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Response to Reviewer Comments: 
 
We thank the two Anonymous Reviewers for their thorough comments, particularly Reviewer 
#1 for catching an error in the presentation of the ∂η/∂ns curve. 
 
 
 
Reviewer #1 Comments: 
 
The approach, fitting a statistical model to a sample of network designs, is novel but 
intuitive. While the detailed analysis could be more robust in some ways, the conclusions 
are a significant advance over the current state of knowledge and will have concrete value 
for the design of future observing systems, and I encourage publication once my concerns 
are address.  
 
 
1.)  Abstract could lead to false impressions: My primary concern the author’s can 
address readily.  As currently written, the abstract could lead to false impressions that this 
analysis definitively concludes that moderate cost sensors in a denser network is the optimal 
configuration for any urban area and that weekly CO2 emissions with uncertainties of less 
than 5% can be achieved. These sections of the abstract in particular should be re-worked, 
as the authors actually are finding that with their specific modeling framework, higher 
density/moderate cost sensors provides an improved basis for flux estimation for the Bay 
Area. Further, given some of the assumption of diagonal error co-variance matrices, the 
representativeness of low altitude measurements in an urban region, and the gap presented 
by neglecting night-time data, the 5% monthly conclusion would appear to be an 
optimistic/idealized result and needs to be presented as such. 
 
We have updated the text in the abstract to include more qualifiers. 
 
 
2.)  Clarity of presentation: Additionally, error in describing the background condition, or 
the CO2 levels before impact of the urban region, have been found to be of high importance 
in other urban studies, and more discussion on the construction of this and assumptions 
used would be helpful. Otherwise my recommendations center around the clarity of 
presentation. In order to be of most use to a wider audience, including to researchers who 
may wish to perform similar analyses as they design networks in other cities, the methods 
need to be described more fully and precisely. Some justification should be provided for the 
choices and assumptions made in the analysis; I point out some examples below, but the 
authors should make a thorough review. The figures, especially figure 4, should be made 
more clear. 
 
We have updated the text to include the reviewer’s suggestions. 
 
 
Minor Comments: 
 
1.)  How are the representativeness of observations made at just meters above the surface 
in a dense urban environment addressed? Depending on how these observation sites are 
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setup, they could be biased in their sampling to see traffic, people, or biosphere in a 
courtyard. This paper does not need to solve this problem, but it should be discussed as a 
potential additional source of bias error in ‘cheap’ network deployments, particularly as more 
sites are deployed (which can be very challenging to secure sites for deployment) and less 
ideal deployment locations are used. There is another component of this question, or way to 
frame it, which is a model designed to work at 1km will not be able to represent the sub-km 
variability sampled by a network not deployed to make observation representative of 1km 
areas, and thus potential biases might result. 
 
The reviewer asks about the representativeness of observations made meters above the 
surface in a dense urban environment.  However, as the reviewer notes, this is not a 
problem our paper aims (or needs) to address.  This question is not relevant to a pseudo-
data study like ours because our pseudo-data are generated using a model at 1-km 
resolution, so the pseudo-data are representative of a 1-km area.  From a more 
experimental perspective, it is currently unknown whether sensitivity to local processes 
necessarily precludes the ability of surface-level sensors to represent domain-wide 
phenomena, as BEACO2N is the first network with sufficient quantity and density of sensors 
to empirically investigate this trade-off. Future analyses of the real BEACO2N dataset are 
positioned to answer these and related questions more quantitatively. 
 
Regarding the potential additional source of bias error in ‘cheap’ network deployments, we 
have attempted to address this in the original manuscript through the “systematic bias” 
sensitivity test that was presented in Section 6.1 and Supplemental Section S6.2 where we 
added a systematic site-specific bias to each observational site in the network.  This site-
specific bias could be due to representation error, instrument error, etc.  Additionally, the 
companion manuscript (Shusterman et al., 2016) found the BEACO2N sensors to detect 
weekly fluctuations in background concentrations to within ±2 ppm. 
 
 
2.)  The abstract should make clear that the statistical models estimate the uncertainty 
reduction as a function of the number of sites and the model-data mismatch. It should state 
that the study region is the Bay Area. 
 
Presenting technical details of the statistical models, as the reviewer proposes, would make 
the abstract overly cumbersome.  A reader that is interested in the statistical models will 
need to consult the main text.  However, we have updated the abstract to make it clear that 
the study area is the Bay Area. 
 
