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Abstract. The majority of anthropogenic CO2 emissions are attributable to urban areas. While1

the emissions from urban electricity generation often occur in locations remote from consumption,2

many of the other emissions occur within the city limits. Evaluating the effectiveness of strate-3

gies for controlling these emissions depends on our ability to observe urban CO2 emissions and4

attribute them to specific activities. Cost effective strategies for doing so have yet to be described.5

Here we characterize the ability of a prototype measurement network, modeled after the BEACO2N6

network in California’s Bay Area, in combination with an inverse model based on WRF-STILT to7

improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites8

at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1⇥1 km29

emission inventory and 1⇥1 km2 meteorological calculations. We perform an ensemble of Bayesian10

atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements11

and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and12

model over a range of 20 ppm to 0.005 ppm and vary the number of sites from 1 to 34. We use these13

inversions to develop statistical models that estimate the efficacy of the combined model-observing14

system at reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes15

at the urban scale, as well as for sources embedded within the city such as a line source (e.g., a16

highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our17

inversion framework, we find that a dense network with moderate precision is the preferred setup18

for estimating area, line, and point sources from a combined uncertainty and cost perspective. The19
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dense network considered here (modeled after the BEACO2N network
:::
with

:::
an

:::::::
assumed

:::::::::
mismatch20

::::
error

::
of

::
1

::::
ppm

::
at

::::::
hourly

:::::::
temporal

:::::::::
resolution) could estimate weekly CO2 emissions from an urban21

region with less than 5% error, given our characterization of the combined observation and model22

uncertainty.23

1 Introduction24

Carbon dioxide (CO2) is an atmospheric trace gas and the single largest anthropogenic radiative25

forcer, with a radiative forcing of 1.82 W m�2 in 2011 relative to preindustrial times (IPCC, 2013).26

CO2 has increased from 280 ppm in preindustrial times to greater than 400 ppm in the present,27

largely due to changes in fossil fuel emissions. Over 70% of these fossil fuel CO2 emissions in28

the United States (US) are attributable to urban areas (EIA, 2015; Hutyra et al., 2014), yet cur-29

rent bottom-up inventories still have large uncertainties. As such, quantifying and monitoring the30

emissions from urban areas is crucial to strategies for reducing future increases in CO2.31

Numerous studies have performed top-down estimations of CO2 emissions using observations32

from urban surface monitoring networks of various sizes (e.g., Gratani and Varone, 2005; McKain33

et al., 2012; Newman et al., 2013; Lauvaux et al., 2013; Breon et al., 2015; Turnbull et al., 2015).34

However, it’s not immediately clear how many sites are necessary to monitor the emissions from an35

urban area. Kort et al. (2013) found that a surface monitoring network would need at least 8 sites36

operating for 8 weeks to accurately estimate CO2 emissions in Los Angeles. Yet most current urban37

monitoring networks have fewer than 8 sites but operate for much longer than 8 weeks. For example,38

Gratani and Varone (2005) used a single site in Rome, Newman et al. (2013) used a single site in39

Los Angeles, Lauvaux et al. (2013) used two sites in Davos, Switzerland, McKain et al. (2012) used40

a network of 5 sites in Salt Lake City, and Breon et al. (2015) used 5 sites in Paris. Recent work41

from Turnbull et al. (2015) employed a denser network of 12 sites in Indianapolis.42

This issue is further complicated by bias and noise in both the measurements and the modeling43

framework. The combined model and measurement error is known as the model-data mismatch error44

