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Response to Reviewer Comments: 
 
We thank the two Anonymous Reviewers for their thorough comments, particularly Reviewer 
#1 for catching an error in the presentation of the ∂η/∂ns curve. 
 
 
 
Reviewer #1 Comments: 
 
The approach, fitting a statistical model to a sample of network designs, is novel but 
intuitive. While the detailed analysis could be more robust in some ways, the conclusions 
are a significant advance over the current state of knowledge and will have concrete value 
for the design of future observing systems, and I encourage publication once my concerns 
are address.  
 
 
1.)  Abstract could lead to false impressions: My primary concern the author’s can 
address readily.  As currently written, the abstract could lead to false impressions that this 
analysis definitively concludes that moderate cost sensors in a denser network is the optimal 
configuration for any urban area and that weekly CO2 emissions with uncertainties of less 
than 5% can be achieved. These sections of the abstract in particular should be re-worked, 
as the authors actually are finding that with their specific modeling framework, higher 
density/moderate cost sensors provides an improved basis for flux estimation for the Bay 
Area. Further, given some of the assumption of diagonal error co-variance matrices, the 
representativeness of low altitude measurements in an urban region, and the gap presented 
by neglecting night-time data, the 5% monthly conclusion would appear to be an 
optimistic/idealized result and needs to be presented as such. 
 
We have updated the text in the abstract to include more qualifiers. 
 
 
2.)  Clarity of presentation: Additionally, error in describing the background condition, or 
the CO2 levels before impact of the urban region, have been found to be of high importance 
in other urban studies, and more discussion on the construction of this and assumptions 
used would be helpful. Otherwise my recommendations center around the clarity of 
presentation. In order to be of most use to a wider audience, including to researchers who 
may wish to perform similar analyses as they design networks in other cities, the methods 
need to be described more fully and precisely. Some justification should be provided for the 
choices and assumptions made in the analysis; I point out some examples below, but the 
authors should make a thorough review. The figures, especially figure 4, should be made 
more clear. 
 
We have updated the text to include the reviewer’s suggestions. 
 
 
Minor Comments: 
 
1.)  How are the representativeness of observations made at just meters above the surface 
in a dense urban environment addressed? Depending on how these observation sites are 
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setup, they could be biased in their sampling to see traffic, people, or biosphere in a 
courtyard. This paper does not need to solve this problem, but it should be discussed as a 
potential additional source of bias error in ‘cheap’ network deployments, particularly as more 
sites are deployed (which can be very challenging to secure sites for deployment) and less 
ideal deployment locations are used. There is another component of this question, or way to 
frame it, which is a model designed to work at 1km will not be able to represent the sub-km 
variability sampled by a network not deployed to make observation representative of 1km 
areas, and thus potential biases might result. 
 
The reviewer asks about the representativeness of observations made meters above the 
surface in a dense urban environment.  However, as the reviewer notes, this is not a 
problem our paper aims (or needs) to address.  This question is not relevant to a pseudo-
data study like ours because our pseudo-data are generated using a model at 1-km 
resolution, so the pseudo-data are representative of a 1-km area.  From a more 
experimental perspective, it is currently unknown whether sensitivity to local processes 
necessarily precludes the ability of surface-level sensors to represent domain-wide 
phenomena, as BEACO2N is the first network with sufficient quantity and density of sensors 
to empirically investigate this trade-off. Future analyses of the real BEACO2N dataset are 
positioned to answer these and related questions more quantitatively. 
 
Regarding the potential additional source of bias error in ‘cheap’ network deployments, we 
have attempted to address this in the original manuscript through the “systematic bias” 
sensitivity test that was presented in Section 6.1 and Supplemental Section S6.2 where we 
added a systematic site-specific bias to each observational site in the network.  This site-
specific bias could be due to representation error, instrument error, etc.  Additionally, the 
companion manuscript (Shusterman et al., 2016) found the BEACO2N sensors to detect 
weekly fluctuations in background concentrations to within ±2 ppm. 
 
 
2.)  The abstract should make clear that the statistical models estimate the uncertainty 
reduction as a function of the number of sites and the model-data mismatch. It should state 
that the study region is the Bay Area. 
 
Presenting technical details of the statistical models, as the reviewer proposes, would make 
the abstract overly cumbersome.  A reader that is interested in the statistical models will 
need to consult the main text.  However, we have updated the abstract to make it clear that 
the study area is the Bay Area. 
 
Lines 6-7: “modeled after the BEACO2N network in California's Bay Area” 
 
 
3.)  Line 17-19: Need to specify that with this particular WRF-STILT framework and 
assumptions on error co-variance the moderate precision array is preferred. 
 
We have updated the text: 
 
Lines 17-18: “Using our inversion framework, we find that…” 
 
 
4.)  Line 19-21: This might technically be accurate, but is a bit misleading as some of the 
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assumption made here likely will cause issues with absolute flux accuracy that are much 
larger than 5%. No top-down method has ever been demonstrated to this point to have 
fidelity greater than 10% (some would argue demonstration of 20% has yet to be actually 
achieved). 
 
Previous top-down studies have tended to focus on sparser networks and may have been 
site-limited.  Kort et al. (2013) claim to constrain fluxes to 10% using a sparser network.  
Here is the final line of their abstract: “We estimate that this network can distinguish fluxes 
on 8 week time scales and 10 km spatial scales to within ~12 g C m–2 d–1 (~10% of average 
peak fossil CO2 flux in the LA domain).”  Additionally, we are discussing the constraints on 
the urban region (Area Source), which should be easier to constrain than 10 km grid cells 
due to it’s large size.  Given the differences in observational networks, our results are in line 
with previous estimates reported in the literature. 
 
 
5.)  Line 43: Clarify whether instruments and calibration approaches are mixed within 
individual networks, between networks, or both. 
 
We have updated the text: 
 
Lines 44-46: “Current monitoring networks use a variety of instruments and approaches to 
calibration with resulting variations in capital and operating costs, network precision, and 
potential instrument bias.” 
 
 
 
6.)  Lines 69-70: Specify the temporal resolution of the BAAQMD inventory. 
 
We have updated the text: 
 
Lines 70-71: “The Bay Area Air Quality Management District (BAAQMD) provides detailed 
annual county-level CO2 emissions information…” 
 
 
7.)  Lines 81-86: Make clear in this paragraph exactly what the FIVE product consists of. Is it 
a particular representative week of hourly emissions, which can be scaled by the user to fit 
other weeks? Or is scaled by McDonald et al. and provided for any week desired by the 
user? 
 
We have updated the text: 
 
Lines 82-85: “The FIVE traffic CO2 inventory provides a representative week of hourly CO2 
emissions for San Francisco and other nearby Bay Area cities at 10 km, 4 km, 1 km, and 
500 m resolution.  This representative week can be scaled to different years based on the 
state fuel sales (see McDonald et al. (2014) for additional details).” 
 
 
8.)  Lines 88-91: As a simple approximation, could agricultural emissions be attributed 
uniformly to farmland? If this approximation is worse than omitting agricultural emissions 
entirely, state why. 
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For the purpose of the OSSE, this is inconsequential because we are using pseudo-
observations.  We are attempting to generate an inventory that is a reasonable 
approximation of the true emissions.  The agricultural emissions are only 1% of the 
anthropogenic emissions, including them will have no impact on the results presented here. 
 
Also, see the response to Reviewer #2’s minor comment #3. 
 
 
9.)  Line 94-95: Please explain in more detail how you regrid from 1 degree to 1 km – this 
could be done in different manners. 
 
We have added a detailed explanation to Supplemental Section S3. 
 
 
10.)  Line 102: The assumption of negligible diurnal cycle needs to be more thoroughly 
justified, especially since Nassar et al. (2013) emphasize the importance of diurnal variation. 
 
