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Abstract 30 

Atmospheric oxidation of isoprene, the most abundant non-methane hydrocarbon emitted into 31 

Earth’s atmosphere primarily from terrestrial vegetation, is now recognized as a major 32 

contributor to the global secondary organic aerosol (SOA) burden. Anthropogenic pollutants 33 

significantly enhance isoprene SOA formation through acid-catalyzed heterogeneous chemistry 34 

of epoxide products. Since isoprene SOA formation as a source of fine aerosol is a relatively 35 

recent discovery, research is lacking on evaluating its potential adverse effects on human health. 36 

The objective of this study was to examine the effect of isoprene-derived SOA on inflammation-37 

associated gene expression in human lung cells using a direct deposition exposure method. We 38 

assessed altered expression of inflammation-related genes in human bronchial epithelial cells 39 

(BEAS-2B) exposed to isoprene-derived SOA generated in an outdoor chamber facility. 40 

Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and 41 

cyclooxygenase 2 (COX-2) in exposed cells, together with complementary chemical 42 

measurements, showed that a dose of 0.067 µg cm-2 of SOA from isoprene photooxidation leads 43 

to statistically significant increases in IL-8 and COX-2 mRNA levels. Resuspension exposures 44 

using aerosol filter extracts corroborated these findings, supporting the conclusion that isoprene-45 

derived SOA constituents induce the observed changes in mRNA levels. The present study is an 46 

attempt to examine the early biological responses of isoprene SOA exposure in human lung cells.  47 

 48 
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1. Introduction 52 

Recent work has shown that isoprene (2-methyl-1,3-butadiene) is an important precursor 53 

of secondary organic aerosol (SOA), which has potential impacts on climate change and public 54 

health (Lin et al., 2013b; Rohr, 2013; Lin et al., 2016). Current understanding of isoprene SOA 55 

formation is based on laboratory studies showing that gas-phase photooxidation of isoprene 56 

generates key SOA precursors, including isomeric isoprene epoxydiols (IEPOX), methacrylic 57 

acid epoxide (MAE), hydroxymethyl-methyl-α-lactone (HMML), and isoprene 58 

hydroxyhydroperoxides (ISOPOOH) (Paulot et al., 2009; Surratt et al., 2010; Lin et al., 2012; 59 

Lin et al., 2013b; Nguyen et al., 2015; Krechmer et al., 2015). The formation of SOA from these 60 

precursors is influenced by controllable anthropogenic emissions such as oxides of nitrogen 61 

(NOx) and sulfur dioxide (SO2). Atmospheric oxidation of SO2 contributes to particle acidity, 62 

which enhances isoprene SOA formation through acid-catalyzed reactive uptake and multiphase 63 

chemistry of IEPOX and MAE (Surratt et al., 2007; Surratt et al., 2010; Lin et al., 2012; Gaston 64 

et al., 2014; Riedel et al., 2015), while NOx determines whether the oxidation pathway leading to 65 

IEPOX or MAE/HMML predominates (Lin et al., 2013b; Surratt et al., 2010; Nguyen et al., 66 

2015). Isoprene SOA comprises a large portion of global atmospheric fine particles (PM2.5, 67 

aerosol with aerodynamic diameters ≤ 2.5 µm) (Carlton et al., 2009; Henze et al., 2008) but few 68 

studies have focused on its health implications (Lin et al., 2016). Evaluating the health effects of 69 

SOA from isoprene oxidation is important from a public health perspective, not only because of 70 

its atmospheric abundance, but also because the anthropogenic contribution is the only 71 

component amenable to control (Pye et al., 2013; Gaston et al., 2014; Xu et al., 2015; Riedel et 72 

al., 2015). 73 
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 Many studies have shown that particulate matter is closely linked to health effects 74 

ranging from exacerbation of asthma symptoms to mortality associated with lung cancer and 75 

cardiopulmonary disease (Dockery et al., 1993; Schwartz et al., 1993; Samet et al., 2000). PM2.5, 76 

in particular, has been linked to negative health outcomes with an estimated contribution of 3.2 77 

million premature deaths worldwide as reported in the Global Burden of Disease Study 2010 78 

(Lim et al., 2012). Despite evidence that particle composition affects toxicity, fewer studies 79 

focus on the link between chemical composition and health/biological outcomes (Kelly and 80 

Fussell, 2012). Prior work on complex air mixtures has shown that gaseous volatile organic 81 

compounds (VOCs) alter the composition and ultimately the toxicity of particles (Ebersviller et 82 

al., 2012a, b). SOA resulting from natural and anthropogenic gaseous precursors, such as α-83 

pinene and 1,3,5-trimethylbenzene, have been shown to affect cellular function (Gaschen et al., 84 

2010; Jang et al., 2006) and recently isoprene-SOA formed from the reactive uptake of epoxides 85 

has been shown to induce the expression of oxidative stress genes (Lin et al., 2016).  86 

