

1	Interpreting the ¹³ C/ ¹² C ratio of carbon dioxide in an urban airshed in the Yangtze
2	River Delta, China
3	
4	Jiaping Xu ¹ , Xuhui Lee ^{1,2*} , Wei Xiao ¹ , Chang Cao ¹ , Shoudong Liu ¹ , Xuefa Wen ³ , Jingzheng
5	Xu ¹ , Zhen Zhang ¹ , Jiayu Zhao ¹
6	
7	¹ Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information
8	Science & Technology, Nanjing, China
9	
10	² School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut,
11	USA
12	
13	³ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
14	Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
15	
16	* Corresponding author
17	Dr. Xuhui Lee
18	Sara Shallenberger Brown Professor
19	School of Forestry and Environmental Studies, Yale University,
20	21 Sachem Street, New Haven, Connecticut 06510, USA
21	Phone: (203)432-6271; Fax: (203)432-5023
22	E-mail: xuhui.lee@yale.edu

24	Abstract: Observations of atmospheric CO ₂ molar fraction and its ¹³ C isotope composition
25	$(\delta^{13}C)$ in urban airsheds provide constraints on the roles of anthropogenic and natural sources
26	in local and regional C cycles. In this study, we report observations of these quantities in
27	Nanjing at hourly intervals from March 2013 to August 2015 using a laser-based optical
28	instrument. Nanjing is the second largest city located in the highly industrialized Yangtze
29	River Delta (YRD), Eastern China. The mean CO_2 molar fraction and ${}^{13}C$ were 439.7 ppm
30	and -8.48‰ over this observational period. The peak monthly mean δ^{13} C (-7.44‰, July 2013)
31	was 1.03‰ higher than that observed at the Mauna Loa Observatory. The highly enriched $^{13}\mathrm{C}$
32	signal was attributed to the influence of cement production in the region. By applying the
33	Keeling plot and the Miller-Tans method to midnight and midday observations, respectively,
34	we showed that the ¹³ C signal of C sources in the Nanjing Municipality was 0.48‰ lower
35	than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the
36	YRD were a negligibly small sink of atmospheric CO ₂ , consistent with the Carbon Tracker
37	inverse modeling result.
38	
39	Keywords: urban areas; CO ₂ flux; Industrial process; Carbon isotope; In-situ observation

40

41 **1 Introduction**

42	Atmospheric CO_2 sources in urban areas consist mainly of plant uptake and release and fossil
43	fuel combustion. These sources have their unique ¹³ C isotopic signatures. City clusters are
44	human-dominated systems with high carbon emission intensity, contributing over 70% of the
45	total anthropogenic CO ₂ to the atmosphere (Satterthwaite 2008). Previous urban isotopic
46	studies emphasize carbon emissions from fossil combustion (Zondervan and Meijer 1996,
47	Pataki et al. 2003, Zimnoch et al. 2004, Affek and Eiler 2006, Newman et al. 2008).
48	Relatively little attention is given to the isotopic signature of carbon dioxide released by
49	cement production, which is much heavier than that of fossil fuel origin (Andres et al. 1994).
50	Likewise, the CO ₂ emitted from burning of minerals in non-energy consumption industrial
51	processes, such as iron and steel production, has higher ¹³ C composition than that of fossil
52	(Table 1, Widory 2006). In China, cement production and industrial processes contribute 13%
53	of the total anthropogenic CO ₂ emission (Mu et al. 2013). Many of these industrial activities
54	occur in or near urban areas. So far, little is known about their roles in the atmospheric δ^{13} C
55	budget.
56	One scientific motivation for quantifying the ${}^{13}C$ signature of atmospheric CO ₂ is that it
57	provides constraints that allow partitioning of the net surface flux into component fluxes
58	(Farquhar and Lloyd 1993, Yakir and ternberg 2000, Pataki et al. 2003). The ¹³ C-based
59	partitioning method has been used primarily for vegetation ecosystems, such as forests
60	(Lloyd et al. 1996, Lloyd et al. 2001, Ometto, et al. 2006, Zobitz et al. 2008), grasses (Ometto
61	et al. 2002, Pataki et al. 2003), and crops (Leavitt et al. 1995, Griffis et al. 2005). The
62	approach has also been used in a limited number of urban studies (Pataki et al. 2003,

63	Zimnoch et al. 2004, Newman et al. 2008, Jasek et al. 2014). Compared with vegetation
64	ecosystems, urban ecosystems have more complex CO2 source configuration. We must
65	consider both natural sources (plants and soils) and anthropogenic sources (fossil combustion
66	and non-energy industrial processes) and the fact the degree of mixing of urban air with the
67	free troposphere and the air outside the urban boundary varies diurnally and seasonally.
68	Anthropogenic emissions are hard to quantity because they depend on multiple factors
69	including city size, population density, fossil mix, and climate.
70	One of the first measurements of the carbon isotope composition of CO_2 in an urban
71	atmosphere was made by Friedman and Irsa (1967). Since then, a few more experiments have
72	been conducted in urban environments. The data collected have been used to partition CO2
73	contributors (Koerner and Klopatek 2002, Clark-Thorne and Yapp 2003), to quantify diurnal
74	variations in the CO ₂ molar fraction and its δ^{13} C in urban air (Zimnoch et al. 2004, Guha and
75	Ghosh 2010) and across urban to rural gradients (Lichtfouse et al. 2003, Pataki et al. 2007),
76	and variations among different land uses in urban areas (Clark-Thorne and Yapp 2003,
77	Widory and Javoy 2003). The isotopic data reveals insights into energy consumption patterns
78	(Widory and Javoy 2003, Bush et al. 2007), impacts of meteorology including temperature
79	(Clark-Thorne and Yapp 2003, Zimnoch et al. 2004), atmospheric stability (Pataki et al. 2005)
80	and wind (Clark-Thorne and Yapp 2003) on urban carbon cycling, and the role of vegetation
81	phenology (Ehleringer et al. 2002, Takahashi et al. 2002, Wang and Pataki 2012). The
82	analytical technique deployed in these studies is mainly based on mass-spectrometry (MS).
83	Because sample collection, preparation and analysis are labor intensive, the majority of these
84	studies are limited to short campaigns (less than 60 days).

85	In recent years, the development of isotope ratio infrared spectroscopy (IRIS) and on-line
86	calibration technology provides a new solution for long-term in-situ observation of the CO ₂
87	molar fraction and its δ^{13} C at high frequencies (1 Hz to 1 hour; Pataki et al. 2006, Griffis.
88	2013, Gorski et al. 2015). Compared with the MS method, IRIS can capture diurnal or even
89	shorter temporal variations with relatively high accuracy, enabling us to understand how
90	anthropogenic emissions change atmopheric CO2 at various temporal and spatial scales.
91	Nevertheless, application of the IRIS technology in urban monitoring is still limited in terms
92	of cities covered and measurement duration (less than 35 days; McManus et al. 2002, Pataki
93	et al. 2006, Wada et al. 2011; 3 seasons; Moore and Jacobson 2015) and only one published
94	study has presented data that spans one full annual cycle (Pang et al. 2016).
95	Simultaneous measurement of atmospheric CO2 concentration and its isotopic
96	composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_s$.
97	All published urban studies to date have deployed the Keeling plot method (Keeling 1958,
98	Keeling 1961) for the determination of $\delta^{13}C_s$. In this approach, a linear relationship is
99	established between δ^{13} C and the reciprocal of the CO ₂ molar fraction from the observed time
100	series, and the intercept of the linear regression is taken as the isotopic composition of the
101	local CO ₂ emissions. The method assumes that the isotopic signature of the sources is
102	invariant with time. It also assumes that changes in the CO ₂ molar fraction and δ^{13} C are
103	attributed only to the surface sources and are unaffected by regional carbon sources (Pataki et
104	al. 2003). However, these assumptions strictly do not hold in an urban environment because
105	the intensity of traffic emissions varies strongly through the diurnal cycle (McDonald et al.
106	2014), and therefore the effective source ${}^{13}C$ signature cannot be assumed constant. In