Nassar et al. (2013) show that much of this diurnal variability is in the on-road mobile sector 
(see their Fig. 1).  The other anthropogenic sectors (residential, industrial, electric vehicles, 
and commercial) show small diurnal variability (diurnal scale factor varies between 0.9 and 
1.1).  Our bottom up inventory includes diurnal variability from the on-road mobile sector. 
 
 
11.)  Lines 127-132: This description of STILT is confusing. It would be more clear to first 
explain how STILT is used to calculate influence footprints and only then to describe how the 
footprints are used to simulate CO2 concentrations at the site locations. 
 
We have updated the text and our description in Supplemental Section S1.  See also our 
response to Reviewer #2’s major comment #1. 
 
 
12.)  Lines 152-153: What does it mean that “the B matrix has an uncertainty of 100% at the 
native resolution?” One might take this to mean that the prior estimate is assigned a factor-
of-two uncertainty. In supplemental section S2, it seems as though “100% uncertainty” 
means only that a multiplicative factor fσ is introduced and then set to one. 
 
It means the uncertainty is equal to the standard deviation of the hi-res inventory.  We 
initially considered using other scale factors (fσ) but ultimately settled on a multiplicative 
factor of one.  However, we left this in the supplement for future studies to potentially modify. 
 
 
13.)  Lines 155-158: The impact on the result of the choice of a diagonal R matrix should be 
described. 
 
Using a diagonal R matrix means that all of our model-data mismatch errors are 
uncorrelated.  As such, using a non-diagonal R matrix will mean there is less information in 
the observations because the observations are not independent.  We have used a diagonal 
R matrix because the real observations in the BEACO2N network are made at 1 Hz.  Here 
we use hourly observations.  As such, it seems fair to assume the original 1 second 
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observations are independent when aggregated to 1 hour.  A study with real data could look 
at the autocorrelation of the model-data mismatch to infer a proper decorrelation length 
scale, which will almost certainly be much less than 1 hour. 
 
We have updated the text: 
 
Lines 152-153: “Using a diagonal R matrix means that we have assumed our mismatch 
errors are uncorrelated.” 
 
 
14.)  Line 173: Why not just use the posterior flux error, which is more intuitive and which is 
shown in the key figure (figure 4)? Why is it an advantage to use a metric similar in form to 
the averaging kernel matrix? 
 
The posterior flux error is an absolute metric and, as such, is less generalizable.  The error 
metric chosen here is more similar to previous work (e.g., Kort et al., 2013) and more 
generalizable to other studies. 
 
 
15.)  Lines 184-185: The single sentence “We vary the number of sites (ns) and mismatch 
error (σm) and perform an ensemble of 20 inversions for each combination to ensure the 
results are robust.” is not adequate to explain this key step in the analysis. For how many 
different combinations of ns and σm was the error calculated? Which combinations? How 
were site locations chosen for non-maximal ns? What differs between the 20 inversions 
performed for the same combination of parameters: the choice of site locations, the random 
errors, the STILT footprint calculation? 
 
We have updated the text: 
 
Lines 195-202: “Fig. 4 shows the error in the estimated CO2 fluxes using the observations 
over a wide range of observing system scenarios.  We vary the number of sites (ns = [1, 2, 
…, 34]), mismatch error (σm = [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20] ppm), 
and perform an ensemble of 20 inversions for each combination to ensure the results are 
robust.  Each ensemble member uses a unique observational network by randomly drawing 
ns sites from the population of 34 possible sites.  In total, we perform 8,160 inversions.  Fig. 
4 shows the mean error in the estimated CO2 fluxes for the area source, line source, and 
point source as a function of σm  and ns.  This figure represents the uncertainty in the 
estimated emissions at a given hour.” 
 
 
16.)  Line 193: The first two parameters are motivated by the assumption of Gaussian 
errors; what motivates the choice of the other five parameters? 
 
The x-axis is a linear scale and the y-axis is a log-scale and we can qualitatively see 
structure in the figure.  As such, we assumed that linear and log relationships could yield a 
significant relationship. 
 
 
17.)  Lines 208-218: This critical part of the procedure is not clear. The derivative of η with 
respect to ns expresses the error reduction to be obtained by adding additional sites. In order 
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to say whether a particular network configuration is noise-limited or site-limited, this 
reduction should be compared to the reduction to be obtained by reducing the mismatch 
error, expressed by the derivative of η with respect to σm. But the latter is never calculated. 
Furthermore, it’s not clear what is meant by “the ∂η/∂ns curve,” how such a curve can be 
plotted on axes neither of which corresponds to that derivative (as in Figure 4), or what it 
means for a particular system to be above or below the curve. 
 
We appreciate the reviewer for catching this mistake.  We no longer use the derivatives to 
estimate these regimes.  We now estimate them as the ridgeline from the statistical models.  
 
 
18.)  Lines 232-237: This is an important point and should be explained more clearly. 
Exactly what fluxes do you estimate in the averaged case, and what errors are you 
comparing? Precisely what does “10× better” mean? In the figure it looks as though the 
errors do not decrease as quickly as predicted by the CLT but seem to level off after about 
96 hours; you might explain why this is to be expected. 
 
The errors in emissions aggregated over 1 week are about a factor of 10 less than the error 
in hourly emissions.  We have updated the text: 
 
Lines 243-249: “Our work is primarily focused on estimating hourly fluxes, however we can 
further reduce the uncertainty in our estimates by considering temporally averaged fluxes 
(e.g., what are the weekly or monthly emissions?).  Fig. 5 shows the error in our estimate of 
the area source emissions aggregated over various time-scales.  We find the error in our 
estimate greatly decreases over the first 72 hours.  The central limit theorem provides a 
lower bound on the error reduction we might expect and the error reductions follow this limit 
reasonably well over the first 72 hours.  This implies that our weekly-averaged emission 
estimate would be 10× better than our hourly emission estimate.” 
 
 
19.)  Line 273-274: How is this statement about the large systematic error consistent with 
the 5% uncertainty conclusion highlighted in the abstract? 
 
The 5% uncertainty is referring to the case shown in the main text (case without the imposed 
systematic bias). 
 
 
20.)  Section 6.1: Since the text of the supplemental section S5 contains little additional 
information, consider integrating it into the main text, possibly combining figures S6-S8. 
Also, specify whether all the observing systems tested in Section 4, or only a subset, were 
included in the test of sensitivity to domain size. 
 
We feel that this content is better suited to the supplement. 
  
 
21.)  Section 7: The conclusions should include at least some description of which system 
designs were found to be site-limited and which noise-limited, since that information is of 
immediate use to other researchers designing or evaluating their own networks. 
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We have refrained from putting that in the Conclusions section because it is, somewhat, 
dependent on the specification of transport error.  We allude to this in the conclusion when 
we qualify one of our findings with the following statement: “if the dominant source of error is 
instrument precision.”  
 
 
22.)  Figure 3: The color scheme in the top row is not intuitive to perceive, especially at low 
resolution as in panel a. Is white used for no estimate as well as for zero flux? 
 
It is unclear what “low resolution” the reviewer is referring to, all of the fluxes are plotted at 
the same resolution (1 km2).  As for the color scheme, we tested many different color 
schemes and settled on this one because it facilitated comparison between the different 
panels (other color schemes were much worse). 
 
White indicates a flux of zero.  There is no “no estimate”, all panels have fluxes at all grid 
cells. 
 
 
23.)  Figure 4: This figure is crucially important, and the design is generally good. However, 
the shading needs to be reworked so that the gradient is more visible. Also, as mentioned 
above, it’s not clear what defines the red line that separates noise- from site-limited regimes. 
 