(hereafter referred to as the “mismatch error”). Current monitoring networks use a mix of instru-45

ments and approaches to calibration with resulting variations of capital and operating costs, network46

precision, and potential instrument bias. Monitoring networks located in regions with complex orog-47

raphy are challenging for atmospheric transport calculations, making it more difficult to determine48

the dispersion from sources.49

The tradeoff between measurement network density and mismatch error has yet to be charac-50

terized. Understanding these tradeoffs is crucial to reducing the uncertainty in emissions from ur-51

ban regions and to developing cost-effective urban monitoring networks. Here we present a high-52

resolution inventory of CO2 fluxes and a numerical model that relates atmospheric observations to53

high resolution surface fluxes. We then use this inventory and model in a series of observing system54
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simulation experiments (OSSEs) to investigate the tradeoff between reductions in the mismatch error55

and increases in the measurement network density. We develop statistical models to characterize this56

relationship for different types of sources in the San Francisco Bay Area, identify limiting regimes,57

and recommend future observing strategies.58

2 Constructing a high resolution regional CO2 inventory59

McDonald et al. (2014) demonstrated that 1⇥1 km2 spatial resolution is necessary to resolve the60

gradients in urban CO2 fluxes from highways. However, most of the existing CO2 anthropogenic61

inventories are not available at this resolution. For example, EDGAR (European Commission, 2011)62

and VULCAN (Gurney et al., 2009) are only available at 0.1�⇥0.1� and 10⇥10 km2, respectively.63

A notable exception is the Odiac fossil fuel CO2 inventory (Oda and Maksyutov, 2011) which is64

based on satellite-observed nightlight data and available globally at 1⇥1 km2 resolution. High reso-65

lution fossil fuel CO2 emissions are available for select cities and sectors such as Paris through the66

AirParif inventory (Breon et al., 2015, http://www.airparif.asso.fr/en/index/index) and Indianapo-67

lis, Los Angeles, Salt Lake City, and Phoenix through the HESTIA project (Gurney et al., 2012,68

http://hestia.project.asu.edu/); three recent studies (Gately et al., 2013; McDonald et al., 2014; Gately69

et al., 2015) developed high resolution CO2 emissions from vehicular traffic.70

The Bay Area Air Quality Management District (BAAQMD) provides detailed annual county-71

level CO2 emissions information for San Francisco and California’s Bay Area (Mangat et al., 2010).72

The BAAQMD found that the transportation sector accounted for 36% of the Bay Area anthro-73

pogenic emissions, industrial and commercial for 36%, electricity for 16%, residential fuel usage74

for 7%, off-road equipment for 3.0%, and agriculture for 1%. The BAAQMD also reports CO275

emissions for 4,375 point sources in the Bay Area. We geocode these point sources based on the76

addresses provided by the BAAQMD. These point sources capture the emissions from the indus-77

trial, commercial, and electricity sectors. We map residential fuel usage to population using block78

level population data from the 2010 US Census and apply a temporal temperature scaling based on79

Deschłnes and Greenstone (2011); the resulting temporal scaling effect is small due to the temperate80

climate in the East Bay region of the SF Bay Area.81

Here we use the traffic CO2 emissions from the fuel-based inventory for vehicle emissions (FIVE)82

developed by McDonald et al. (2014). The FIVE traffic CO2 inventory provides a representative83

week of hourly CO2 emissions for San Francisco and other nearby Bay Area cities at 10 km, 484

km, 1 km, and 500 m resolution. This representative week can be scaled to different years based85

on the state fuel sales (see McDonald et al. (2014) for additional details). The FIVE inventory is86

constructed by partitioning CO2 emissions using state-level fuel data to individual roads with road-87

specific traffic count data and temporal patterns from weigh-in-motion data. In this manner, CO288

emissions from the FIVE inventory will be consistent with state and national CO2 budgets and can89
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easily be scaled to different years.90

Combining the industrial, commercial, electricity, residential, and traffic emissions account for91

