Response to Editor

Main concerns 1) inclusion and propagation of uncertainties

We have expanded the discussion on measurement uncertainties as follows:

"The typical 5-min measurement precision is 0.3 ‰ for δ^{13} C and 0.05 µmol mol⁻¹ for CO₂ mole fraction according to the instrument manufacturer. Our own Allan variance analysis revealed a precision of 0.05 ‰ for δ^{13} C and 0.07 ppm for CO₂ mole fraction at the hourly averaging interval. The precision of the ambient measurement was lower than this due to error propagated through the calibration procedure. According to a laboratory test on an analyzer of the same model and using the same calibration procedure as ours, the hourly δ^{13} C precision is about 0.4 ‰ (Wen et al., 2013). The calibration gases have much lower δ^{13} C than the ambient delta values. The mismatch in the delta value between the calibration standard and the ambient air is common in applications of the IRIS technique (¹³C in methane, Röckmann et al. 2016; ¹⁸O in water vapor, Lee et al. 2005; ¹³C in CO₂, Bowling et al. 2003). But because the system measures the concentrations of the major and the minor isotopologue independently, it is not critical that the calibration standard and the measurement target have matching isotope ratios (Bowling et al. 2005)."

Main concerns 2) regression via Miller-Tans and Keeling methods

Thank you for your recommendations on the papers relevant to this topic. After careful reading of these papers, we now realize that the geometric mean regression method we used originally is not a good choice. We now use the ordinary least squares regression. This point is noted in the Methods section:

"For the purpose of comparing with the Miller-Tans results, we also estimated the source isotope ratio using the Keeling mixing line method. According to Wehr and Saleska (2017), at the measurement uncertainties of our instrument system, the ordinary least squares procedure has much lower bias errors of parameter estimation than the geometric mean regression. In the following, the results of both the Miller-Tans method and the Keeling mixing line method were based on the ordinary least squares regression."

The change in the regression method caused the mean δ_s to decrease by an average amount of 0.9 ‰. As a result, the partitioned biological flux in the YRD changed from being a weak sink to a weak source.

Main concerns 3)

Please include uncertainties in all source isotope delta end members (delta $_F$, delta $_C$, delta $_P$) and fluxes (F_F and F_C) propagate errors formally, stating the values and uncertainties of each term. A Monte Carlo analysis is not justified because the underlying mass-balance equations are explicit. Disregarding the fact that it is not needed for the propagation of errors, the MC analysis (in l. 459-467) omits the uncertainties in the fluxes F_F and F_C and the isotope deltas delta $_S$ and delta $_C$. Most importantly, the uncertainty treatment should not be dealt with "as an afterthought", but should be carried out consistenly throughout the mnauscript.

We have now included uncertainties in all isotope delta end members and the fluxes (Tables 2 and 3; Figures 6 - 8).

The Monte Carlo procedure is used frequently by the hydrological community to quantify uncertainties associated with the partitioning of hydrological inputs to lake systems from isotope end members. There, the partitioning equations are also explicit expressions of the mass conservation principle. We used the same procedure to quantify how uncertainties in the isotope end members and the anthropogenic fluxes propagate through the partitioning equations. (In this updated analysis, we have considered uncertainties in all the input terms. Thank you for your suggestion.)

We now treat the issue of uncertainty throughout the paper. We have added the following description to the Methods section:

"The partitioning equations are explicit expression of the mass balance principle. But uncertainties in the isotope delta end members and the anthropogenic fluxes can propagate through these equations, causing uncertainties in the estimation of Fs and Fp. Here we used a Monte Carlo analysis to quantify these uncertainties. The same analysis has been applied to the partitioning of lake water budgets from isotope end members (Jasechko et al. 2014). The procedure employed a Gaussian distribution for errors in the input variables and an ensemble of 10,000 realizations for each month. Errors in Fs and Fp were computed as one standard deviation of these realizations after excluding the top and bottom 50 extreme ensemble members."

Main concerns 4)

The fact that your Miller-Tans regressions (Fig. 3 and Fig. 4) show non-zero intercepts provides the insight that they are not a suitable method to analyse the data on the annual timescale. You need to provide evidence that the method is suitable on shorter time-scales, in particular, the monthly timescale you are envisaging. A suitable timescale would be one that results in a nonzero intercept. You might find that a monthly timescale is not appropriate either, in which case an even more finely-grained analyses would be required, e.g. diel or even hourly, with subsequent aggregation of the derived source isotope deltas into daily/monthly/annual means. This was already pointed out by Referee #1. Please include a set of figures (Miller-Tans plots) that shows the data aggregated to subannual time-scales (monthly, possibly diel) and state the resulting source isotope deltas and their uncertainties.

That the Miller-Tans intercept is not zero is indeed a cause of concern. At the monthly time scale, the original Miller-Tans method has a non-zero intercept in the range of 300 to 900 ‰ µmol mol⁻¹. (A monthly example is now provided in Supplementary Figure S2.)

Following your suggestion, we have tried the 5-hour moving-window technique described by Vardag et al. (2016) for January and July 2014. Only 4 % of the data (all obtained at nighttime) satisfies their data screening criteria. The mean regression equation is y = -26.41 (±4.03) x + 428.84 (± 211.12) for January and y = -25.64 (±6.39) x + 687.83 (± 264.67) for July, where x is (C_a-C_b) and y is δ_a C_a.

That the intercept does not go to zero even at such a short-time scale leads us to hypothesize that the concentration and isotope measurements at the WMO baseline background site

(WLG) do not represent the true background for this highly urbanized region. We have also applied the method to other isotope data published for urban areas, and found that the problem seems common for urban studies. Most of these urban datasets yield nonzero intercepts (Supplementary Figure S3 and Table S1).

In the end, we decided to replace the WLG measurement with the tropospheric CO₂ concentration calculated by CarbonTracker over the YRD region as the background. To overcome the problem that CarbonTracker does not calculate tropospheric δ^{13} C, we rearranged the original Miller-Tans equation to a form that allows an intercept but without the need for a known background δ^{13} C. The changes of the background and the regression equation cause δ_{s} to decrease slightly by a mean value of 0.1 ‰, in comparison to the results obtained with the WLG as the background and the original Miller-Tans equation.

Please refer to Section 2.2 (which is completely rewritten) for additional explanation.

Main concerns 5)

I've tried to replicate the slope of -12 ‰ (instead of -24 ‰), which Referee #2 reported in their review posted on 3 October 2016, but have not been able to.

Thank you for checking on this. A surface source isotope ratio of -12 ‰ would seem too high to us.

Detailed Comments: (1) l. 33: Why do you restrict "daytime" to 1000-1600 and "nighttime" to 2200-0600, omitting the hours in between?

We have added the following explanation:

"Morning and evening transitional periods were omitted to avoid the confounding effects of sign change of the biological flux and sudden changes in the atmospheric stability regime."

(2)1. 162: Please describe how the standard gases were calibrated against NBS 19 (no hyphen) and NBS 20 (with space) and report the individual results of these measurements before conversion to the VPDB scale. What $\delta(13C)$ values (w.r.t. VPDB) did you use for NBS 20? The standard gases are a long way removed from the atmospheric value and virtually identical. This introduced significant scale uncertainties, see paper by Coplen et al. New guidelines for 13C measurements. Anal. Chem. 78, 2439-2441.

We apologize for a mixed-up here. NBS 19 and NBS 20 were used in an earlier study (Wen et al. 2013). In the present study, the reference materials were actually IAEA-CO-8 and IAEA-CO-9. We have added these details:

"... their δ 13C values were measured with a mass spectrometer (MAT-253, Finnigan) using IAEA reference materials IAEA-CO-8 (-5.76 ‰ VPDB) and IAEA-CO-9 (-47.32 ‰ VPDB). The mass spectrometer measurements of these reference materials were (-5.81 ± 0.04) ‰ and (-46.64 ± 0.08) ‰ before normalization to the VPDB scale."