107	addition, because of strong atmospheric mixing in the daytime convective boundary layer, the
108	background air in the upper troposphere can be easily entrained to the surface layer, mixing
109	the CO ₂ that originates from regional sources with that emitted locally in the urban airshed.
110	Miller and Tans (2003) propose that $\delta^{13}C_S$ be determined as the slope of the linear
111	relationship
112	$\delta_{a}C_{a}-\delta_{b}C_{b}=\delta^{13}C_{s}(C_{a}-C_{b}) $ ⁽¹⁾
113	where C_a is CO_2 molar fraction in urban air, C_b is CO_2 molar fraction in a background site
114	[taken in this study as that observed at the Mauna Loa Observatory (MLO)], δ_a is ¹³ C isotopic
115	composition of C_a , and δ_b is ¹³ C isotopic composition of C_b . We argue that because this
116	approach takes into account mixing of CO ₂ generated locally with CO ₂ in the background
117	atmosphere, this method is more suitable than the Keeling method for inferring $\delta^{13}C_S$ from
118	the observations made in the daytime when such mixing occurs. The method has been applied
119	to local and regional carbon budget studies in nonurban settings (Miller et al. 2003). We are
120	not aware of studies that extend the method to an urban environment.
121	In this study, we report the results of long-term (30 months) continuous measurement of
122	atmospheric CO ₂ molar fraction and its δ^{13} C at a suburban site in Nanjing using an IRIS
123	instrument. Nanjing is the second largest city in the Yangtze River Delta (YRD), Eastern
124	China, with a build-up area of 753 km^2 and a population of 8.2 million. Geographically, the
125	YRD include the provinces of Jiangsu, Zhejiang and Anhui and the Shanghai municipality.
126	The YRD is the most industrialized region in China and had a higher urban land fraction of
127	10.8% as of 2014 than the global mean (2.4%, Akbari et al. 2009). In 2014, more than 220

- large cement production factories (daily output exceeding 1000 tons) were located in the
- 129 YRD, contributing about 20% of the national cement output.
- 130 Our objectives are (1) to characterize the atmospheric δ^{13} C diurnal, seasonal and annual
- variations in this urban environment, in a region where such measurement is nonexistent, (2)
- to investigate the influence of cement production on atmospheric δ^{13} C, (3) to evaluate the
- performance of the Keeling plot and the Miller-Tans method for determining δ^{13} Cs, and (4) to
- explore the utility of the isotopic constraints for inferring the net surface flux and the plant
- 135 CO_2 flux in Nanjing and in the YRD.
- 136
- 137 **2 Methods**
- 138 2.1 Atmospheric observation
- 139 An IRIS analyzer (model G1101-i, Picarro Inc., Sunnyvale, CA) was used to measure
- atmospheric CO₂ molar fraction and its ¹³C isotope composition (δ^{13} C) continuously from
- 141 February 2013 to August 2015. The measurement was made at 0.3 Hz and at an air flow rate
- 142 of 30 mL min⁻¹ at standard temperature and pressure. One three-way solenoid valve was
- 143 combined with two two-way solenoid valves, so the analyzer could be switched for
- 144 atmospheric sampling and for sampling of two standard gases. Calibration was carried out
- every 3 h by sampling each standard gas for 5 minutes following the procedure of Bowling et
- al. (2003) and Wen et al. (2013). Table 1 lists the concentrations and their isotopic
- 147 compositions of the standard gases used in this study. The CO_2 molar fraction of the standard
- 148 gases was traceable to the WMO 2007 scale reported by the Central Calibration Laboratory
- of the World Meteorological Organization and their δ^{13} C was based on the NBS-19 and the

150	NBS20 standards of NOAA-EASL. The ambient measurement was averaged to hourly
151	intervals. The isotopic composition was expressed in the delta notation (δ^{13} C) in reference to
152	the VPDB scale.
153	The analyzer was housed on the 9 th floor of our laboratory building on the campus of
154	Nanjing University of Information, Science and Technology (NUIST, 32°12'N, 118°43'E), in
155	the northern suburb of Nanjing, at a linear distance of 20 km to the city center. The
156	instrument inlet was at a height of 34 m above the ground. There was no anthropogenic CO_2
157	source in the 3 km radius except for a commuting road located about 300 m east of the
158	observation site. The nearest industrial complex, the Nanjing Iron & Steel Group Co. Lt and
159	the Nanjing Chemical Industry Group, was located at ~5 km to the south of the site.
160	The δ^{13} C measured by the analyzer in high humidity conditions suffers a high bias error
161	due to spectral broadening and direct spectral interference (Rella 2011). To correct for the
162	humidity interference, we carried out two tests using a dew-point generator (model 610, LI-
163	COR, Inc., Lincoln, NE). A CO ₂ standard gas (secondary standard gas, 439 ppm in test one
164	and 488 ppm in test two, balanced by dry air) was fed into the dew-point generator. The
165	outlet of the dew-point generator was connected with a 3-way union with one end linked to
166	the inlet of the analyzer and the other open to the room. The humidity level of the air coming
167	out of the dew point generator was regulated at eight levels in a dew-point temperature range
168	of 1 and 30°C. Because the $^{13}\mathrm{C}$ composition of the standard gas was constant, any observed
169	variations were caused by the humidity artifact. We found that no correction was needed for
170	our analyzer if the humidity was below 2.03%. Above this humidity level, the measurement
171	was biased high by 0.46‰ for every 1% increase in the water vapor volume molar fraction

172	(Figure 1). The two	o tests, taken eight month	ns apart, vielded esse	entially the same result. The
	(I Iguie I). The th	o tests, taken ergin mont	is upuit, jielaea ebb	sindang the same result. The

173	correction	equation	is
-----	------------	----------	----

174
$$\delta^{13}C = \delta^{13}C_{true}$$
 $H \le 2.03\%$ (2a)

175
$$\delta^{13}C = \delta^{13}C_{true} + 0.46(H - 2.03)$$
 $H > 2.03$ (2b)

where H is water vapor volume molar fraction in percent, δ^{13} C is the measured isotopic

177 composition (after the two-point calibration), and $\delta^{13}C_{true}$ is the true isotopic composition. In

the following, all the data has been corrected for the humidity interference.

179

180 **2.2** The isotopic composition (δ^{13} Cs) of surface sources

181 We applied the Keeling plot method to the data collected during midnight hours (22:00-6:00

local time). We used the geometric regression to establish a linear relationship between the

hourly δ^{13} C and the reciprocal of the hourly CO₂ molar fraction over monthly intervals. The

intercept of the regression gives the effective isotopic composition of net surface CO₂

emissions. The buildup of CO_2 at night is primarily the result of sources in the city (Shen et

al. 2014), so we considered the $\delta^{13}C_S$ determined from the nighttime observations to represent

187 the signal of the sources located in the city.