95.8% of the anthropogenic CO2 emissions in the Bay Area. We do not have high resolution proxy92

data for the off-road equipment or agriculture sectors in the Bay Area and have chosen to assume93

their contributions are smaller than the uncertainty in the total budget; therefore we neglect these94

sectors in the construction of our inventory.95

CarbonTracker CT2013B (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/; Peters et al., 2007)96

provides 3 hourly fossil fuel, ocean, biogenic, and fire CO2 fluxes at 1�⇥1� resolution. These fluxes97

are optimized to agree with atmospheric CO2 observations. We regrid these fluxes to 1⇥1 km298

spatial resolution (see Supplemental Section S3) and use the fire, ocean, and biogenic sectors to99

account for our natural fluxes.100

Fig. 1 shows snapshots of the CO2 fluxes from our inventory at 4 different times of day and101

the a-temporal fluxes from EDGAR v4.2 FT2010 (European Commission, 2011). From Fig. 1 we102

can see the inventory clearly resolves the large CO2 gradients from highways, confirming that 1⇥1103

km2 spatial resolution is sufficient to resolve urban CO2 fluxes from highways. The bottom panel104

of Fig. 1 shows a time series of Bay Area CO2 fluxes broken down by source. The diurnal cycle105

in our inventory is largely driven by the traffic emissions with modest uptake from the biosphere106

during the middle of the day. Other anthropogenic sources were assumed to have a negligible diurnal107

cycle (Nassar et al., 2013). In what follows, we use EDGAR as the prior and the high spatio-temporal108

resolution inventory as the “truth”.109

[Fig. 1 about here.]110

3 The Berkeley Atmospheric CO2 Observation Network (BEACO2N)111

The Berkeley Atmospheric CO2 Observation Network (“BEACO2N”, see http://beacon.berkeley.edu112

and Shusterman et al., 2016) was founded in 2012 as a web of approximately 25 carbon dioxide113

sensing “nodes” stationed atop schools and museums in the Oakland, CA metropolitan area (see114

Table 1). With sensors installed on an approximately 2 km square grid, BEACO2N is the only115

surface-level (3 to 130 m a.g.l.) greenhouse gas monitoring system with roughly the same spatial116

resolution as the emissions inventories described above. Each node requires only a standard, 120V117

power source and is sited on pre-existing structures based on voluntary, no-cost partnerships. The118

BEACO2N configuration therefore represents a reasonable expectation and is one model for future119

monitoring networks aimed at constraining CO2 fluxes at neighborhood scales within an urban dome.120

[Table 1 about here.]121

BEACO2N’s unprecedented spatial density is achieved by exploiting lower cost instrumentation122

than has traditionally been utilized for ambient CO2 detection. The non-dispersive infrared (NDIR)123
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absorption sensor used in each BEACO2N node (http://www.vaisala.com/en/products/carbondioxide/Pages/GMP343.aspx)124

has been seen to possess adequate sensitivity to resolve diurnal as well as seasonal phenomena rele-125

vant to urban environments (Rigby et al., 2008) and costs one to two orders of magnitude less than126

the commercial cavity ring-down instruments commonly used in other networks. However, the low-127

cost NDIR sensor is more susceptible to factors such as temporal drift and environmental instability128

that can negatively impact data quality. This trade-off between mismatch error and network density129

is explored below.130

4 Observing system simulation experiments131

CO2 concentrations were simulated at 34 sites in the BEACO2N network with the Stochastic Time-132

Inverted Lagrangian Transport (STILT) model (Lin et al., 2003), coupled to the Weather Research133

and Forecasting (WRF) meso-scale meteorological model run at 1⇥1 km2 grid resolution (WRF-134

STILT; Nehrkorn et al., 2010). WRF-STILT computes footprints (� CO2 per surface flux, or ppm135

per µmol·m�2·s�1; See Supplemental Section S1 and Lin et al. (2003) for additional details) for136

each observation that relate the hourly 1 km2 CO2 fluxes (x; an m⇥1 vector) to the observations137

(y; an n⇥1 vector):138

y=Hx (1)139

Each row of the n⇥m Jacobian matrix (H= @y/@x) is a reshaped footprint. Fig. 2 shows the140

location of the sites and the average network footprint for Sept 15 to 22.
:::
The

::::::
spatial

:::::
extent

:::
of141

::
the

:::::::::
footprints

::::::
found

::::
here

:::
are

:::::::
similar

::
to

:::::
those

:::::
found

:::
in

:::::::::::::::::
Bastien et al. (2015),

:::::
who

:::::::::
performed

:::
an142

:::::::::::
adjoint-based

:::::::::
sensitivity

:::::::
analysis

::
of

::::::
urban

::
air

::::::::
pollution

:::
in

:::
the

::::
San

::::::::
Francisco

::::
Bay

::::
area

::::
(see

:::::
their143

:::
Fig.