Lines 6-7: “modeled after the BEACO2N network in California's Bay Area” 
 
 
3.)  Line 17-19: Need to specify that with this particular WRF-STILT framework and 
assumptions on error co-variance the moderate precision array is preferred. 
 
We have updated the text: 
 
Lines 17-18: “Using our inversion framework, we find that…” 
 
 
4.)  Line 19-21: This might technically be accurate, but is a bit misleading as some of the 
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assumption made here likely will cause issues with absolute flux accuracy that are much 
larger than 5%. No top-down method has ever been demonstrated to this point to have 
fidelity greater than 10% (some would argue demonstration of 20% has yet to be actually 
achieved). 
 
Previous top-down studies have tended to focus on sparser networks and may have been 
site-limited.  Kort et al. (2013) claim to constrain fluxes to 10% using a sparser network.  
Here is the final line of their abstract: “We estimate that this network can distinguish fluxes 
on 8 week time scales and 10 km spatial scales to within ~12 g C m–2 d–1 (~10% of average 
peak fossil CO2 flux in the LA domain).”  Additionally, we are discussing the constraints on 
the urban region (Area Source), which should be easier to constrain than 10 km grid cells 
due to it’s large size.  Given the differences in observational networks, our results are in line 
with previous estimates reported in the literature. 
 
 
5.)  Line 43: Clarify whether instruments and calibration approaches are mixed within 
individual networks, between networks, or both. 
 
We have updated the text: 
 
Lines 44-46: “Current monitoring networks use a variety of instruments and approaches to 
calibration with resulting variations in capital and operating costs, network precision, and 
potential instrument bias.” 
 
 
 
6.)  Lines 69-70: Specify the temporal resolution of the BAAQMD inventory. 
 
We have updated the text: 
 
Lines 70-71: “The Bay Area Air Quality Management District (BAAQMD) provides detailed 
annual county-level CO2 emissions information…” 
 
 
7.)  Lines 81-86: Make clear in this paragraph exactly what the FIVE product consists of. Is it 
a particular representative week of hourly emissions, which can be scaled by the user to fit 
other weeks? Or is scaled by McDonald et al. and provided for any week desired by the 
user? 
 
We have updated the text: 
 
Lines 82-85: “The FIVE traffic CO2 inventory provides a representative week of hourly CO2 
emissions for San Francisco and other nearby Bay Area cities at 10 km, 4 km, 1 km, and 
500 m resolution.  This representative week can be scaled to different years based on the 
state fuel sales (see McDonald et al. (2014) for additional details).” 
 
 
8.)  Lines 88-91: As a simple approximation, could agricultural emissions be attributed 
uniformly to farmland? If this approximation is worse than omitting agricultural emissions 
entirely, state why. 
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For the purpose of the OSSE, this is inconsequential because we are using pseudo-
observations.  We are attempting to generate an inventory that is a reasonable 
approximation of the true emissions.  The agricultural emissions are only 1% of the 
anthropogenic emissions, including them will have no impact on the results presented here. 
 
Also, see the response to Reviewer #2’s minor comment #3. 
 
 
9.)  Line 94-95: Please explain in more detail how you regrid from 1 degree to 1 km – this 
could be done in different manners. 
 
We have added a detailed explanation to Supplemental Section S3. 
 
 
10.)  Line 102: The assumption of negligible diurnal cycle needs to be more thoroughly 
justified, especially since Nassar et al. (2013) emphasize the importance of diurnal variation. 
 
Nassar et al. (2013) show that much of this diurnal variability is in the on-road mobile sector 
(see their Fig. 1).  The other anthropogenic sectors (residential, industrial, electric vehicles, 
and commercial) show small diurnal variability (diurnal scale factor varies between 0.9 and 
1.1).  Our bottom up inventory includes diurnal variability from the on-road mobile sector. 
 
 
11.)  Lines 127-132: This description of STILT is confusing. It would be more clear to first 
explain how STILT is used to calculate influence footprints and only then to describe how the 
footprints are used to simulate CO2 concentrations at the site locations. 
 
We have updated the text and our description in Supplemental Section S1.  See also our 
response to Reviewer #2’s major comment #1. 
 