188 We applied the Miller-Tans method to the data collected in midday hours (10:00 to 16:00

- local time; Equation 1). The slope was obtained by linear regression of C_a against ($\delta_a C_a$ -
- 190 $\delta_b C_b$), again over monthly intervals. The monthly mean CO₂ molar fraction and the isotopic

191 composition of the background air were those observed at MLO. Because the MLO data were

- not available for 2015 at the time of this analysis, we first established a four-harmonic
- quadratic function (Thoning et al. 1989) using the dataset from 2000 to 2013, and then used

194	the function to estimate the monthly $\delta^{13}C_b$ and C_b values for 2015. The vigorous turbulent
195	exchange in the midday boundary layer diminishes the role of local sources in the measured
196	concentration and isotopic ratio, or in other words, the midday measurement has a much
197	larger source footprint than the size of the urban land itself or the footprint of the midnight
198	measurement. Hence we interpreted the midday results to represent the influence of surface
199	sources in the YRD region. This interpretation is supported by a trajectory analysis and by an
200	analysis of the atmospheric methane to CO ₂ emissions ratio (Shen et al. 2014).
201	
202	2.3 Inventory of anthropogenic sources
203	We calculated the anthropogenic CO ₂ fluxes from energy consumption and industrial process
204	following the scope one procedure issued by the International Council for Local
205	Environmental Initiatives (ICLEI, 2008). The energy consumption source consisted of direct
206	emissions from the three main energy consumption sectors (industry, transport, and
207	household). We ignored the commerce sector here because the main energy consumption in
208	this sector in Nanjing and in the YRD was electric power generated by coal and coal
209	consumption which was already considered in scope one. The amounts of CO ₂ emission were
210	estimated with the IPCC methodology adopting the emission factors for each fossil fuel type
211	recommended by IPCC. The calculations were done for both the YRD region and for the
212	Nanjing municipality. Because no statistical data were available for energy consumption in
213	the transport sector in Nanjing, the CO ₂ emission from the transport sector was deduced
214	according to vehicle number, average annual driving distance and coefficients of fuel

215	economy (Bi et al. 2011). We obtained the data on energy consumption from official sources			
216	(CESY 2013, CSY 2013, NSY, 2013).			
217	The non-energy industrial processes included cement, raw iron, crude steel, and			
218	ammonia synthesis processes. In the YRD, the data were available at monthly intervals.	For		
219	the city of Nanjing, only annual statistics were available.			
220				
221	2.4 Partitioning the net surface flux			
222	We partitioned net surface CO_2 flux (F _S) into three component fluxes according to the			
223	following mass conservation equations			
224	$F_{\rm S} = F_{\rm F} + F_{\rm C} + F_{\rm P} \tag{1}$	3)		
225	$\delta^{13}C_{S}F_{S} = \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P} $	4)		
226	where F_F is the flux from fossil fuel combustion and industrial emission except cement			
227	production (termed "fossil plus"), F_C is the flux due to cement production, F_P is the plant			
228	flux, and $\delta^{13}C_F$, $\delta^{13}C_C$, and $\delta^{13}C_P$ are the ¹³ C isotope composition of F _F , F _C and F _P ,			
229	respectively. We separated the cement source from other non-energy consumption industry	rial		
230	processes because its isotopic signature is much higher. In these equations, the monthly n	et		
231	surface flux (F_S) and the plant flux (F_P) are unknowns to be solved, and all other terms are	e		
232	either provided by the atmospheric measurement or by the inventory calculation. The			
233	partitioning analysis was done for both Nanjing and the YRD using the midnight and mic	lday		
234	observations, respectively.			
235	The $\delta^{13}C_F$ was weighted average of the $\delta^{13}C$ signal of individual fuel types and indust	trial		
236	processes (Widory 2006; Table 1). The cement isotopic composition is provided by Tans			

- (1981) and Anders (1994). We adapt a value of (-28.2‰) for δ^{13} C_P for the YRD and Nanjing,
- on account of a linear relationship between δ^{13} C_P and tree age (Fessenden and Ehleringer
- 239 2002), a typical tree age in this region (40 years) and an U-shaped relationship between δ^{13} CP
- and annual precipitation (Pataki et al. 2007). Our δ^{13} C_P is more negative than that reported for
- a boreal forest (-26.2‰; Pataki et al. 2007) but is in closer agreement with the value reported
- for a Ginkgo tree in Nanjing (-29.3%; Sun et al. 2003). A summary of the isotopic
- compositions of the three source categories is given in Table 2.
- To partition the nighttime flux for Nanjing, we assumed that the nighttime F_F was 20%
- of the daily value. The parameter 20% was determined by the diurnal variation of the CO_2
- flux observed with an eddy covariance system in Nanjing (Bai 2011) and in several other
- cities (Coutts et al. 2007, Song and Wang. 2011, Liu et al. 2012). At night, most of the
- factories in the city were closed and the traffic flow was reduced to about 80% of the daytime
- volume (Yang et al. 2011).
- 250
- 251 **3. Results**

3.1. Temporal variations in the CO₂ molar fraction and δ^{13} C

- 253 The monthly CO_2 molar fraction during the summer was slightly lower than in the other
- seasons (Figure 2). The mean molar fraction was 446.7 ppm and 431.1 ppm for January and
- July, respectively, giving a seasonal amplitude of 15.6 ppm. The mean CO₂ molar fraction
- was 439.7 ppm during the whole experimental period (March 2013 to August 2015), which is
- 40.7 ppm higher than value observed at MLO for the same period. In 2014, the calendar year

258	with complete data coverage, the mean CO_2 molar fraction was 441.2 ppm, which is 42.5
259	ppm higher than the MLO value for the same year.
260	The ¹³ C composition of atmospheric CO ₂ displayed a stronger seasonal cycle than the
261	molar fraction (Figure 2). The monthly mean value was -9.07‰ and -7.63‰ for January and
262	July, respectively, with a seasonal amplitude of 1.44‰. The mean value for the whole
263	experimental period was -8.48‰, which is slightly more negative than the MLO value (-
264	8.44‰). The summertime (June-August) δ^{13} C was 0.55‰ more enriched than the MLO
265	background value.
266	The strongest diurnal variation in the CO2 molar fraction was observed in the autumn
267	season and the weakest in the winter season, with a diurnal amplitude of 27.9 ppm and 13.4
268	ppm, respectively (Figure 3). In the summer season, the peak value was observed at 07:00
269	and the lowest value at 19:00. Contrary to the CO ₂ molar fraction, δ^{13} C showed the lowest
270	value in the early morning and the highest value in the afternoon in all the four seasons. The
271	diurnal amplitude was 1.36% in the summer and 0.66% in the winter.
272	
273	3.2 Isotopic composition of the surface sources $(\delta^{13}Cs)$
274	Applying the Miller-Tans method and the Keeling plot to the whole experimental period
275	yielded an apparent source signature of -25.51 \pm 0.26‰ (mean \pm 95% confidence bound) for
276	sources in the YRD (Figure 4) and -25.99±0.21‰ for sources in Nanjing (Figure 5). Strictly,
277	neither method is valid over such an extensive period because the source signature varies
278	seasonally, violating the condition of constant source signal under which the methods can be

279

280	true annual mean source signatures.
281	During the two and a half years of observation, the monthly $\delta^{13}C_S$ was lower in the
282	winter and higher in the summer (Figure 6). The sources in the YRD had higher 13 C
283	compositions than those in in Nanjing. The January mean value (mean of January 2014 and

used. So Figures 4 and 5 are meant more as a data consistency check than for determining the

January 2015) was -24.13‰ and -24.66‰, and the mean value of the three August months

was -20.67‰ and -23.35‰ for the YRD and Nanjing, respectively. The mean value of the

whole observational period was -23.25‰ and -24.24‰ for the YRD and Nanjing,

- respectively. These mean values based on the monthly analysis were 2.26‰ and 1.75‰
- greater than the apparent source signatures derived from the application of the Miller-Tans
- and the Keeling method to the whole dataset (Figures 4 and 5), respectively. The monthly

290 $\delta^{13}C_S$ for the YRD (Figure 6) was highly correlated with the monthly atmospheric $\delta^{13}C$

(Figure 2; linear correlation = 0.63, n = 30, p <0.001). The correlation between the monthly

292 $\delta^{13}C_s$ for Nanjing and the monthly atmospheric $\delta^{13}C$ was not as strong (linear correlation =

293
$$0.52, n = 30, p < 0.01$$
).