:::
2).144

[Fig. 2 about here.]145

Our aim is to estimate hourly CO2 fluxes at 1 km2 over a one week period. As such, the model146

domain is 88 km ⇥ 101 km and we solve for 240 hours of fluxes (1 week plus 3 additional days147

of back trajectories). The resulting state vector has 2,133,120 elements (m=m
t

·m
x

·m
y

with148

m
t

=240, m
x

=88, m
y

=101) and the posterior fluxes will have hourly temporal resolution and 1149

km2 spatial resolution. The dimension of n will depend on the number of sites in the observational150

network.151

Here we use our high resolution CO2 inventory (x?; an m⇥1 vector) to generate synthetic obser-152

vations (y?; an n⇥1 vector):153

y? =Hx?+" (2)154

where " is an n⇥1 vector of normally distributed noise with mean ✏
b

and diagonal covariance ma-155

trix R: "⇠N (✏
b

,R). Using a diagonal R matrix means that we have assumed our mismatch errors156
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are uncorrelated. Our base case inversion assumes the mean bias is zero: ✏
b

= 0. We evaluate the157

sensitivity to this assumption in Section 6 and Supplemental Section S6.2. These synthetic observa-158

tions can then be used in a Bayesian inference framework to estimate the optimal CO2 fluxes (c.f.159

Rodgers, 2000). Assuming the prior and likelihood distributions are Gaussian gives us a closed-form160

solution for the posterior CO2 fluxes:161

x̂=x
p

+(HB)
T

�
HBHT +R

��1
(y?�Hx

p

) (3)162

where x
p

is an m⇥1 vector of prior CO2 fluxes, comprised of a coarse (10⇥10 km2) a-temporal163

EDGAR v4.2 FT2010 anthropogenic CO2 inventory and natural fluxes from CarbonTracker CT2013B,164

regridded to 1⇥1 km2. B is the m⇥m prior error covariance matrix. The prior error covariance165

matrix can be expressed as a Kroenecker product (cf. Meirink et al., 2008; Singh et al., 2011; Yadav166

and Michalak, 2013) of temporal and spatial covariance matrices: B=D⌦E where D is the tem-167

poral covariance matrix and E is the spatial covariance matrix. The B matrix has an uncertainty of168

100% at the native resolution and the spatial and temporal covariance matrices are fully populated169

(see Supplemental Section S2 for more details).170

We do not explicitly represent the individual error terms contributing to the R matrix (instrument171

error, model error, and representation error). Instead, we have assumed that the R matrix is diagonal172

and can be characterized by a single parameter: the total mismatch error (�
m

; R= �2
m

I), which173

represents the combined effects of the different error components.174

Fig. 3 shows an example of the estimated CO2 fluxes. We can see that the posterior fluxes cap-175

ture more of the spatial variability in the CO2 fluxes than the prior fluxes in the region where the176

network is deployed. We find substantial improvements in the diurnal cycle (see panel d). Previ-177

ous work has used the posterior covariance matrix (Q=
�
HTR�1H+B�1

��1), averaging kernel178

matrix (A= I�QB�1), and the degrees of freedom for signal (DOFs= tr(A)) as metrics to eval-179

uate the information content of different observing systems (e.g., Kort et al., 2013; Wu et al., 2016).180

However, it is computationally infeasible to construct these m⇥m matrices for our application as181

m> 106 and storing them would require ⇠36 Tb of memory (assuming double precision, dense182

matrices).183

[Fig. 3 about here.]184

Instead, we evaluate the efficacy of the posterior fluxes by taking the norm of the difference be-185

tween the posterior fluxes and the true fluxes: ||x̂�x?||2. We express this as a relative improvement186

by comparing the norm of the difference between the prior fluxes and the true fluxes:187