We have updated the coloring and the method for defining noise- and site-limited regimes. 
 
 
24.)  Supplement line 56: Why were the decay parameters chosen as they were? 
 
The decay parameters were judiciously chosen through discussion with the co-authors who 
have experience creating the bottom-up inventory (Brian McDonald and Robert Harley).  
Future work could include these parameters in the inversion by defining them as 
hyperparameters.  However, we would no longer have a conjugate prior and would need to 
move to a sampling approach to obtain the posterior.  Given the large number of inversions 
performed in this study (32,640 inversions), this would be computationally infeasible. 
 
 
25.)  Figure S2: Four judiciously chosen panels would probably be sufficient and could be 
shown at a larger size. 
 
This is a vector graphics image in the Supplement.  Readers should be able to zoom in on 
the panels without losing quality. 
 
 
26.)  Figure S3: Panels c-e are not as informative and could be omitted. 
 
We disagree with the reviewer on this point.  The usefulness of these panels varied quite a 
bit depending on the audience.  We have found these panels to be useful for explaining the 
methodology to scientists who do not typically construct state vectors themselves.  However, 
the panels are not crucial to the manuscript, which is why we put them in the Supplement. 
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27.)  Figures S6-S8: As in Figure 4, the gradient is not visible enough. Also, the left column 
corresponds to main text Figure 4, not Figure 3. 
 
We thank the reviewer for pointing out the incorrect labeling. 
 
 
28.)  Appendix A: In my opinion, this table is not necessary. 
 
We feel that his table could be useful to some readers interested in the robustness of the 
different statistical models, which is why we have included it in the Supplement. 
 
 
 
 
Reviewer #2 Comments: 
 
It is certainly a novel piece of work and is beneficial to other urban measurement network 
designs and associated studies. However, some parts of the manuscript need improvements 
or additional details to better understand the results and their interpretations. Also some 
clarifications are necessary to improve the manuscript (see the comments below). Hence I 
would recommend this manuscript for publication after addressing my concerns and 
comments listed below. 
 
 
1.)  Footprint calculations: My major concern is about the footprint calculations presented 
in the manuscript. As far as I understand, what it is shown in Fig. 2 is the averaged footprints 
for all sites in the network in which the footprints are calculated separately for each sites. In 
that case, I am surprised with such a low value for the averaged footprints on the western 
side of the model domain even if there are many sites (especially the line source/high-way is 
on that side, Fig. 1). Although a part of this can be explained with the prevailed wind 
direction, I don’t find enough reasons to justify the shown structure. i.e., it is difficult to 
believe that those sites don’t give much information on surface fluxes for this period. Please 
clarify and also give additional details (e.g. set up of STILT receptor locations, how strong is 
the advection, details of vertical mixing etc.). 
 
The reviewer thinks the observations should have more sensitivity to the “western side of the 
model domain”.  This may stem from how other work has presented the footprints.  Much of 
the previous work showing footprints has plotted them on a log-scale (e.g., Lin et al., 2003, 
2004, 2007; Kort et al., 2008) or as percentiles (e.g., Miller et al., 2012, 2013; McKain et al., 
2015).  We have added a Supplemental Figure (Fig. S3) that shows the footprint on a linear-
scale and log-scale.  The largest footprint values are in locations where we have an 
observation site, however there are diffuse signals that cover much of the domain and have 
a non-trivial contribution to the total signal.  Further, the spatial footprints found here are 
broadly consistent with previous work by Bastien et al. (2015; their Fig. 2a-e) who used an 
adjoint model to determine the sources influencing air pollution in California’s East Bay. 
 
As for the request for additional details, it seems that the reviewer may have missed or 
overlooked some of the model description.  Most of what the reviewer requested is already 
included in the manuscript or supplement.  Specifically, the STILT receptor locations 
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(latitude, longitude, and height above ground level) are listed in Table 1 and the details of 
the WRF simulations (including PBL and LSM schemes) are included in Supplemental 
Section 1.  The advection and vertical mixing are, largely, determined by the WRF model.  
The cited literature (Lin et al., 2003; Nehrkorn et al., 2010) describe the advection, vertical 
mixing, and coupling of STILT to WRF in exhaustive detail. 
 
 
2.)  Inverse framework is not well explained: Another criticism is that the inverse 
framework, although it is a critical component of this study, is not well explained (Sect.4). For 
example, it is not very clear to me how the state vector is defined for this experiment. What 
is the spatial and temporal resolutions of the posterior fluxes? This is important to follow the 
inversion results. This section needs major improvement w.r.t giving additional details. 
 
We have updated the text in Section 4.  It now includes a more detailed explanation of the 
inverse framework including a paragraph describing the state vector. 
 
 
3.)  Reported error estimate: The reported error estimate of the posterior fluxes (5%) is for 
the best case OSSE and the inversion experiment (rather I would say that it is for “the most 
idealized case”) in which the total model-data mismatch error is assumed to be 0.005 ppm. 
Since this mismatch error is totally unrealistic in the current scenario, it is not fair to include 
this “best case” result in the abstract unless the model-data mismatch error (+ other 
assumptions) is explicitly specified here. Since it is misleading, I would recommend authors 
to either remove this sentence or provide an error estimate for more reasonable scenario. 
 
It seems that this comment stems from a misunderstanding in the reported errors; our 
abstract does not report errors using the 0.005 ppm case.  The reported error estimate of 
the posterior fluxes (5%) is for “Network A” (dense network with moderate-precision 
instruments) from Section 6.2, not the most optimistic case with 0.005 ppm.  Fig. 3 shows 
the most optimistic case because there is only one combination of sites for that case, 
whereas networks with less sites have multiple configurations that could be shown. 
 
We have updated the abstract to clarify this: 
 
Line 20: “The dense network considered here (modeled after the BEACO2N network)…” 
 
 
3.)  Fig. 3 and associated statements: I can’t see a remarkable performance of inversion 
in retrieving posterior fluxes as one would expect here, given that the inversion uses a loose 
prior (100% uncertainty), used all 34 sites, and “unrealistically” low mismatch error (=0.005 
ppm which includes model error, representation error, and instrument error). The spatial 
structure in the CO2 fluxes is captured only for a few parts of the domain. Unfortunately, this 
says to me that the most of other sites are not much useful in this case, which is hard to 
believe. This again points back to my concern regarding the footprint calculation. Need to 
clarify. 
 
It is unclear which “associated statements” the reviewer is referring to.  Fig. 3 is merely 
presented as an example of the posterior fluxes.  One of the few statements we make about 
Fig. 3 is in reference to the diurnal cycle in Fig. 3: “We find substantial improvements in the 
diurnal cycle (see panel d).” 
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As for the comment about the unremarkable performance of the inversion, we are surprised 
by this comment.  We find the improvement, relative to the prior, quite remarkable.  Panel d 
in Fig. 3 highlights this.  The diurnal cycle in the prior is completely incorrect (wrong 
magnitude and out of phase) but the posterior is able to recover the true diurnal cycle.  The 
spatial structure is recovered reasonably well in the region where we have measurements 
sites (California’s East Bay).  Not surprisingly, we see little improvement in distant regions 
because we do not have sites located there (so the observations are unable to constrain 
those regions).  The results follow pretty much exactly with what one might intuitively expect. 
 
 
 
Minor Comments: 
 
1.)  L24: Radiative forcing is variable over the years. Please give the value w.r.t year. 1.82 
W m-2 looks more like the 2011 year values. 
 
We have updated the text. 
 
Line 25: “with a radiative forcing of 1.82 W m-2 in 2011 relative to preindustrial times (IPCC 
2013).” 
 