Please refer to our response to Main point 1 regarding the mismatch between the calbiration gas isotope ratio and the ambient isotope ratio.

(3)1. 169: What do you mean by removing "40 3-minute data points"? Data over 3-minute intervals on 40 different occasions? Did this apply to all calibration gas runs? Were there only 40 calibration gas runs in the whole dataset? Perhaps your response could include a schematic or figure to illustrate what you have done.

This sentence has been changed to:

"We removed the first 3 min of the data after switching to the ambient sampling mode from the calibration mode."

(4)1. 170: Why were these data removed?

We remove the first 2-min data because the analyzer needed time to adjust to the step change after valve switching (Supplementary Figure S1).

(5)1. 204: Where were the Mount Waliguan data obtained? Please give a reference to the data depository and state how the data were measured, by whom and which instrument was used.

An online reference is added

(6) *The 2015 WLG data are now available, so the analysis should be performed with the actual data rather than some extrapolated version.*

We have updated this analysis using the actual observations at WLG.

(7) What efforts have been made to ensure that the new data are compatible (i.e. on the same scale) as the WLG data. What is the uncertainty of the delta(13C) of the a) WLG data and b) the new data with respect to VPDB?

The measurements at WLG are traceable to standards supplied by NOAA-ERL. The CO₂ concentration of our calibration gases was calibrated against three primary standards (with known mole fraction but unknown δ^{13} C) obtained from NOAA-ERL. One of us (Wen) has recently acquired δ^{13} C gas standards from NOAA-ERL, but unfortunately our working standards had already been depleted by then.

We have added the following text to the Methods section:

"Table 1 lists the concentrations and their isotopic compositions of the standard gases used in this study. These gases were balanced in air. Their CO2 mole fractions were measured with an IRIS analyzer (model G1101-i, Picarro Inc.) and calibrated against three primary standards obtained from NOAA-ERL which were traceable to the WMO 2007 scale reported by the Central Calibration Laboratory of the World Meteorological Organization, and their δ 13C values were measured with a mass spectrometer (MAT-253, Finnigan) using IAEA reference materials IAEA-CO-8 (-5.76 ‰ VPDB) and IAEA-CO-9 (-47.32 ‰ VPDB)."

Technical corrections:

(1)There should always be a space between value and unit, incl. per cent and per mill symbols, e.g. "-8.48 %," "13 %," "15 °C". There is no space before the degree sign if it refers to a geographic coordinate, but there is a space before the compass direction: "33° N". Please correct these errors throughout the manuscript.

Changed throughout the whole paper.

(2)Please use SI units for mole fractions, i.e. "µmol mol-1", not ppm, which is ambiguous.

Changed.

(3)Units and chemical symbols must not be mixed. The name of the quantity should identify the species of interest, i.e. "the CO2 mass flux", and the unit should simply be "mg m-2 s-1" (e.g. l. 254).

Corrected

(4)Please note that in line with international conventions, indices should be enclosed in brackets after the quantity symbol, including δ values, i.e. the correct notation is " $\delta(13C)$ ". Unfortunately, in the past, the isotope geochemistry community has ignored this convention, but this is not a good reason to continue this poor practice. Alternatively, you might want to omit the index and just write " δ " because - at least in the context of the present manuscript - only 13C/12C isotope ratios are considered. This makes also for a more concise terminology when you discuss the isotope delta of sources (Eq. 5), which would then be " δ_s " instead of " $\delta_s(13C)$ ", see comment on line 97 below. As you are not qualifying the mole fraction symbol further in Eq. 1, I suggest you should omit the index "(13C)" entirely.

We now use the symbols you recommended, such as δ_S , δ_F , δ_C , and δ_a .

(5)The language used at a number of places in the manuscript is not as clear as it should be. Please make the following changes to rectify this. Terms like "13C isotope composition", "13C isotopic signature", "highly enriched 13C signal", etc. do not make sense because they must be quantified by reference to the other stable carbon isotope, 12C.

Corrected.

(6)1. 24: This is grammatically wrong. Please change to "Observations of mole fraction and carbon stable isotope composition (expressed as $\delta(13C)$) of CO2 in urban ...".

Corrected

(7)1. 25: Add "and sinks" after sources.

Added.

(8)1. 26: Replace "C" with "carbon". Please make the same change everywhere else in the manuscript as well. Unncessary abbreviations should be avoided for clarity and easier reading.

Replaced.

(9)1. 29 & 30: Please also give the standard deviations of mean mole fraction and delta(13C).

Done.

(10)1. 31: Change word order to "highly 13C-enriched". Delete "the" before "Mount Waliguan".

Corrected.

(11)1. 34: Change to "we showed that the $\delta(13C)$ of CO2 sources"

Changed

(12)1. 43: Change to "unique 13C/12C ratios" or "unique $\delta(13C)$ values" or "unique carbon stable isotope signatures".

Changed.

(13)1. 48: Replace "isotopic signature" with " $\delta(13C)$ ".

Replaced

(14)1. 49: Replace "heavier" with "higher".

Replaced.

(15)1. 51: Replace "13C composition" with " $\delta(13C)$ ".

Replaced

(16)l. 55: Replace "δ13C" with "carbon stable isotope".

Replaced

(17)l. 56: "13C signature" - see l. 43.

Replaced

(18)1. 74, 87, 96, 123, 145: Delete "its" (mole fractions don't have $\delta(13C)$ values).

Deleted

(19)1. 97 & elsewhere: Wrong order of indices - this should be $\delta_{S}(13C)$.

Corrected

(20)1. 114: Either add the index "(13C)" to the delta symbols on the left hand side of the equation or omit it from the right hand side.

Changed.

(21)l. 115: "at a background site"

Edited

(22)1. 116: Please rephrase. Mole fractions don't have isotopic compositions, and there is no such thing as a "13C isotopic composition", also see comments above.

Changed to "mole fraction and δ^{13} C value of CO₂" throughout the paper.

(23)l. 125: "built-up area"

Edited.

(24)1. 127: Change to "190 million" and add a space before the compass direction (e.g. "33.41° N").

Edited

(25) Replace hyphens with to, e.g. "29.04° to 33.41° N".

Replaced

(26)1. 129: Rephrase to "The main vegetation types are all C3 species".

Rephrased

(27)1. 150: I find it hard to believe that there was no other anthropogenic CO2 source within a 3 km radius. Are there no houses? No heating system? No humans? No cars?

This sentence has been changed to "There was no large industrial CO₂ source in the 3 km radius..."

(28)1. 152: Please delete the "~" (tilde) sign and give an accurate distance instead (rounded and/or with uncertainties, if necessary). In any case, the "~" sign is not the correct symbol to designate approximations (for which " \approx " should be used).

Corrected

(29)l. 162: Please describe

Please refer to detailed comments 2 and 7.

(30)1. 173: Do you mean "high bias" or "high error"? And if bias, do you mean "biased high" (i.e. too large) or "highly biased" (i.e. biased a lot, but unclear in which direction)? How much is the bias (or error)?

Changed to "is biased high"

(31)1. 181: Do you mean relative humidity? In any case, the symbol "V" before "%" must be omitted.

Use SI units, i.e. 0.66 cmol/mol, or 0.66 x $10^{(-2)}$ m³/m³, for mole fractions (or volume fractions).

Edited. This is now referred to as "water vapor mole fraction"

(32)1. 181: Please replace "13C composition" with "13C/12C ratio".

Edited

(33)1. 185: Which one is it? A volume fraction? Or a mole fraction? Do you make a correction for the non-ideality of the gases involved?

It is mole fraction. We did not correct for non-ideality.

(34)1. 188: This equation is wrong (or at least inconsistent with the text). The second term on the right hand side should most likely be $0.46 \ \% (H/\% - 2.03)$.

Edited

(35)1. 189: Please delete "in percent". Physical quantities are not limited to one specific unit.

Deleted

(36)1. 190: Please change "isotopic composition" to "isotope delta" (two occurrences).