⌘=1�
||x̂�x?||2
||x

p

�x?||2
(4)188

This error metric, ⌘, was chosen as it has a similar form to the averaging kernel matrix but it also189

allows us to directly compare the posterior fluxes to the true fluxes. This relative error metric can190

be related to the flux error (see Supplemental Section S5). As such, we can use the error metric to191
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evaluate the ability of the observing system to resolve three types of emission sources: (1) area, (2)192

line, and (3) point sources, by examining a subset of grid cells in the domain (see Section S3 for193

more details). The area source (AS) examined here is the East Bay urban dome (147 ± 55 tC hr�1;194

uncertainty is the 1-� range of hourly fluxes from the high resolution inventory), the line source195

(LS) is Interstate 880 and the Bay Bridge (45 ± 20 tC hr�1), and the point sources (PS) are 4 large196

CO2 sources in the East Bay (9 ± 4 tC hr�1). For comparison, Salt Lake City emits ⇠300 ± 50 tC197

hr�1 (McKain et al., 2012). The top panel of Fig. 2 shows these three source types.198

Fig. 4 shows the error in the estimated CO2 fluxes using the observations over a wide range199

of observing system scenarios. We vary the number of sites (n
s

= [1,2,...,34]), mismatch error200

(�
m

= [0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20] ppm), and perform an ensemble of 20 inver-201

sions for each combination to ensure the results are robust. Each ensemble member uses a unique202

observational network by randomly drawing n
s

sites from the population of 34 possible sites. In203

total, we perform 8,160 inversions. Fig. 4 shows the mean error in the estimated CO2 fluxes for the204

area source, line source, and point source as a function of �
m

and n
s

. This figure represents the205

uncertainty in the estimated emissions at a given hour.206

[Fig. 4 about here.]207

5 Simplified statistical models of error reduction208

We develop statistical models to predict the error reduction and quantify the importance of the differ-209

ent factors governing the error reduction. We tested all combinations of models with the following210

7 parameters (127 possible combinations):
p
�
m

,
p
n
s

, ln(�
m

), ln(n
s

), �
m

, n
s

, and a constant.211

These statistical models were evaluated using Akaike information criterion (AIC) and Bayesian in-212

formation criterion (BIC). The following statistical models were found to be best:213

⌘̂AS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�3 ln(ns

)+�2�m

+�0 (5)214

⌘̂LS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�3 ln(ns

)+�2�m

+�1ns

(6)215

⌘̂PS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�2�m

+�0 (7)216

All the regression coefficients (�
i

) in the statistical models yielded statistically significant (p <217

0.001) parameters based on F-tests (see the Supplemental Section S7 for the regression coefficients218

and model selection criterion).219

We find the
p
�
m

,
p
n
s

, ln(�
m

), and �
m

parameters in all three statistical models (Eq. 5–7).220

This dependence on
p
n
s

and
p
�
m

logically follows from the assumption of Gaussian errors in221

the derivation of the posterior CO2 fluxes (Eq. 3) and the basic properties of variance. These two222

parameters tend to be dominant and generally explain more than 50% of the variance. As such, we223

suspect that these two parameters are the most important and that other terms are capturing higher-224

order effects.225
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These statistical models can also be used to define the regimes where increasing the number of226

sites in the observing system is more important and those where reducing the mismatch error is227

more important. We estimate these regimes using the ridge line from the statistical models (Eq. 5–228

7). From Fig. 4 we can see two distinct regimes: noise-limited and site-limited. Observing systems229

that lie above the ridge line are in the the noise-limited regime where the error reduction is largely230

governed by the mismatch error in the observing system. Conversely, observing systems below the231

ridge line are in the the site-limited regime where the error reduction is largely governed by the232

number of sites in the observing system.233

The mismatch error is controlled by the instrument, representation, and model error. In the noise-234

limited regime reducing these errors will provide the greatest benefit. Whereas, in the site-limited235

regime the greatest benefit will come from increasing the number of sites in the observing system236

and there will only be marginal benefit from reducing the instrument, representation, and model237

error.238

6 Discussion239

Three conclusions we can draw from Fig. 4 for California’s East Bay are:240

1. Achieving �
m

=1 ppm adds value. There is relatively little additional benefit to reducing241

mismatch error to 0.1 ppm, particularly for estimating line or point source emissions.242