 
2.)  L60: The issue is not only with the spatial resolution, but also with the large uncertainty 
ranges (reported or expected). This issue needs to be addressed clearly in the manuscript to 
draw the importance of the high resolution inversion modeling, which is to reduce the 
uncertainty of the emission fluxes. Also mention about the temporal resolution. This is also 
important especially when cities have peak traffic, industrial, or commercial hours. Need to 
be mentioned/addressed in the manuscript. 
 
We have updated the text. 
 
Lines 28-29: “…yet current bottom-up inventories still have large uncertainties.” 
 
 
3.)  L92-95: From Fig.1 (bottom panel), I see that the natural sources accounts for about 
17% (peak to peak, according to CT2013B) of the total fluxes and are varying as expected. 
This is considerable in comparison with the Bay area traffic sources which accounts for 
∼50% of the total fluxes. Hence I would expect that using the natural fluxes at coarse 
resolution (1×1) can generate additional uncertainty and may not be appropriate in this high 
resolution modeling scenario. Please comment on this. 
 
While a good point, it’s not really relevant here because we are performing an OSSE. As 
such, we have two main goals in constructing the bottom-up inventory: (1) create a bottom-
up inventory that is a reasonable approximation of the true emissions and (2) create a 
bottom-up inventory that is fundamentally different from the prior inventory.  For the former 
goal, the CarbonTracker natural fluxes should provide a reasonable approximation to the 
true diurnal cycle, albeit with coarse spatial resolution, while the anthropogenic inventory 
provides high spatio-temporal information about the urban region.  Therefore, our bottom-up 
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information should be a decent approximation of the true emissions.  As for the latter goal, 
we are interested in learning what an observational network could tell us about the 
emissions.  So we are using fundamentally different bottom-up inventories to generate the 
pseudo-observations and serve as the prior for the inversion. 
 
 
4.)  Fig.1: What is “other Anthro” (red line) based on? 
 
We have updated the caption: 
 
Fig. 1 Caption: “Other anthropogenic sources in the BAAQMD inventory (red).” 
 
 
 
5.)  Section 4: This section needs further improvements to better explain the inversion 
technique used in this study. Please modify. Also indicate the dimension of "m" and "n". 
 
The dimensions of m was presented in Supplemental Section S2: “m = 2,133,120, mt = 240, 
mx = 88, and my = 101.”  We now also included this in the main text Section 4: 
 
Lines 144-147: “The resulting state vector has 2,133,120 elements (m = mt!mx!my  with mt = 
240, mx = 88, and my = 101) and the posterior fluxes will have hourly temporal resolution and 
1 km2 spatial resolution.  The dimension of n will depend on the number of sites in the 
observational network.” 
 
 
6.)  Mathematical formulas (e.g. Sect. 4): Please use standard formatting as followed by the 
most of the authors/textbooks. For e.g. prior fluxes, xb in which “b” is subscript. 
 
We have updated the notation. 
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Abstract. The majority of anthropogenic CO2 emissions are attributable to urban areas. While1

the emissions from urban electricity generation often occur in locations remote from consumption,2

many of the other emissions occur within the city limits. Evaluating the effectiveness of strate-3

gies for controlling these emissions depends on our ability to observe urban CO2 emissions and4

attribute them to specific activities. Cost effective strategies for doing so have yet to be described.5

Here we characterize the ability of a prototype measurement network, modeled after the BEACO2N6

network
::
in

::::::::::
California’s

::::
Bay

::::
Area, in combination with an inverse model based on WRF-STILT to7

improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites8

at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1⇥1 km29

emission inventory and 1⇥1 km2 meteorological calculations. We perform an ensemble of Bayesian10

atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements11

and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and12

model over a range of 20 ppm to 0.005 ppm and vary the number of sites from 1 to 34. We use these13

inversions to develop statistical models that estimate the efficacy of the combined model-observing14

system at reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes15

at the urban scale, as well as for sources embedded within the city such as a line source (e.g., a16

highway) or a point source (e.g., emissions from the stacks of small industrial facilities). We
:::::
Using17

:::
our

:::::::
inversion

::::::::::
framework,

:::
we find that a dense network with moderate precision is the preferred setup18

for estimating area, line, and point sources from a combined uncertainty and cost perspective. The19

1



dense network considered here
::::::::
(modeled

::::
after

:::
the

::::::::::
BEACO2 N

:::::::
network)

:
could estimate weekly CO220

emissions from an urban region with less than 5% error, given our characterization of the combined21

observation and model uncertainty.22

1 Introduction23

Carbon dioxide (CO2) is an atmospheric trace gas and the single largest anthropogenic radiative24

forcer, with a radiative forcing of 1.82 W m�2 since
::
in

::::
2011

:::::::
relative

::
to preindustrial times (IPCC,25

2013). CO2 has increased from 280 ppm in preindustrial times to greater than 400 ppm in the26

present, largely due to changes in fossil fuel emissions. Over 70% of these fossil fuel CO2 emis-27

sions in the United States (US) are attributable to urban areas (EIA, 2015; Hutyra et al., 2014)
:
,
:::
yet28

::::::
current

::::::::
bottom-up

::::::::::
inventories

:::
still

::::
have

:::::
large

::::::::::
uncertainties. As such, quantifying and monitoring the29

emissions from urban areas is crucial to strategies for reducing future increases in CO2.30

Numerous studies have performed top-down estimations of CO2 emissions using observations31

from urban surface monitoring networks of various sizes (e.g., Gratani and Varone, 2005; McKain32

et al., 2012; Newman et al., 2013; Lauvaux et al., 2013; Breon et al., 2015; Turnbull et al., 2015).33

However, it’s not immediately clear how many sites are necessary to monitor the emissions from an34

urban area. Kort et al. (2013) found that a surface monitoring network would need at least 8 sites35

operating for 8 weeks to accurately estimate CO2 emissions in Los Angeles. Yet most current urban36

monitoring networks have fewer than 8 sites but operate for much longer than 8 weeks. For example,37

Gratani and Varone (2005) used a single site in Rome, Newman et al. (2013) used a single site in38

Los Angeles, Lauvaux et al. (2013) used two sites in Davos, Switzerland, McKain et al. (2012) used39

a network of 5 sites in Salt Lake City, and Breon et al. (2015) used 5 sites in Paris. Recent work40

from Turnbull et al. (2015) employed a denser network of 12 sites in Indianapolis.41

This issue is further complicated by bias and noise in both the measurements and the modeling42

framework. The combined model and measurement error is known as the model-data mismatch error43

(hereafter referred to as the “mismatch error”). Current monitoring networks use a mix of instru-44

ments and approaches to calibration with resulting variations of capital and operating costs, network45

precision, and potential instrument bias. Monitoring networks located in regions with complex orog-46

raphy are challenging for atmospheric transport calculations, making it more difficult to determine47

the dispersion from sources.48

The tradeoff between measurement network density and mismatch error has yet to be charac-49

terized. Understanding these tradeoffs is crucial to reducing the uncertainty in emissions from ur-50

ban regions and to developing cost-effective urban monitoring networks. Here we present a high-51

resolution inventory of CO2 fluxes and a numerical model that relates atmospheric observations to52

high resolution surface fluxes. We then use this inventory and model in a series of observing system53

simulation experiments (OSSEs) to investigate the tradeoff between reductions in the mismatch error54
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and increases in the measurement network density. We develop statistical models to characterize this55

relationship for different types of sources in the San Francisco Bay Area, identify limiting regimes,56

and recommend future observing strategies.57

2 Constructing a high resolution regional CO2 inventory58

McDonald et al. (2014) demonstrated that 1⇥1 km2 spatial resolution is necessary to resolve the59

gradients in urban CO2 fluxes from highways. However, most of the existing CO2 anthropogenic60

inventories are not available at this resolution. For example, EDGAR (European Commission, 2011)61

and VULCAN (Gurney et al., 2009) are only available at 0.1�⇥0.1� and 10⇥10 km2, respectively.62