The objective of this study is to generate atmospherically relevant isoprene-derived SOA 87 

and examine its toxicity through in vitro exposures using a direct deposition device. Compared to 88 

exposure of cells in culture media to resuspended particles, direct particle deposition likely 89 

provides a more biologically relevant exposure model and enhances sensitivity of cells to air 90 

pollution particle exposures (Volckens et al., 2009; Lichtveld et al., 2012; Hawley et al., 2014a; 91 

Hawley et al., 2014b; Zavala et al., 2014; Hawley and Volckens, 2013). The Electrostatic 92 

Aerosol in vitro Exposure System (EAVES) used in this study deposits particles generated in our 93 

outdoor photochemical chamber directly onto lung cells by electrostatic precipitation (de Bruijne 94 

et al., 2009). Similar techniques and devices have been used to expose cells to diesel exhaust 95 

particles (Lichtveld et al., 2012; Hawley et al., 2014b), but our study is the first to utilize the 96 
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EAVES to explore the potential adverse effects of isoprene SOA on human lung cells. 97 

Additionally, for a more atmospherically relevant exposure, isoprene-SOA was photochemically 98 

generated in an outdoor chamber to mimic its formation in the atmosphere.  99 

We have recently demonstrated through a chemical assay that isoprene-derived SOA has 100 

the potential for inducing reactive oxygen species (ROS) (Kramer et al., 2016),which are linked 101 

to oxidative stress and inflammation (Reuter et al., 2010; Li et al., 2003). An in vitro study that 102 

followed supported the potential for isoprene-SOA to affect the levels of oxidative stress genes 103 

(Lin et al., 2016). In this study we chose to examine the gene expression levels of interleukin-8 104 

(IL-8) and cyclooxygenase-2 (COX-2), not only for their links to inflammation and oxidative 105 

stress (Kunkel et al., 1991; Uchida, 2008), but because both have been examined in previous 106 

studies using the EAVES for fresh and aged diesel exhaust (Lichtveld et al., 2012). Other studies 107 

on air pollution mixtures have also examined IL-8 as a biological endpoint due to its involvement 108 

with inflammation (Zavala et al., 2014; Ebersviller et al., 2012a, b; Doyle et al., 2004; Doyle et 109 

al., 2007). We compared the gene expression levels in cells exposed to SOA generated in an 110 

outdoor chamber from photochemical oxidation of isoprene in the presence of NO and acidified 111 

sulfate seed aerosol to cells exposed to a dark control mixture of isoprene, NO, and acidified 112 

sulfate seed aerosol to isolate the effects of the isoprene-derived SOA on the cells using the 113 

EAVES. In addition, we collected SOA onto filters for subsequent resuspension exposure to 114 

ensure that effects observed from EAVES exposures were attributable to particle-phase organic 115 

products.  116 

2. Experimental Section 117 

2.1 Generation of SOA in the Outdoor Chamber Facility.  SOA were generated by 118 

photochemically oxidizing a mixture of acidified sulfate seed aerosol, isoprene, and NO injected 119 
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into an outdoor smog chamber facility. The outdoor chamber is a 120-m3 triangular cross-section 120 

Teflon chamber located on the roof of the Gillings School of Global Public Health, University of 121 

North Carolina at Chapel Hill. The chamber facility has been described in detail elsewhere by 122 

Lichtveld et al. (2012). The outdoor chamber facility is equipped with sampling lines that allow 123 

direct deposition exposure of cells, online chemical measurements, and filter collection for 124 

offline chemical analysis. Sampling lines run from the underside of the chamber directly to the 125 

chemistry lab below where online measurement instruments and the direct deposition exposure 126 

device are located. Injection ports are also located on the underside of the chamber.  127 

To generate isoprene-derived SOA, the chamber was operated on sunny days, under high 128 

relative humidity, to allow natural sunlight to trigger photochemical reactions. Acidified sulfate 129 

seed aerosols were generated by nebulizing an aqueous solution containing 0.06 M MgSO4 + 130 

0.06 M H2SO4 into the chamber to a particle concentration of approximately 170 µg m-3, which 131 

was allowed to stabilize for 30 min to ensure a well-mixed condition. After stabilization, 3.5 132 

ppmv isoprene (Sigma-Aldrich, 99%) and 200 ppbv NO (AirGas, 1.00%) were injected into the 133 

chamber. Photochemical aging was allowed for approximately one hour to reach the desired 134 

exposure conditions of 30-40 µg m-3 growth of isoprene-derived SOA on the pre-existing 170 µg 135 

m-3 of acidified sulfate aerosol. This chamber experiment was replicated on three separate sunny 136 

days with temperatures ranging from 24.9°C to 26.8°C with a relative humidity of approximately 137 