 
12.)  Lines 152-153: What does it mean that “the B matrix has an uncertainty of 100% at the 
native resolution?” One might take this to mean that the prior estimate is assigned a factor-
of-two uncertainty. In supplemental section S2, it seems as though “100% uncertainty” 
means only that a multiplicative factor fσ is introduced and then set to one. 
 
It means the uncertainty is equal to the standard deviation of the hi-res inventory.  We 
initially considered using other scale factors (fσ) but ultimately settled on a multiplicative 
factor of one.  However, we left this in the supplement for future studies to potentially modify. 
 
 
13.)  Lines 155-158: The impact on the result of the choice of a diagonal R matrix should be 
described. 
 
Using a diagonal R matrix means that all of our model-data mismatch errors are 
uncorrelated.  As such, using a non-diagonal R matrix will mean there is less information in 
the observations because the observations are not independent.  We have used a diagonal 
R matrix because the real observations in the BEACO2N network are made at 1 Hz.  Here 
we use hourly observations.  As such, it seems fair to assume the original 1 second 
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observations are independent when aggregated to 1 hour.  A study with real data could look 
at the autocorrelation of the model-data mismatch to infer a proper decorrelation length 
scale, which will almost certainly be much less than 1 hour. 
 
We have updated the text: 
 
Lines 152-153: “Using a diagonal R matrix means that we have assumed our mismatch 
errors are uncorrelated.” 
 
 
14.)  Line 173: Why not just use the posterior flux error, which is more intuitive and which is 
shown in the key figure (figure 4)? Why is it an advantage to use a metric similar in form to 
the averaging kernel matrix? 
 
The posterior flux error is an absolute metric and, as such, is less generalizable.  The error 
metric chosen here is more similar to previous work (e.g., Kort et al., 2013) and more 
generalizable to other studies. 
 
 
15.)  Lines 184-185: The single sentence “We vary the number of sites (ns) and mismatch 
error (σm) and perform an ensemble of 20 inversions for each combination to ensure the 
results are robust.” is not adequate to explain this key step in the analysis. For how many 
different combinations of ns and σm was the error calculated? Which combinations? How 
were site locations chosen for non-maximal ns? What differs between the 20 inversions 
performed for the same combination of parameters: the choice of site locations, the random 
errors, the STILT footprint calculation? 
 
We have updated the text: 
 
Lines 195-202: “Fig. 4 shows the error in the estimated CO2 fluxes using the observations 
over a wide range of observing system scenarios.  We vary the number of sites (ns = [1, 2, 
…, 34]), mismatch error (σm = [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20] ppm), 
and perform an ensemble of 20 inversions for each combination to ensure the results are 
robust.  Each ensemble member uses a unique observational network by randomly drawing 
ns sites from the population of 34 possible sites.  In total, we perform 8,160 inversions.  Fig. 
4 shows the mean error in the estimated CO2 fluxes for the area source, line source, and 
point source as a function of σm  and ns.  This figure represents the uncertainty in the 
estimated emissions at a given hour.” 
 
 
16.)  Line 193: The first two parameters are motivated by the assumption of Gaussian 
errors; what motivates the choice of the other five parameters? 
 
The x-axis is a linear scale and the y-axis is a log-scale and we can qualitatively see 
structure in the figure.  As such, we assumed that linear and log relationships could yield a 
significant relationship. 
 
 
17.)  Lines 208-218: This critical part of the procedure is not clear. The derivative of η with 
respect to ns expresses the error reduction to be obtained by adding additional sites. In order 
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to say whether a particular network configuration is noise-limited or site-limited, this 
reduction should be compared to the reduction to be obtained by reducing the mismatch 
error, expressed by the derivative of η with respect to σm. But the latter is never calculated. 
Furthermore, it’s not clear what is meant by “the ∂η/∂ns curve,” how such a curve can be 
plotted on axes neither of which corresponds to that derivative (as in Figure 4), or what it 
means for a particular system to be above or below the curve. 
 
We appreciate the reviewer for catching this mistake.  We no longer use the derivatives to 
estimate these regimes.  We now estimate them as the ridgeline from the statistical models.  
 
 
18.)  Lines 232-237: This is an important point and should be explained more clearly. 
Exactly what fluxes do you estimate in the averaged case, and what errors are you 
comparing? Precisely what does “10× better” mean? In the figure it looks as though the 
errors do not decrease as quickly as predicted by the CLT but seem to level off after about 
96 hours; you might explain why this is to be expected. 
 