A notable exception is the Odiac fossil fuel CO2 inventory (Oda and Maksyutov, 2011) which is63

based on satellite-observed nightlight data and available globally at 1⇥1 km2 resolution. High reso-64

lution fossil fuel CO2 emissions are available for select cities and sectors such as Paris through the65

AirParif inventory (Breon et al., 2015, http://www.airparif.asso.fr/en/index/index) and Indianapo-66

lis, Los Angeles, Salt Lake City, and Phoenix through the HESTIA project (Gurney et al., 2012,67

http://hestia.project.asu.edu/); three recent studies (Gately et al., 2013; McDonald et al., 2014; Gately68

et al., 2015) developed high resolution CO2 emissions from vehicular traffic.69

The Bay Area Air Quality Management District (BAAQMD) provides detailed
:::::
annual

:
county-70

level CO2 emissions information for San Francisco and California’s Bay Area (Mangat et al., 2010).71

The BAAQMD found that the transportation sector accounted for 36% of the Bay Area anthro-72

pogenic emissions, industrial and commercial for 36%, electricity for 16%, residential fuel usage73

for 7%, off-road equipment for 3.0%, and agriculture for 1%. The BAAQMD also reports CO274

emissions for 4,375 point sources in the Bay Area. We geocode these point sources based on the75

addresses provided by the BAAQMD. These point sources capture the emissions from the indus-76

trial, commercial, and electricity sectors. We map residential fuel usage to population using block77

level population data from the 2010 US Census and apply a temporal temperature scaling based on78

Deschłnes and Greenstone (2011); the resulting temporal scaling effect is small due to the temperate79

climate in the East Bay region of the SF Bay Area.80

Here we use the traffic CO2 emissions from the fuel-based inventory for vehicle emissions (FIVE)81

developed by McDonald et al. (2014). The FIVE traffic CO2 inventory provides a representative82

week of hourly CO2 emissions for San Francisco and other nearby Bay Area cities at 10 km, 483

km, 1 km, and 500 m resolution.
::::
This

:::::::::::
representative

:::::
week

::::
can

::
be

::::::
scaled

::
to

::::::::
different

::::
years

::::::
based84

::
on

:::
the

:::::
state

:::
fuel

:::::
sales

::::
(see

::::::::::::::::::::::
McDonald et al. (2014) for

:::::::::
additional

:::::::
details).

:
The FIVE inventory is85

constructed by partitioning CO2 emissions using state-level fuel data to individual roads with road-86

specific traffic count data and temporal patterns from weigh-in-motion data. In this manner, CO287

emissions from the FIVE inventory will be consistent with state and national CO2 budgets and can88

easily be scaled to different years.89
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Combining the industrial, commercial, electricity, residential, and traffic emissions account for90

95.8% of the anthropogenic CO2 emissions in the Bay Area. We do not have high resolution proxy91

data for the off-road equipment or agriculture sectors in the Bay Area and have chosen to assume92

their contributions are smaller than the uncertainty in the total budget; therefore we neglect these93

sectors in the construction of our inventory.94

CarbonTracker CT2013B (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/; Peters et al., 2007)95

provides 3 hourly fossil fuel, ocean, biogenic, and fire CO2 fluxes at 1�⇥1� resolution. These fluxes96

are optimized to agree with atmospheric CO2 observations. We regrid these fluxes to 1⇥1 km297

spatial resolution
:::
(see

::::::::::::
Supplemental

::::::
Section

::::
S3)

:
and use the fire, ocean, and biogenic sectors to98

account for our natural fluxes.99

Fig. 1 shows snapshots of the CO2 fluxes from our inventory at 4 different times of day and100

the a-temporal fluxes from EDGAR v4.2 FT2010 (European Commission, 2011). From Fig. 1 we101

can see the inventory clearly resolves the large CO2 gradients from highways, confirming that 1⇥1102

km2 spatial resolution is sufficient to resolve urban CO2 fluxes from highways. The bottom panel103

of Fig. 1 shows a time series of Bay Area CO2 fluxes broken down by source. The diurnal cycle104

in our inventory is largely driven by the traffic emissions with modest uptake from the biosphere105

during the middle of the day. Other anthropogenic sources were assumed to have a negligible diurnal106

cycle (Nassar et al., 2013). In what follows, we use EDGAR as the prior and the high spatio-temporal107

resolution inventory as the “truth”.108

[Fig. 1 about here.]109

3 The Berkeley Atmospheric CO2 Observation Network (BEACO2N)110

The Berkeley Atmospheric CO2 Observation Network (“BEACO2 N”, see http://beacon.berkeley.edu)111

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(“BEACO2 N”, see http://beacon.berkeley.edu and Shusterman et al., 2016) was founded in 2012 as112

a web of approximately 25 carbon dioxide sensing “nodes” stationed atop schools and museums113

in the Oakland, CA metropolitan area (see Table 1). With sensors installed on an approximately 2114

km square grid, BEACO2N is the only surface-level (3 to 130 m a.g.l.) greenhouse gas monitor-115

ing system with roughly the same spatial resolution as the emissions inventories described above.116

Each node requires only a standard, 120V power source and is sited on pre-existing structures based117

on voluntary, no-cost partnerships. The BEACO2N configuration therefore represents a reasonable118

expectation and is one model for future monitoring networks aimed at constraining CO2 fluxes at119

neighborhood scales within an urban dome.120

[Table 1 about here.]121

BEACO2N’s unprecedented spatial density is achieved by exploiting lower cost instrumentation122

than has traditionally been utilized for ambient CO2 detection. The non-dispersive infrared (NDIR)123
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absorption sensor used in each BEACO2N node (http://www.vaisala.com/en/products/carbondioxide/Pages/GMP343.aspx)124

has been seen to possess adequate sensitivity to resolve diurnal as well as seasonal phenomena rele-125

vant to urban environments (Rigby et al., 2008) and costs one to two orders of magnitude less than126

the commercial cavity ring-down instruments commonly used in other networks. However, the low-127

cost NDIR sensor is more susceptible to factors such as temporal drift and environmental instability128

that can negatively impact data quality. This trade-off between mismatch error and network density129

is explored below.130

4 Observing system simulation experiments131

CO2 concentrations were simulated at 34 sites in the BEACO2N network with the Stochastic Time-132

Inverted Lagrangian Transport (STILT) model (Lin et al., 2003), coupled to the Weather Research133

and Forecasting (WRF) meso-scale meteorological model run at 1⇥1 km2 grid resolution (WRF-134

STILT; Nehrkorn et al., 2010). WRF-STILT computes footprints (� CO2 per surface flux, or ppm135

per µmol·m�2·s�1
:
;
::::
See

:::::::::::
Supplemental

:::::::
Section

:::
S1

::::
and

::::::::::::::::
Lin et al. (2003) for

:::::::::
additional

::::::
details) for136

each observation that relate the
:::::
hourly

::
1

::::
km2 CO2 fluxes (x; an m⇥1 vector) to the observations137

(y; an n⇥1 vector):138

y=Hx (1)139

Each row of the n⇥m Jacobian matrix (H= @y/@x) is a reshaped footprint. Fig. 2 shows the140

location of the sites and the average network footprint for Sept 15 to 22.141

[Fig. 2 about here.]142

:::
Our

::::
aim

::
is

::
to

:::::::
estimate

::::::
hourly

::::::::::
CO2 fluxes

::
at

::
1
::::::::
km2 over

::
a

:::
one

:::::
week

::::::
period.