70% in the chamber.  138 

2.2 Control Chamber Experiments.  As a dark chamber control, to isolate the effect of SOA on 139 

exposed cells, mixtures of isoprene, NO, and 170 µg m-3 of acidified sulfate seed aerosol were 140 

injected into the chamber in the dark (after sunset). Conducting the chamber experiments in the 141 

dark ensured no photochemical oxidation of isoprene. The dark control was replicated on three 142 
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different nights. Except for the absence of solar radiation (no SOA), all chamber operations and 143 

exposure conditions were similarly maintained. 144 

As an added control to ensure that the device itself and the cell handling had no 145 

significant effect on cell cytotoxicity, cells were exposed in the EAVES to a clean chamber and 146 

compared to unexposed cells kept in an incubator for the same duration as the exposure. The 147 

cytotoxicity results ensured that there is no effect of chamber conditions and device operation on 148 

the cells. 149 

2.3 Cell Culture.  Human bronchial epithelial (BEAS-2B) cells were maintained in keratinocyte 150 

growth medium (KGM BulletKit; Lonza), a serum-free keratinocyte basal medium (KBM) 151 

supplemented with 0.004% of bovine pituitary extract and 0.001% of human epidermal growth 152 

factor, insulin, hydrocortisone, and GA-1000 (gentamicin, amphotericin B), and passaged 153 

weekly. Passage number for photochemical exposures and dark control exposures varied 154 

between 52 and 60. Because BEAS-2B are an immortalized line of human bronchial epithelium, 155 

there are limitations with its use such as it being genetically homogeneous, being a single cell 156 

type, and being SV-40 transformed (Reddel et al., 1988). However, BEAS-2B is a stable, 157 

proliferative cell line shown to be useful in airway inflammation studies such as ours (Devlin et 158 

al., 1994). 159 

2.4 Direct Deposition Exposure.  In preparation for air-liquid interface exposures, cells were 160 

seeded onto collagen-coated Millicell cell culture inserts (30 mm diameter, 0.4 µm pore size, 4.2 161 

cm2 filter area; Millipore, Cambridge, MA) at a density of 200,000 cells/well 24 hours prior to 162 

exposure. At the time of exposure, cells reached ~80% confluence, confirmed through 163 

microscopy. Immediately before exposure, cell medium was removed from the apical and 164 

basolateral sides of 2 seeded Millicell cell culture inserts. One insert was transferred to a titanium 165 
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dish containing 1.5 mL of keratinocyte basal medium (KBM; Lonza), supplying cells with 166 

nutrients from the basolateral side and constant moisture while allowing exposure to be 167 

performed at an air-liquid interface. The other insert was transferred into a 6 well plate with 2 168 

mL of KBM and placed in the incubator as an unexposed control.  169 

Cells were exposed to chamber-generated isoprene SOA using the EAVES located in the 170 

laboratory directly beneath the outdoor chamber (de Bruijne et al., 2009; Lichtveld et al., 2012). 171 

The EAVES, located in an incubator at 37°C, sampled chamber air at 1 L min-1. The target 172 

relative humidity (RH) in the chamber during EAVES exposures was approximately 70%. 173 

Exposure time was one hour commencing when target exposure conditions were achieved in the 174 

outdoor chamber for both photochemical and dark control experiments. Detailed description of 175 

the EAVES can be found in de Bruijne et al. (2009). 176 

Following exposure, the cell culture insert was transferred to a 6-well tissue culture plate 177 

containing 2 mL of fresh KBM. The control Millicell was also transferred to 2 mL of fresh 178 

KBM. Nine hours post-exposure, extracellular medium was collected and total RNA was isolated 179 

using Trizol (Life Technologies), consistent with past studies (de Bruijne et al., 2009). 180 

Extracellular medium and the extracted RNA samples were stored at -20°C and -80°C, 181 

respectively, until further analysis. For quality assurance purposes, the RNA concentration and 182 

integrity were assessed using Nanodrop and Bioanalyzer over the period of storage. No changes 183 

were observed under the given storage conditions. 184 

2.5 Filter Resuspension Exposure.  Chamber particles were collected, concurrently with 185 

EAVES sampling, onto Teflon membrane filters (47 mm diameter, 1.0 µm pore size; Pall Life 186 

Science) for photochemical (light) and dark chamber experiments to be used for chemical 187 

analysis and resuspension exposures. The resuspension experiments served as a control for 188 
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possible effects of gaseous components such as ozone (O3) and NOx present in the direct 189 

deposition experiments; however, prior studies have shown that gaseous components do not 190 

yield cellular responses within the EAVES device (de Bruijne et al., 2009; Ebersviller et al., 191 