The errors in emissions aggregated over 1 week are about a factor of 10 less than the error 
in hourly emissions.  We have updated the text: 
 
Lines 243-249: “Our work is primarily focused on estimating hourly fluxes, however we can 
further reduce the uncertainty in our estimates by considering temporally averaged fluxes 
(e.g., what are the weekly or monthly emissions?).  Fig. 5 shows the error in our estimate of 
the area source emissions aggregated over various time-scales.  We find the error in our 
estimate greatly decreases over the first 72 hours.  The central limit theorem provides a 
lower bound on the error reduction we might expect and the error reductions follow this limit 
reasonably well over the first 72 hours.  This implies that our weekly-averaged emission 
estimate would be 10× better than our hourly emission estimate.” 
 
 
19.)  Line 273-274: How is this statement about the large systematic error consistent with 
the 5% uncertainty conclusion highlighted in the abstract? 
 
The 5% uncertainty is referring to the case shown in the main text (case without the imposed 
systematic bias). 
 
 
20.)  Section 6.1: Since the text of the supplemental section S5 contains little additional 
information, consider integrating it into the main text, possibly combining figures S6-S8. 
Also, specify whether all the observing systems tested in Section 4, or only a subset, were 
included in the test of sensitivity to domain size. 
 
We feel that this content is better suited to the supplement. 
  
 
21.)  Section 7: The conclusions should include at least some description of which system 
designs were found to be site-limited and which noise-limited, since that information is of 
immediate use to other researchers designing or evaluating their own networks. 
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We have refrained from putting that in the Conclusions section because it is, somewhat, 
dependent on the specification of transport error.  We allude to this in the conclusion when 
we qualify one of our findings with the following statement: “if the dominant source of error is 
instrument precision.”  
 
 
22.)  Figure 3: The color scheme in the top row is not intuitive to perceive, especially at low 
resolution as in panel a. Is white used for no estimate as well as for zero flux? 
 
It is unclear what “low resolution” the reviewer is referring to, all of the fluxes are plotted at 
the same resolution (1 km2).  As for the color scheme, we tested many different color 
schemes and settled on this one because it facilitated comparison between the different 
panels (other color schemes were much worse). 
 
White indicates a flux of zero.  There is no “no estimate”, all panels have fluxes at all grid 
cells. 
 
 
23.)  Figure 4: This figure is crucially important, and the design is generally good. However, 
the shading needs to be reworked so that the gradient is more visible. Also, as mentioned 
above, it’s not clear what defines the red line that separates noise- from site-limited regimes. 
 
We have updated the coloring and the method for defining noise- and site-limited regimes. 
 
 
24.)  Supplement line 56: Why were the decay parameters chosen as they were? 
 
The decay parameters were judiciously chosen through discussion with the co-authors who 
have experience creating the bottom-up inventory (Brian McDonald and Robert Harley).  
Future work could include these parameters in the inversion by defining them as 
hyperparameters.  However, we would no longer have a conjugate prior and would need to 
move to a sampling approach to obtain the posterior.  Given the large number of inversions 
performed in this study (32,640 inversions), this would be computationally infeasible. 
 
 
25.)  Figure S2: Four judiciously chosen panels would probably be sufficient and could be 
shown at a larger size. 
 
This is a vector graphics image in the Supplement.  Readers should be able to zoom in on 
the panels without losing quality. 
 
 
26.)  Figure S3: Panels c-e are not as informative and could be omitted. 
 
We disagree with the reviewer on this point.  The usefulness of these panels varied quite a 
bit depending on the audience.  We have found these panels to be useful for explaining the 
methodology to scientists who do not typically construct state vectors themselves.  However, 
the panels are not crucial to the manuscript, which is why we put them in the Supplement. 
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27.)  Figures S6-S8: As in Figure 4, the gradient is not visible enough. Also, the left column 
corresponds to main text Figure 4, not Figure 3. 
 
We thank the reviewer for pointing out the incorrect labeling. 
 
 
28.)  Appendix A: In my opinion, this table is not necessary. 
 
We feel that his table could be useful to some readers interested in the robustness of the 
different statistical models, which is why we have included it in the Supplement. 
 
 
 
 
Reviewer #2 Comments: 
 
It is certainly a novel piece of work and is beneficial to other urban measurement network 
designs and associated studies. However, some parts of the manuscript need improvements 
or additional details to better understand the results and their interpretations. Also some 
clarifications are necessary to improve the manuscript (see the comments below). Hence I 
would recommend this manuscript for publication after addressing my concerns and 
comments listed below. 
 