Changed

(37)*l*. 193: has -> have

Changed

(38)1. 253: Replace 13C isotope composition with an adequate term - see comments above.

Replaced as " δ^{13} C value"

(39)1. 255: Units and chemical symbols should not be mixed. If you want to specify the species the fluxes refer to, it should be enclosed in brackets, e.g. $F_s(CO2)$, or you could explain in the text that "F" relates to CO2 mass fluxes. The unit should be written as "mg m-2 s-1".

Changed.

(40)1. 258: "unknowns to be solved for"

Edited

(41)l. 264: adapt -> adopt

Edited

(42)1. 264: State the value used for delta(13C) of CO2 released during cement production, and its uncertainty. The uncertainty should be propagated through the flux calculation.

Done.

(43)1. 264: You should calculate an uncertainty for delta_P and propagate it to your flux calculation.

Done.

(44)l. 271: What is the uncertainty of this value?

The 20 % value is based on an eddy covariance observation. The nighttime F_F is also assumed to have an uncertainty of 10 %.

(45)1. 288-290: What are the standard deviations of these values?

Information added.

(46)1. 292: Replace "diurnal" with "diel". Diurnal means "during the day"; "diel" means "over 24 hours".

Replaced.

(47)1. 293: Define the winter season - which months?

Defined (December to February).

(48)1. 301: Value and uncertainty must be enclosed in brackets so that the unit symbol applies to both, i.e. (-24.75 ± 0.26) ‰. Please revise this and similar occurrences throughout the manuscript.

All checked

(49)*l*. 301: bound -> limit

Edited

(50)1. 307-321: This whole section is missing uncertainties and their propagation through the calculation.

Uncertainty ranges are now provided.

(51)1. 316: The delta differences have been calculated incorrectly. These should be 1.53 ‰ and 0.53 ‰ because the delta scale is not linear.

This comparison has been removed. (We have replaced Figures 4 and 5 with plots of the data obtained in January 2014.)

(52)1. 319: What do you mean by "linear correlation"? Is that the slope? Please give the full result of the regression (slope and intercept) including uncertainties of slope and intercept and

state the R^2 value.

These are linear correlation coefficients. The detailed regression statistics are now added.

(53) Section 3.3: Again uncertainty estimates are missing as well as their propagation.

The uncertainty ranges are now included in Tables 2 and 3.

(54)1. 349, 449, etc.: There should be a space between "m-2" and "s-1".

Changed.

(55)l. 369: "consistent"

Edited.

(56)1. 379: What do you by "varied 70% to 80% in winter and about 50% in summer"? In the remainder of the paragraph you use fractional comparison between winter and summer.

Changed to "In Chicago, natural gas usage comprises 70 % to 80 % of total fossil fuel consumption in the winter and about 50 % in the summer (Moore and Jacobson 2015)"

(57)l. 421/2: "monthly mean" (x 2)

Edited.

(58)l. 422: "WLG value"

Edited.

(59)1. 459-467: This MC analysis omits the uncertainties in the fluxes F_F and F_C and the isotope deltas delta_S and delta_C and should be improved by including them.

This analysis has been updated with the uncertainties in FF and Fc. The uncertainties in the partitioned fluxes are now shown (Figures 7 and 8).

(60)1. 493: The correlation coefficient is not a meaningful figure of merit to compare the "goodness of fit" by a Keeling plot regression and by a Miller-Tans regression because they plot different variables on the axes. It would be more useful to state the resulting uncertainties of the source delta values, $delta_S(13C)$.

We have deleted this portion of the text. Thank you.

(61)*l.* 853: "diel variation"

Edited

(62) Figure 1: x-axis label should be x(H2O)/% or y(H2O)/%.

We kept the original x-axis label but changed the independent variable in Equation 2 to " H_2O " to be consistent with this data plot.

(63)Figure 5: x-axis label.

Edited

(64) Figs. 7 & 8: The lack of variability in F_F seems to be implausible. What variability would you expect? Please indicate this on the plot and include it in the uncertainty propagation.

All the variables are now given an uncertainty range.

Response to Referee 2

This paper uses continuous measurements of the stable isotopic composition of carbon ($\delta 13C$) in CO2 to investigate CO2 emissions in the city of Nanjing and the surrounding areas, taking advantage of differing footprints for night (Nanjing) and day (surrounding area) times of day. The most important observation is that some of the $\delta^{13}C$ values are higher than background. The only mechanism to produce this is by incorporating emissions from cement production, which is characterized by very high $\delta^{13}C$ values of +0.20 ‰.

Main concerns 1)

The major concern in this paper is that the authors are using the Miller-Tans (2003) approach to determine the average monthly $\delta 13C$ of the sources for daytime and nighttime. In that formulation, the background values of CO2 mole fractions and $\delta 13C$ are included in the linear equation, with the slope being the $\delta 13C$ of the highCO2 endmember. The equation for this analysis is:

 $\delta obsCobs - \delta bgCbg = \delta s(Cobs - Cbg)$

where $\delta obsCobs - \delta bgCbg$ is plotted against (Cobs - Cbg). There should be no intercept determined during the analysis. However, the plots shown in Figures 4 and 5 show significant non-zero intercepts. I have looked at the data from the supplement, together with the NOAA data from WLG, which is being used as background in this new version, and found that the intercepts for the nighttime data for 2013-2014 should be ~-12‰ with a zero intercept, instead of -24 ‰ as shown in Figure 5. My analysis was approximate, in that I used a smoothing spline for interpolating the WLG data, instead of the Thoning et al. (1989) smoothing code. However, these are very different values and should affect the fluxes being calculated. At minimum, the meaning of the intercept values should be discussed, as well as why it is calculated.

Please refer to our response to the editor

Specific comments:

(1)Line 35 and often throughout: Give uncertainties or standard deviations of ranges.

Added

(2)Line 120: After "(Miller et al. 2003)" add "and was used in an urban environment by Newman et al. (2016)."

Added

(3) Line 121: Insert "continuous measurements in" between "to" and "an urban environment."

Added

(4)Line 138: You have justified using the Miller-Tans method earlier in the Introduction. There is no reason to discuss the performance of the Keeling plot method. Also, you do not show any Keeling plots. This discussion is left over from the previous version of the manuscript.

We now include the Keeling plot results (Figure 6; Supplementary Table S2).

(5)Lines 160–162: The carbon isotopic compositions of the two standards (Table 1) are very similar and very far from the values of the ambient measurements. Can you show that there are no extrapolation uncertainties?

Please refer to our response to the editor.

(6)Lines 287–289: What does it mean to say that $\delta 13C$ values display a larger seasonal cycle than do CO2 mole fraction values? The latter is ~20 ppm, whereas the former ~2‰. Are you thinking about a relative fraction?

This sentence is changed to "The ${}^{13}C/{}^{12}C$ ratio of atmospheric CO₂ displayed a more clear seasonal cycle than the mole fraction."

(7)Lines 299–321: The Miller-Tans (2003) method assumes a zero intercept. What is the meaning of your intercept, and how does it affect the interpretation of the slope?

Please refer to our response to the editor.

(8)Lines 311–321: What is the significance of these observations? Are they important enough that you should show figure(s) with the correlations?

We have added this sentence:

"These correlation patterns suggest that atmospheric $\delta^{13}C$ was influenced more by surface sources at the regional scale than at the local (city) scale."

(9) *Lines* 348–355: *A lot of values are given – what are the uncertainties?*

The uncertainties of these values are now given.

(10)Lines 369–370: Replace with: "to 2013, which was consistent with the seasonal variation of background and transport of emissions from fossil fuel combustion (Newman et al. 2016)."

Replaced

(11)Line 418: "Park Falls"

Edited

(12)Line 420: "fossil fuel combustion which has low 13C contents." This depends on the nature of the fossil fuel component. As shown in Table 2, gasoline combustion produces CO2 with δ 13C very similar to the biosphere, and combustion of coal produces CO2 with values higher than the biosphere.