::::
As

:::::
such,

:::
the

::::::
model143

::::::
domain

::
is

:::
88

:::
km

::::::
⇥ 101

:::
km

:::
and

:::
we

:::::
solve

:::
for

::::
240

:::::
hours

::
of

::::::
fluxes

::
(1

:::::
week

::::
plus

::
3

::::::::
additional

:::::
days144

::
of

::::
back

:::::::::::
trajectories).

:::::
The

::::::::
resulting

::::
state

::::::
vector

:::
has

:::::::::
2,133,120

::::::::
elements

::::::::::::::::::::
(m=m

t

·m
x

·m
y

with145

:::::::::
m

t

=240 ,
::::::::
m

x

=88 ,
::::::::::
m

y

=101 )
:::
and

:::
the

::::::::
posterior

:::::
fluxes

::::
will

::::
have

::::::
hourly

::::::::
temporal

::::::::
resolution

::::
and146

:
1
::::::::::
km2 spatial

:::::::::
resolution.

:::
The

:::::::::
dimension

::
of

:::::
n will

:::::::
depend

::
on

:::
the

:::::::
number

::
of

::::
sites

::
in

:::
the

::::::::::::
observational147

:::::::
network.

:
148

Here we use our high resolution CO2 inventory (xa

::
x? ; an m⇥1 vector) to generate synthetic149

observations (ya

:::
y? ; an n⇥1 vector):150

ya? =Hxa?+" (2)151

where " is an n⇥1 vector of normally distributed noise with mean ✏
b

and diagonal covariance ma-152

trix R: "⇠N (✏
b

,R).
:::::
Using

:
a
::::::::
diagonal

::::::::
R matrix

:::::
means

::::
that

:::
we

::::
have

:::::::
assumed

:::
our

:::::::::
mismatch

:::::
errors153

::
are

::::::::::::
uncorrelated. Our base case inversion assumes the mean bias is zero: ✏

b

= 0. We evaluate the154

sensitivity to this assumption in Section 6 and Supplemental Section S5
::::
S6.2. These synthetic obser-155

vations can then be used in a Bayesian inference framework to estimate the optimal CO2 fluxes (c.f.156
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Rodgers, 2000). Assuming the prior and likelihood distributions are Gaussian gives us a closed-form157

solution for the posterior CO2 fluxes:158

x̂=xb

p

+(HB)
T

�
HBHT +R

��1
✓
ya?�Hxb

p

◆
(3)159

where xb

:::
x
p

is an m⇥1 vector of prior CO2 fluxes, comprised of a coarse (10⇥10 km2) a-temporal160

EDGAR v4.2 FT2010 anthropogenic CO2 inventory and natural fluxes from CarbonTracker CT2013B,161

regridded to 1⇥1 km2. B is the m⇥m prior error covariance matrix. The prior error covariance162

matrix can be expressed as a Kroenecker product (cf. Meirink et al., 2008; Singh et al., 2011; Yadav163

and Michalak, 2013) of temporal and spatial covariance matrices: B=D⌦E where D is the tem-164

poral covariance matrix and E is the spatial covariance matrix. The B matrix has an uncertainty of165

100% at the native resolution and the spatial and temporal covariance matrices are fully populated166

(see Supplemental Section S2 for more details).167

We do not explicitly represent the individual error terms contributing to the R matrix (instrument168

error, model error, and representation error). Instead, we have assumed that the R matrix is diagonal169

and can be characterized by a single parameter: the total mismatch error (�
m

; R= �2
m

I), which170

represents the combined effects of the different error components.171

Fig. 3 shows an example of the estimated CO2 fluxes. We can see that the posterior fluxes capture172

more of the spatial variability in the CO2 fluxes than the prior fluxes in the region where the network173

is deployed. We find substantial improvements in the diurnal cycle (see panel d). Previous work has174

used the posterior covariance matrix (Q=
�
HTR�1H+B�1

��1), averaging kernel matrix (A=175

I�QB�1), and the degrees of freedom for signal (DOFs= tr(A)) as metrics to evaluate the infor-176

mation content of different observing systems (e.g., Kort et al., 2013; Wu et al., 2015)
:::::::::::::::::::::::::::::::
(e.g., Kort et al., 2013; Wu et al., 2016).177

However, it is computationally infeasible to construct these m⇥m matrices for our application as178

m> 106 and storing them would require ⇠36 Tb of memory (assuming double precision, dense179

matrices).180

[Fig. 3 about here.]181

Instead, we evaluate the efficacy of the posterior fluxes by taking the norm of the difference182

between the posterior fluxes and the true fluxes: ||x̂�xa||2:::::::::
||x̂�x?||2 . We express this as a relative183

improvement by comparing the norm of the difference between the prior fluxes and the true fluxes:184

⌘=1�
||x̂�xa||2
||xb�xa||2

||x̂�x?||2
||x

p

�x?||2
:::::::::

(4)185

This error metric, ⌘, was chosen as it has a similar form to the averaging kernel matrix but it also186

allows us to directly compare the posterior fluxes to the true fluxes. This relative error metric can187

be related to the flux error (see Supplemental Section S4
::
S5). As such, we can use the error metric188

to evaluate the ability of the observing system to resolve three types of emission sources: (1) area,189

(2) line, and (3) point sources, by examining a subset of grid cells in the domain (see Section S3 for190
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more details). The area source (AS) examined here is the East Bay urban dome (147 ± 55 tC hr�1;191

uncertainty is the 1-� range of hourly fluxes from the high resolution inventory), the line source192

(LS) is Interstate 880 and the Bay Bridge (45 ± 20 tC hr�1), and the point sources (PS) are 4 large193

CO2 sources in the East Bay (9 ± 4 tC hr�1). For comparison, Salt Lake City emits ⇠300 ± 50 tC194

hr�1 (McKain et al., 2012). The top panel of Fig. 2 shows these three source types.195

Fig. 4 shows the error in the estimated CO2 fluxes using the observations over a wide range196

of observing system scenarios. We vary the number of sites (n
s

)and
:::::::::::::::
n
s

= [1,2,...,34] ),
:
mismatch197

error (�
m

)
::::::::::::::::::::::::::::::::::::::::::::::::
�
m

= [0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20] ppm),
:
and perform an ensemble of198

20 inversions for each combination to ensure the results are robust.
::::
Each

::::::::
ensemble

:::::::
member

::::
uses

::
a199

:::::
unique

::::::::::::
observational

:::::::
network

::
by

::::::::
randomly

:::::::
drawing

:::::::
n
s

sites
::::
from

:::
the

:::::::::
population

::
of

::
34

:::::::
possible

:::::
sites.200

::
In

::::
total,

:::
we

:::::::
perform

:::::
8,160

:::::::::
inversions.