2012a, b). Mass loadings of SOA collected on the filters were calculated from sampling volumes 192 

and average aerosol mass concentrations in the chamber during the sampling period. A density 193 

correction of 1.6 g cm-3 (Riedel et al., 2016) and 1.25 g cm-3 (Kroll et al., 2006) was applied to 194 

convert the measured volume concentrations to mass concentrations for the acidified sulfate seed 195 

and SOA growth, respectively. The particles collected on Teflon filter membranes for 196 

resuspension cell exposure were extracted by sonication in high-purity methanol (LC/MS 197 

CHROMASOLV, Sigma-Aldrich). Filter samples from multiple experiments were combined and 198 

the combined filter extract was dried under a gentle stream of nitrogen (N2). KBM medium was 199 

then added into the extraction vials to re-dissolve SOA constituents. 200 

In preparation for filter resuspension exposures, cells were seeded in 24-well plates at a 201 

density of 2.5×104 cells/well in 250 µL of KGM 2 days prior to exposure. At the time of 202 

exposure when cells reached ~80% confluence, cells were washed twice with phosphate buffered 203 

saline (PBS) buffer, and then exposed to KBM containing 0.01 and 0.1 mg mL-1 isoprene SOA 204 

extract from photochemical experiment and seed particles from dark control experiments.  205 

 Following a 9-hour exposure, extracellular medium was collected and total RNA was 206 

isolated using Trizol (Life Technologies) and stored alongside samples from direct deposition 207 

exposures until further analysis.  208 

2.6 Chemical and Physical Characterization of Exposures.  Online and offline techniques 209 

were used to characterize the SOA generated in the chamber. The online techniques measured 210 

the gas-phase species NO, NOx and O3 and the physical properties of the aerosol continuously 211 
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throughout the chamber experiments. Offline techniques measured aerosol-phase species 212 

collected onto Teflon membrane filters (47 mm diameter, 1.0 µm pore size; Pall Life Science) 213 

from photochemical and dark chamber experiments. Filter samples were stored in 20 mL 214 

scintillation vials protected from light at -20°C until analyses. 215 

Real-time aerosol size distributions were measured using a Differential Mobility 216 

Analyzer (DMA, Brechtel Manufacturing Inc.) coupled to a Mixing Condensation Particle 217 

Counter (MCPC, Model 1710, Brechtel Manufacturing Inc.) located in the laboratory directly 218 

underneath the chamber. O3 and NOx were measured with a ML 9811 series Ozone Photometer 219 

(Teledyne Monitor Labs, Englewood, CO) and ML 9841 series NOx Analyzer (American 220 

Ecotech, Warren RI), respectively. Data were collected at one-minute intervals using a data 221 

acquisition system (ChartScan/1400) interfaced to a computer. The presence of isoprene in the 222 

chamber was confirmed and quantified using a Varian 3800 gas chromatograph (GC) equipped 223 

with a flame ionization detector (FID).  224 

Chemical characterization of SOA constituents was conducted offline from extracts of 225 

filters collected from chamber experiments by gas chromatography interfaced with an electron 226 

ionization quadrupole mass spectrometer (GC/EI-MS) or by ultra performance liquid 227 

chromatography interfaced with a high-resolution quadrupole time-of-flight mass spectrometer 228 

equipped with electrospray ionization (UPLC/ESI-HR-QTOFMS). Detailed operating conditions 229 

for the GC/EI-MS and UPLC/ESI-HR-QTOFMS analyses as well as detailed filter extraction 230 

protocols have been described previously by Lin et al. (2012). For GC/EI-MS analysis, filter 231 

extracts were dried under a gentle stream of N2 and trimethylsilylated by the addition of 100 µL 232 

of BSTFA + TMCS (99:1 v/v, Supelco) and 50 µL of pyridine (anhydrous, 99.8%, Sigma-233 

Aldrich) and heated at 70 ºC for 1 h. For UPLC/ESI-HR-QTOFMS analysis, residues of filter 234 
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extracts were reconstituted with 150 µL of a 50:50 (v/v) solvent mixture of high-purity water and 235 

methanol.  236 

The isoprene-derived SOA markers: 2-methyltetrols, isomeric 3-methyltetrahydrofurans-237 

3,4-diols (3-MeTHF-3,4-diols), and 2-methylglyceric acid, synthesized according to the 238 

published procedures (Lin et al., 2013b; Zhang et al., 2012), were available in-house as authentic 239 

standards to quantify the major components of isoprene SOA. 2-Methyltetrol organosulfates, 240 

synthesized as a mixture of tetrabutylammonium salts, were also available as a standard. Purity 241 

was determined to be >99% by 1H NMR and UPLC/ESI-QTOFMS analysis (Budisulistiorini et 242 

al., 2015b). The C5-alkene triols and IEPOX dimer were quantified using the response factor 243 

obtained for the synthetic 2-methyltetrols.  244 

A representative ambient PM2.5 sample collected from the rural southeastern U.S. 245 

