

1 **Temperature-dependent diffusion coefficient of H₂SO₄ in air: 2 laboratory measurements using laminar flow technique**

3 David Brus^{1, 2}, Lenka Skrabalova^{2, 3}, Erik Herrmann⁴, Tinja Olenius^{5*}, Tereza Travnickova⁶ and
4 Joonas Merikanto¹

5

6 [1] {Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, FIN-00100
7 Helsinki, Finland}

8 [2] {Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals
9 Academy of Sciences of the Czech Republic, Rozvojova 135, CZ-165 02 Prague 6, Czech
10 Republic}

11 [3] {Department of Physical Chemistry, Faculty of Science, Charles University in Prague,
12 Hlavova 8, Prague, 128 43, Czech Republic}

13 [4] {Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI,
14 Switzerland}

15 [5] {Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2 A, P.O. Box 64,
16 FIN-00014 Helsinki, Finland}

17 * Current address: Department of Environmental Science and Analytical Chemistry (ACES) and
18 Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden}

19 [6] {Department of Multiphase Reactors, Institute of Chemical Process Fundamentals Academy
20 of Sciences of the Czech Republic, Rozvojova 135, CZ-165 02 Prague 6, Czech Republic}

21 Correspondence to: D.Brus (david.brus@fmi.fi)

22

23 **Abstract**

24 We report measurements of the diffusion coefficient of sulfuric acid in humidified air at a range
25 of relative humidities (from ~4 to 70 %), temperatures (278, 288 and 298 K) and initial H_2SO_4
26 concentration (from 1×10^6 to 1×10^8 molec. cm^{-3}). The diffusion coefficients were estimated from
27 the sulfuric acid wall loss rate coefficients under laminar flow conditions. The flow conditions
28 were verified with additional fluid dynamics model CFD-FLUENT simulations which also
29 reproduced the loss rate coefficients very well at all three temperatures with the maximum
30 difference of 7 % between the measured and simulated values. The concentration of H_2SO_4 was
31 measured continuously with chemical ionization mass spectrometer (CIMS) at seven different
32 positions along the flow tube. The wall losses of H_2SO_4 were determined from the slopes of fits
33 to measured H_2SO_4 concentrations as a function of the position along the flow tube. The
34 observed wall loss rate coefficients, and hence the diffusion coefficients, were independent of
35 different initial H_2SO_4 concentrations and different total flow rates. However, the determined
36 diffusion coefficients decreased with increasing relative humidity, as also seen in previous
37 experiments, and had a rather strong power dependence of the diffusion coefficient with respect
38 to temperature, around $\propto T^{5.4}$, which is in disagreement with the expected temperature
39 dependency of $\sim T^{1.75}$ observed for other gases and not tested before for sulfuric acid. The effect
40 of relative humidity on the diffusion coefficient is likely due to stronger hydration of H_2SO_4
41 molecules and likely also due to the presence of trace impurities such as amines, possibly
42 brought to the system by humidification. Clustering kinetics simulations using quantum chemical
43 data suggest that also the strong temperature dependence of the observed diffusion coefficient
44 might be explained by increased diffusion volume of H_2SO_4 molecules due to stronger clustering
45 with base-impurities like amines.

46 **1. Introduction**

47 Sulfate aerosols play a dominant role in atmospheric chemistry and have undoubtedly influence
48 on humans' health and Earth's climate. Gas phase sulfuric acid is formed via oxidation reaction
49 of SO_2 with OH radicals. The loss of gaseous H_2SO_4 in the atmosphere is caused by new particle
50 formation events, acid-base reactions and cluster formation, and condensation on pre-existing
51 atmospheric particles. The growth of a particle is driven by condensation of surrounding vapour
52 on its surface, and the diffusion coefficient (D) of H_2SO_4 is often used in mass transport
53 calculations in aerosol chemistry and physics. Condensation and evaporation rates are key
54 parameters in aerosol dynamics models, and the accuracy of these rates is highly dependent on

55 the values used for the binary diffusion coefficients (Seinfeld and Pandis, 1998). Under certain
56 circumstances, the gas phase diffusion can even limit the overall rates of condensation and
57 reactions of trace gases with aerosol particles via influencing the uptake of gas molecules onto
58 the surface (Tang et al., 2014). The factor that determines if a H_2SO_4 molecule will attach to pre-
59 existing aerosol or stay in the gas phase, possibly contributing to subsequent new particle
60 formation, is the mass accommodation coefficient (Pöschl et al., 1998). Together with
61 information on the mass accommodation coefficient, detailed knowledge on the diffusion
62 coefficient is necessary for accurately simulating atmospheric condensation processes.

63 In this paper we report laboratory measurements of the diffusion coefficient of sulfuric acid in
64 air. The diffusion coefficient of H_2SO_4 was estimated from the first order rate coefficients of the
65 wall losses of H_2SO_4 in a flow tube. The measurements were conducted at atmospheric pressure
66 under different experimental conditions in order to assess the effect of temperature, relative
67 humidity, residence time and initial H_2SO_4 concentration on the diffusion coefficient of H_2SO_4 .

68 All previous measurements of the sulfuric acid diffusion coefficient have been carried out using
69 nitrogen as the carrier gas and a laminar flow technique. Pöschl et al. (1998) studied the gas-
70 phase diffusion of H_2SO_4 at $T=303$ K, Lovejoy and Hanson (1996) performed experiments at
71 $T=295$ K, and Hanson and Eisele (2000) at $T=298$ K. To our best knowledge, we here present the
72 first study that investigates systematically the temperature dependency of the diffusion
73 coefficient of H_2SO_4 . In a previous study (Hanson and Eisele, 2000) the RH dependency of
74 H_2SO_4 diffusion was investigated, but results reporting the temperature dependency have not
75 been published before.

76 The Chapman-Enskog theory on gas kinetics predicts the binary diffusion coefficient to depend
77 on the temperature as $D \propto T^{1.5}$ when approximating the gas molecules as hard spheres. Fuller et
78 al. (1966) used a semi-empirical method based on the best nonlinear least square fit for a
79 compilation of 340 experimental diffusion coefficients, and obtained a temperature dependence
80 of $T^{1.75}$. The Fuller et al. method is known to yield the smallest average error, hence it is still
81 recommended for use (Reid et al., 1987). According to a compilation work of Marrero and
82 Mason (1972), the temperature dependence of diffusion coefficients in binary gas mixtures in
83 most cases varies between $T^{1.5}$ and T^2 . However, gaseous sulfuric acid vapour can undergo strong
84 clustering due to presence of base impurities, as noted in several previous experiments (e.g.
85 Petäjä et al 2011; Almeida et al., 2013; Neitola et al. 2015, Rondo et al. 2016). Such base
86 impurities are unavoidably present also in our experiment, and most probably they originate

87 from the humidification of the carrier gas (e.g. Benson et al., 2011; Kirkby et al., 2011; Neitola
88 et al. 2015). Cluster kinetic simulations have suggested that the diffusion coefficient of sulfuric
89 acid is likely sensitive to such clustering (Olenius et al., 2014), which on the other hand is
90 sensitive to temperature. Here, we use several approaches to verify the experimental method, and
91 examine our results against the predictions of the semi-empirical formula as well as data from
92 the previous experiments. In addition, we assess the effect of molecular cluster formation by
93 cluster kinetics simulations with quantum chemical input data.