 
1.)  Footprint calculations: My major concern is about the footprint calculations presented 
in the manuscript. As far as I understand, what it is shown in Fig. 2 is the averaged footprints 
for all sites in the network in which the footprints are calculated separately for each sites. In 
that case, I am surprised with such a low value for the averaged footprints on the western 
side of the model domain even if there are many sites (especially the line source/high-way is 
on that side, Fig. 1). Although a part of this can be explained with the prevailed wind 
direction, I don’t find enough reasons to justify the shown structure. i.e., it is difficult to 
believe that those sites don’t give much information on surface fluxes for this period. Please 
clarify and also give additional details (e.g. set up of STILT receptor locations, how strong is 
the advection, details of vertical mixing etc.). 
 
The reviewer thinks the observations should have more sensitivity to the “western side of the 
model domain”.  This may stem from how other work has presented the footprints.  Much of 
the previous work showing footprints has plotted them on a log-scale (e.g., Lin et al., 2003, 
2004, 2007; Kort et al., 2008) or as percentiles (e.g., Miller et al., 2012, 2013; McKain et al., 
2015).  We have added a Supplemental Figure (Fig. S3) that shows the footprint on a linear-
scale and log-scale.  The largest footprint values are in locations where we have an 
observation site, however there are diffuse signals that cover much of the domain and have 
a non-trivial contribution to the total signal.  Further, the spatial footprints found here are 
broadly consistent with previous work by Bastien et al. (2015; their Fig. 2a-e) who used an 
adjoint model to determine the sources influencing air pollution in California’s East Bay. 
 
As for the request for additional details, it seems that the reviewer may have missed or 
overlooked some of the model description.  Most of what the reviewer requested is already 
included in the manuscript or supplement.  Specifically, the STILT receptor locations 
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(latitude, longitude, and height above ground level) are listed in Table 1 and the details of 
the WRF simulations (including PBL and LSM schemes) are included in Supplemental 
Section 1.  The advection and vertical mixing are, largely, determined by the WRF model.  
The cited literature (Lin et al., 2003; Nehrkorn et al., 2010) describe the advection, vertical 
mixing, and coupling of STILT to WRF in exhaustive detail. 
 
 
2.)  Inverse framework is not well explained: Another criticism is that the inverse 
framework, although it is a critical component of this study, is not well explained (Sect.4). For 
example, it is not very clear to me how the state vector is defined for this experiment. What 
is the spatial and temporal resolutions of the posterior fluxes? This is important to follow the 
inversion results. This section needs major improvement w.r.t giving additional details. 
 
We have updated the text in Section 4.  It now includes a more detailed explanation of the 
inverse framework including a paragraph describing the state vector. 
 
 
3.)  Reported error estimate: The reported error estimate of the posterior fluxes (5%) is for 
the best case OSSE and the inversion experiment (rather I would say that it is for “the most 
idealized case”) in which the total model-data mismatch error is assumed to be 0.005 ppm. 
Since this mismatch error is totally unrealistic in the current scenario, it is not fair to include 
this “best case” result in the abstract unless the model-data mismatch error (+ other 
assumptions) is explicitly specified here. Since it is misleading, I would recommend authors 
to either remove this sentence or provide an error estimate for more reasonable scenario. 
 
It seems that this comment stems from a misunderstanding in the reported errors; our 
abstract does not report errors using the 0.005 ppm case.  The reported error estimate of 
the posterior fluxes (5%) is for “Network A” (dense network with moderate-precision 
instruments) from Section 6.2, not the most optimistic case with 0.005 ppm.  Fig. 3 shows 
the most optimistic case because there is only one combination of sites for that case, 
whereas networks with less sites have multiple configurations that could be shown. 
 
We have updated the abstract to clarify this: 
 
Line 20: “The dense network considered here (modeled after the BEACO2N network)…” 
 
 
3.)  Fig. 3 and associated statements: I can’t see a remarkable performance of inversion 
in retrieving posterior fluxes as one would expect here, given that the inversion uses a loose 
prior (100% uncertainty), used all 34 sites, and “unrealistically” low mismatch error (=0.005 
ppm which includes model error, representation error, and instrument error). The spatial 
structure in the CO2 fluxes is captured only for a few parts of the domain. Unfortunately, this 
says to me that the most of other sites are not much useful in this case, which is hard to 
believe. This again points back to my concern regarding the footprint calculation. Need to 
clarify. 
 