(Yorkville, GA) (Lin et al., 2013a) during the summer of 2010 was analyzed in an identical 246 

manner to confirm atmospheric relevance of the chamber-generated SOA constituents. 247 

2.7 Cytotoxicity Assay.  Cytotoxicity was assessed through measurement of lactate 248 

dehydrogenase (LDH) released into the extracellular medium from damaged cells using the LDH 249 

cytotoxicity detection kit (Takara). To ensure that the EAVES device itself and operation 250 

procedure had no effect on cytotoxicity, the LDH release from cells exposed to clean chamber air 251 

was measured. LDH release by cells exposed via the EAVES to the photochemically aged (light) 252 

and non-photochemically aged (dark) particles was compared to release from unexposed cells 253 

maintained in the incubator for the same duration. For the resuspension exposures, LDH release 254 

by cells exposed to SOA through resuspended extract of photochemically aged and non-255 

photochemically aged particles was compared to release by cells maintained in KBM only. 256 

Additionally, LDH release from the light exposures, dark control, and resuspension exposures 257 
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was compared to release by positive control cells exposed to 1% Triton X-100 to ensure that cell 258 

death would not affect gene expression results.  259 

2.8 Gene Expression Analysis.  We chose to measure the levels of the inflammation-related 260 

mRNA in the BEAS-2B cells exposed to isoprene-derived SOA generated in our outdoor 261 

chamber because various particle types are capable of sequestering cytokines (Seagrave, 2008). 262 

Other direct deposition studies have also used mRNA transcripts as a proxy for cytokine 263 

production (Hawley et al., 2014a; Hawley et al., 2014b; Hawley and Volckens, 2013; Volckens 264 

et al., 2009; Lichtveld et al., 2012). Changes in IL-8 and COX-2 mRNA levels were measured 265 

using QuantiTect SYBR Green RT-PCR Kit (Qiagen) and QuantiTect Primer Assays for 266 

Hs_ACTB_1_SG (Catalog #QT00095431), Hs_PTGS2_1_SG (Catalog #QT00040586), and 267 

Hs_CXCL8_1_SG (Catalog #QT00000322) for one-step RT-PCR analysis. All mRNA levels 268 

were normalized against β-actin mRNA, which was used as a housekeeping gene. The relative 269 

expression levels (i.e., fold change) of IL-8 and COX-2 were calculated using the comparative 270 

cycle threshold (2-ΔΔCT) method (Livak and Schmittgen, 2001). For EAVES exposures, changes 271 

in IL-8 and COX-2 from isoprene-derived SOA exposed cells were compared to cells exposed to 272 

the dark controls. Similarly, for resuspension exposures changes in IL-8 and COX-2 from 273 

isoprene-derived SOA exposed cells were compared to cells exposed to particles collected under 274 

dark conditions.  275 

2.9 Statistical Analysis.  The software package GraphPad Prism 4 (GraphPad) was used for all 276 

statistical analyses. All data were expressed as mean ± SEM (standard error of means). 277 

Comparisons between data sets for cytotoxicity and gene expression analysis were made using 278 

unpaired t-test with Welch’s correction. Significance was defined as p < 0.05.  279 
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3. Results and Discussion 280 

3.1 Physical and Chemical Characterization of Exposure.  Figure 1 shows the change in 281 

particle mass concentration and gas (O3, NO, NOx) concentration over time during typical 282 

photochemical and dark control experiments. Under dark control conditions (Fig. 1a) there is no 283 

increase in aerosol mass concentration following isoprene injection. Average total aerosol mass 284 

concentration was 155.0±2.69 µg m-3 (1 standard deviation) with no particle mass attributable to 285 

organic material.  286 

In contrast, Fig. 1b shows an increase in aerosol mass concentration after 1 h post 287 

isoprene injection, which can be attributed to the photochemical oxidation of isoprene and 288 

subsequent production and reactive uptake of its oxidation products. The average increase in 289 

aerosol mass concentration attributable to SOA formation for three daylight chamber 290 

experiments conducted on separate days was 44.5±5.7 µg m-3. Average total aerosol mass 291 

concentration during particle exposure was 173.1± 4.2 µg m-3.  292 

O3 and NOx concentrations measured during EAVES exposure were approximately 270 293 

ppb and 120 ppb for photochemical experiments. For dark control experiments (e.g., Fig. 1a), the 294 

O3 and NOx concentrations were approximately 15 ppb and 180 ppb. Previous studies 295 

characterizing the EAVES device show definitively that gas-phase products do not induce cell 296 

response (de Bruijne et al., 2009). However, resuspension exposures were conducted in addition 297 

to EAVES exposure to ensure that biological effects were attributable to only particle-phase 298 

constituents and not gas-phase products such as O3 and NOx. 299 

The chemical composition of aerosol, collected onto filters concurrently with cell 300 

exposure and characterized by GC/EI-MS and UPLC/ESI-HR-QTOFMS, are shown in Fig. 2. 301 