2. At �
m

=1 ppm there is a benefit to increasing the number of sites, but this benefit increases243

slower than
p
n
s

.244

3. At �
m

=5 ppm there is little benefit from increasing the number of sites; reducing the noise245

would add more value.246

Our work is primarily focused on estimating hourly fluxes, however we can further reduce the247

uncertainty in our estimates by considering temporally averaged fluxes (e.g., what are the weekly or248

monthly emissions?). Fig. 5 shows the error in our estimate of the area source emissions aggregated249

over various time-scales. We find the error in our estimate greatly decreases over the first 72 hours.250

The central limit theorem provides a lower bound on the error reduction we might expect and the251

error reductions follow this limit reasonably well over the first 72 hours. This implies that our252

weekly-averaged emission estimate would be 10⇥ better than our hourly emission estimate.253

[Fig. 5 about here.]254

6.1 Additional factors affecting observing system design255

We considered three additional factors that could adversely impact an observing system: (1) inver-256

sion domain size, (2) site-specific systematic biases, and (3) using only daytime observations.257
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Our results are found to be largely insensitive to the inversion domain size (see Fig. S6). This is258

discerned through a set of sensitivity OSSEs with a reduced domain size. We find that inversions on259

the reduced domain were only marginally worse at reducing the error (⇠ 1%) than inversions on the260

full domain (see Supplemental Section S6.1). This is due to the strong local signal in the footprint261

of the measurements (see bottom panel of Fig. 2). As such, the non-local emission sources do not262

adversely impact our ability to estimate urban emissions.263

Biases can adversely impact the observing system (see Fig. S7). To test the impacts of biases in264

the modeling-measurement framework, we repeated the OSSEs outlined in Section 4 but included265

a systematic bias. The bias was unique to each site and was drawn from a normal distribution266

(✏
b

⇠N
�
0,�2

b

I
�
; �

b

= 1 ppm). There are three major findings from the OSSEs with systematic267

biases:268

1. Systematic biases become particularly problematic when the spread of the potential biases269

(defined here as �
b

) is larger than the mismatch error (�
b

> �
m

). This is because we have270

defined the observational error covariance matrix as: R= �2
m

I. However, if �
b

> �
m

with a271

dense observing system then the site-specific biases will artificially inflate the observational272

error covariance matrix: R⇡
�
�2
m

+�2
b

�
I and the errors will be incorrectly characterized in273

the observing system. As long as �
b

<�
m

then R=�2
m

I and the characterization of the errors274

will be appropriate.275

2. Observing systems with more sites are generally less affected by site-specific systematic bi-276

ases. This is because observing systems with a small number of sites rely heavily on those few277

sites. An observing system with many sites is less reliant on a single site and the site-specific278

systematic biases act more like additional noise in the observing system.279

3. Systematic biases have a greater impact when estimating an area source than line and point280

sources. This is because an airmass sensitive to a line or point source will have a greater281

enhancement relative to the background compared to a diffuse area source, thus there is a282

larger signal-to-noise ratio for these sources and a systematic bias is less important.283

During the day, model calculations of the PBL height are more reliable leading to a temptation to284

omit the nighttime data from the analysis. However, emissions at night can be as much as 30% of285

the total and ignoring them makes estimates of urban emissions strongly dependent on prior assump-286

tions. Our observing system would be unable to correct the misrepresented nighttime emissions of287

our a-temporal prior without using nighttime observations. As a result, even our most optimistic288

observing system would have a systematic ⇠50 tC hr�1 error (⇠30%) in the estimated area source289

emissions due to the misrepresented nighttime emissions.290

6.2 Potential cost tradeoffs291

We consider two potential observing systems:292
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1. “Network A” (n
s