94 **2. Methods**

95 The experimental setup used in this study was described in detail in our previous work (Neitola
96 et al., 2014; Skrabalova et al., 2014) and therefore only a brief description is given here. The
97 whole experimental apparatus consists of four main parts: a saturator, a mixing unit, a flow tube
98 and the sulfuric acid detection system – Chemical Ionization Mass Spectrometer (CIMS) (Eisele
99 and Tanner, 1999), presented in Figure 1. The H_2SO_4 wall loss measurements were carried out in
100 a laminar flow tube at three temperatures of $278.20(\pm 0.2)$, $288.79(\pm 0.2)$, and $298.2(\pm 0.2)$ K
101 using purified, particle free and dry air as a carrier gas. The flow tube is a vertically mounted
102 cylindrical tube made of stainless steel with an inner diameter (I.D.) of 6 cm and a total length of
103 200 cm. The whole flow tube was insulated and kept at a constant temperature with two liquid
104 circulating baths (Lauda RK-20). The flow tube consists of two 1 meter long parts; one of them
105 is equipped with 4 holes in the distance of 20 cm from each other, see Figure 1. Sulfuric acid
106 vapour was produced by passing a stream of carrier gas through a saturator filled with 95-97 %
107 wt. sulfuric acid (J.T. Baker analysed). As a saturator we used a horizontal iron cylinder with
108 Teflon insert (I.D. 5 cm) and it was thermally controlled using a liquid circulating bath (LAUDA
109 RC-6). The temperature inside the saturator was measured with a PT100 thermocouple (± 0.05
110 K). The carrier gas saturated with H_2SO_4 was then introduced with a flow rate from 0.1 to 1 l
111 min^{-1} into the mixing unit made of Teflon and turbulently mixed with a stream of humidified
112 particle free air. The gas mixture was then introduced into the flow tube. The flow rate of the
113 mixing air varied in most of the experiments from about 7 to 10 l min^{-1} . The mixing air was
114 humidified with one pair of Nafion humidifiers (Perma Pure MH-110-12) connected in parallel,
115 where the flow of the mixing air was split into half for longer residence time and better
116 humidification in both humidifiers. Ultrapure water (Millipore, TOC less than 10 ppb, resistivity
117 $18.2 \text{ M}\Omega\text{cm } @25^\circ\text{C}$) circulating in both humidifiers was temperature controlled with liquid
118 circulating bath (Lauda RC-6 CS). The mixing unit was kept at room temperature and it was not

119 insulated. The mixing unit had following dimensions: O.D. = 10 cm, I.D. = 7 cm and height = 6
120 cm. Both lines of the carrier gas (saturator and mixing air) were controlled by a mass flow
121 controller to within $\pm 3\%$ (MKS type 250). The relative humidity was measured at the centre and
122 far end of the flow tube with two humidity and temperature probes (Vaisala HMP37E and
123 humidity data processor Vaisala HMI38) within accuracy of $\pm 3\%$.
124 The sulfuric acid diffusion coefficients were estimated as a function of relative humidity from
125 the H_2SO_4 loss measured by CIMS along the flow tube. The detailed information regarding the
126 operational principles and calibration of CIMS is given in Eisele and Tanner, (1993); Mauldin et
127 al., (1998) and Petäjä et al., (2009) and therefore will not be given here again. The charging and
128 detection efficiency of CIMS in the presence of trace concentrations of base impurities is
129 discussed thoroughly theoretically (e.g. Kupiainen-Määttä et al., 2013; Ortega et al., 2014) and
130 also in recent experimental reports (e.g. Neitola et al., 2015; Rondo et al., 2016). Possible
131 attachment of base and/or water molecules to single H_2SO_4 molecules is not expected to have a
132 notable effect on their detection efficiency. However, both free H_2SO_4 molecules and those
133 bound to base and/or water molecules are detected as single H_2SO_4 molecules by CIMS, since
134 the ligands are quickly lost upon the chemical ionization (e.g. Ortega et al., 2014). In this study
135 the actual H_2SO_4 concentrations are not of particular interest, we focus here only on relative loss
136 of H_2SO_4 along the flow tube. The concentration of sulfuric acid in gas phase was measured as
137 97 m/z Da using CIMS along the flow tube (see Fig. 1) at the beginning (0 cm), in the middle
138 (100 cm) and at the lower part in distances of 120, 140, 160, and 180 cm from the beginning and
139 at the outlet (200 cm) of the flow tube in a wide range of relative humidities from 4 to 70 %. The
140 CIMS sampling flow rate was set to 71 min^{-1} . In order to measure the H_2SO_4 concentration along
141 the whole flow tube, an additional CIMS inlet sampling tube was used - a stainless steel tube
142 with I.D. 10 mm and whole length of 122 cm (100 cm straight + 22 cm elbow-pipe). The
143 experimental measurement proceeded in the following way. First, all the experimental conditions
144 (temperature of saturator and flow tube, flow rates, relative humidity) were adjusted. When the
145 steady state was reached, the CIMS' inlet was connected to the lowest hole at 200 cm and
146 concentration of sulfuric acid was recorded for at least 20 min. Afterwards the CIMS' inlet was
147 moved up to the hole at 180 cm, and the same procedure was repeated until the last hole at the
148 top of the tube was reached. To confirm the reproducibility of the experimental data the H_2SO_4
149 concentration at any arbitrary distance along the flow tube was measured again. Moreover, the
150 reproducibility was checked by exchanging the flow tube parts, so that the part with 4 holes was

151 moved up, and H_2SO_4 losses were measured in the distances 0, 20, 40, 60, 80, 100 and 200 cm,
152 respectively.

153 **2.1 The CFD model**

154 To verify the assumption of laminar flow inside the tube, we applied the computational fluid
155 dynamics model CFD-FLUENT (version 6.2) which simulates flow based on the Euler equations
156 for mass and momentum conservation. These equations and the general operating principles of
157 FLUENT are described in detail in Herrmann et al. (2006, 2009 and 2010). It has to be noted that
158 unlike the earlier studies, this work did not include the Fine Particle Model (FPM). Particle
159 production was thus not taken into account, and only sulfuric acid and water vapours are
160 considered in the CFD-FLUENT simulations.

161 The simulations only considered the flow tube part of the experimental setup described in section
162 2. Methods; the flow tube can be set up as an axisymmetric 2D problem. For the calculations
163 presented here, we chose a resolution of 50×1000 cells. The same geometry has been used in
164 Herrmann et al. (2010). Boundary conditions (volumetric flow, wall temperatures, relative
165 humidity, and initial sulfuric acid concentration) were set to match the experimental conditions.
166 The wall was assumed to be an infinite sink for sulfuric acid, which means that the H_2SO_4
167 concentration at the walls was set to 0 in the simulations. Properties of sulfuric acid were
168 identical to the ones described in our earlier work. Differing from Herrmann et al. (2010), there
169 is no temperature gradient or buoyancy phenomena disturbing parabolic radial flow profile. To
170 verify the proper operation of the setup we applied the diffusion coefficient derived
171 experimentally in this work to FLUENT simulations. The simulations yielded a profile of
172 sulfuric acid concentration inside the flow tube which we compared back to the experimental
173 results.

174 **2.2 Experimental determination of the diffusion coefficient**

175 The wall loss of H_2SO_4 in the flow tube was assumed to be a diffusion controlled first-order rate
176 process, which can be described by a simple equation:

$$177 [\text{H}_2\text{SO}_4]_t = [\text{H}_2\text{SO}_4]_0 e^{-kt}, \quad (1)$$

178 where $[\text{H}_2\text{SO}_4]_0$ is the initial concentration of H_2SO_4 , $[\text{H}_2\text{SO}_4]_t$ is the concentration after time t
179 and k (s^{-1}) is the rate constant, which is given by the equation:

180
$$k = 3.65 \frac{D}{r^2}, \quad (2)$$

181 where r is the radius of the flow tube and D is the diffusion coefficient of H_2SO_4 . Equation 2 is
182 valid for diffusion in a cylindrical tube under laminar flow conditions and when the axial
183 diffusion of the species investigated is negligible (Brown, 1978). The slopes obtained from linear
184 fits to the experimental data $\ln([\text{H}_2\text{SO}_4])$ as a function of the distance in the flow tube stand for
185 the loss rate coefficient, k_{obs} (cm^{-1}) assuming that the first order loss to the flow tube wall is the
186 only sink for the gas phase H_2SO_4 . Multiplying the loss rate coefficient k_{obs} with mean flow
187 velocity in the flow tube (cm s^{-1}) yields the experimental first-order wall loss rate coefficient k_w
188 (s^{-1}), from which the diffusion coefficients of H_2SO_4 were determined using Eq. 2. Hanson and
189 Eisele (2000) reported that the wall of the flow tube can act as a source of H_2SO_4 vapour after
190 exposure in long lasting experiments and under very low relative humidity ($\text{RH} \leq \sim 0.5\%$).
191 The accuracy of our RH measurements is $\pm 3\%$ RH, so to avoid any influence of H_2SO_4
192 evaporation from the flow tube wall we only used data measured at $\text{RH} \geq 4\%$ in the final
193 analysis. Furthermore, we performed CFD-FLUENT simulations at $\text{RH}=5\%$ and $T=298\text{ K}$, with
194 increased H_2SO_4 concentration on the flow tube wall (0–100 % of $[\text{H}_2\text{SO}_4]_0$), shown in Fig. 2.
195 The comparison suggests that in our measurements the concentration on the flow tube wall is
196 below 6 % of the $[\text{H}_2\text{SO}_4]_0$ under all conditions. When the H_2SO_4 concentration on the wall is ≤ 6
197 % of $[\text{H}_2\text{SO}_4]_0$, the resulting difference in the obtained diffusion coefficient is within 10 % when
198 compared to diffusion coefficient obtained with infinite sink boundary condition on the wall, as
199 indicated by the shaded box in bottom left corner in Fig 2B. Any higher H_2SO_4 concentration at
200 the wall than 6 % of $[\text{H}_2\text{SO}_4]_0$ would lead to a larger than 10 % decrease in the obtained diffusion
201 coefficient.