This sentence has been changed to "...the plant photosynthetic enhancement of ${}^{13}C$ is offset by the CO₂ from fossil fuel combustion which has lower ${}^{13}C/{}^{12}C$ ratios than the atmosphere."

(13)Lines 477–504: Remove this section. It is left over from the previous version and no longer necessary

We now present the Keeling results.

Response to Referee 3

The authors made an obvious effort to improve the paper, and addressed most of my concerns reasonably well. There are still some weak points, and I realize that the work needed to fix some of them may be not possible anymore. I list my last concerns below and I leave it to the editor to decide if any of them is important enough to delay the publication.

Main concerns 1)

The accuracy is still not addressed in the answer or in the paper (but I do realize that this may be difficult with the information available). The precision for 1-hr intervals is specified; however, the calibration is done using 2-min averaged data, which will have lower precision; in this case the dataset could show 3-hourly steps due to the calibration.

Please refer to our response to the editor.

Main concerns 2)

The final NOAA data for 2015 for WLG are available. Did the authors at least check whether their extrapolated data for 2015 are somewhat similar to the real data from NOAA? (this should be easy)

Done. Thank you.

Main concerns 3)

the two sets of calibration gases listed in Table 1 have identical isotope values – please check if this is correct

This is because the two sets came from the same mixtures of CO₂ and air.

Main concerns 4)

I still find the estimation of uncertainties of the main results poor, and also the answers to the reviewers questions related to this. When comparing average mole fractions or isotope values (for examples Nanjing with WLG), the uncertainty should be given, in order to decide if the values are significantly different or not. For the final flux results, the Monte Carlo simulation estimates the influence of a 1‰ error in δ 13Cp and δ 13Cf, but does not account for the other variables that contribute to the overall uncertainty (Ff, Fc, δ 13Cs, δ 13Cc). Also, the results are only discussed in text as overall averages; when looking at Figs 7 and 8, it is not clear without errors shown which of the values are different from zero and if any of the variability is significant.

Please refer to our response to the editor.

1	Interpreting the ¹³ C/ ¹² C ratio of carbon dioxide in an urban airshed in the Yangtze
2	River Delta, China
3	
4	Jiaping_Xu ¹ , Xuhui Lee ^{1,2*} , Wei Xiao ¹ , Chang Cao ¹ , Shoudong Liu ¹ , Xuefa Wen ³ , Jingzheng
5	Xu ¹ , Zhen Zhang ¹ , Jiayu Zhao ¹
6	
7	¹ Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information
8	Science & Technology, Nanjing, China
9	
10	² School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut,
11	USA
12	
13	³ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
14	Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
15	
16	* Corresponding author
17	Dr. Xuhui Lee
18	Sara Shallenberger Brown Professor
19	School of Forestry and Environmental Studies, Yale University,
20	21 Sachem Street, New Haven, Connecticut 06510, USA
21	Phone: (203)432-6271; Fax: (203)432-5023
22	E-mail: xuhui.lee@yale.edu

24	Abstract: Observations of atmospheric CO ₂ mole fraction and <u>theits</u> ${}^{13}C/{}^{12}C$ isotope	
25	<u>ratio</u> composition (expressed as δ^{13} C) in urban airsheds provide constraints on the roles of	
26	anthropogenic and natural sources and sinks in local and regional carbon C cycles. In this	
27	study, we report observations of these quantities in Nanjing at hourly intervals from March	
28	2013 to August 2015 using a laser-based optical instrument. Nanjing is the second largest city	
29	located in the highly industrialized Yangtze River Delta (YRD), Eastern China. The mean	
30	CO ₂ mole fraction and δ^{13} C were (439.7 ± 7.5) µmol mol ⁻¹ and (-8.48 ± 0.56) ‰ 439.7 ppm-	
31	and -8.48‰ over this observational period. The peak monthly mean δ^{13} C (-7.44_‰, July	
32	2013) was 0.74_‰ higher than that observed at the Mount Waliguan, a WMO baseline site on	
33	the Tibetan Plateau and upwind of the YRD region. The highly enriched ¹³ C-enriched signal	
34	was partly attributed to the influence of cement production in the region. By applying the	
35	Miller-Tans method to nighttime and daytime observations to represent signals from the city	
36	of Nanjing and the YRD, respectively, we showed that the $-\frac{13}{C}/\frac{12}{C}$ ratio $\frac{13}{C}$ signal of CO ₂ C	2
37	sources in the Nanjing Municipality was (0.21 ± 0.53) 48/2% lower than that in the YRD. Flux	
38	partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small	
39	sourcesink of atmospheric CO ₂ , consistent with the Carbon Tracker inverse modeling result.	
40		
41	Keywords: urban areas; CO ₂ flux; Industrial process; Carbon isotope; In-situ observation	

Formatted: Superscript

Formatted: Superscript Formatted: Subscript

43 **1 Introduction**

Atmospheric CO₂ sources and sinks in urban areas consist mainly of plant uptake and release 44 and fossil fuel combustion. These contributors have unique ¹³C/¹²C ratiosisotopic signatures. 45 46 City clusters are human-dominated systems with high carbon emission intensity, contributing over 70% of the total anthropogenic CO₂ to the atmosphere (Satterthwaite 2008). Previous 47 urban isotopic studies emphasize carbon emissions from fossil combustion (Zondervan and 48 49 Meijer 1996, Pataki et al. 2003, Zimnoch et al. 2004, Affek and Eiler 2006, Newman et al. 2008). Relatively little attention is given to the $\frac{\delta^{13}C_{isotopic signature}}{\delta^{13}C_{isotopic signature}}$ of carbon dioxide 50 51 released by cement production, which is much highheavier than that of fossil fuel origin 52 (Andres et al. 1994). Likewise, the CO₂ emitted from burning of minerals in non-energy consumption industrial processes, such as iron and steel production, has higher $\frac{\delta^{13}C}{\delta^{13}C}$ 53 composition than that of fossil fuel (Table 21, Widory 2006). In China, cement production 54 55 and industrial processes contribute 13 % of the total anthropogenic CO₂ emission (Mu et al. 56 2013). Many of these industrial activities occur in or near urban areas. So far, little is known about their roles in the atmospheric δ^{13} - carbon stable isotope budget. 57 One scientific motivation for quantifying the ${}^{4}\delta^{13}C^{3}C$ signature of atmospheric CO₂ is 58 59 that it provides constraints that allow partitioning of the net surface flux into component 60 fluxes (Farguhar and Llovd 1993, Yakir and Sternberg 2000, Pataki et al. 2003). The ¹³C-61 based partitioning method has been used primarily for vegetation ecosystems, such as forests (Lloyd et al. 1996, Lloyd et al. 2001, Ometto, et al. 2006, Zobitz et al. 2008), grasses (Ometto 62

et al. 2002, Pataki et al. 2003), and crops (Leavitt et al. 1995, Griffis et al. 2005). The

approach has also been used in a limited number of urban studies (Pataki et al. 2003,

Formatted: Superscript

65	Zimnoch et al. 2004, Newman et al. 2008, Jasek et al. 2014). Compared with vegetation
66	ecosystems, urban ecosystems have more complex CO2 source configuration. We must
67	consider both natural sources (plants and soils) and anthropogenic sources (fossil combustion
68	and non-energy industrial processes) and the fact that the degree of mixing of urban air with
69	the free troposphere and the air outside the urban boundary varies diurnally and seasonally.
70	Anthropogenic emissions are hard to quantify because they depend on multiple factors
71	including city size, population density, fossil mix, and climate.
72	One of the first measurements of the carbon isotope $\underline{ratio}_{eomposition}$ of CO ₂ in an urban
73	atmosphere was made by Friedman and Irsa (1967). Since then, a few more experiments have
74	been conducted in urban environments. The data collected have been used to partition CO_2
75	contributors (Koerner and Klopatek 2002, Clark-Thorne and Yapp 2003), to quantify digurnal
76	variations in the CO ₂ mole fraction and $\frac{1}{100}\delta^{13}$ C in urban air (Zimnoch et al. 2004, Guha and
77	Ghosh 2010) and across urban to rural gradients (Lichtfouse et al. 2003, Pataki et al. 2007),
78	and variations among different land uses in urban areas (Clark-Thorne and Yapp 2003,
79	Widory and Javoy 2003). The isotopic data reveal insights into energy consumption patterns
80	(Widory and Javoy 2003, Bush et al. 2007), impacts of meteorology including temperature
81	(Clark-Thorne and Yapp 2003, Zimnoch et al. 2004), atmospheric stability (Pataki et al. 2005)
82	and wind (Clark-Thorne and Yapp 2003) on urban carbon cycling, and the role of vegetation
83	phenology (Ehleringer et al. 2002, Takahashi et al. 2002, Wang and Pataki 2012). The
84	analytical technique employed in these studies is mainly based on mass-spectrometry (MS).
85	Because sample collection, preparation and analysis are labor intensive, the majority of these
86	studies are limited to short campaigns (less than 60 days).