There appears to be some inter-annual variability in δ^{13} C_S. In the YRD, the 12-month

- mean $\delta^{13}C_S$ was -23.31‰ from March 2013 to February 2014 and -23.26‰ from March 2014
- to February 2015. The atmospheric δ^{13} C also showed an increasing trend, from -8.36‰ in the
- 298

297

3.3 Inventory data for anthropogenic sources

first period to -8.15‰ in the second period.

300	In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ ,
301	contributing 70% of the overall fossil-plus emission (Table 1). Here fossil-plus emission
302	includes contributions from combustion of all forms of fossil fuel and from non-cement
303	industrial processes. The second and third largest source were ammonia synthesis and pig
304	iron, with fractional contributions of about 9%. The fuel-plus source contribution to the total
305	anthropogenic emission was 91%, with the remaining 9% contributed by cement production
306	(Table 2).
307	In the Nanjing municipality, the fractional contribution of coal to the fossil-plus total was
308	52%, lower than that for the YRD, and the other three major sources were ammonia synthesis
309	(16%), pig iron (13%), and gasoline (11%). The fractional contribution of fuel-plus sources to
310	the total anthropogenic emission was 96.4% and the fractional contribution of cement
311	production was 3.6% (Table 1). The isotopic signature of the fossil-plus sources was 0.35‰
312	lower for Nanjing than for the YRD.
313	The overall effective isotopic signature of the anthropogenic sources weighted by the
314	source contributions was also lower for Nanjing than for the YRD (Table 2). The difference
315	was 1.76‰ and was a result of lower fractional contributions in Nanjing of coal combustion
316	and cement production, which have relatively high ¹³ C contents, and a higher fractional
317	contribution of natural gas, which is the fuel type with the lowest ¹³ C content.
318	
319	3.4. CO ₂ fluxes in YRD and Nanjing
320	The plant flux F _P obtained with the isotopic partitioning method for the YRD agreed with the
321	seasonal phenology expected for plants in this region (Figure 7). It was slightly negative in

322	the summer and positive in the winter, indicating net uptake and net release, respectively. The
323	annual mean plant flux for the calendar year 2014 was -0.01 mg m ⁻² s ⁻¹ . The net surface flux
324	F_{S} was 0.16 mg m ⁻² s ⁻¹ .
325	In Nanjing, the plant flux was positive throughout the year. This is because the
326	partitioning was done for the night hours when the natural ecosystems were a source of CO_2
327	due to autotrophic and heterotrophic respiration. The flux was greater in the summer than in
328	the winter (Figure 8). The annual mean plant flux for the calendar year 2014 was 0.06 mg m ⁻
329	2 s ⁻¹ . The net surface flux was 0.18 mg m ⁻² s ⁻¹ .
330	
331	4 Discussion
332	4.1 CO ₂ molar fraction and δ^{13} C seasonality
333	The atmospheric CO ₂ molar fraction observed in Nanjing showed very small seasonal
334	variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6
334 335	variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO ₂ molar fraction
334 335 336	variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO_2 molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et
334335336337	variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO ₂ molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO ₂ molar fraction in the summer is about 31 ppm
 334 335 336 337 338 	 variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO₂ molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO₂ molar fraction in the summer is about 31 ppm lower than in the winter (Pataki et al., 2003). In Chicago, USA, the CO₂ molar fraction varied
334 335 336 337 338 339	 variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO₂ molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO₂ molar fraction in the summer is about 31 ppm lower than in the winter (Pataki et al., 2003). In Chicago, USA, the CO₂ molar fraction varied from 397 ppm in August 2011 to 427 ppm in January 2012, showing a seasonal amplitude of
 334 335 336 337 338 339 340 	 variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO₂ molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO₂ molar fraction in the summer is about 31 ppm lower than in the winter (Pataki et al., 2003). In Chicago, USA, the CO₂ molar fraction varied from 397 ppm in August 2011 to 427 ppm in January 2012, showing a seasonal amplitude of 30 ppm (Moore and Jacobson 2015). In Beijing, China, the seasonal variation of atmospheric
 334 335 336 337 338 339 340 341 	 variation (summer versus winter difference of 7.9 ppm, July versus January difference of 15.6 ppm), in comparison with the data published for other cities. The CO₂ molar fraction difference between the cold and the warm season is about 66 ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO₂ molar fraction in the summer is about 31 ppm lower than in the winter (Pataki et al., 2003). In Chicago, USA, the CO₂ molar fraction varied from 397 ppm in August 2011 to 427 ppm in January 2012, showing a seasonal amplitude of 30 ppm (Moore and Jacobson 2015). In Beijing, China, the seasonal variation of atmospheric CO₂ molar fraction is about 64.5 ppm (August versus January; Pang et al. 2016).

is relatively mild. The governmental energy policy prohibits winter heating in public

344	buildings. Most residential buildings also lack space heating in the winter. This is in contrast
345	to energy use patterns in northern cities. In London, UK, natural gas usage in the winter
346	heating season is 29% greater than in the non-heating autumn season (Helfter et al. 2011). In
347	Salt Lake City, USA, energy consumption in the winter was 41% greater than in the summer
348	(Bush et al, 2007). A similar seasonal trend of energy consumption has also been reported for
349	Beijing (Pang et al, 2016). In Chicago, natural gas usage varied 70% to 80% in winter and
350	about 50% in summer (Moore and Jacobson 2015). The weak energy use seasonality (Figure
351	2) partially explains why the observed CO_2 molar fraction had a smaller seasonal amplitude
352	than reported for other northern cities.
353	The weak seasonality of the observed molar fraction was also related to the low
354	vegetation cover in the YRD and in Nanjing. The forest cover ratio is about 35% in Nanjing
355	and in the YRD, and the overall he vegetation cover (forest plus other vegetation types) ratio
356	in the major cities in the YRD is lower than 45% (CESY, 2013; CSY, 2013). For comparison,
357	the vegetation cover ratio is 56% in Salt Lake City (Pataki et al. 2009) and 44% in Chicago
358	(Rose et al. 2003). Dense vegetation is known to deplete atmospheric CO ₂ in the summer
359	season via photosynthetic uptake, amplifying the CO ₂ seasonal amplitude.
360	Our δ^{13} C seasonal amplitude (January versus July difference 1.44‰) was 30 times the
361	amplitude observed at MLO (Figure 2) but agreed with those reported by most urban studies.
362	For comparison, the seasonal amplitude of $\delta^{13}C_a$ in Bangalore, India, was 0.89 to 1.32‰
363	(Guha and Ghosh 2015). Similar amplitudes have also been reported for Chicago (January
364	versus August difference 1.25‰; Moore and Jacobson, 2015) and Beijing (2.13‰; Pang et al.
365	2016). In Salt Lake City, the seasonal amplitude of δ^{13} C was approximately 1.6% because

- 366 much more natural gas consumption for heating in the winter than in the summer (Pataki et
- 367 al. 2006).
- 368
- 369 **4.2 Influences of cement production on atmospheric** δ^{13} C
- The high summer δ^{13} C was one of the most unique characteristics at our site. The midday
- 371 δ^{13} C reached -6.90% in July 2013 and -7.21% in August 2014, which were 1.57% and

1.11‰ higher than the MLO values. The highest monthly mean δ^{13} C occurred in July: -

- 7.44‰ in July 2013, -7.99‰ in July 2014 and -7.46‰ in July 2015. These values were -
- 1.03‰, -0.44‰ and -0.93‰ higher than the MLO value reported for the same months.
- The high July values observed at our site cannot be fully explained by CO_2 removal by
- plant photosynthesis. Photosynthesis and respiration are the two processes that dominate the
- ¹³C seasonality in plant-dominated landscapes, leading to higher δ^{13} C values in the summer
- and lower values in the winter. In Park Falls, Wisconsin, USA, a site in a heavily-forested
- landscape, δ^{13} C was -7.75‰ in August 2011 and -8.77‰ in February 2012 (Moore and
- Jacobson, 2015). For comparison, δ^{13} C at MLO was -8.24‰ and -8.38‰ in these two
- 381 months. In other words, the photosynthetic effect raised the August δ^{13} C by 0.5% above the
- background value, a smaller enrichment that observed at our site. Because of the low
- vegetation fraction, the summer photosynthetic CO₂ uptake in YRD and Nanjing should be
- lower than at Park Falls. According to the Carbon Tracker inversion analysis (Peters et al.
- 2007), the net ecosystem production at the grid point where Parks Fall is located is -0.22 mg
- $m^{-2}s^{-1}$ in July but is only -0.13 mg $m^{-2}s^{-1}$ at the grid point corresponding to the YRD region.