202 **2.3 Quantum chemical data and cluster kinetics modeling**

203 To assess the effects of possible base impurities on the measurement results, we performed
204 clustering kinetics simulations using quantum chemical input data for the stabilities of H_2SO_4 –
205 base clusters as described by Olenius et al. (2014). Since recent theoretical studies (e.g. Ortega et
206 al., 2012; Kupiainen-Määttä et al., 2013; Loukonen et al. 2014) suggest and experiments (e.g.
207 Zollner et al. 2012; Almeida et al. 2013; Kürten et al., 2014; Neitola et al., 2014, Rondo et al.
208 2016) confirm that amines are more effective in stabilizing sulfuric acid clusters than ammonia,
209 we focus only on the clustering of sulfuric acid with dimethylamine (DMA) and trimethylamine
210 (TMA) and their hydrates (see also Section 3.2 Effect of Base Contaminants in Olenius et al.,

211 2014). The cluster kinetics approach does not consider the 2D flow profile, but only the central
212 stream line of the flow, from which clusters and molecules are lost by diffusion. This is
213 considered a reasonable assumption for a laminar flow, as also indicated by the CFD-FLUENT
214 modeling results (see the Results section).

215 Detailed information on the simulations, as well as extensive discussion on the effects of
216 clustering on the apparent diffusion coefficient can be found in the study by Olenius et al.
217 (2014). Theoretical diffusion coefficients for sulfuric acid and representative base contaminant
218 molecules and small acid–base clusters and their hydrates were calculated according to the
219 kinetic gas theory. The effective diffusion coefficient corresponding to the experimental
220 approach was determined by simulating the time evolution of the molecular cluster
221 concentrations using cluster evaporation rates based on quantum chemical calculations at the
222 B3LYP/CBSB7//RICC2/aug-cc-pV(T+d)Z level of theory, as described by Olenius et al. (2014).
223 The simulations were run by setting initial concentrations for H_2SO_4 and base monomers, and
224 integrating the time development of the cluster concentrations for the experimental residence
225 times. The initial acid concentration was set to be the average H_2SO_4 monomer concentration
226 $[\text{H}_2\text{SO}_4] = 5 \times 10^6 \text{ cm}^{-3}$ measured with CIMS at the beginning of the flow tube (see Fig. 1, hole 1)
227 for all experimental conditions. For the initial base concentration we adopted a similar approach
228 as described in Olenius et al. (2014): The initial base concentration was considered to be a)
229 constant during the experiment, or b) RH dependent, i.e. base molecules enter the system with
230 the water vapour; such a scenario seems to be reasonable since it was observed in several
231 experimental set-ups (e.g. Benson et al., 2011; Brus et al., 2011; Kirkby et al., 2011). In the
232 second case we set the initial base concentration $[\text{base}]_{\text{init}}$ to be linearly proportional to RH as
233

234 $[\text{base}]_{\text{init}} (\text{ppt}) = [\text{base}]_{\text{dry}} (\text{ppt}) + 0.1 \times \text{RH} (\%), \quad (3)$

235

236 where the linear relationship was based on a fit to DMA and TMA concentrations measured in
237 the same experimental setup, but different experiments at various RH and H_2SO_4 concentrations
238 (Neitola et al., 2014 and 2015). The dry values $[\text{base}]_{\text{dry}}$ were taken from Brus et al., (2016). The
239 resulting initial base concentrations $[\text{base}]_{\text{init}}$ for DMA and TMA were 4 and 2 ppt, respectively,
240 at dry conditions (RH=0 %), and 10 and 8 ppt at RH=60 %. The simulations were performed for
241 the three temperatures of 278, 288 and 298 K at atmospheric pressure (1 atm). The temperature
242 dependency of the viscosity of the carrier gas, needed to calculate the diffusion coefficients of
243 different species in the simulations (see Eq. (6) in Olenius et al., 2014), was taken to be

244
$$\eta_{N_2} = \eta_{N_2,0} \left(\frac{T_0+C}{T+C} \right) \left(\frac{T}{T_0} \right)^{3/2}, \quad (4)$$

245 where $\eta_{N_2,0} = 17.81 \times 10^{-6}$ Pa s, $T_0 = 300.55$ K, and $C = 111$ K (Crane Co., 1982).

246 3. Results and discussion

247 Figure 3 shows the diffusion coefficients of H_2SO_4 , determined from the loss rate coefficients k_w
248 (s^{-1}) using Eq. 2 as a function of RH at the three temperatures of 278, 288 and 298 K. The
249 measured points are accompanied with the fit and H_2SO_4 - N_2 data at 298 K reported by Hanson
250 and Eisele (2000). As can be seen, the diffusion coefficient values decreased as the RH was
251 increased and the diffusion coefficient dependency on RH flattens in the range of RH 20-70 %.
252 These results show lower wall losses and slower diffusion to the wall due to strong hydration of
253 H_2SO_4 molecules (Jaeger-Voirol and Mirabel, 1988) and possibly H_2SO_4 clustering with base
254 impurities.

255 There are three previously reported experimental values of the H_2SO_4 diffusion coefficient in
256 nitrogen. Pöschl et al. (1998) reported a value of $0.088 \text{ cm}^2 \text{ s}^{-1}$ at $T=303$ K and $\text{RH} \leq 3\%$,
257 Lovejoy and Hanson (1996) reported a value of $0.11 \text{ cm}^2 \text{ s}^{-1}$ at $T=295$ K and $\text{RH} \leq 1\%$, and the
258 study of Hanson and Eisele (2000) yielded a value of $0.094 \text{ cm}^2 \text{ s}^{-1}$ at $T=298$ K and $\text{RH} \leq 1\%$.
259 The value of the diffusion coefficient of H_2SO_4 in air at $T=298$ K and $\text{RH}=4\%$ determined in this
260 study is $0.08 \text{ cm}^2 \text{ s}^{-1}$, which is in reasonable agreement with previously reported values, although
261 the comparison is complicated because of slightly different experimental conditions and different
262 carrier gases.

263 In Fig. 4 the H_2SO_4 losses simulated with the CFD-FLUENT model described in section 2.1 are
264 compared with experimental values, which were measured in a separate set of experiments
265 conducted at $T=278, 288$ and 298 K. The linear fit to the experimental data represents the loss
266 rate coefficients (k_{obs} , cm^{-1}). As can be seen from Fig. 4, the model describes the behaviour of
267 H_2SO_4 in the flow tube very well and confirms the validity of laminar flow approximation for all
268 three temperatures. The maximum difference between the experimental and simulated values of
269 the loss rate coefficient (k_{obs}) was found 7 %, see Fig. 4D for details.