87	In recent years, the development of isotope ratio infrared spectroscopy (IRIS) and on-line
88	calibration technology provides a new solution for long-term in-situ observation of the CO2
89	mole fraction and $\frac{\partial}{\partial t} \delta^{13}$ C at high frequencies (1 Hz to 1 hour; Pataki et al. 2006, Griffis.
90	2013, Gorski et al. 2015). Compared with the MS method, IRIS can capture dieurnal or even
91	shorter temporal variations with relatively high accuracy, enabling us to understand how
92	anthropogenic emissions change atmopheric CO2 at highly resolved temporal and spatial
93	scales. Nevertheless, application of the IRIS technology in urban monitoring is still limited in
94	terms of cities covered and measurement duration: less than 35 days in McManus et al.
95	(2002), Pataki et al. 2006 and Wada et al. (2011) and 3 seasons in Moore and Jacobson
96	(2015). Only <u>a fewone</u> published stud <u>iesy</u> ha <u>ves</u> presented data that spans one full annual
97	cycle (Pang et al. 2016 <u>: Vardag et al. 2016</u>).
98	Simultaneous measurement of atmospheric CO ₂ concentration and $-\frac{\delta^{13}C}{\delta^{13}C}$ its isotopic-
99	composition is used to determine the overall <u>13C/12Cisotopic ratiosignature</u> of local surface
100	sources $\delta^{13}C_s$. The majority of All published urban studies to date have deployed the Keeling
101	plot method (Keeling 1958, Keeling 1961) for the determination of δ^{13} C _S . In this approach, a
102	linear relationship is established between δ^{13} C and the reciprocal of the CO ₂ mole fraction
103	from the observed time series, and the intercept of the linear regression is taken as the
104	isotopic ratio composition of the local CO ₂ emissions. The method assumes that the isotopic
105	ratiosignature of the sources is invariant with time. It also assumes that changes in the CO ₂
106	mole fraction and in δ^{13} C are attributed only to the surface sources and are unaffected by
107	regional carbon sources (Pataki et al. 2003). However, these assumptions do not strictly hold
108	in an urban environment because the intensity of traffic emissions varies strongly through the

Formatted: Superscript
Formatted: Superscript

109	digurnal cycle (McDonald et al. 2014), and therefore the composition composition of the	
110	surface source varies, and its ¹³ C/ <u>¹²C</u> ratiosignature cannot be assumed constant. In addition,	Formatted: Superscript
111	because of strong atmospheric mixing in the daytime convective boundary layer, the	
112	background air in the upper troposphere can be easily entrained to the surface layer, mixing	
113	the CO ₂ that originates from regional sources with that emitted locally in the urban airshed.	
114	Miller and Tans (2003) propose that $\delta^{13} C_{\rm S}$ be determined as the slope of the linear	
115	relationship	
116	$\underline{\delta_{a}C_{a} - \delta_{b}C_{b}} = \underline{\delta_{S}(C_{a} - C_{b})} \underbrace{\delta_{a}C_{a} - \delta_{b}C_{b}} = \underline{\delta^{13}C_{s}(C_{a} - C_{b})}$	Formatted: Font: (Default) Times New Roman, 12 pt
117	(1)	
118	where C_a is CO ₂ mole fraction in urban air, C_b is CO ₂ mole fraction <u>atim</u> a background site, δ_a	
119	is the ${}^{13C} \delta^{13C}$ isotopic composition value - of C _a , and δ_b is the ${}^{-43}C \delta^{13}C$ value isotopic	Formatted: Superscript
120	composition of C_b . BWe argue that because this approach takes into account the fact the	
121	background atmosphere varies, it may be is more suitable than the Keeling method for	
122	inferring $\delta^{13}C_S$ from the observations made in the urban area with complex emission sources.	
123	The method has been applied to local and regional carbon budget studies in nonurban settings	
124	(Miller et al. 2003) and in an urban environment by Newman et al. (2016) Here we extend	
125	the method to <u>continuous measurements in</u> an urban environment.	
126	In this study, we report the results of long-term (30 months) continuous measurement of	
127	atmospheric CO ₂ mole fraction and $\frac{1}{100} \delta^{13}$ C at a suburban site in Nanjing using an IRIS	
128	instrument. Nanjing is the second largest city in the Yangtze River Delta (YRD), Eastern	
129	China, with a builtd-up area of 753 km ² and a population of 8.2 million. Geographically, the	
130	YRD includes the provinces of Jiangsu, Zhejiang and Anhui and the Shanghai municipality	

131	(29.04° <u>to</u> -33.41°_N, 118.33° <u>to</u> -122.95°_E) with a population of 1-9 <u>0-hundred</u> million. The	
132	YRD is influenced by subtropical moist monsoon climate. The mean annual temperature is	
133	about 15_°C and the annual precipitation is between 1000 mm and 1800 mm. The main-	
134	vegetation types, all of which are all C3 species. The YRD is the most industrialized region in	
135	China and had a higher urban land fraction of 10.8_% as of 2014 than the global mean (2.4_%,	
136	Akbari et al. 2009). In 2014, more than 220 large cement production factories (daily output	
137	exceeding 1000 tons) were located in the YRD (China Cement, 2016), contributing about	
138	$20_{\%}$ of the national cement output.	
139	The objectives of this study are (1) to characterize the atmospheric δ^{13} C di <u>eurna</u> l,	
140	seasonal and annual variations in this urban environment, in a region where such	
141	measurement is nonexistent, (2) to investigate the influence of cement production on	
142	atmospheric δ^{13} C, (3) to evaluate the performance of the Keeling plot and the Miller-Tans	
143	method for determining δ^{13} C _s , and (4) to explore the utility of the isotopic constraints for	
144	inferring the net surface flux and the plant CO ₂ flux in Nanjing and in the YRD.	
145		
146	2 Methods	
147	2.1 Atmospheric observation	
148	An IRIS analyzer (model G1101-i, Picarro Inc., Sunnyvale, CA) was used to measure	
149	atmospheric CO ₂ mole fraction and its ${}^{13}C/{}^{12}C$ isotope ratio composition ($\delta^{13}C$) continuously	1
150	from February 2013 to August 2015. The analyzer was housed on the 9 th floor of our	
151	laboratory building on the campus of Nanjing University of Information, Science and	
152	Technology (NUIST, 32°12'_N, 118°43'_E), in the northern suburb of Nanjing, at a linear	