387	We would expect from the photosynthetic effect alone that the summertime ¹³ C enrichment at
388	our site to be smaller, not greater than that observed at Parks Fall.
389	Furthermore, in a human-dominated landscape, the plant photosynthetic enhancement of
390	13 C is offset by the CO ₂ from fossil fuel combustion which has low 13 C contents. In Chicago,
391	the monthly δ^{13} C peaked in August at -8.29‰ during the calendar year 2011, which is 0.05‰
392	lower than the MLO for the same month. Similarly, in Beijing, the monthly δ^{13} C peaked at -
393	9.49‰ in August 2014, which is 1.17‰ lower than the MLO value for the same month.
394	We suggest that cement production was the factor responsible for the high δ^{13} C values in
395	the summer. The evidence supporting this interpretation is provided by data in Table 2 and
396	Figure 7. The δ^{13} C signal of anthropogenic CO ₂ in the YRD would be -26.42‰ without
397	cement production and increased to -23.71‰ after inclusion of the cement source (Table 2).
398	This δ^{13} C value is much higher than those reported for other urban lands, such as -30.7‰ for
399	Los Angeles, USA (Newman et al. 2008) and about -31‰ for Salt Lake City, USA (Bush et
400	al. 2007). The overall surface source signal derived from atmospheric measurements (Figure
401	6, -23.25‰ and -24.24‰ for the YRD and Nanjing) was also more enriched than those
402	obtained from atmospheric measurements in other cities, such as -28.1±0.8‰ for Chicago in
403	August and September (Moore and Jacobson, 2015), -32.4‰ to -27.4‰ for Salt Lake City in
404	the growing season (Pataki et al. 2003), -27.0‰ for Beijing in the winter heating season
405	(Pang et al. 2016), and -29.3‰ for Los Angeles, USA (Newman et al. 2008).
406	The influence of cement production on atmospheric δ^{13} C has also been suggested for at
407	least two other urban sites. In Bangalore, India, δ^{13} C is 0.05‰ higher than that observed at an
408	island station in the Indian Ocean, and cement production in southern India (Guha and Ghosh

409	2015) is offered as a reason to explain the enrichment of urban δ^{13} C. The other urban site is
410	Beijing, China, where the δ^{13} C measurement may have been influenced by cement plants
411	outside the city (Ren et al. 2015, Pang et al. 2016).
412	
413	4.3 Net surface and plant fluxes in the YRD
414	As a human-dominated landscape, the YRD was a net source of CO_2 on the monthly scale
415	even in the growing season (F_S , Figure 7). The seasonal trends of the net surface flux F_S and
416	the plant flux F_P were highly consistent with each other because the anthropogenic source
417	strengths were almost constant. The mean F_{S} between March 2013 and February 2015 was
418	0.17 mg m ⁻² s ⁻¹ , which consisted of 0.16 mg m ⁻² s ⁻¹ from fossil combustion and industrial
419	processes, 0.02 mg m ⁻² s ⁻¹ from cement production and -0.01 mg m ⁻² s ⁻¹ from biological
420	activities. The total anthropogenic CO ₂ flux was 0.18 mg m ⁻² s ⁻¹ in the YRD, a 67% increase
421	from the value of 0.10 mg m ⁻² s ⁻¹ reported for 2009 (Shen et al. 2014). From 2009 to 2012, the
422	GDP increased by 56% according to the National Statistic Yearbook.
423	For comparison, we extracted the flux data from the Carbon Tracker database for the 9
424	pixels that cover the YRD region. The results show that the mean plant flux F_P is slightly
425	negative at -0.01 mg m ⁻² s ⁻¹ for 2012 (Peter et al. 2007). Our estimate of F_P for 2014 also
426	indicates that the region was a negligibly small biological sink of CO_2 (-0.009 mg m ⁻² s ⁻¹).
427	
428	4.4 Comparison of the Miller-Tans and the Keeling method
429	By applying the Miller-Tans and the Keeling plot method separately to the midday and
430	midnight periods, we obtained the effective source signatures that are consistent with the

431	inventory analysis for the YRD and for the Nanjing Municipality. The daytime Miller-Tans
432	method revealed that the sources were on average 1.01‰ more enriched in ${}^{13}C$ than the
433	signature $\delta^{13}C_S$ obtained with the nighttime Keeling plot analysis. For comparison, the overall
434	$\delta^{13}C_S$ of the anthropogenic sources in the YRD was also higher than that in Nanjing, the
435	difference being 1.76‰ (Table 2). The interpretation that the midday observations capture the
436	influence of surface sources in the YRD region is supported by a trajectory analysis and by an
437	analysis of the atmospheric methane to CO_2 emissions ratio observed at the same site (Shen
438	et al. 2014). We note that the atmospheric measurements gave a smaller difference between
439	the YRD and Nanjing than that obtained by the inventory data, likely because of different
440	biological contributions between the two spatial scales.
441	We argue that Keeling plot method is not appropriate for midday periods because the
442	surface air is influenced by both the surface sources and by entrainment of the background air
443	from above the boundary layer. If we applied the Keeling method to the midday observations,
444	the linear correlation coefficient was on average -0.898 which is weaker than the correlation
445	coefficient obtained with the Miller-Tans method (-0.956). The resulting mean $\delta^{13}C_S$ would
446	be 0.61‰ lower than the mean value shown in Figure 6. The difference in $\delta^{13}C_S$ between the
447	YRD (midday observations, Keeling method) and Nanjing (midnight observations, Keeling
448	method) would become too small (0.38‰).
449	Conversely, the Miller-Tans method is not recommended for midnight observations
450	because surface inversion conditions effectively prevent mixing of the free atmospheric air
451	with the surface air. If we applied the Miller-Tans method at monthly intervals to the
452	midnight data, the resulting $\delta^{13}C_s$ for Nanjing would increase to -23.72‰. For comparison,

453	the $\delta^{13}C_s$ for the YRD, obtained by applying the Miller-Tans method to the midday data, was
454	-23.25‰.
455	
456	5. Conclusion
457	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of
458	anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the
459	summer. An unusual feature that has not been seen in other urban environment is that the $\delta^{13}C$
460	exceeded that at the Mauna Loa Observatory in some of the summer months. The highest
461	monthly 13 C was -7.44‰ observed in July 2013, which was 1.03‰ greater than the MLO
462	value for the same month. Evidence points to cement production as the key reason for why
463	the atmospheric δ^{13} C was higher than at the background site. In contrast to the 13 C signal, the
464	CO2 molar fraction displayed very weak seasonality (July to January difference 15.6 ppm).
465	We hypothesized that the Miller-Tans method applied to the midday observations and the
466	Keeling plot method applied to the midnight observations should yield the effective isotopic
467	signature of surface sources at the regional (YRD) and the local (Nanjing) scale, respectively.
468	According to the Miller-Tans method, the effective source signal in the YRD was -25.51‰,
469	which was 0.48‰ higher than that in the Nanjing Municipality according to the Keeling plot
470	method. These results were consistent with inventory estimates of anthropogenic source
471	signatures at these two spatial scales.
472	By combining inventory data on anthropogenic C sources and the atmospheric
473	measurement of CO ₂ molar fraction and its ¹³ C composition in an isotopic partitioning
474	framework, we inferred that natural ecosystems in the YRD were a negligibly small sink of

- atmospheric CO₂, with an average flux of -0.009 mg $m^{-2}s^{-1}$. The Carbon Tracker inverse
- analysis also reveals a small annual mean biological flux (-0.01 mg m⁻²s⁻¹) for this region.
- 477

478 Data availability:

- 479 The atmospheric data are available upon request, from the Yale-NUIST Center website
- 480 http://yncenter.sites.yale.edu/publications or as an online data supplement to this paper.
- 481

482 Acknowledgments:

- 483 This research was supported by the National Natural Science Foundation of China (Grant
- 484 41475141, 41505005), the U. S. National Science Foundation (Grant 1520684), the Ministry
- 485 of Education of China (Grant PCSIRT), and the Priority Academic Program Development of
- 486 Jiangsu Higher Education Institutions (Grant PAPD). The first author also acknowledged a
- 487 visiting scholarship from China Scholarship Council and a Graduate Student Innovation
- 488 Grant from Jiangsu Provincial Government (Grant KYLX_0848).