270 Semi-empirical predictions for binary diffusion coefficients can be calculated from the Fuller et
271 al. equation which is based on fits to experimental data of various gases as described by Fuller et
272 al. (1966) and Reid et al. (1987):

273

274
$$D_{AB} = \frac{0.00143T^{1.75}}{P \sqrt{M_{AB}} \times \left[\sqrt[3]{\left(\sum_v \right)_A} + \sqrt[3]{\left(\sum_v \right)_B} \right]^2}, \quad (4)$$

275

276 where D_{AB} is the binary diffusion coefficient of species A and B ($\text{cm}^2 \text{ s}^{-1}$), T is the temperature
277 (K), P is the pressure (bar), M_{AB} is $2[(1/M_A) + (1/M_B)]^{-1}$ (g mol^{-1}), where M_A and M_B are the
278 molecular weights of species A and B (g mol^{-1}), and Σ_i is calculated for each component by
279 summing its atomic diffusion volumes (Reid et al., 1987). The functional form of Eq. (4) is
280 based on the kinetic gas theory (the Chapman-Enskog theory), and the temperature dependence
281 is obtained from a fit to a large set of experimental diffusion coefficients. A purely theoretical
282 approach based on the kinetic gas theory with the hard-spheres approximation would yield a
283 dependence of $T^{1.5}$. The calculated values of the diffusion coefficients of H_2SO_4 , dimethylamine-
284 and trimethylamine-sulfate in dry air at 298 K using the Fuller method are 0.11, 0.08 and 0.074
285 $\text{cm}^2 \text{ s}^{-1}$, respectively, which is in a reasonable agreement with our experimental data – the
286 measured diffusion coefficient of H_2SO_4 at $T=298$ K under close to dry conditions (RH 4%) is
287 $0.08 \text{ cm}^2 \text{ s}^{-1}$. However, when calculating the diffusion coefficients of H_2SO_4 in dry air at lower
288 temperatures (278 and 288 K) with the Fuller method, the agreement of the experimental values
289 with the predictions deteriorates. The formula predicts significantly higher diffusion coefficients
290 than those observed in the experiments. The calculated values of D_{AB} for H_2SO_4 are $0.104 \text{ cm}^2 \text{ s}^{-1}$
291 at $T=288$ K and $0.098 \text{ cm}^2 \text{ s}^{-1}$ at $T=278$ K, and the measured values are $0.07 \text{ cm}^2 \text{ s}^{-1}$ at ($T=288$
292 K and RH=8 %) and $0.054 \text{ cm}^2 \text{ s}^{-1}$ at ($T=278$ K and RH=16 %), respectively. The temperature
293 dependency of the experimental diffusion coefficients was found to be a power of 5.4 for the
294 whole dataset and temperature range. Since the data show a clear stepwise temperature
295 dependency we provide also two separate fits to data from 278 to 288 K and from 288 to 298 K,
296 with power dependencies of 2.2 and 8.7, respectively. These numbers are striking when
297 compared to the empirical method of Fuller et al. (1966), who obtained the best fit to 340
298 experimental diffusion coefficients with the power dependency of $T \propto 1.75$.

299 In Figure 5 we show the temperature dependency of the experimental data obtained from
300 literature (Lovejoy and Hanson, 1996; Pöschl et al., 1998; Hanson and Eisele, 2000), predictions
301 of the Fuller method for the diffusion coefficients of sulfuric acid, dimethylamine- and
302 trimethylamine-sulfates in dry air, results of the clustering kinetics simulations using quantum
303 chemical data for several simulated systems (discussed below), and the experimental data of this
304 work. The data collected from literature, all obtained using laminar flow technique and N_2 as the
305 carrier gas, show a temperature dependency opposite to the one expected from theory. However,

306 the range of temperatures at which the measurements were carried out is quite narrow (only 8 K)
307 and different experimental set-ups could explain such behaviour.
308 The origin of the discrepancy in the temperature dependency of the diffusion coefficient in our
309 experiment remains unclear; however, a possible explanation could be the increased clustering of
310 H_2SO_4 at lower temperatures (see explanation below) with unavoidably present trace impurities
311 in the system, such as amines. The CIMS was used to measure the concentrations of H_2SO_4 gas
312 phase monomers and dimers during the experiments; larger clusters were outside the mass range
313 of the CIMS used. In order to explain the experimental observation of the temperature
314 dependency of the diffusion coefficient, the dimer to monomer ratio at different temperatures
315 was investigated. The H_2SO_4 dimer formation is a result of H_2SO_4 monomer collisions, and thus
316 the observed H_2SO_4 dimer CIMS signal depends on the H_2SO_4 monomer concentration and also
317 on the residence time, which determinates the time available for the clustering to take place
318 (Petäjä et al., 2011). No significant temperature dependency of the [dimer]/[monomer] ratio was
319 observed in our experiments, which is in agreement with Eisele and Hanson (2000), who report a
320 relatively constant H_2SO_4 [dimer]/[monomer] ratio with lowering temperature (the temperature
321 range investigated in their study was 235 – 250 K). On the other hand, they report a substantial
322 increase in the larger clusters' (trimer and tetramer) concentration with decreasing temperature
323 while the monomer concentration was almost constant. There are only a very few previously
324 reported values of the sulfuric acid dimer to monomer ratio from laboratory experiments. Petäjä
325 et al. (2011) studied the close to collision-limited sulfuric acid dimer formation under
326 experimental conditions similar to our study ($T=293$ K, RH=22 %, initial H_2SO_4 concentrations
327 from 10^6 to 10^8 molecule cm^{-3} with saturator containing liquid H_2SO_4 and in-situ H_2SO_4 using
328 O_3 -photolysis as methods for producing gas phase H_2SO_4). They reported H_2SO_4
329 [dimer]/[monomer] ratios ranging from 0.05 to 0.1 at RH = 22 % and a residence time of 32 s.
330 Petäjä et al. (2011) speculate about the presence of a third stabilizing compound, and their
331 experimental dimer formation rates correspond well to modelled rates at a DMA concentration
332 of about 5 ppt. Almeida et al. (2013) reported [dimer]/[monomer] ratios from 0.01 to 0.06 for the
333 experiments in CLOUD chamber with addition of DMA (3-140 ppt, with the effect saturated for
334 addition >5 ppt) and [dimer]/[monomer] ratios from 1×10^{-4} to 0.003 for pure binary H_2SO_4 -
335 water system, both at RH=38 % and $T=278$ K. In our measurements the H_2SO_4
336 [dimer]/[monomer] ratio under conditions $T=298$ K, RH=24 % and a residence time of ~37 s,
337 spans the range from 0.03 to 0.11, which is in reasonable agreement with values reported by both

338 Petäjä et al. (2011) and Almeida et al. (2013) when trace impurity levels of DMA are present in
339 the system.

340 The cluster population simulations using quantum chemical data (see Figs. 5, 6 and Table 1)
341 show that the presence of base impurities may decrease the effective H_2SO_4 diffusion coefficient
342 by attachment of base molecules to the acid. Simulations considering only hydrated H_2SO_4
343 molecules and no bases give higher values for the diffusion coefficient, and also a notably less
344 steep temperature dependency (Table 1). Similarly to experiment the stepwise behaviour of
345 temperature dependency could be found when fits are performed separately for temperatures
346 278–288 K and 288–298 K, see Table 1. This demonstrates that temperature-dependent clustering
347 may change the behaviour of the effective diffusion coefficient with respect to temperature.
348 Results obtained by simulating clusters containing H_2SO_4 and DMA are closer to the
349 experimental diffusion coefficient values than those obtained using H_2SO_4 and TMA. On the
350 other hand, the power dependency shows a better agreement for the H_2SO_4 –TMA system (see
351 Table 1). The best agreement between the simulations and the experiment was found for the
352 temperature 298 K. Also, changing the base concentration according to Eq. 3 shows a better
353 performance than keeping the base concentration constant. Allowing the formation of clusters
354 containing up to two H_2SO_4 and two base molecules has no significant effect. In principle, the
355 larger clusters bind H_2SO_4 molecules and may thus increase the apparent diffusion coefficient,
356 but here their effect is minor due to the relatively low initial H_2SO_4 concentration of $5 \times 10^6 \text{ cm}^{-3}$
357 used in the simulations. More analysis on the effects of the amines can be found in the work by
358 Olenius et al. (2014).