No isoprene-SOA tracers were observed in the filters collected from dark control experiments. 302 
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The dominant particle-phase products of the isoprene-SOA collected from photochemical 303 

experiments are derived from the low-NO channel, where IEPOX reactive uptake onto acidic 304 

sulfate aerosol dominates, including 2-methyltetrols, C5-alkene triols, isomeric 3-MeTHF-3,4-305 

diols, IEPOX-derived dimers, and IEPOX-derived organosulfates. The sum of the IEPOX-306 

derived SOA constituents quantified by the available standards accounted for ~80% of the 307 

observed SOA mass. The MAE-derived SOA constituents 2-methylglyceric acid and the 308 

organosulfate derivative of MAE, derived from the high-NO channel, accounted for 1.4% of the 309 

observed SOA mass, confirming that particle-phase products generated were predominantly 310 

formed from the reactive uptake of IEPOX onto acidic sulfate aerosols. As demonstrated in 311 

Figure 2, all the same particle-phase products are measured in the PM2.5 sample collected in 312 

Yorkville, GA (a typical low-NO region), demonstrating that the composition of the chamber-313 

generated SOA is atmospherically relevant. Recent SOA tracer measurements from the Southern 314 

Oxidant and Aerosol Study (SOAS) campaign at Look Rock, TN, Centerville, AL, and 315 

Birmingham, AL, also support the atmospheric relevance of IEPOX-derived SOA constituents 316 

that dominate the isoprene SOA mass in summer in the southeastern U.S. (Budisulistiorini et al., 317 

2015a; Rattanavaraha et al., 2016).  318 

3.2 Cytotoxicity.  LDH release for cells exposed using the EAVES device is expressed as a fold-319 

change relative to the unexposed incubator control. For resuspension exposures, LDH release is 320 

expressed as fold-change relative to cells exposed to KBM only. Results shown in Fig. 3a 321 

confirm that there is no effect of chamber conditions and device operation on the cells when 322 

comparing LDH release from cells exposed to a clean air chamber and cells unexposed in an 323 

incubator. Additionally, LDH release from all exposure conditions in EAVES exposed cells (Fig. 324 

3b) and resuspension exposed cells (Fig. 3c) is negligible relative to positive controls exposed to 325 
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1% Triton X-100, confirming that the exposure concentration of isoprene-derived SOA utilized 326 

in this study was not cytotoxic. All cytotoxicity results ensured that exposure conditions were not 327 

adversely affecting the cells nor their gene expression. 328 

3.3 Pro-inflammatory Gene Expression.  Changes in the mRNA levels of IL-8 and COX-2 329 

from cells exposed to isoprene-derived SOA using the EAVES are shown as fold-changes 330 

relative to dark controls in Fig. 4. This comparison, as well as the results of the resuspension 331 

experiment discussed below, ensure that all effects seen in the cells are attributable to the 332 

isoprene-derived SOA and no other factors. A one-hour exposure to a mass concentration of 333 

approximately 45 µg m-3 of organic material was sufficient to significantly alter gene expression 334 

of the inflammatory biomarkers in bronchial epithelial cells. Based on deposition efficiency 335 

characterized by de Bruijne et al. (2009), the estimated dose was 0.29 µg cm-2 of total particle 336 

mass with 23% attributable to organic material formed from isoprene photooxidation (0.067 µg 337 

cm-2 of SOA).  338 

Changes in the mRNA levels of IL-8 and COX-2 from cells exposed to resuspended 339 

isoprene-derived SOA collected from photochemical experiments are shown as fold-changes 340 

relative to cells exposed to resuspended particles from dark control experiments in Fig. 5. At a 341 

low dose of 0.01 mg mL-1 of isoprene SOA extract there is no significant increase in IL-8 and 342 

COX-2 mRNA expression. The isoprene SOA extract, however, induces a response at a dose of 343 

0.1 mg mL-1. The statistically significant increase in mRNA expression from the resuspension 344 

exposure at 0.1 mg mL-1 confirms that similar fold changes observed for both IL-8 and COX- 2 345 

from the EAVES exposures are not attributable to gaseous photooxidation products, such as O3, 346 

and support the characterization of the EAVES as a particle exposure device (de Bruijne et al., 347 

2009). 348 
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The similar fold change observed in both the EAVES exposure and resuspension 349 

exposure, in addition to confirming that the biological effects can be attributed to the particle-350 

phase photochemical products (isoprene-derived SOA), suggests that exposure by resuspension 351 

is appropriate for isoprene-derived SOA and may yield results similar to direct deposition 352 

exposures. Unlike diesel particulate extracts, which agglomerate during resuspension exposures, 353 

isoprene-derived SOA constituents are water-soluble based on reverse-phase LC separations 354 