:
Fig. 4 shows the mean error in the estimated CO2 fluxes for201

the area source, line source, and point source as a function of �
m

and n
s

. This figure represents the202

uncertainty in the estimated emissions at a given hour.203

[Fig. 4 about here.]204

5 Simplified statistical models of error reduction205

We develop statistical models to predict the error reduction and quantify the importance of the differ-206

ent factors governing the error reduction. We tested all combinations of models with the following207

7 parameters (127 possible combinations):
p
�
m

,
p
n
s

, ln(�
m

), ln(n
s

), �
m

, n
s

, and a constant.208

These statistical models were evaluated using Akaike information criterion (AIC) and Bayesian in-209

formation criterion (BIC). The following statistical models were found to be best:210

⌘̂AS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�3 ln(ns

)+�2�m

+�0 (5)211

⌘̂LS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�3 ln(ns

)+�2�m

+�1ns

(6)212

⌘̂PS = �6
p
�
m

+�5
p
n
s

+�4 ln(�m

)+�2�m

+�0 (7)213

All the regression coefficients (�
i

) in the statistical models yielded statistically significant (p <214

0.001) parameters based on F-tests (see the Supplemental Section S6
::
S7 for the regression coef-215

ficients and model selection criterion).216

We find the
p
�
m

,
p
n
s

, ln(�
m

), and �
m

parameters in all three statistical models (Eq. 5–7).217

This dependence on
p
n
s

and
p
�
m

logically follows from the assumption of Gaussian errors in218

the derivation of the posterior CO2 fluxes (Eq. 3) and the basic properties of variance. These two219

parameters tend to be dominant and generally explain more than 50% of the variance. As such, we220

suspect that these two parameters are the most important and that other terms are capturing higher-221

order effects.222

These statistical models can also be used to define the regimes where increasing the number of223

sites in the observing system is more important and those where reducing the mismatch error is more224
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importantby taking the derivative of ⌘̂ with respect to n
s

:225

@⌘̂AS

@n
s

=
�5

2
p
n
s

+
�3

n
s

226

@⌘̂LS
@n

s

=
�5

2
p
n
s

+
�3

n
s

+�1227

@⌘̂PS

@n
s

=
�5

2
p
n
s

228

:
.
:::
We

:::::::
estimate

:::::
these

:::::::
regimes

:::::
using

:::
the

::::
ridge

::::
line

::::
from

:::
the

::::::::
statistical

:::::::
models

::::
(Eq.

::::
5–7).

:
From Fig. 4229

we can see two distinct regimes: noise-limited and site-limited. Observing systems that lie above230

the @⌘̂/@n
s

curve
::::
ridge

::::
line are in the the noise-limited regime where the error reduction is largely231

governed by the mismatch error in the observing system. Conversely, observing systems below232

the @⌘̂/@n
s

curve
::::
ridge

::::
line are in the the site-limited regime where the error reduction is largely233

governed by the number of sites in the observing system.234

The mismatch error is controlled by the instrument, representation, and model error. In the noise-235

limited regime reducing these errors will provide the greatest benefit. Whereas, in the site-limited236

regime the greatest benefit will come from increasing the number of sites in the observing system237

and there will only be marginal benefit from reducing the instrument, representation, and model238

error.239

6 Discussion240

Three conclusions we can draw from Fig. 4 for California’s East Bay are:241

1. Achieving �
m

=1 ppm adds value. There is relatively little additional benefit to reducing242

mismatch error to 0.1 ppm, particularly for estimating line or point source emissions.243

2. At �
m

=1 ppm there is a benefit to increasing the number of sites, but this benefit increases244

slower than
p
n
s

.245

3. At �
m

=5 ppm there is little benefit from increasing the number of sites; reducing the noise246

would add more value.247

Our work is primarily focused on estimating hourly fluxes, however we can further reduce the248

uncertainty in our estimates by considering temporally averaged fluxes .
::::
(e.g.,

:::::
what

:::
are

::
the

:::::::
weekly

::
or249

:::::::
monthly

::::::::::
emissions?).

:
Fig. 5 shows the error in our estimate of the area source emissions

:::::::::
aggregated250

over various time-scales. We find the error in our estimate greatly decreases over the first 72 hoursand251

agrees well with .
::::
The

::::::
central

::::
limit

:::::::
theorem

:::::::
provides

::
a

:::::
lower

:::::
bound

::
on

:
the error reduction predicted252

by the central limit theorem
::
we

::::::
might

:::::
expect

::::
and

:::
the

:::::
error

:::::::::
reductions

:::::
follow

::::
this

::::
limit

::::::::::
reasonably253

:::
well

::::
over

:::
the

::::
first

::
72

:::::
hours. This implies that our weekly-averaged emission estimate would be 10⇥254

better than our hourly emission estimate.255
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[Fig. 5 about here.]256

6.1 Additional factors affecting observing system design257

We considered three additional factors that could adversely impact an observing system: (1) inver-258

sion domain size, (2) site-specific systematic biases, and (3) using only daytime observations.259

Our results are found to be largely insensitive to the inversion domain size (see Fig. S6). This is260

discerned through a set of sensitivity OSSEs with a reduced domain size. We find that inversions on261

the reduced domain were only marginally worse at reducing the error (⇠ 1%) than inversions on the262

full domain (see Supplemental Section S5
::
S6.1). This is due to the strong local signal in the footprint263

of the measurements (see bottom panel of Fig. 2). As such, the non-local emission sources do not264

adversely impact our ability to estimate urban emissions.265

Biases can adversely impact the observing system (see Fig. S7). To test the impacts of biases in266

the modeling-measurement framework, we repeated the OSSEs outlined in Section 4 but included267

a systematic bias. The bias was unique to each site and was drawn from a normal distribution268

(✏
b

⇠N
�
0,�2

b

I
�
; �

b

= 1 ppm). There are three major findings from the OSSEs with systematic269

biases:270

1. Systematic biases become particularly problematic when the spread of the potential biases271

(defined here as �
b

) is larger than the mismatch error (�
b

> �
m

). This is because we have272

defined the observational error covariance matrix as: R= �2
m

I. However, if �
b

> �
m

with a273

dense observing system then the site-specific biases will artificially inflate the observational274

error covariance matrix: R⇡
�
�2
m

+�2
b

�
I and the errors will be incorrectly characterized in275

the observing system. As long as �
b

<�
m

then R=�2
m

I and the characterization of the errors276

will be appropriate.277

2. Observing systems with more sites are generally less affected by site-specific systematic bi-278

ases. This is because observing systems with a small number of sites rely heavily on those few279

sites. An observing system with many sites is less reliant on a single site and the site-specific280

systematic biases act more like additional noise in the observing system.281

3. Systematic biases have a greater impact when estimating an area source than line and point282

sources. This is because an airmass sensitive to a line or point source will have a greater283

enhancement relative to the background compared to a diffuse area source, thus there is a284

larger signal-to-noise ratio for these sources and a systematic bias is less important.285

During the day, model calculations of the PBL height are more reliable leading to a temptation to286

omit the nighttime data from the analysis. However, emissions at night can be as much as 30% of287

the total and ignoring them makes estimates of urban emissions strongly dependent on prior assump-288

tions. Our observing system would be unable to correct the misrepresented nighttime emissions of289

our a-temporal prior without using nighttime observations. As a result, even our most optimistic290

9



observing system would have a systematic ⇠50 tC hr�1 error (⇠30%) in the estimated area source291

emissions due to the misrepresented nighttime emissions.292

6.2 Potential cost tradeoffs293

We consider two potential observing systems:294

1. “Network A” (n
s

=25, �
m

=1 ppm): A dense network with moderate-precision instruments.295

This network is similar to the BEACO2N network described in Section 3. We assume a cost296

of $5,000 per instrument giving a total cost of $125,000. This network is shown as a purple297

star in the left column of Fig. 4.298

2. “Network B” (n
s

=3, �
m

=0.1 ppm): A sparse network with of high-precision instruments.299

This network uses cavity-ring down instruments. We assume a cost of $50,000 per instrument300

giving a total cost of $150,000. This network is shown as a green star in the left column of301

Fig. 4.302

We note that the assumed mismatch error for these two potential observing systems is defined as the303

instrument error and assumes there is no contribution from model or transport errors.304

The cost for these two networks is comparable. From Fig. 4, we find that the sparse “Network B”305

is site-limited in all cases whereas the dense “Network A” is near the noise/site-limited boundary
::
in306