=25, �
m

=1 ppm): A dense network with moderate-precision instruments.293

This network is similar to the BEACO2N network described in Section 3. We assume a cost294

of $5,000 per instrument giving a total cost of $125,000. This network is shown as a purple295

star in the left column of Fig. 4.296

2. “Network B” (n
s

=3, �
m

=0.1 ppm): A sparse network with of high-precision instruments.297

This network uses cavity-ring down instruments. We assume a cost of $50,000 per instrument298

giving a total cost of $150,000. This network is shown as a green star in the left column of299

Fig. 4.300

We note that the assumed mismatch error for these two potential observing systems is defined as the301

instrument error and assumes there is no contribution from model or transport errors.302

The cost for these two networks is comparable. From Fig. 4, we find that the sparse “Network B”303

is site-limited in all cases whereas the dense “Network A” is in the noise-limited regime. Further, we304

find that the dense “Network A” has less error in the estimate of all source types in San Francisco’s305

East Bay. Networks sitting on the ridge line are at the optimal balance between precision and number306

of sites.307

6.3 The relationship between network density and transport error308

In this work we have treated transport error and the number of measurement sites as independent.309

However, in practice, there would be a relationship between the transport error and measurement310

network density. This can be understood with a thought experiment using two different observing311

systems to estimate emissions: a sparse network with a single site and an infinitely dense network312

(sites at each grid cell in our domain). Estimating emissions with the sparse network would require313

us to simulate the atmospheric transport with high fidelity if we are to reliably say anything about314

emissions upwind of our site. This is especially true for point sources. Any errors in the simulated315

atmospheric transport would adversely impact the estimated emissions, whereas the infinitely dense316

network could potentially neglect atmospheric transport and use data from only the local grid cell317

to estimate emissions. This is because the differential signal at each site would be largely gov-318

erned by the local emissions. Explicitly quantifying this relationship between transport error and319

measurement network density should be the focus of future work.320

7 Conclusions321

Understanding the factors that govern our ability to estimate urban greenhouse gas emissions are322

crucial to improving an observing system and reducing the uncertainty in emission estimates. Here323

we have quantitatively mapped the errors in CO2 emission estimates from different observing sys-324

tems for three different types of sources in California’s Bay Area: area sources, line sources, and325

point sources. Our results show that different observing systems may fall into noise or site-limited326

10



regimes where reducing the uncertainty in the estimated emissions is governed by a single factor;327

these regimes differ for the source types. Identifying the regime an observing system is in will help328

inform future improvements to the observing system. A number of prior urban CO2 experiments329

have defined as a goal, the understanding of emissions to less than 10% (e.g., Kort et al., 2013; Wu330

et al., 2016). We find that a BEACO2N-like network could achieve this accuracy and precision with331

1 week of observations, if the dominant source of error is instrument precision. This conclusion may332

motivate a re-examining of the conventional instrument quality-oriented design of CO2 observing333

systems, according to the stated goal of a given network.334
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Fig. 1. September 2013 CO2 fluxes from bottom-up inventories. Top row shows the fluxes in the Bay Area
(122.0357� – 122.7683�W, 37.3771� – 38.2218�N) at four representative hours (hour in local time). Right
panel shows the a-temporal EDGAR v4.2 FT2010 CO2 flux in the Bay Area. Bottom panel shows the total Bay
Area CO2 flux (black), traffic (orange), other anthropogenic (red), and natural (green) sources. Vertical gray
shading indicates the time slices plotted in the top and middle panels.
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Fig. 2. Top panel shows the location of the sites (black circles), the area source (blue region), the line source
(orange line), and point sources (red diamonds). Bottom panel shows the September 15 to 22 average footprint
for the 34 sites in the network, see Table 1 for a list of the sites. The bottom panel is the full domain used for
the inversion. Supplemental Fig. S3 shows the footprint on a log-scale.
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Fig. 3. Example of estimated CO2 fluxes. Top row shows the average emissions from (a) the prior, (b) the
posterior, and (c) the true emissions. Panel (d) shows a time series of the emissions from the area source
with the prior (green), posterior (pink), and true emissions (black). Panel (e) shows the difference between the
posterior and the prior. Panel (f) shows the difference between posterior and the truth. Posterior output is from
the best case scenario (nS =34 and �m =0.005 ppm).