Formatted: Superscript

153	distance of 20 km to the city center. The instrument inlet was at a height of 34 m above the
154	ground. There was no large industrial anthropogenic CO ₂ source in the 3 km radius except for
155	a commuting road located about 300 m east of the observation site. The nearest industrial
156	complex, the Nanjing Iron & Steel Group Co. Ltd. and the Nanjing Chemical Industry Group,
157	was located <u>about</u> -5 km to the south of the site.
158	The measurement was made at 0.3 Hz and at an air flow rate of 30 mL min ⁻¹ at standard
159	temperature and pressure. One three-way solenoid valve was combined with two two-way
160	solenoid valves, so the analyzer could be switched for atmospheric sampling and for
161	sampling of two standard gases. Calibration was carried out every 3 h by sampling each
162	standard gas for 5 minutes following the procedure of Bowling et al. (2003) and Wen et al.
163	(2013). (To avoid transient effects, only the data collected in the last 2 minutes of the 5-min
164	calibration periodswas used; Supplementary Figure S1) Table 1 lists the concentrations
165	and their isotopic ratio compositions of the standard gases used in this study. These gases
166	were balanced in air. TheirCO2 mole fractions were measured with a gas analyzer (model
167	(model G1301, Picarro) and calibrated against three primary standards obtained from NOAA-
168	ERL which wereof the standard gases was traceable traceable to the WMO 2007 scale
169	reported by the Central Calibration Laboratory of the World Meteorological Organization.
170	and their δ^{13} C values were measured with a mass spectrometer (MAT-253, Finnigan)
171	usingwas based on the IAEA reference materials IAEA-CO-8 (-5.76 % VPDB) and IAEA-
172	CO-9 (NBS-1947.32 ‰ VPDB) and the NBS20 standards of NIST. The mass spectrometer
173	measurements of these reference materials were (-5.81 \pm 0.04) ‰ and (-46.64 \pm 0.08) ‰
174	before normalization to the VPDB scale The ambient measurement was averaged to hourly

Formatted: Indent: First line: 0.29"

175 intervals. The isotopic <u>ratio</u>-composition was expressed in the delta notation (δ^{13} C) in 176 reference to the VPDB scale.

177	The typical 5-min measurement precision is 0.3 % for δ^{13} C and 0.05 <u>umol mol⁻¹ppm</u> for	2
178	CO2 mole fraction according to the instrument manufacturer. Our own Allan variance	
179	analysis revealed a precision of 0.05_‰ for δ^{13} C and 0.07 <u>µmol mol⁻¹ppm</u> for CO ₂ mole	
180	fraction at the hourly averaging interval. The precision of the ambient measurement was	
181	lower than this due to errors propagated through the calibration procedure. According to a	
182	laboratory test on an analyzer of the same model and using the same calibration procedure as	
183	ours, the hourly δ^{13} C precision is about 0.4 ‰ (Wen et al., 2013). The calibration gases had	
184	much lower δ^{13} C than the ambient delta values. The mismatch in the delta value between the	
185	calibration standard and the ambient air is common in applications of the IRIS technique	
186	[<u>13C(CH₄), Röckmann et al. 2016; ¹⁸O(H₂O), Lee et al. 2005; ¹³C(CO₂), Bowling et al. 2003].</u>	
187	But because the system measures the concentrations of the major and the minor isotopologue	
188	independently, it is not critical that the calibration standard and the measurement target have	
189	matching isotope ratios (Bowling et al. 2005).	
190	We did not adopt the strict filtering technique used for background sites (Thoning et al.	
191	1989) because of high natural variations in urban airsheds. We removed the first 3 min of the	
192	data 40-3-minute data points during the transient periods after switching to the ambient	
193	sampling mode from the calibration modeion gas changes. Additionally, data were removed	
194	if hourly CO ₂ mole fraction was lower than 390 <u>μmol mol⁻¹ppm</u> or δ^{13} C were out of the range	
195	between -15_‰ and -5.5_‰.	

Formatted: Font: Symbol Formatted: Superscript

1	Formatted: Superscript
-	Formatted: Subscript
(Formatted: Superscript
(Formatted: Subscript
(Formatted: Superscript
(Formatted: Subscript

196	The δ^{13} C <u>value</u> measured by the analyzer in high humidity conditions <u>issuffers a high</u>	
197	biased high-error due to spectral broadening and direct spectral interference (Rella 2011) To	
198	correct for the humidity interference, we carried out two tests using a dew-point generator	
199	(model 610, LI-COR, Inc., Lincoln, NE). A CO ₂ standard gas (secondary standard gas, 439	
200	<u>µmol mol⁻¹ppm</u> in test one and 488 <u>µmol mol⁻¹ppm</u> in test two, balanced by dry air) was fed	
201	into the dew-point generator. The outlet of the dew-point generator was connected with a 3-	
202	way union with one end linked to the inlet of the analyzer and the other open to the room.	
203	The humidity level of the air coming out of the dew point generator was regulated at eight	
204	levels in a dew-point temperature range of 1 toand 30_°C, giving a water vapor mole	
205	<u>fraction</u> humidity ranging from 0.66 \forall % to 4.26 \forall % (0.66 to 4.26 cmol mol ⁻¹). Because the	1
206	¹³ C/ ¹² C ratio ¹³ C composition of the standard gas was constant, any observed variations were	
207	caused by the humidity artifact. We found that no correction was needed for our analyzer if	
208	the <u>water vapor mole fraction</u> humidity was below 2.03_%. Above this humidity level, the	
209	measurement was biased high by 0.46_‰ for every 1 <u>cmol mol⁻¹%</u> increase in the water <u>vapor</u>	
210	vapor volume or mole fraction (Figure 1). The two tests, taken eight months apart, yielded	
211	essentially the same result. The correction equation is	
212	$\delta^{13}C = \delta^{13}C_{true}$ H ₂ O $\leq 2.03 \%$ (2a)	11/20
213	$\underline{\delta^{13}C} = \underline{\delta^{13}C_{true}} + 0.46 \ \ (H_2O \ \ \% - 2.03) \qquad H_2O > 2.03 \ \ \% \qquad (2b)$	
214	$\delta^{\frac{13}{2}}C = \delta^{\frac{13}{2}}C_{true}$ $H \le 2.03\%$ (2a)	11/11/11
215	$\delta^{13}C = \delta^{13}C_{true} + 0.46(H - 2.03) - H > 2.03\% - (2b)$	11 11 11
216	where H ₂ O is water vapor volume mole fraction in percent, $-\delta^{13}$ C is the measured isotope	
217	<u>deltaic composition value</u> (after the two-point calibration), and $\delta^{13}C_{true}$ is the true isotope	``

Formatted: Superscript

Formatted: Superscript Formatted: Superscript

,{	Formatted: Font: Symbol
1	Formatted: Superscript
{	Formatted: Font: Symbol
1	Formatted: Superscript
Ì	Formatted: Subscript
Ì	Formatted: Subscript
Ì	Formatted: Font: Symbol
Ń	Formatted: Superscript
ù (Formatted: Font: Symbol
	Formatted: Superscript
'n(Formatted: Subscript
j[Formatted: Subscript
$\langle $	Formatted: Subscript
Ì	Formatted: Subscript

1	
218	<u>delta valueie composition</u> . The ambient <u>vapor mole fraction-humidity</u> varied from 0.16 to
219	3.64 \checkmark % during the measurement period. About 35_% of the observations exceeded the
220	threshold <u>mole fraction</u> humidity of 2.03_%¥ and required correction. The largest hourly
221	correction was 0.74_%. In the following, all the data haves been corrected for the humidity
222	interference