489	References
490 491	Affek, H. P., Eiler, J. M. (2006). Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta 70 (1): 1-12.
492 493 494	Akbari H, Menon S, Rosenfeld A. Global cooling: increasing world-wide urban albedos to offset CO2. Climatic Change, 2009, 94 (3-4): 275-286.
496 497 498 499	Andres, R. J., Marland, G., Boden, T., Bischof, S. (1994). Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN (United States);
500 501 502 503	Bai, Y., (2011) A comparative study on turbulent fluxes exchange over Nanjing urban and suburban in summer. (in Chinese) Nanjing, Nanjing University of Information Science & Technology.
505 506 507	Bi, J., Zhang, R., Wang, H., Liu, M., Wu, Y. (2011). The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing. Energy Policy 39 (9): 4785-4794.
508 509 510	Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R. (2003). Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange, Agric. Forest Meteorol. 118: 1–19.
511 512 513 514	Bush, S. E., Pataki, D.E., Ehleringer, J.R. (2007). Sources of variation in δ 13C of fossil fuel emissions in Salt Lake City, USA. Applied Geochemistry 22 (4): 715-723.
515 516 517	CESY (2013). China Energy Statistical Yearbook 2013: China Statistical Publishing House, Beijing. (in Chinese) Also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm .
518 519 520 521	Clark-Thorne, S. T., C. J. Yapp (2003). Stable carbon isotope constraints on mixing and mass balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA. Applied Geochemistry 18 (1): 75-95.
522 523 524 525	Coutts, A. M., Beringer, J., Tapper, N.J. (2007). Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmospheric Environment 41 (1): 51-62.
526 527 528	CSY (2013). China Statistical Yearbook. National Bureau of Statistics of China. (in Chinese) Also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm
529 530 531	Duan Y. (1995) Study of characteristics of coal isotope conposition in China Coal Geology & Exploration 23 (1) 29-33.

532

Ometto, J.P. (2002). Stable isotopes and carbon cycle processes in forests and grasslands. 533 Plant biology 4(2): 181-189. 534 535 Farquhar, G., J. Lloyd (1993). Carbon and oxygen isotope effects in the exchange of carbon 536 dioxide between terrestrial plants and the atmosphere. Stable isotopes and plant carbon-water 537 relations 40: 47-70. 538 539 540 Fessenden, J. E., J. R. Ehleringer (2002). Age-related variations in $\delta 13C$ of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree 541 Physiology 22(2-3): 159-167. 542 543 Friedman, L., A. P. Irsa (1967). Variations in isotopic composition of carbon in urban 544 atmospheric carbon dioxide. Science 158(3798): 263-264. 545 546 Gorski G, Strong C, Good S P, Bares, R., Ehleringer, J.R., Bowen, G.J.. Vapor hydrogen and 547 oxygen isotopes reflect water of combustion in the urban atmosphere. Proceedings of the 548 National Academy of Sciences, 2015, 112(11): 3247-3252. 549 550 Griffis, T. J., Lee, X., Baker, J.M., Sargent, S.D., King, J.Y. (2005). Feasibility of quantifying 551 ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient 552 553 method. Agricultural and Forest Meteorology 135(1-4): 44-60. 554 Griffis, T J. (2013). Tracing the flow of carbon dioxide and water vapor between the 555 biosphere and atmosphere: A review of optical isotope techniques and their application. 556 Agricultural and Forest Meteorology, 174:85-109. 557 558 559 Guha, T., P. Ghosh (2010). Diurnal variation of atmospheric CO2 concentration and delta C-13 in an urban atmosphere during winter-role of the Nocturnal Boundary Layer. Journal of 560 Atmospheric Chemistry 65(1): 1-12. 561 562 Guha, T. and P. Ghosh (2015). Diurnal and seasonal variation of mixing ratio and delta C-13 563 564 of air CO2 observed at an urban station Bangalore, India. Environmental Science and Pollution Research 22(3): 1877-1890. 565 566 567 Helfter, C., Famulari, D., Phillips, G.J., Barlow, J.F., Wood, C.R., Grimmond, C.S.B., Nemitz, E. (2011). Controls of carbon dioxide concentrations and fluxes above central London. 568 Atmospheric Chemistry and Physics 11(5): 1913-1928. 569 570 ICLEI (International Council for Local Environmental Initiatives). (2008). Local government 571 operations protocol for the quantification and reporting of greenhouse gas emissions 572 573 inventories. [Available online at http://www.arb.ca.gov/cc/protocols/localgov/archive/final lgo protocol 2008-09-25.pdf.] 574 575

Ehleringer, J.R., Bowling, D.R., Flanagan, L.B., Fessenden, J., Helliker, B., Martinelli, L.A.,

576 577	Idso, S. B., Idso, C.D., Balling, R.C. (2002). Seasonal and diurnal variations of near-surface atmospheric CO 2 concentration within a residential sector of the urban CO 2 dome of
578	Phoenix, AZ, USA. Atmospheric Environment 36 (10): 1655-1660.
579	
580	Jasek, A., Zimnoch, M., Gorczyca, Z., Smula, E., Rozanski, K. (2014). Seasonal variability of
581	soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.
582	Isotopes in Environmental and Health Studies 50 (2): 143-155.
583	
584	Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon
585	dioxide in rural areas. Geochimica et Cosmochimica Acta 13 (4): 322-334.
586	
587	Keeling, C. D. (1961). The concentration and isotopic abundances of carbon dioxide in rural
588	and marine air. Geochimica et Cosmochimica Acta $24(3)$: 277-298.
589	
590	Koerner, B., J. Klopatek (2002). Anthropogenic and natural CO2 emission sources in an arid
591	urban environment. Environmental Pollution 116 : S45-S51.
592	
593	Leavitt, S. W., Paul, E.A., Galadima, A., Nakayama, F.S., Danzer, S.R., Johnson, H., Kimball,
594	B.A. (1995). Carbon isotopes and carbon turnover in cotton and wheat FACE experiments.
595	Plant and Soil 187 (2): 147-155.
596	
597	Lichtfouse, E., Lichtfouse, M., Jaffrezic, A. (2003), delta C-13 values of grasses as a novel
598	indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.
599	Environmental Science & Technology 37 (1): 87-89.
600	
601	Liu, H., Feng, J., Järvi, L., Vesala, T. (2012). Four-year (2006–2009) eddy covariance
602	measurements of CO2 flux over an urban area in Beijing. Atmospheric Chemistry and
603	Physics 12 (17): 7881-7892.
604	
605	Llovd, J., Kruiit, B., Hollinger, D.Y., Grace, J., Francev, R.J., Wong, S., Kelliher, F.M.,
606	Miranda, A.C., Farquhar, G.D., Gash, J.H.C. (1996). Vegetation effects on the isotopic
607	composition of atmospheric CO2 at local and regional scales: theoretical aspects and a
608	comparison between rain forest in Amazonia and a boreal forest in Siberia. Functional Plant
609	Biology 23 (3): 371-399.
610	
611	Llovd, J., Francev, R.J., Mollicone, D., Raupach, M.R., Sogachev, A., Arneth, A., Byers, J.N.,
612	Kelliher, F.M., Rebmann, C., Valentini, R. (2001). Vertical profiles, boundary layer budgets.
613	and regional flux estimates for CO2 and its $13C/12C$ ratio and for water vapor above a
614	forest/bog mosaic in central Siberia. Global Biogeochemical Cycles 15(2): 267-284.
615	
616	McDonald, B.C., McBride, Z. C., Martin, E. W., Harley, R. A. High-resolution mapping of
617	motor vehicle carbon dioxide emissions. Journal of Geophysical Research: Atmospheres.
618	2014. 119 (9): 5283-5298.
619	
614 615 616 617	forest/bog mosaic in central Siberia. Global Biogeochemical Cycles 15 (2): 267-284. McDonald, B.C., McBride, Z. C., Martin, E. W., Harley, R. A. High-resolution mapping of motor vehicle carbon dioxide emissions. Journal of Geophysical Research: Atmospheres, 2014, 110 (0): 5282, 5208
619	