359 The formation of particles inside the flow tube during the experiments was measured regularly
360 using Ultrafine Condensation Particle Counter (UCPC model 3776, TSI Inc. USA) with the
361 lower detection limit of 3 nm. The highest determined concentration of particles was
362 approximately 2×10^4 yielding the maximum nucleation rate J of $\sim 500 \text{ particles cm}^{-3} \text{ s}^{-1}$ at
363 $T=278 \text{ K}$ and $\text{RH}=60 \text{ \%}$. Since the nucleation rate was increasing with decreasing temperature
364 and elevated RH in the flow tube, the loss of gas phase sulfuric acid to the particles was more
365 pronounced at temperatures of 288 and 278 K. The losses of H_2SO_4 to particles were minimal –
366 units of percent (see e.g. Brus et al. 2011 and Neitola et al. 2015 for details) and cannot explain
367 our experimental observation of increased H_2SO_4 diffusion coefficient temperature dependency.
368 The additional losses of H_2SO_4 would lead to increased values of observed loss rate coefficient
369 (k_{obs}) and subsequently to higher diffusion coefficient.

370 **4. Conclusions**

371 We have presented measurements of sulfuric acid diffusion coefficient in air derived from the
372 first-order rate coefficients of wall loss of H_2SO_4 . The experiments were performed in a laminar
373 flow tube at temperatures 278, 288 and 298 K, relative humidities from 4 to 70 %, under
374 atmospheric pressure and at initial H_2SO_4 concentrations from 10^6 to 10^8 molec. cm^{-3} . The
375 chemical ionization mass spectrometer (CIMS) was used to measure H_2SO_4 gas phase
376 concentration at seven different positions along the flow tube. The wall losses were determined
377 from the linear fits to experimental $\ln[\text{H}_2\text{SO}_4]$ as a function of axial distance in the flow tube.
378 The losses of H_2SO_4 inside the flow tube were also simulated using a computational fluid
379 dynamics model (CFD-FLUENT), in which the wall is assumed to be an infinite sink for H_2SO_4 .
380 The experimentally determined H_2SO_4 losses along the flow tube were in a very good agreement
381 with profiles calculated using the FLUENT model, where experimentally obtained diffusion
382 coefficients were used as an input. A maximum difference of ~7 % for experiments conducted at
383 $T=278, 288$ and 298 K and in the whole RH range was found when compared to model. The
384 results of the fluid dynamics model (CFD-FLUENT) also satisfactorily confirm the assumption of
385 fully developed laminar profile inside the flow tube and infinite sink boundary conditions on the
386 wall for H_2SO_4 loss.

387 To explain an unexpectedly high power dependency of the H_2SO_4 diffusion coefficient on
388 temperature observed in our system we accounted in our calculations for involvement of base
389 impurities: dimethyl- (DMA) and trimethyl-amine (TMA). The semi-empirical Fuller formula
390 (Fuller et al., 1966) was used to calculate the diffusion coefficients at dry conditions for solely
391 H_2SO_4 , and H_2SO_4 neutralized with amine bases, namely dimethyamine- and trimethylamine-
392 sulfate. Further, a molecular cluster kinetics model (Olenius et al. 2014) with quantum chemical
393 input data was used to simulate acid–base cluster formation that may lead to the observed
394 behaviour. With the simulations we obtained an effective diffusion coefficient determined in the
395 same way as in the experiments.

396 The experimental H_2SO_4 diffusion coefficients were found to be independent of different initial
397 $[\text{H}_2\text{SO}_4]$ and a wide range of total flow rates. The values of the diffusion coefficient were found
398 to decrease with increasing relative humidity owing to stronger hydration of H_2SO_4 molecules.
399 The observed power dependency of the experimental diffusion coefficients as a function of
400 temperature was found to be of the order of 5.4 when the whole temperature range is accounted
401 for which is in a clear disagreement with predictions from the Fuller method (Fuller et al., 1966)

402 having a power dependency of 1.75. Since the experimental diffusion coefficients deviate more
403 from the theory towards the lower temperatures of 278 and 288 K, we suggest that a plausible
404 explanation for this discrepancy is involvement of impurities such as amines, capable of binding
405 to acid molecules with the binding strength increasing with decreasing temperature. This
406 hypothesis is qualitatively supported by clustering kinetics simulations performed using quantum
407 chemical input data for H_2SO_4 –dimethylamine and H_2SO_4 –trimethylamine clusters. Our results
408 indicate that the effective diffusion coefficient of H_2SO_4 in air exhibits a stronger temperature
409 dependency than predicted from a theory that does not consider cluster formation, and neglecting
410 this dependency might result in incorrect determination of residual H_2SO_4 concentration in
411 laboratory experiments. More measurements are therefore needed to gain a better understanding
412 of the temperature dependency of the H_2SO_4 diffusion coefficient and the formation of larger
413 H_2SO_4 clusters.

414

415 **Acknowledgement**

416 Authors would like to acknowledge KONE foundation, project CSF No. P209/11/1342, ERC
417 project 257360-MOCAPAF, and the Academy of Finland Centre of Excellence (project number:
418 272041) for their financial support.

419

420

421 **References**

422 Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P.,
423 Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N.
424 M., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R.,
425 Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M.,
426 Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo,
427 K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
428 Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M.,
429 Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J.
430 H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G.,
431 Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,
432 Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J.,
433 Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of
434 sulphuric acid-amine particle nucleation in the atmosphere, *Nature*, 502, 359–363, 2013.
435 Benson, D. R., Yu, J. H., Markovich, A., and Lee, S.-H.: Ternary homogeneous nucleation of
436 H_2SO_4 , NH_3 , and H_2O under conditions relevant to the lower troposphere, *Atmos. Chem. Phys.*,
437 11, 4755–4766, doi:10.5194/acp-11-4755-2011, 2011.
438 Brown, R.L.: Tubular flow reactor with first-order kinetics, *J. Res. Natl. Bur. Stand. (U.S.)*, 83,
439 1, 1-6, 1978.
440 Brus, D., Neitola, K., Hyvärinen, A.-P., Petäjä, T., Vanhanen, J., Sipilä, M., Paasonen, P.,
441 Kulmala, M., and Lihavainen, H.: Homogenous nucleation of sulfuric acid and water at close to
442 atmospherically relevant conditions, *Atmos. Chem. Phys.*, 11, 5277– 5287, doi:10.5194/acp-11-
443 5277-2011, 2011.
444 Brus, D., Hyvärinen, A.-P., Anttila, T., Neitola, K., Merikanto, J., Duplissy, J., Koskinen, J.,
445 Makkonen, U., Hellén, H., Hemmilä, M., Sipilä, M., Mauldin III, R. L., Jokinen, T., Petäjä, T.,
446 Kurtén, T., Vehkamäki, H., Kulmala, M., Viisanen, Y., Lihavainen, H., and Laaksonen, A.: On
447 sulphuric acid saturation vapour pressure: insight into measurements and implementation of
448 results, *J. Geophys. Res. Atmospheres*, submitted, 2016.
449 Crane Co. and Crane Co. Engineering Division: Flow of Fluids Through Valves, Fittings, and
450 Pipe, Crane Company, Technical paper, 1982.

451 Eisele, F. L., and Tanner, D.: Measurement of the gas phase concentration of H_2SO_4 and
452 methane sulphonic acid and estimates of H_2SO_4 production and loss in the atmosphere, *J.*
453 *Geophys. Res.*, 98, 9001–9010, 1993.

454 Eisele, F. L., and Hanson D. R.: First measurement of prenucleation molecular clusters, *J. Phys.*
455 *Chem. A*, 104(4), 830–836, doi:10.1021/jp9930651, 2000.

456 Fuller, E. N., Schettler, P. D., and Giddings, J. C.: New method for prediction of binary gas-
457 phase diffusion coefficients, *Ind. Eng. Chem.*, 58, 18–27, 1966.

458 Hanson, D. R. and Eisele, F. L.: Diffusion of H_2SO_4 in humidified nitrogen: Hydrated H_2SO_4 , *J.*
459 *Phys. Chem. A*, 104, 1715–1719, 2000.

460 Herrmann, E., Lihavainen, H., Hyvärinen, A. P., Riipinen, I., Wilck, M., Stratmann, F. and
461 Kulmala, M.: Nucleation simulations using the fluid dynamics software FLUENT with the fine
462 particle model FPM, *J. Phys. Chem. A*, 110, 12448–12455, 2006.