222	
//4	
	,

224	2.2 The <u>13C/12C</u> isotopratioic composition (δ^{13} Cs) of surface sources (δ_{s})
225	We applied the Miller-Tans method to estimate the $^{13}C/^{12}C$ ratio of the surface source (δ_{s}).
226	Strictly, Equation 1 does not allow a non-zero intercept, but when applied to the data obtained
227	at the monthly time scale, the regression yielded a non-zero intercept (Supplementary Figure
228	S2). To determine if a shorter time scale would improve the result, we applied the 5-h moving
229	window technique described by Vardag et al. (2016) to the observations made in January and
230	July 2014. Only 4 % of the data, all obtained at nighttime, satisfies their data screening
231	criteria. The mean regression equation of this subset is $y = (-26.41 \pm 4.03) x + (428.84 \pm 1.03) x$
232	211.12) for January and $y = (-25.64 \pm 6.39) x + (687.83 \pm 264.67)$ for July, where x is (C _a
233	C_b) and y is $(\delta_a C_a - \delta_b C_b)$. In these analyses, the background CO ₂ mole fraction and the
234	isotope ratiothe data collected in daytime hours (10:00 to 16:00 local time; Equation 1) to-
235	represent YRD and to the data collected during nighttime hours (22:00-6:00 local time) to-
236	represent Nanjing. The slope was obtained by linear regression of (C_{μ}, C_{b}) against $(\delta_{\mu}C_{\mu}, \delta_{b}C_{b})$.
237	over monthly intervals. The monthly mean CO2-mole fraction and the isotopic composition of
238	the-background air were those observed at Mount Waliguan (WLG, 36°17'_N, 100°54'_E,
239	3816 m above the mean sea level; Zhou et al.,

{	Formatted: Superscript
(Formatted: Superscript
{	Formatted: Superscript
	Formatted: Superscript
) [Formatted: Font: Not Bold

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

240	2005https://www.esrl.noaa.gov/gmd/dv/data/index.php) located at the northeastern edge of	
241	the Tibetan Plateau (Zhou et al., 2005), the closest upwind WMO background station for	
242	NanjingUse of other WMO baseline sites as the background gave essentially the same	
243	results. Because the WLG data were not available for 2015 at the time of this analysis, we	
244	fitted the WLG data of both CO ₂ and δ^{13} C with a four-harmonic quadratic function (Thoning-	
245	et al. 1989) using the dataset from 2000 to 2014, and then used the function to estimate the	
246	monthly $\delta^{13}C_{b}$ and C_{b} values for 2015.	
247	The selection of a background site is a critical issue when applying the Miller-Tans	
248	method (Ballantyne et al., 2011 & 2010 , Turnbull et al., 2015). That the Miller-Tans intercept	
249	does not go to zero suggests that the baseline site WLG may not be a suitable background for	
250	this highly urbanized region. We tested the Miller-Tans method with other isotope data	
251	published for urban areas, and found that the intercept was nonzero for most of the urban	
252	datasets (Supplementary Figure S3 and Table S1).	
253	In the following, we used the tropospheric CO ₂ mole ratio calculated by CarbonTracker	Formatted: Subscript
254	over the YRD region (altitude 3330 m; https://www.esrl.noaa.gov/gmd/dv/data/index.php) as	
255	the background concentration (Cb). The CarbonTracker mole ratio is on average 3.5 umol	Formatted: Subscript
256	mol ⁻¹ higher than that observed at WLG. To overcome the problem that CarbonTracker does	Formatted: Superscript
257	not calculate tropospheric δ^{13} C, we rearranged Equation 1 to a form that allows an intercept	
258	but without the need for a known background $\delta^{13}C$, as	
259	$\delta_{a}C_{a} = \delta_{S} (C_{a} - C_{b}) + \delta_{b}C_{b} $ (3)	
260	The ¹³ C/ ¹² C ratio of the surface source was taken as the slope of the linear regression of $\delta_3 C_a$.	Formatted: Indent: First line: 0 ch
		Formatter. Superscript
261	against (C_1, C_2) A key difference between Equation 3 here and Equation 5 of Miller and Tans	Formatted: Superscript

ſ

262	(2003) is that the $\delta_{\rm S}$ appears only in the slope parameter in Equation 3 but in both the slope
263	and the intercept parameter in Miller and Tans' Equation 5.
264	The Miller-Tans analysis was performed over monthly intervals, using Ideally, the
265	background site should not be affected by local and regional emission and should lie in the
266	upwind direction of the observation site. Based on these criteria, we chose WLG as the
267	background site for our analysis. the data collected in daytime hours (10:00 to 16:00 local
268	time; Equation 1) to represent YRD and to the data collected during nighttime hours (22:00-
269	6:00 local time) to represent Nanjing. Morning and evening transitional periods were omitted
270	to avoid the confounding effects of sign change of the biological CO ₂ flux and sudden
271	changes in the atmospheric stability regime. The slope was obtained by linear regression of
272	(Ca-Cb) against (daCa-dbCb) over monthly intervals. The monthly mean CO2 mole fraction-
273	and the isotopic composition of the
274	We interpreted the daytime results to represent the influence of surface sources in the
275	YRD region and the nighttime results to represent the influence of surface sources in the
276	Nanjing <u>municipality</u> . The vigorous turbulent exchange in the daytime boundary layer
277	diminishes the role of local sources in the measured concentration and isotopic ratio. In other
278	words, the daytime measurement has a much larger source footprint than the size of the urban
279	land itself or the footprint of the nighttime measurement. In contrast, the buildup of CO2 at
280	night is primarily the result of sources in the city (Shen et al. 2014), so we considered the
281	δ^{13} Cs determined from the nighttime observations to represent the signal of the sources
282	located in the city. Admittedly, this interpretation of daytime versus nighttime source areas is
283	a simplification because the actual source area also depends on thermal stratification and

Formatted: Subscript

284	boundary layer wind. Nevertheless, it is supported by a trajectory analysis and by an analysis	
285	of the atmospheric methane to CO ₂ emissions ratio (Shen et al. 2014).	
286	For the purpose of comparing with the Miller-Tans results, we also estimated the source	
287	¹³ C/ ¹² C ratio using the Keeling mixing line method. According to Wehr and Saleska (2017),	Formatted: Superscript Formatted: Superscript
288	at the measurement uncertainties of our instrument system, the ordinary least squares	
289	procedure has much lower bias errors of parameter estimation than the geometric mean	
290	regression. In the following, the results of both the Miller-Tans method and the Keeling	
291	mixing line method were based on the ordinary least squares regression.	
292	_	
293	2.3 Inventory of anthropogenic sources	
294	We calculated the anthropogenic CO ₂ fluxes from energy consumption and industrial process	
295	following the SCOPE 1 procedure issued by the International Council for Local	
296	Environmental Initiatives (ICLEI, 2008). The procedure considers only emissions from	
297	sources that lie within the geographic boundary of investigation. The energy consumption	
298	source consists of direct emissions from the three main energy consumption sectors (industry,	
299	transport, and household). We ignored the commerce sector here because the main energy	
300	consumption in this sector in Nanjing and in the YRD was electric power generated by coal	
301	and coal consumption which was already considered in SCOPE 1. The amounts of CO_2	
302	emission were estimated with the IPCC methodology adopting the emission factors for each	
303	fossil fuel type recommended by IPCC. The calculations were done separately for the YRD	
304	region and for the Nanjing municipality. Because no statistical data were available for energy	
305	consumption in the transport sector in Nanjing, the CO ₂ emission from the transport sector	

