 8 

0.02 grid boxes. The solid line is the regression line of the MODIS-AERONET observations, 9 

the dashed-dotted line is the 1:1 line, the dotted lines represent the expected error (EE) 10 

envelope and the grey lines the pre-launch expected error (plEE) envelope (Expected 11 

Uncertainty - EU envelope for DB data). The slope and the intercept of the regression line, the 12 

correlation coefficient R, the normalized mean bias (NMB), the root mean square (RMS) 13 

error, the percentage of the collocation points that fall within the EE and plEE and the number 14 

of all the collocation points are given on the plots.      15 

 16 
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Figure 4. AOD550 patterns over Eastern Mediterranean as seen by MODIS Terra during the 3 

period 3/2000-12/2012 (3/2000-12/2007 for regions of North Africa covered by DB data 4 

only). The colorscale corresponds to the AOD550 levels while the top x-axis and the right y-5 

axis correspond to the longitude (oE) and latitude (oN), respectively. The position of 35 6 

aerosol hot spots is marked on the map (numbers from 1 to 35) while the names of the places 7 

and the countries where the hot spots are located appear on the right of the map. In the same 8 

figure the exponential growth of the number of satellite-based articles focusing on aerosols 9 

over the greater Eastern Mediterranean from 1997 to 2014 is shown (black line). The black 10 

dots represent the number of articles published within three year intervals. The bottom x-axis 11 

and the left y-axis correspond to the years and the number of published articles, respectively. 12 

The exponential growth corresponds to a near doubling of the publication rate every 3 years. 13 
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Figure 5. (a) Tropospheric NO2 levels and (b) Planetary boundary layer SO2 levels (in 1015 3 

molecules/cm2) over the Eastern Mediterranean as seen from OMI/AURA (2005-2012), (c) 4 

Topography (GTOPO elevation data in meters above sea level) and (d) Annual precipitation 5 

levels (in mm/year) from 3B43 TRMM and Other Sources Monthly Rainfall Product (2000-6 

2012).  7 
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Figure 6. Seasonal AOD550 patterns over the Eastern Mediterranean as seen by MODIS Terra 3 

(left column) during the period 3/2000-12/2012 (3/2000-12/2007 for regions of North Africa 4 

covered by DB data only) and MODIS Aqua (middle column) during the period 7/2002-5 

12/2012. The differences between MODIS Terra and Aqua AOD550 on a seasonal basis appear 6 

on the right column. 7 
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Figure 7. Relative contribution of anthropogenic aerosols, dust and fine mode natural 3 

aerosols to the total AOD550 over the land covered part of the Eastern Mediterranean based on 4 

MODIS Terra (a) and MODIS Aqua (c) observations and relative contribution of 5 

anthropogenic aerosols, dust and marine aerosols to the total AOD550 over the oceanic part of 6 

the Eastern Mediterranean based on MODIS Terra (b) and MODIS Aqua (d) observations. 7 
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Figure 8. (a) Anthropogenic aerosol (τa), (b) dust (τd), (c) fine mode natural aerosol (τn) and 3 

(d) marine aerosol (τm) patterns over the Eastern Mediterranean based on MODIS Terra 4 

observations during the period 3/2000-12/2012 (3/2000-12/2007 for regions of North Africa 5 

covered by DB data only). 6 
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Figure 9. Left column: Latitudinal variability of anthropogenic aerosols (τa), dust (τd), fine 3 

mode natural aerosols (τn) and marine aerosols (τm) for four 5-degree longitudinal bands (see 4 

embedded maps) covering the Eastern Mediterranean based on MODIS Terra observations. 5 

Right column: Latitudinal variability of dust extinction coefficients at 532 nm in km-1 6 

(colorscale corresponds to the extinction coefficients and left y-axis to the atmospheric levels) 7 

and dust aerosol optical depth at 532 nm (dotted line corresponding to the right y-axis) for the 8 

same four bands from LIVAS CALIOP/CALIPSO observations. 9 
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Figure 10. Seasonal relative contribution of anthropogenic aerosols, dust and fine mode 3 

natural aerosols to the total AOD550 over the land covered part of the Eastern Mediterranean 4 

based on MODIS Terra (a, e, i, m) and MODIS Aqua (c, g, k, o) observations and seasonal 5 

relative contribution of anthropogenic aerosols, dust and marine aerosols to the total AOD550 6 

over the oceanic part of the Eastern Mediterranean based on MODIS Terra (b, f, j, n) and 7 

MODIS Aqua (d, h, i, p) observations. 8 
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Figure 11. Seasonal (a, e, i, m) anthropogenic aerosol (τa), (b, f, j, n) dust (τd), (c, g, k, o) fine 3 

mode natural aerosol (τn) and (d, h, i, p) marine aerosol (τm) patterns over the Eastern 4 

Mediterranean based on MODIS Terra observations during the period 3/2000-12/2012 5 

(3/2000-12/2007 for regions of North Africa covered by DB data only). 6 
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Figure 12. Seasonal variability of anthropogenic aerosols (τa), dust (τd), fine mode natural 3 

aerosols (τn) and marine aerosols (τm) over the Eastern Mediterranean (EMT), over the land 4 

covered part (EML), over the oceanic part (EMO) and over the 9 sub-regions of the Eastern 5 

Mediterranean appearing in Fig. 1 based on MODIS Terra observations. The error bars 6 

represent the ±1σ values calculated from monthly gridded data. 7 
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