17



Fig. 4. Left column shows the error in the posterior CO2 fluxes. Right column shows the fluxes being estimated.
Top row is the area source, middle row is the line source, and bottom row is the point source. Inversions
were performed using ns = [1,2,...,34] sites and �m = [0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2,10,20] ppm
mismatch error. Results shown are the mean of a monte carlo analysis using 20 different combinations of sites
for each (ns, �m) pair. Contours are from the statistical models ⌘̂ (see Eq. 5–7) converted to flux errors and
the red lines are the ridge lines that define the cutoff between the noise-limited and site-limited regimes. Purple
star shows an observing system with 25 sites and 1 ppm noise. Green star shows an observing system with 3
sites and 0.1 ppm noise. Note the log-scale on the y-axis.
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Fig. 5. Uncertainty aggregated in time for the best case inversion (see Fig. 3). The CO2 flux estimate in this
study has an hourly temporal resolution. The uncertainty in the emissions estimate declines as the estimate is
averaged to longer temporal scales. Solid blue line is the mean uncertainty, shading is the 1-� range, and the
dashed black line is the uncertainty predicted by the central limit theorem. Note the log scale on the y-axis.
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Table 1. 34 sites in the networka used in this study.

Site Code Site name Latitude Longitude Height
(�N) (�W) (m a.g.l.)

AHS Arroyo High School 37.680 122.139 3
BEL Burckhalter Elementary School 37.775 122.167 5
BFE Bayfarm Elementary School 37.744 122.251 3
BOD Bishop O’Dowd High School 37.753 122.155 3
CES Claremont Elementary School 37.846 122.252 3
CHA Chabot Space & Science Center (low) 37.819 122.181 3
CHB Chabot Space & Science Center (high) 37.819 122.181 9
COI Coit Tower 37.8030 122.406 5
CPS College Preparatory School 37.849 122.242 24
EBM W. Oakland EBMUD Monitoring Station 37.814 122.282 3
ELC El Cerrito High School 37.907 122.294 8
EXB Exploratorium (Bay) 37.803 122.397 6
EXE Exploratorium (Embarcadero) 37.801 122.399 3
FTK Fred T. Korematsu Discovery Academy 37.738 122.174 3
GLE Greenleaf Elementary School 37.765 122.194 3
HRS Head Royce School 37.809 122.204 7
ICS International Community School 37.779 122.231 3
KAI Kaiser Center 37.809 122.264 127
LAU Laurel Elementary School 37.792 122.197 12
LBL Lawrence Berkeley National Lab, Bldg. 70 37.876 122.252 3
LCC Lighthouse Community Charter School 37.736 122.196 3
MAR Berkeley Marina 37.863 122.314 3
MON Montclair Elementary School 37.830 122.212 3
NOC N. Oakland Community Charter School 37.833 122.277 3
OMC Oakland Museum of California 37.799 122.264 3
PAP PLACE at Prescott Elementary 37.809 122.298 3
PDS Park Day School 37.832 122.257 3
PHS Piedmont Middle & High School 37.824 122.233 3
POR Port of Oakland Headquarters 37.796 122.280 3
OHS Oakland High School 37.805 122.236 3
ROS Rosa Parks Elementary School 37.865 122.295 3
SHA Skyline High School (low) 37.798 122.162 3
SHB Skyline High School (high) 37.798 122.162 13
STL St. Elizabeth High School 37.779 122.222 3

a This study uses both operational and proposed sites. See Shusterman et al. (2016) and
“http://beacon.berkeley.edu/” for more information on the network.
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