McManus, J. B., Zahniser, M.S., Nelson, D.D., Williams, L.R., Kolb, C.E. (2002). Infrared 620 laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon 621 622 gases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58(11): 2465-2479. 623 624 625 Miller, J. B., P. P. Tans (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B 55(2): 207-214. 626 627 628 Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J., Vaughn, B.W. (2003). The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon 629 fluxes. Tellus B 55(2): 197-206. 630 631 Moore J., Jacobson A.D. (2015). Seasonally varying contributions to urban CO2 in the 632 633 Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and d13C record. Elementa: Science of the Anthropocene 3, 000052. 634 635 Mu, H., Li, H., Zhang, M., Li, M. (2013). Analysis of China's carbon dioxide flow for 2008. 636 Energy Policy 54: 320-326. 637 638 639 Newman, S., Xu, X., Affek, H.P., Stolper, E., Epstein, S. (2008). Changes in mixing ratio and isotopic composition of CO2in urban air from the Los Angeles basin, California, between 640 641 1972 and 2003. Journal of Geophysical Research 113(D23): 1-15. 642 NSY (2013). Nanjing Statistical Yearbook. Nanjing Municipal Bureau Statistics. (in Chinese) 643 Also available at: < http://www.njtj.gov.cn/2004/2013/renmin/index.htm> 644 645 Ometto, J. P., Flanagan, L.B., Martinelli, L.A., Moreira, M.Z., Higuchi, N., Ehleringer, J.R. 646 647 (2002). Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochemical Cycles 16(4):1-10. 648 649 650 Ometto, J.P., Ehleringer, J.R., Domingues, T.F., Berry, J.A., Ishida, F.Y., Mazzi, E., Higuchi, N., Flanagan, L.B., Nardoto, G.B., Martinelli, L.A. (2006). The stable carbon and nitrogen 651 652 isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79(1-2): 251-274. 653 654 655 Pang, J., Wen, X., Sun, X. (2016). Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Sci Total Environ 539: 322-330. 656 657 Pataki, D. E. (2005). Can carbon dioxide be used as a tracer of urban atmospheric transport? 658 Journal of Geophysical Research 110(D15102): 1-8. 659 660 661 Pataki, D. E., Bowling, D.R., Ehleringer, J.R. (2003). Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal 662 663 of Geophysical Research-Atmospheres 108(D23): 1-8.

664	
665	Pataki, D. E., Bowling, D.R., Ehleringer, J.R., Zobitz, J.M. (2006). High resolution
666	atmospheric monitoring of urban carbon dioxide sources. Geophysical Research Letters
667	33 (3) : 1-5.
668	
669	Pataki, D. E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J.,
670	Buchmann, N., Kaplan, J.O., Berry, J.A. (2003). The application and interpretation of Keeling
671	plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17 (1): 1-14
672	
673	Pataki, D. E., Lai, C., Keeling, C.D., Ehleringer, J.R. (2007). Insights from stable isotopes on
674	the role of terrestrial ecosystems in the global carbon cycle. Terrestrial Ecosystems in a
675	Changing World, Springer: 37-44.
676	
677	Pataki, D.E., Emmi, P.C., Forster, C.B., Mills, J.L. Pardviak, E.R., Peterson, T.R.,
678	Thompson, J.D., Dudley-Murphy, E., An integrated approach to improving fossil fuel
679	emissions scenarios with urban ecosystem studies. Ecological Complexity, 2009. 6(1): 1-14.
680	
681	Pataki, D. E., Xu, T., Luo, Y.O., Ehleringer, J.R. (2007). Inferring biogenic and anthropogenic
682	carbon dioxide sources across an urban to rural gradient. Oecologia 152 (2): 307-322.
683	
684	Peters, W., Jacobson, A.R., Sweenev, C., Andrews, A.E., Conway, T.J., Masarie., K., Miller, J.B.,
685	Bruhwiler, L.M., Petron, G., Hirsch, A.I., Worthy, D.E., van der Werf, G.R., Randerson, J.T.,
686	Wennberg, P.O., Krol, M.C., Tans, P.P., An atmospheric perspective on North American carbon
687	dioxide exchange: CarbonTracker Proceedings of the National Academy of Sciences, 2007.
688	104 (48): 18925-18930.
689	
690	Rella, C. (2011). Accurate stable carbon isotope ratio measurements with rapidly varying
691	carbon dioxide concentrations using the Picarro δ 13C G2101-i gas analyzer. Picarro White
692	Paper. Picarro Inc.
693	
694	Ren. L., Wang, W., Wang, J., Liu, R. (2015). Analysis of energy consumption and carbon
695	emission during the urbanization of Shandong Province, China, Journal of Cleaner
696	Production 103 : 534-541.
697	
698	Rose L.S. Akbari H. Taha H. Characterizing the fabric of the urban environment: a case study
699	of Greater Houston, Texas, Lawrence Berkeley National Laboratory, 2003.
700	
701	Satterthwaite D. Cities' contribution to global warming: notes on the allocation of greenhouse
702	gas emissions Environment and Urbanization 2008 20 (2): 539–549
703	
704	Shen, S., Yang, D., Xiao, W., Liu, S., Lee, X. (2014). Constraining anthropogenic CH4
705	emissions in Naniing and the Yangtze River Delta. China. using atmospheric CO2 and CH4
706	mixing ratios. Advances in Atmospheric Sciences 31 (6): 1343-1352
707	