463 Herrmann, E., Hyvärinen, A. P., Brus, D., Lihavainen, H. and Kulmala, M.: Re-evaluation of the
464 pressure effect for nucleation in laminar flow diffusion chamber experiments with fluent and the
465 fine particle model, *J. Phys. Chem. A*, 113, 1434–1439, 2009.

466 Herrmann, E., Brus, D., Hyvärinen, A.-P., Stratmann, F., Wilck, M., Lihavainen, H. and
467 Kulmala, M.: A computational fluid dynamics approach to nucleation in the water-sulphuric acid
468 system, *J. Phys. Chem. A*, 114, 8033–8042, 2010.

469 Jaecker-Voirol, A. and Mirabel, P.: Nucleation rate in binary mixture of sulphuric acid-water
470 vapour: A re-examination, *J. Phys. Chem.*, 92(12), 3518–3521, 1988.

471 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S.,
472 Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S.,
473 Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,
474 Dommen, J., Downard, A., Ehn, M., Flagan, R., Haider, S., Hansel, A., Hauser, D., Jud, W.,
475 Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E.,
476 Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A.,
477 Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J., Sipilä, M., Stozhkov, Y., Stratmann, F.,
478 Tomé, A., Vanhanen, J., Viisanen, Y., Aron Vrtala, A., Wagner, P., Walther, H., Weingartner,
479 E., Wex, H., Winkler, P., Carslaw, K., Worsnop, D., Baltensperger, U., and Kulmala, M.: Role

480 of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, *Nature*,
481 476, 429–433, doi:10.1038/nature10343, 2011

482 Kupiainen-Määttä, O., Olenius T., Kurtén T., and Vehkamäki H.: CIMS Sulfuric Acid Detection
483 Efficiency Enhanced by Amines Due to Higher Dipole Moments: A Computational Study, *J.*
484 *Phys. Chem. A*, 117(51), 14109–14119, doi:10.1021/jp4049764, 2013.

485 Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen, H., Adamov, A., Almeida,
486 J., Amorim, A., Bianchi, F., Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J.,
487 Ehrhart, S., Flagan, R. C., Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Hutterli, M.,
488 Kangasluoma, J., Kirkby, J., Laaksonen, A., Lehtipalo, K., Leiminger, M., Makhmutov, V.,
489 Mathot, S., Onnela, A., Petäjä, T., Praplan, A. P., Riccobono, F., Rissanen, M. P., Rondo, L.,
490 Schobesberger, S., Seinfeld, J. H., Steiner, G., Tomé, A., Tröstl, J., Winkler, P. M., Williamson,
491 C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S., Kulmala, M., Worsnop, D. R., and
492 Curtius, J.: Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real-
493 time under atmospheric conditions, *Proc. Natl. Acad. Sci.*, 111(42), 15019–15024,
494 doi:10.1073/pnas.1404853111, 2014.

495 Loukonen, V., Kuo, I.-F. W., McGrath, M. J., and Vehkamäki, H.: On the stability and dynamics
496 of (sulfuric acid) (ammonia) and (sulfuric acid) (dimethylamine) clusters: A first-principles
497 molecular dynamics investigation, *Chem. Phys.*, 428, 164–174,
498 doi:10.1016/j.chemphys.2013.11.014, 2014.

499 Lovejoy, E. R. and Hanson, D. R.: Kinetics and products of the reaction $\text{SO}_3 + \text{NH}_3 + \text{N}_2$, *J.*
500 *Phys. Chem.*, 100, 4459–4465, 1996.

501 Marti, J.J., Jefferson, A., Cai, X. P., Richert, C., McMurry, P. H. and Eisele, F.: The H_2SO_4
502 vapor pressure above sulphuric acid and ammonium sulphate solutions, *J. Geophysical Res.*,
503 102(D3) 3725–3735, 1997.

504 Mauldin III, R.L., Frost, G., Chen, G., Tanner, D., Prevot, A., Davis, D., and Eisele, F.: OH
505 measurements during the First Aerosol Characterization Experiment (ACE 1): Observations and
506 model comparisons, *J. Geophys. Res.*, 103, 16713–16729, 1998.

507 Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Lihavainen, H. and Kulmala, M.: Effect of
508 addition of four base compounds on sulphuric-acid–water new-particle formation: a laboratory
509 study, *Boreal Env. Res.* 19 (suppl. B): 257–274, 2014.

510 Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Mauldin III, R. L., Sarnela, N., Jokinen, T.,
511 Lihavainen, H., and Kulmala, M.: Total sulfate vs. sulfuric acid monomer concentrations in
512 nucleation studies, *Atmos. Chem. Phys.*, 15, 3429-3443, doi:10.5194/acp-15-3429-2015, 2015

513 Olenius, T., Kurtén, T., Kupiainen-Määttä, O., Henschel, H., Ortega, I. K., Vehkamäki, H.:
514 Effect of Hydration and Base Contaminants on Sulfuric Acid Diffusion Measurement: A
515 Computational Study, *Aerosol Sci. and Tech.*, 48:6, 593-603, doi:
516 10.1080/02786826.2014.903556, 2014.

517 Ortega, I., Olenius, T., Kupiainen-Määttä, O., Loukonen, V., Kurtén, T., and Vehkamäki, H.:
518 Electrical charging changes the composition of sulfuric acid–ammonia/dimethylamine clusters,
519 *Atmos. Chem. Phys.*, 14(15), 7995-8007, doi: 10.5194/acp-14-7995-2014, 2014.

520 Petäjä, T., Mauldin, III, R. L., Kosciuch, E., McGrath, J., Nieminen, T., Paasonen, P., Boy, M.,
521 Adamov, A., Kotiaho, T., and Kulmala, M.: Sulphuric acid and OH concentrations in a boreal
522 forest site, *Atmos. Chem. Phys.*, 9, 7435-7448, doi:10.5194/acp-9-7435-2009, 2009.

523 Petäjä, T., Sipilä, M., Paasonen, P., Nieminen, T., Kurtén, T., Ortega, I. K., Stratmann, F., Hanna
524 Vehkamäki, H., Berndt, T. and Kulmala M.: Experimental Observation of Strongly Bound
525 Dimers of Sulphuric Acid: Application to Nucleation in the Atmosphere, *Phys. Rev. Lett.*, 106,
526 228302, 2011.

527 Pöschl, U., Canagaratna, M., Jayne, J.T., Molina, L.T., Worsnop, D.R., Kolb, C.E., Molina,
528 M.J.: Mass accommodation coefficient of H_2SO_4 vapor on aqueous sulphuric acid surfaces and
529 gaseous diffusion coefficient of H_2SO_4 in N_2/H_2O , *Journal of Physical Chemistry A*, 102, 10082-
530 10089, 1998.

531 Reid, R. C., Prausnitz, J. M. and Polling B. E.: The properties of gases and liquids, fourth
532 edition, Mc Graw-Hill Inc, New York, 1987.

533 Rondo, L., S. Ehrhart, A. Kürten, A. Adamov, F. Bianchi, M. Breitenlechner, J. Duplissy, A.
534 Franchin, J. Dommen, N. M. Donahue, E. M. Dunne, R. C. Flagan, J. Hakala, A. Hansel, H.
535 Keskinen, J. Kim, T. Jokinen, K. Lehtipalo, M. Leiminger, A. Praplan, F. Riccobono, M. P.
536 Rissanen, N. Sarnela, S. Schobesberger, M. Simon, M. Sipilä, J. N. Smith, A. Tomé, J. Tröstl, G.
537 Tsagkogeorgas, P. Vaattovaara, P. M. Winkler, C. Williamson, U. Baltensperger, J. Kirkby, M.
538 Kulmala, D. R. Worsnop, and J. Curtius: Effect of dimethylamine on the gas phase sulfuric acid
539 concentration measured by Chemical Ionization Mass Spectrometry (CIMS). *J. Geophys. Res.*
540 *Atmos.*, 120, doi: 10.1002/2015JD023868, 2016.

541 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to*
542 *Climate Change*, John Wiley, New York, 1998.