(Surratt et al., 2006; Lin et al., 2012) and remain well mixed in the cell medium used for 355 

exposure. Therefore, resuspension exposures do not appear to be a limitation for toxicological 356 

assessments of isoprene SOA.  357 

3.4 Biological Implications.  The goal of this study was to initially identify potential biological 358 

response associated with exposure to isoprene-derived SOA by using a direct exposure device as 359 

a model that has both atmospheric and physiological relevance. With this model, a dose of 0.067 360 

µg cm-2 of isoprene SOA, induced statistically significant increases in IL-8 and COX-2 mRNA 361 

levels in exposed BEAS-2B cells. There are many ways to classify in vitro particle dosimetry 362 

based on the various properties of particles (Paur et al., 2011). For this direct deposition study, 363 

we chose to classify dose as SOA mass deposition per surface area of the exposed cells to mimic 364 

lung deposition. Gangwal et al. (2011) used a multiple-path particle dosimetry (MPPD) model to 365 

estimate that the lung deposition of ultrafine particles ranges from 0.006 to 0.02 µg cm-2 for a 24-366 

hr exposure to a particle concentration of 0.1 mg m-3. Based on this estimate, a dose of 0.067 µg 367 

cm-2 of isoprene SOA in our study can be considered a prolonged exposure over the course of a 368 

week. In fact, most other in vitro studies require dosing cells at a high concentration sometimes 369 

close to a lifetime exposure to obtain a cellular response. Despite this limitation, in vitro 370 

exposures serve as a necessary screening tool for toxicity (Paur et al., 2011).  371 



	  

	   17	  

 Our findings are consistent with other studies showing that photochemical oxidation of 372 

similar chemical mixtures increases toxicity in cell culture models and elevates expression of 373 

inflammatory biomarker genes (Lichtveld et al., 2012; Rager et al., 2011). Previous in vitro 374 

studies using a gas-phase only exposure system have shown that gas-phase products of isoprene 375 

photooxidation significantly enhance cytotoxicity and IL-8 expression (Doyle et al., 2004; Doyle 376 

et al., 2007). 377 

 By choosing IL-8 and COX-2 as our genes of interest, we are able to compare our results 378 

to other studies of known harmful particle exposures. In a similar study using the EAVES, 379 

normal human bronchial epithelial (NHBE) cells exposed to 1.10 µg cm-2 diesel particulate 380 

matter showed less than a 2-fold change over controls in both IL-8 and COX-2 mRNA 381 

expression (Hawley et al., 2014b). In another study, A549 human lung epithelial cells were 382 

exposed by direct deposition for 1 hour to photochemically-aged diesel exhaust particulates at a 383 

dose of 2.65 µg cm-2 from a 1980 Mercedes or a 2006 Volkswagen (Lichtveld et al., 2012). 384 

Exposure to aged Mercedes particulates induced a 4-fold change in IL-8 and ~2-fold change in 385 

COX-2 mRNA expression, while exposure to aged Volkswagen particulates induced a change of 386 

~1.5-fold in IL-8 and 2-fold in COX-2 mRNA expression (Lichtveld et al., 2012). Although the 387 

differences in cell types preclude direct comparisons, the finding of significant increases in COX-388 

2 and IL-8 expression at doses much lower than reported for comparable increases in gene 389 

expression levels induced by photochemically-aged diesel particulates is notable.  390 

IL-8 and COX-2 are both linked to inflammation and oxidative stress (Kunkel et al., 391 

1991; Uchida, 2008). IL-8 is a potent neutrophil chemotactic factor in the lung and its expression 392 

by various cells plays a crucial role in neutrophil recruitment leading to lung inflammation 393 

(Kunkel et al., 1991). COX-2 is the inducible form of the cyclooxygenase enzyme, regulated by 394 
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cytokines and mitogens, and is responsible for prostaglandin synthesis associated with 395 

inflammation (FitzGerald, 2003). Consistent with the reports that IL-8 and COX-2 play important 396 

roles in lung inflammation (Nocker et al., 1996; Li et al., 2013), in vivo studies have shown that 397 

isoprene oxidation products cause airflow limitation and sensory irritation in mice (Rohr et al., 398 

2003). In humans, the role of IL-8 and COX-2 in lung inflammation can be associated with 399 

diseases such as chronic obstructive pulmonary disease and asthma (Nocker et al., 1996; Peng et 400 

al., 2008; Fong et al., 2000).  401 

 The mechanism by which isoprene-SOA causes elevation of the inflammatory markers 402 

IL-8 and COX-2 is not yet fully understood. However, recent work from our laboratory using the 403 

acellular dithiothreitol (DTT) assay demonstrated that isoprene-derived SOA has significant 404 