708	Song, T., Wang Y. (2012). Carbon dioxide fluxes from an urban area in Beijing. Atmospheric
709	Research 106 : 139-149.
710	
711	Sun, B., Dilcher, D.L., Beerling, D.J., Zhang, C., Yan, D., Kowalski, E. (2003). Variation in
712	Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the
713	National Academy of Sciences 100(12): 7141-7146.
714	
715	Takahashi, H. A., Konohira, E., Hiyama, T., Minami, M., Nakamura, T., Yoshida, N. (2002).
716	Diurnal variation of CO2 concentration, Delta C-14 and delta C-13 in an urban forest:
717	estimate of the anthropogenic and biogenic CO2 contributions. Tellus B 54(2): 97-109.
718	
719	Tans, P. (1981). 13C/12C of industrial C02. In SCOPE 16: Carbon Qcle Modelling (B.Bolin,
720	ed.), John Wiley and Sons, Chichester, England, 127-129.
721	
722	Thoning, K. W., Tans, P.P., Komhyr, W.D. (1989). Atmospheric carbon dioxide at Mauna Loa
723	Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical
724	Research: Atmospheres (1984–2012) 94(D6): 8549-8565.
725	
726	Wada, R., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., Shibata, T. (2011). Observation
727	of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR
728	laser absorption spectroscopy. Atmospheric Environment 45(5): 1168-1174.
729	
730	Wang, W., D. E. Pataki (2012). Drivers of spatial variability in urban plant and soil isotopic
731	composition in the Los Angeles basin. Plant and Soil 350(1-2): 323-338.
732	
733	Wen, X. F., Meng, Y., Zhang, X., Sun, X., Lee, X. (2013). Evaluating calibration strategies
734	for isotope ratio infrared spectroscopy for atmospheric ¹³ CO ₂ / ¹² CO ₂ measurement.
735	Atmospheric Measurement Techniques Discussions $6(1)$: 795-823.
736	
737	Widory, D. (2006). Combustibles, fuels and their combustion products: A view through
738	carbon isotopes. Combustion Theory and Modelling 10 (5): 831-841.
739	
740	Widory, D., M. Javoy (2003). The carbon isotope composition of atmospheric CO2 in Paris.
741	Earth and Planetary Science Letters 215(1-2): 289-298.
742	
743	Yakir, D., L. da SL Sternberg (2000). The use of stable isotopes to study ecosystem gas
744	exchange. Oecologia 123 (3): 297-311.
745	
746	Yang, H.M., Wang, H.Z., Wu, Y.B. (2011). Observation and characteristics analysis of traffic
747	flow in Nanjing. (in Chinese) Environmental Science and Technology 24(2): 98-101.
748	
749	Zimnoch, M., Florkowski, T., Necki, J., Neubert, R. (2004). Diurnal variability of delta C-13
750	and delta O-18 of atmospheric CO2 in the urban atmosphere of Krakow, Poland. Isotopes in
751	Environmental and Health Studies 40(2): 129-143.

752

- Zobitz, J. M., Burns, S.P., Reichstein, M., Bowling, D.R. (2008). Partitioning net ecosystem
- carbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Global Change
- 755 Biology **14**(8): 1785-1800.

756

- 757 Zondervan, A., H. A. Meijer (1996). Isotopic characterisation of CO2 sources during regional
- pollution events using isotopic and radiocarbon analysis. Tellus B **48**(4): 601-612.

760	List of Figure Captions
761	
762	Figure 1. Dependence of the observed $\delta^{13}C$ on the H ₂ O molar fraction. The lines represent
763	Equation 2b. Error bars are \pm one standard deviation.
764	
765	Figure 2. Monthly total CO ₂ (upper panel) and δ^{13} C (lower panel). The solid line with cycle, dash
766	line with up triangles: midday (10:00-16:00) means; dashed line with down triangles, midnight
767	(22:00-6:00) means; smooth solid line stands, monthly means observed at the Mortgage Loan
768	Origination (MLO).
769	
770	Figure 3. Mean diurnal variation of the CO ₂ molar fraction (upper panels) and the δ^{13} C value
771	(bottom panels).
772	
773	Figure 4. Application of the Miller-Tans method to all valid midday (10:00-16:00) data
774	obtained between March, 2013 and August, 2015. Each data point is one hourly mean. The
775	solid line is the geometric mean regression according to Equation 1.
776	
777	Figure 5. Application of the Keeling mixing line method to all valid midnight (22:00-6:00)
778	data obtained between March, 2013 and August, 2015. Each data point is one hourly mean.
779	The solid line is the geometric mean regression according to Keeling plot

- Figure 6. Time series of monthly 13 C signature of surface sources in the YRD obtained with
- the Miller-Tans method (black line) and that in Nanjing obtained with the Keeling plot
- method (grey line). The error bars are \pm one standard deviation.
- 784
- Figure 7. Time series of monthly net surface CO₂ flux (F_S), plant CO₂ flux (F_P),
- anthropogenic CO_2 flux excluded cement emission (F_F) and cement CO_2 flux (F_c) in the
- 787 YRD. All the fluxes are in mg m⁻²s⁻¹.
- 788
- Figure 8. Time series of monthly net surface CO_2 flux (F_S), plant CO_2 flux (F_P),
- anthropogenic CO_2 flux excluded cement emission (F_F) and cement CO_2 flux (F_c) in the
- 791 Nanjing. All the fluxes are in mg m⁻²s⁻¹.
- 792
- 793

- Figure 1. Dependence of the observed δ^{13} C on the H₂O molar fraction. The lines represent
- Figure 2. Error bars are \pm one standard deviation.

796

- Figure 2. Monthly total CO₂ (upper panel) and δ^{13} C (lower panel). The solid line with cycle, dash
- ⁷⁹⁹ line with up triangles: midday (10:00-16:00) means; dashed line with down triangles, midnight
- 800 (22:00-6:00) means; smooth solid line stands, monthly means observed at the Mortgage Loan
- 801 Origination (MLO).

802

807 808

Figure 3. Mean diurnal variation of the CO₂ molar fraction (upper panels) and the δ^{13} C value

806 (bottom panels).

- **Figure 4**. Application of the Miller-Tans method to all valid midday (10:00-16:00) data
- obtained between March, 2013 and August, 2015. Each data point is one hourly mean. The
- solid line is the geometric mean regression according to Equation 1.

- **Figure 5**. Application of the Keeling mixing line method to all valid midnight (22:00-6:00)
- data obtained between March, 2013 and August, 2015. Each data point is one hourly mean.
- 816 The solid line is the geometric mean regression according to Keeling plot.

- **Figure 6**. Time series of monthly ¹³C signature of surface sources in the YRD obtained with
- the Miller-Tans method (black line) and that in Nanjing obtained with the Keeling plot
- 821 method (grey line). The error bars are \pm one standard deviation.

- **Figure 7**. Time series of monthly net surface CO₂ flux (F_S), plant CO₂ flux (F_P),
- anthropogenic CO_2 flux excluded cement emission (F_F) and cement CO_2 flux (F_c) in the
- 826 YRD. All the fluxes are in mg m⁻²s⁻¹.

827

- **Figure 8**. Time series of monthly net surface CO₂ flux (F_S), plant CO₂ flux (F_P),
- anthropogenic CO_2 flux excluded cement emission (F_F) and cement CO_2 flux (F_c) in the
- 832 Nanjing. All the fluxes are in mg m⁻²s⁻¹.

	Percentage (%)		δ^{13} C (‰)			
Sources	YRD	Nanjing	YRD	Nanjing	References	
Coal	70.0	52.3	-25.46	-25.46	Duan 1995, Widory 2006	
Gasoline	2.1	11.4	-28.80	-28.80	Widory and Javoy 2003	
Diesel	3.2	1.6	-29.80	-29.80	Widory 2006	
Fuel oil	2.1	0.3	-28.93	-28.93	Widory and Javoy 2003	
Natural gas	2.7	5.0	-39.50	-39.50	Pang et al. 2016	
LPG	0.7	0.2	-31.70	-31.70	Widory 2006	
Pig iron	8.7	12.7	-24.58	-24.58	this study	
Crude steel	1.5	0.7	-24.82	-24.82	this study	
Ammonia synthesis	9.0	15.9	-28.50	-28.50	this study	
Total	100	100	-26.07	-26.42		

Table 1. Percentage of fossil plus sources and their δ^{13} C values for the YRD and Nanjing.

Table 2. The isotopic composition of surface CO₂ sources and their percentage of

contribution in the YRD and Nanjing.

	YRI)	Nanjing		
Sources	δ ¹³ C (‰)	Percentage (%)	δ^{13} C (‰)	Percentage (%)	
Fossil plus	-26.07	91.0	-26.42	96.4	
Cement	0.20	9.0	0.20	3.6	
Anthropogenic	-23.71	100	-25.47	100	
Plant	-28.2		-28.2		