It is unclear which “associated statements” the reviewer is referring to.  Fig. 3 is merely 
presented as an example of the posterior fluxes.  One of the few statements we make about 
Fig. 3 is in reference to the diurnal cycle in Fig. 3: “We find substantial improvements in the 
diurnal cycle (see panel d).” 
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As for the comment about the unremarkable performance of the inversion, we are surprised 
by this comment.  We find the improvement, relative to the prior, quite remarkable.  Panel d 
in Fig. 3 highlights this.  The diurnal cycle in the prior is completely incorrect (wrong 
magnitude and out of phase) but the posterior is able to recover the true diurnal cycle.  The 
spatial structure is recovered reasonably well in the region where we have measurements 
sites (California’s East Bay).  Not surprisingly, we see little improvement in distant regions 
because we do not have sites located there (so the observations are unable to constrain 
those regions).  The results follow pretty much exactly with what one might intuitively expect. 
 
 
 
Minor Comments: 
 
1.)  L24: Radiative forcing is variable over the years. Please give the value w.r.t year. 1.82 
W m-2 looks more like the 2011 year values. 
 
We have updated the text. 
 
Line 25: “with a radiative forcing of 1.82 W m-2 in 2011 relative to preindustrial times (IPCC 
2013).” 
 
 
2.)  L60: The issue is not only with the spatial resolution, but also with the large uncertainty 
ranges (reported or expected). This issue needs to be addressed clearly in the manuscript to 
draw the importance of the high resolution inversion modeling, which is to reduce the 
uncertainty of the emission fluxes. Also mention about the temporal resolution. This is also 
important especially when cities have peak traffic, industrial, or commercial hours. Need to 
be mentioned/addressed in the manuscript. 
 
We have updated the text. 
 
Lines 28-29: “…yet current bottom-up inventories still have large uncertainties.” 
 
 
3.)  L92-95: From Fig.1 (bottom panel), I see that the natural sources accounts for about 
17% (peak to peak, according to CT2013B) of the total fluxes and are varying as expected. 
This is considerable in comparison with the Bay area traffic sources which accounts for 
∼50% of the total fluxes. Hence I would expect that using the natural fluxes at coarse 
resolution (1×1) can generate additional uncertainty and may not be appropriate in this high 
resolution modeling scenario. Please comment on this. 
 
While a good point, it’s not really relevant here because we are performing an OSSE. As 
such, we have two main goals in constructing the bottom-up inventory: (1) create a bottom-
up inventory that is a reasonable approximation of the true emissions and (2) create a 
bottom-up inventory that is fundamentally different from the prior inventory.  For the former 
goal, the CarbonTracker natural fluxes should provide a reasonable approximation to the 
true diurnal cycle, albeit with coarse spatial resolution, while the anthropogenic inventory 
provides high spatio-temporal information about the urban region.  Therefore, our bottom-up 
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information should be a decent approximation of the true emissions.  As for the latter goal, 
we are interested in learning what an observational network could tell us about the 
emissions.  So we are using fundamentally different bottom-up inventories to generate the 
pseudo-observations and serve as the prior for the inversion. 
 
 
4.)  Fig.1: What is “other Anthro” (red line) based on? 
 
We have updated the caption: 
 
Fig. 1 Caption: “Other anthropogenic sources in the BAAQMD inventory (red).” 
 
 
 
5.)  Section 4: This section needs further improvements to better explain the inversion 
technique used in this study. Please modify. Also indicate the dimension of "m" and "n". 
 
The dimensions of m was presented in Supplemental Section S2: “m = 2,133,120, mt = 240, 
mx = 88, and my = 101.”  We now also included this in the main text Section 4: 
 
Lines 144-147: “The resulting state vector has 2,133,120 elements (m = mt!mx!my  with mt = 
240, mx = 88, and my = 101) and the posterior fluxes will have hourly temporal resolution and 
1 km2 spatial resolution.  The dimension of n will depend on the number of sites in the 
observational network.” 
 
 
6.)  Mathematical formulas (e.g. Sect. 4): Please use standard formatting as followed by the 
most of the authors/textbooks. For e.g. prior fluxes, xb in which “b” is subscript. 
 
We have updated the notation. 
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