ROS generation potential (Kramer et al., 2016). High levels of ROS in cells can overwhelm the 405 

antioxidant defense and lead to cellular oxidative stress (Sies, 1991; Bowler and Crapo, 2002; Li 406 

et al., 2003). Following the discovery of the potential importance of isoprene-SOA in generating 407 

ROS, Lin et al. (2016) showed that isoprene-SOA formed from the reactive uptake of epoxides 408 

alters levels of oxidative stress-associated genes, including COX-2 in human lung cells. 409 

Oxidative stress caused by ROS plays a major role in lung inflammation and the induction of 410 

oxidative stress can lead to IL-8 expression (Tao et al., 2003; Yan et al., 2015). Specifically, 411 

oxidants can activate the transcription factor NF-κB, which regulates a wide range of 412 

inflammatory genes including IL-8 and COX-2 (Barnes and Adcock, 1997; Schreck et al., 1992). 413 

Therefore, isoprene-SOA may cause increases in both IL-8 and COX-2 primarily through an 414 

oxidative stress response. Additionally, the relationship between IL-8 and COX-2 can also 415 

explain the observed increase in IL-8 gene expression as the production of IL-8 can be stimulated 416 

through a COX-2 dependent mechanism in airway epithelial cells (Peng et al., 2008).  417 
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 In vitro studies such as this one using a direct deposition model cannot fully elucidate 418 

mechanisms of lung inflammation and potential pathogenesis but serve as a necessary part of 419 

hazard characterization, particularly for a complex air mixture that has not been fully studied 420 

(Hayashi, 2005; Paur et al., 2011). Ozone exposure studies have shown that comparable dose and 421 

effect measurements for IL-8 and COX-2 can be found between in vivo and in vitro exposures 422 

which add promise to extrapolating effects seen in vitro to effects in vivo (Hatch et al., 2014). In 423 

vivo effects associated with isoprene-SOA exposure in vitro cannot be inferred as it is a different 424 

system from ozone, so	  further in vitro studies exploring the health implication of the elevation of 425 

IL-8 and COX-2 due specifically to isoprene-SOA exposure are necessary and may in turn justify 426 

further extension to in vivo work.  427 

4. Conclusions	  428 

 This study indicates that an atmospherically relevant composition of isoprene-derived 429 

SOA is capable of increasing the expression of IL-8 and COX-2 in human bronchial epithelial 430 

cells. The present study is an initial step in a long planned analysis of the biological impacts of 431 

isoprene SOA exposure on lung cells. The SOA were generated as NO levels approached zero, 432 

which represents conditions characteristic of urban locales downwind of rural isoprene sources. 433 

As shown in Fig. 2, the aerosol generated for exposures in this study are chemically similar to 434 

fine aerosol samples collected from the Southeastern U.S., which indicates that the chamber 435 

exposures are representative of exposures that may be encountered by populations in regions 436 

where isoprene emissions interact with anthropogenic pollutants. The same particle-phase 437 

products found in our photochemical experiments have been measured in significant quantities 438 

(accounting on average for 33% of fine organic aerosol mass) in ambient fine organic particles 439 

collected in the Southeastern U.S. (Lin et al., 2013b; Budisulistiorini et al., 2013; Rattanavaraha 440 
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et al., 2016; Budisulistiorini et al., 2016) and in other isoprene-rich environments (Hu et al., 441 

2015). The results of this study show that, because of its abundance, isoprene SOA may be a 442 

public health concern warranting further toxicological investigation through in vitro or in vivo 443 

work.  444 
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	  753 

Figure 1.	  Aerosol mass concentration and gas-phase product concentrations over time for (a) 754 

dark control chamber experiment and (b) photochemically produced isoprene-derived SOA 755 

exposure chamber experiment.756 
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 757 

 758 

Figure 2. (a) GC/EI-MS total ion chromatograms (TICs) and (b) UPLC/ESI-HR-QTOFMS base 759 

peak chromatograms (BPCs) from a (1) dark control chamber experiment, (2) isoprene-derived 760 

SOA exposure chamber experiment, and (3) PM2.5 sample collected from Yorkville, GA during 761 

summer 2010. 762 
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 763 

Figure 3. LDH release for (a) clean air controls, (b) EAVES exposures, normalized to incubator 764 

control, and (c) resuspension exposures, normalized to KBM only control. **p<0.005 and 765 

***p<0.0005.	  766 
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 767 

Figure 4. IL-8 and COX-2 mRNA expression induced by exposure to isoprene-derived SOA 768 

using EAVES device all normalized to dark control experiments and against housekeeping gene, 769 

β-actin. All experiments conducted in triplicate. ***p<0.0005. 770 

771 
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 771 

Figure 5. IL-8 and COX-2 expression induced by exposure to isoprene-derived SOA using 772 

resuspension method all normalized to dark control experiments and against housekeeping gene, 773 

β-actin. All experiments conducted in triplicate. *p<0.05 and **p<0.005.	  774 