::
the

::::::::::::
noise-limited

::::::
regime. Further, we find that the dense “Network A” has less error in the estimate307

of all source types in San Francisco’s East Bay. Networks sitting exactly on the ridge line are at the308

optimal balance between precision and number of sites.309

6.3 The relationship between network density and transport error310

In this work we have treated transport error and the number of measurement sites as independent.311

However, in practice, there would be a relationship between the transport error and measurement312

network density. This can be understood with a thought experiment using two different observing313

systems to estimate emissions: a sparse network with a single site and an infinitely dense network314

(sites at each grid cell in our domain). Estimating emissions with the sparse network would require315

us to simulate the atmospheric transport with high fidelity if we are to reliably say anything about316

emissions upwind of our site. This is especially true for point sources. Any errors in the simulated317

atmospheric transport would adversely impact the estimated emissions, whereas the infinitely dense318

network could potentially neglect atmospheric transport and use data from only the local grid cell319

to estimate emissions. This is because the differential signal at each site would be largely gov-320

erned by the local emissions. Explicitly quantifying this relationship between transport error and321

measurement network density should be the focus of future work.322
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7 Conclusions323

Understanding the factors that govern our ability to estimate urban greenhouse gas emissions are cru-324

cial to improving an observing system and reducing the uncertainty in emission estimates. Here we325

have quantitatively mapped the errors in CO2 emission estimates from different observing systems326

for three different types of sources in California’s Bay Area: area sources, line sources, and point327

sources. Our results show that different observing systems may fall into noise or site-limited regimes328

where reducing the uncertainty in the estimated emissions is governed by a single factor; these329

regimes differ for the source types. Identifying the regime an observing system is in will help inform330

future improvements to the observing system. A number of prior urban CO2 experiments have de-331

fined as a goal, the understanding of emissions to less than 10% (e.g., Kort et al., 2013; Wu et al., 2015)
:::::::::::::::::::::::::::::::
(e.g., Kort et al., 2013; Wu et al., 2016).332

We find that a BEACO2N-like network could achieve this accuracy and precision with 1 week of333

observations, if the dominant source of error is instrument precision. This conclusion may motivate334

a re-examining of the conventional instrument quality-oriented design of CO2 observing systems,335

according to the stated goal of a given network.336
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Fig. 1. September 2013 CO2 fluxes from bottom-up inventories. Top row shows the fluxes in the Bay Area
(122.0357� – 122.7683�W, 37.3771� – 38.2218�N) at four representative hours (hour in local time). Right
panel shows the a-temporal EDGAR v4.2 FT2010 CO2 flux in the Bay Area. Bottom panel shows the total Bay
Area CO2 flux (black), traffic (orange), other anthropogenic (red), and natural (green) sources. Vertical gray
shading indicates the time slices plotted in the top and middle panels.
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Fig. 2. Top panel shows the location of the sites (black circles), the area source (blue region), the line source
(orange line), and point sources (red diamonds). Bottom panel shows the September 15 to 22 average footprint
for the 34 sites in the network, see Table 1 for a list of the sites. The bottom panel is the full domain used for
the inversion.

::::::::::
Supplemental

:::
Fig.

:::
S3

:::::
shows

::
the

:::::::
footprint

::
on

::
a
:::::::
log-scale.

:

16



Fig. 3. Example of estimated CO2 fluxes. Top row shows the average emissions from (a) the prior, (b) the
posterior, and (c) the true emissions. Panel (d) shows a time series of the emissions from the area source
with the prior (green), posterior (pink), and true emissions (black). Panel (e) shows the difference between the
posterior and the prior. Panel (f) shows the difference between posterior and the truth. Posterior output is from
the best case scenario (nS =34 and �m =0.005 ppm).
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Fig. 4. Left column shows the error in the posterior CO2 fluxes. Right column shows the fluxes being esti-
mated. Top row is the area source, middle row is the line source, and bottom row is the point source.

::::::::
Inversions

:::
were

:::::::::
performed

:::::
using

::::::::::::::::
ns = [1,2,...,34] sites

::::
and

:::::::::::::::::::::::::::::::::::::::::::
�m = [0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2,10,20] ppm

:::::::
mismatch

:::::
error.

:
Results

::::
shown

:
are the mean of a monte carlo analysis using 20 different combinations of

sites
::
for

::::
each

:::
ns ,

:::::::
�m pair. Contours are from the statistical models ⌘̂ (see Eq. 5–7) converted to flux er-

rors and the red lines are the partial derivative of the statistical models with respect to the number of sites,
@⌘̂/@ns (Eq. 8–8),

::::
ridge

::::
lines that define the cutoff between the noise-limited and site-limited regimes. Purple

star shows an observing system with 25 sites and 1 ppm noise. Green star shows an observing system with 3
sites and 0.1 ppm noise. Note the log-scale on the y-axis.

18



0 24 48 72 96 120 144 168

Number of Hours Used

0.5

1

2

5

10

20

A
r
e
a
 S

o
u

r
c
e
 F

lu
x
 E

r
r
o

r
 (

tC
 h

r
-1

)

Central Limit Theorem

Uncertainty aggregated in time

Mean

Range (1-σ)

Fig. 5. Uncertainty aggregated in time for the best case inversion (see Fig. 3). The CO2 flux estimate in this
study has an hourly temporal resolution. The uncertainty in the emissions estimate declines as the estimate is
averaged to longer temporal scales. Solid blue line is the mean uncertainty, shading is the 1-� range, and the
dashed black line is the uncertainty predicted by the central limit theorem. Note the log scale on the y-axis.
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Table 1. 34 sites in the networka used in this study.

Site Code Site name Latitude Longitude Height
(�N) (�W) (m a.g.l.)

AHS Arroyo High School 37.680 122.139 3
BEL Burckhalter Elementary School 37.775 122.167 5
BFE Bayfarm Elementary School 37.744 122.251 3
BOD Bishop O’Dowd High School 37.753 122.155 3
CES Claremont Elementary School 37.846 122.252 3
CHA Chabot Space & Science Center (low) 37.819 122.181 3
CHB Chabot Space & Science Center (high) 37.819 122.181 9
COI Coit Tower 37.8030 122.406 5
CPS College Preparatory School 37.849 122.242 24
EBM W. Oakland EBMUD Monitoring Station 37.814 122.282 3
ELC El Cerrito High School 37.907 122.294 8
EXB Exploratorium (Bay) 37.803 122.397 6
EXE Exploratorium (Embarcadero) 37.801 122.399 3
FTK Fred T. Korematsu Discovery Academy 37.738 122.174 3
GLE Greenleaf Elementary School 37.765 122.194 3
HRS Head Royce School 37.809 122.204 7
ICS International Community School 37.779 122.231 3
KAI Kaiser Center 37.809 122.264 127
LAU Laurel Elementary School 37.792 122.197 12
LBL Lawrence Berkeley National Lab, Bldg. 70 37.876 122.252 3
LCC Lighthouse Community Charter School 37.736 122.196 3
MAR Berkeley Marina 37.863 122.314 3
MON Montclair Elementary School 37.830 122.212 3
NOC N. Oakland Community Charter School 37.833 122.277 3
OMC Oakland Museum of California 37.799 122.264 3
PAP PLACE at Prescott Elementary 37.809 122.298 3
PDS Park Day School 37.832 122.257 3
PHS Piedmont Middle & High School 37.824 122.233 3
POR Port of Oakland Headquarters 37.796 122.280 3
OHS Oakland High School 37.805 122.236 3
ROS Rosa Parks Elementary School 37.865 122.295 3
SHA Skyline High School (low) 37.798 122.162 3
SHB Skyline High School (high) 37.798 122.162 13
STL St. Elizabeth High School 37.779 122.222 3

a This study uses both operational and proposed sites. See Shusterman et al. (2016) and
“http://beacon.berkeley.edu/” for more information on the network.
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