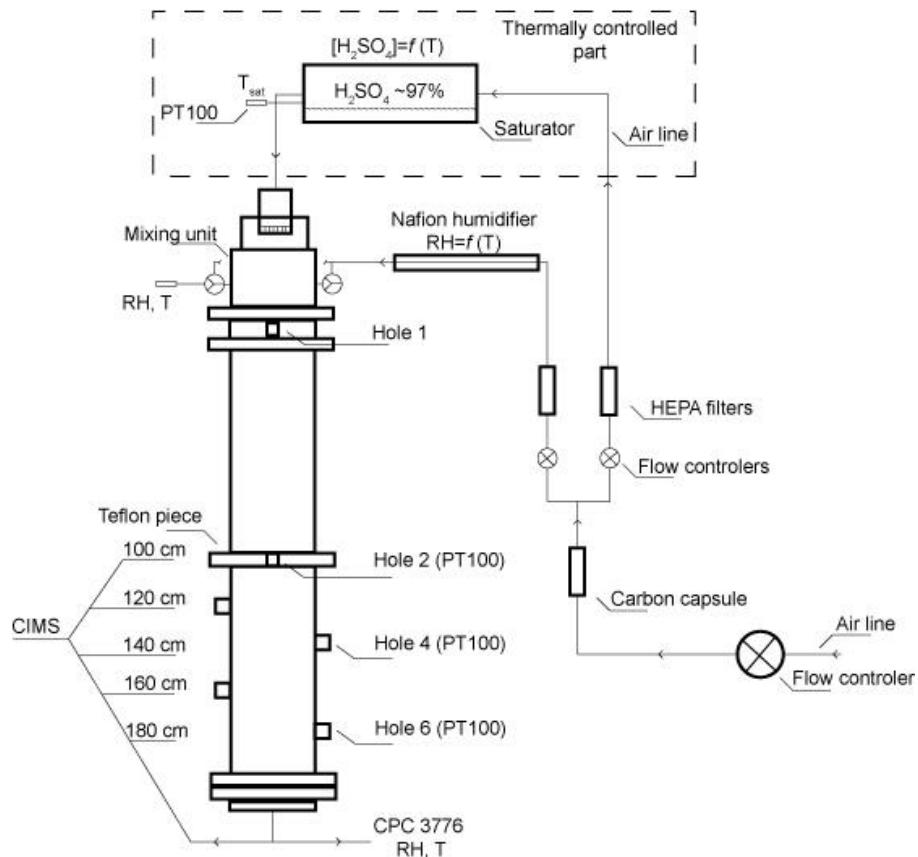
543 Skrabalova, L., Brus, D., Antilla, T., Zdimal, V. and Lihavainen, H.: Growth of sulphuric acid
544 nanoparticles under wet and dry conditions, *Atmos. Chem. Phys.*, 14, 1-15, 2014.

545 Tang, M. J., Cox, R. A., and Kalberer, M.: Compilation and evaluation of gas phase diffusion
546 coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds, *Atmos.*
547 *Chem. Phys.*, 14, 9233-9247, doi:10.5194/acp-14-9233-2014, 2014

548 Zollner, J. H., Glasoe, W. A., Panta, B., Carlson, K. K., McMurry, P. H., and Hanson, D. R.:
549 Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of
550 bases, *Atmos. Chem. Phys.*, 12, 4399–4411, doi:10.5194/acp-12-4399- 2012, 2012.

551

552 **Table 1.** Summary of simulated and experimental averages (unweighted over RH) of the
553 effective H_2SO_4 diffusion coefficients D ($\text{cm}^2 \text{ s}^{-1}$) with standard deviations in parenthesis for
554 three temperatures 278, 288 and 298 K. The initial base concentration $[\text{base}]_{\text{init}}$ is set to be either
555 RH-dependent according to Eq. (3) or RH-independent, and the simulations consider clusters
556 containing up to one acid and one base molecule (“1×1”) or two acid and two base molecules
557 (“2×2”) as well as hydrates of the clusters. Power dependencies with respect to the temperature,
558 obtained as linear fits to the data, are also listed.


559

Impurities			D ($T=278\text{K}$)	D ($T=288\text{K}$)	D ($T=298\text{K}$)	Power dependency*	
Base	$[\text{Base}]_{\text{init}}$	Simulated clusters					
DMA	(0.1xRH+4) ppt	1x1	0.064 (7%)	0.069 (7%)	0.077 (7%)	2.20/3.18/2.68	
		2x2	0.067 (6%)	0.072 (6%)	0.079 (6%)	2.06/2.92/2.48	
	Constant 5 ppt	1x1	0.067 (4%)	0.072 (4%)	0.080 (4%)	2.16/3.01/2.58	
		2x2	0.069 (3%)	0.074 (4%)	0.081 (4%)	2.02/2.77/2.39	
TMA	(0.1xRH+2) ppt	1x1	0.065 (7%)	0.071 (6%)	0.080 (4%)	2.40/3.53/2.95	
		2x2	0.068 (6%)	0.073 (5%)	0.081 (4%)	2.16/3.04/2.59	
	Constant 2 ppt	1x1	0.065 (2%)	0.071 (2%)	0.080 (1%)	2.41/3.52/2.95	
		2x2	0.067 (2%)	0.073 (2%)	0.081 (1%)	2.15/3.04/2.58	
Only SA hydrates			0.079 (4%)	0.084 (4%)	0.089 (4%)	1.67/1.67/1.67	
Experiment, this work			0.051 (11%)	0.055 (11%)	0.074 (7%)	2.18/8.70/5.35	

560 *power dependency given separately for the temperature ranges 278-288 K / 288-298 K / the
561 whole dataset temperature range (278-298 K), the same RH range is used for both simulations
562 and experiment.

563

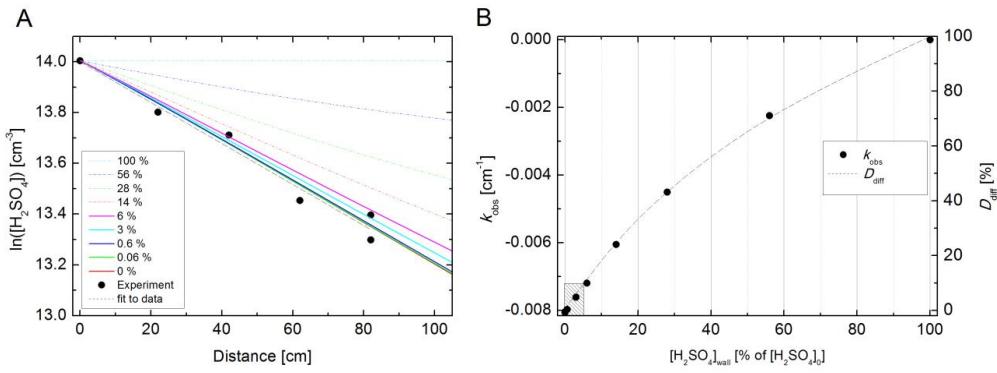
564

565

566 Figure 1. The schematic figure of the FMI flow tube.

567

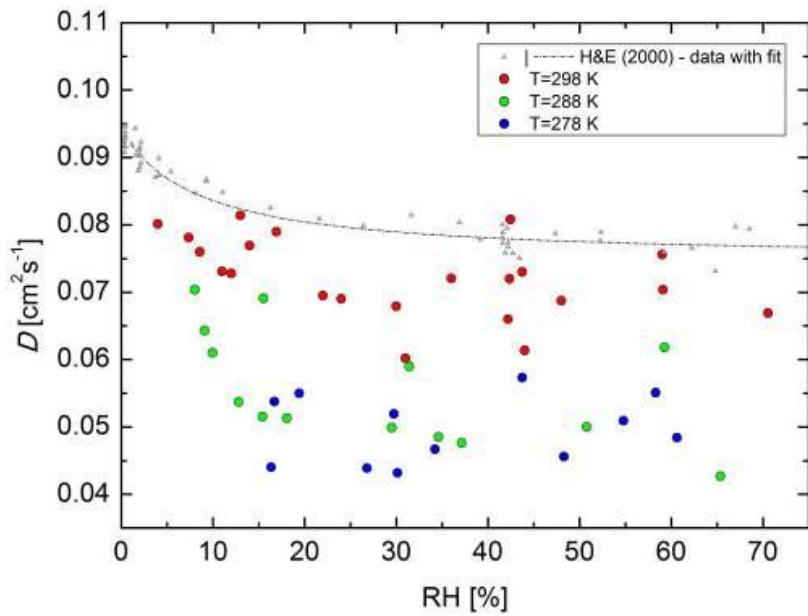
568


569

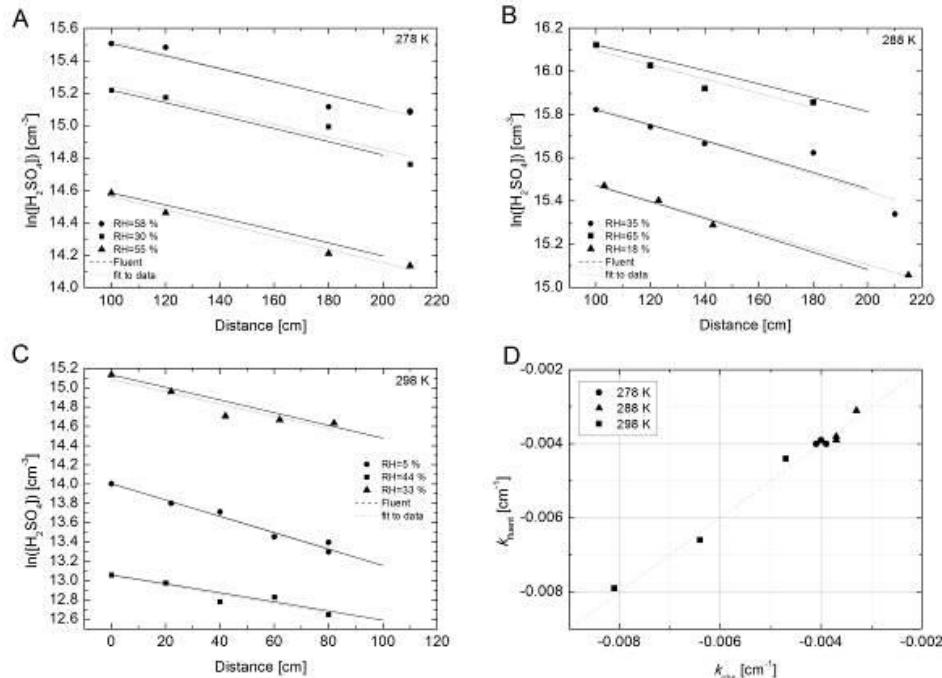
570

571

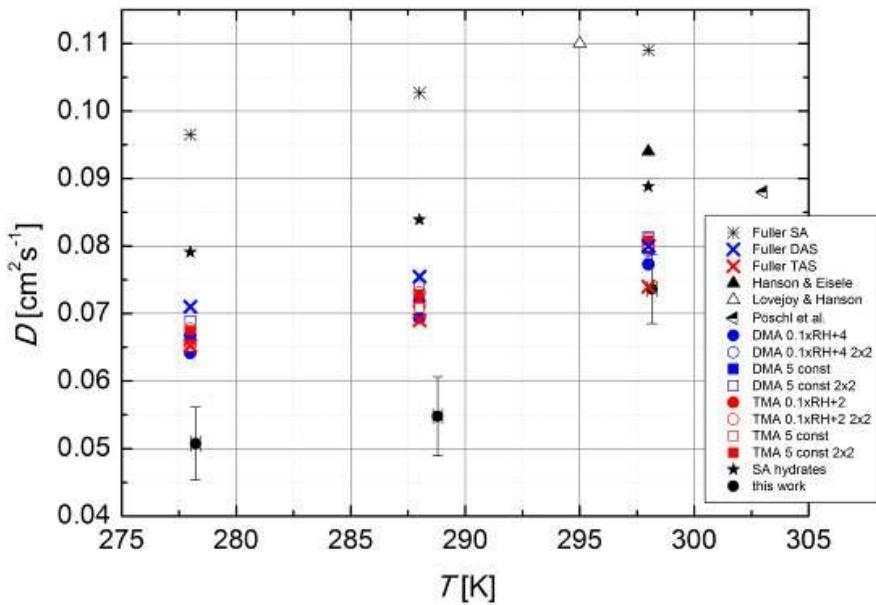
572


573

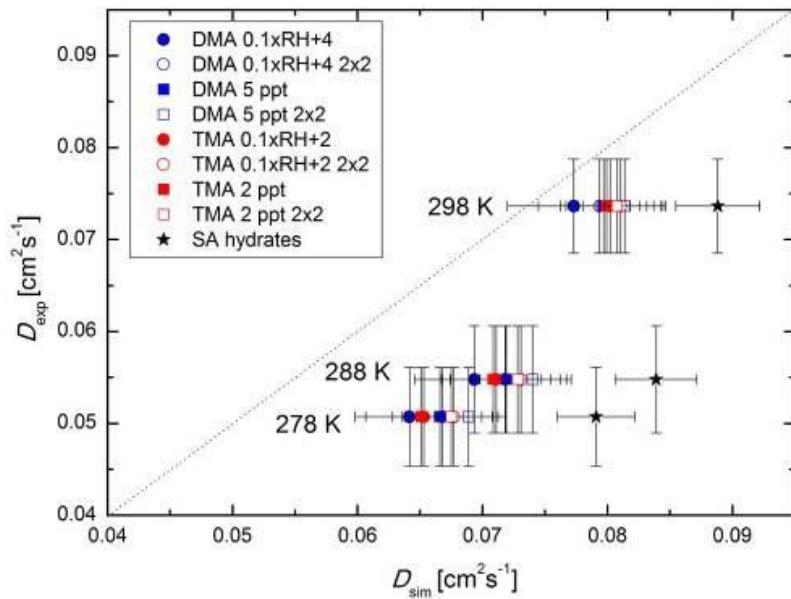
574


575 Figure 2. CFD-FLUENT simulations of influence of increased H_2SO_4 concentration on the flow
576 tube wall. A) $\ln[H_2SO_4]$ as function of distance in the flow tube. B) k_{obs} and diffusion coefficient
577 difference from the infinite sink boundary condition (D_{diff}) as a function of the H_2SO_4 wall
578 concentration expressed as % of initial H_2SO_4 concentration, $[H_2SO_4]_0$. The simulations
579 conditions were RH=5 %, $T=298$ K and $Q_{tot}=7.6$ lpm. When the H_2SO_4 concentration on the
580 wall is ≤ 6 % of $[H_2SO_4]_0$, the resulting difference in the obtained diffusion coefficient is within
581 10 % when compared to diffusion coefficient obtained with infinite sink boundary condition on
582 the wall, as indicated by the shaded box in bottom left corner in Fig 2B.

583


584

585 Figure 3. Experimental diffusion coefficient of H_2SO_4 in air as a function of relative humidity at
586 different temperatures compared with fit to the H_2SO_4 diffusion in N_2 data of Hanson and Eisele
587 (2000).


588

589 Figure 4. The sulfuric acid losses simulated with CFD-FLUENT model when the experimentally
 590 obtained diffusion coefficients are used as an input at A) $T=278$ K B) $T=288$ K and C) $T= 298$ K.
 591 D) simulated losses rate coefficients compared with experimental values of k_{obs} (cm⁻¹) at $T=278$,
 592 288 and 298 K.

593

594 Figure 5. The temperature dependency of the effective H_2SO_4 diffusion coefficient, calculated
595 using the Fuller method for dry H_2SO_4 (SA), dimethylamine- (DAS) and trimethylamine-sulfate
596 (TAS), both in dry air, data from literature, several assemblies of cluster population simulations
597 (see text for details) and data measured experimentally in this work. The temperature
598 dependency of the experimental diffusion coefficients was found to be a power of 6.
599

600

601 Figure 6. Comparison of the experiment and the cluster population simulations at different
602 temperatures, considered are also different levels and sources of impurities in the system. The
603 formation of clusters containing up to two H_2SO_4 and two base molecules is denoted as “2×2” in
604 the legend.

605