306	was deduced according to vehicle number, average annual driving distance and coefficients		
307	of fuel economy (Bi et al. 2011). We obtained the data on energy consumption from official		
308	sources (CESY 2013, CSY 2013, NSY, 2013).		
309	The non-energy industrial processes included cement, raw iron, crude steel, and		
310	ammonia synthesis processes. In the YRD, the data were available at monthly intervals. For		
311	the city of Nanjing, only annual statistics were available.		
312			
313	2.4 Partitioning the net surface flux		
314	We partitioned the surface CO_2 flux (F _s) into three component fluxes according to the		
315	following mass conservation equations		
316	$F_s = F_F + F_C + F_P$	`	Formatted: Indent: First line: 0.29"
317	(4)		
317 318	(4) $\underline{\delta_{S} F_{S}} = \underline{\delta_{F} F_{F}} + \underline{\delta_{C} F_{C}} + \underline{\delta_{P} F_{P}}$		Formatted: Font: Symbol
317 318 319	(4) $\underline{\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}}$ $\underline{(\delta^{13}C_{S}F_{S} = \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P}}$		Formatted: Font: Symbol Formatted: Subscript Formatted: Symbol Formatted: Subscript
317 318 319 320	(4) $ \underbrace{\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}}_{(\delta^{13}C_{S}F_{S} - \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P})} $ (5)		Formatted: Font: Symbol Formatted: Subscript
317 318 319 320 321	(4) $ \frac{\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}}{(\delta^{13} C_{S} F_{S} - \delta^{13} C_{F} F_{F} + \delta^{13} C_{C} F_{C} + \delta^{13} C_{P} F_{P}} $ (5) where F_{F} is the flux from fossil fuel combustion and industrial emission except cement		Formatted: Font: Symbol Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Font: Symbol Formatted: Subscript
 317 318 319 320 321 322 	(4) $\frac{\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}}{(\delta^{13} C_{S} F_{S} - \delta^{13} C_{F} F_{F} + \delta^{13} C_{C} F_{C} + \delta^{13} C_{P} F_{P}}$ (5) where F_{F} is the flux from fossil fuel combustion and industrial emission except cement production (termed "fossil plus"), F_{C} is the flux due to cement production, F_{P} is the biological		Formatted: Font: Symbol Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Font: Symbol Formatted: Subscript
 317 318 319 320 321 322 323 	 (4) <u>δ_S F_S = δ_F F_F + δ_C F_C+δ_P F_P (δ¹³C_SF_S = δ¹³C_FF_F + δ¹³C_CF_C + δ¹³C_PF_P</u> (5) where F_F is the flux from fossil fuel combustion and industrial emission except cement production (termed "fossil plus"), F_C is the flux due to cement production, F_P is the biological flux, and δ¹³C_F, δ¹³C_C, and δ¹³C_{PP} are the <u>δ¹³C value</u>¹³C isotope composition of F_F, F_C and F_P, 		Formatted: Font: Symbol Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Font: Symbol Formatted: Subscript
 317 318 319 320 321 322 323 324 	(4) $\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}$ $(\delta^{13}C_{S}F_{S} = \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P}$ (5) where F _F is the flux from fossil fuel combustion and industrial emission except cement production (termed "fossil plus"), F _C is the flux due to cement production, F _P is the biological flux, and $\delta^{13}C_{F}$, $\delta^{13}C_{C}$, and $\delta^{13}C_{PP}$ are the $\delta^{13}C$ value ¹³ C isotope composition of F _F , F _C and F _P , respectively. These CO ₂ mass fluxes are obtained by dividing the total emission by the		Formatted: Font: Symbol Formatted: Subscript Formatted: Subscript
 317 318 319 320 321 322 323 324 325 	(4) $\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}$ $(\delta^{13}C_{S}F_{S} = \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P}$ (5) where F_{F} is the flux from fossil fuel combustion and industrial emission except cement production (termed "fossil plus"), F_{C} is the flux due to cement production, F_{P} is the biological flux, and $\delta^{13}C_{F}$, $\delta^{13}C_{C}$, and $\delta^{13}C_{PP}$ are the $\delta^{13}C$ value ¹³ C isotope composition of $F_{F_{2}}$, F_{C} and $F_{P_{2}}$ respectively. These CO_{2} mass fluxes are obtained by dividing the total emission by the surface area within the geographic boundary of Nanjing or the YRD, having dimensions of		Formatted: Font: SymbolFormatted: SubscriptFormatted: Font: SymbolFormatted: SubscriptFormatted: Font: SymbolFormatted: SubscriptFormatted: Subscript
 317 318 319 320 321 322 323 324 325 326 	(4) $\delta_{S} F_{S} = \delta_{F} F_{F} + \delta_{C} F_{C} + \delta_{P} F_{P}$ (5) where F_{F} is the flux from fossil fuel combustion and industrial emission except cement production (termed "fossil plus"), F_{C} is the flux due to cement production, F_{P} is the biological flux, and $\delta^{13}C_{F}$, $\delta^{13}C_{C}$, and $\delta^{13}C_{Pp}$ are the $\delta^{13}C$ value ¹³ C isotope composition of F_{F} , F_{C} and F_{P} , respectively. These CO_{2} mass fluxes are obtained by dividing the total emission by the surface area within the geographic boundary of Nanjing or the YRD, having dimensions of mg- CO_{2} m ⁻² s ⁻¹ . We separated the cement source from other non-energy consumption		Formatted: Font: Symbol Formatted: Subscript

328	equations, the monthly net surface flux (F_S) and the biological flux (F_P) are unknowns to be
329	solved <u>for</u> , and all other terms are either provided by the atmospheric measurement or by the
330	inventory calculation. The partitioning analysis was done for both Nanjing and the YRD
331	using the nighttime and daytime observations, respectively.

332	The $\delta^{H3}C_F$ was weighted average of the <u>isotope ratio</u> $\delta^{H3}C$ signal of individual fuel types
333	and industrial processes (Widory 2006; Table 2). The isotop delta value ic composition of CO ₂
334	from cement production is provided by Tans (1981) and Anders (1994). We adoa a value of
335	(-28.2_%) for δ^{13} CP for the YRD and Nanjing, on account of a linear relationship between
336	δ^{13} CP and tree age (Fessenden and Ehleringer 2002), a typical tree age in this region (40
337	years) and an U-shaped relationship between $\delta^{13}C_P$ and annual precipitation (Pataki et al.
338	2007). Our δ^{13} C _P is more negative than that reported for a boreal forest (-26.2_%; Pataki et al.
339	2007) but is in closer agreement with the value reported for a Ginkgo tree in Nanjing (-
340	29.3_%; Sun et al. 2003). A summary of the isotopic <u>ratio</u> compositions of the three source
341	categories is given in Table 3.
342	Uncertainties in the delta values of the different fuel types and industrial processes were
343	based on the data found in the references listed in Table 2. The uncertainty in δ_P was assumed
344	to be ± 1.00 % (Verdag et al. 2016). The mass flux terms F_F and F_C were assumed to have a
345	10% uncertainty, which is typical of fossil fuel consumption data (Vardag et al. 2016).
346	To partition the nighttime flux for Nanjing, we assumed that the nighttime $F_{\rm F}$ was 20_%
347	of the daily value. The parameter 20_% was determined by the dieurnal variation of the CO_2
348	flux observed with an eddy covariance system in Nanjing (Bai 2011) and in several other
349	cities (Coutts et al. 2007, Song and Wang. 2011, Liu et al. 2012). At night, most of the

Formatted: Font: 12 pt

350	factories in the city were closed and the traffic flow was reduced to about 80_% of the	
351	daytime volume (Yang et al. 2011).	
352	The partitioning equations are explicit expression of the mass balance principle. But	
353	uncertainties in the isotope delta end members and the anthropogenic fluxes can propagate	
354	through these equations, causing uncertainties in the estimation of F _S and F _P . Here we used a	
355	Monte Carlo analysis to quantify the error propagation. The same analysis has been applied	Formatted: Font: Not Italic
356	to the partitioning of lake water budgets from isotope end members (Jasechko et al. 2014).	
357	The procedure employed a Gaussian distribution for errors in the input variables and an	
358	ensemble of 10,000 realizations for each month. Errors in F _S and F _P were computed as one	
359	standard deviation of these realizations after excluding the top and bottom 50 extreme	
360	ensemble members.	
361		
362	3. Results	
363		
	3.1. Temporal variations in the CO ₂ mole fraction and δ^{13} C	
364	3.1. Temporal variations in the CO ₂ mole fraction and δ^{13} C The monthly CO ₂ mole fraction during the summer was slightly lower than in the other	
364 365	3.1. Temporal variations in the CO₂ mole fraction and δ¹³C The monthly CO ₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>μmol mol⁻¹ppm</u> and 431.1 <u>μmol mol⁻</u>	Formatted: Font: Symbol
364 365 366	 3.1. Temporal variations in the CO₂ mole fraction and δ¹³C The monthly CO₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>μmol mol⁻¹ppm</u> and 431.1 <u>μmol mol⁻¹ppm</u>. ¹ppm for January and July, respectively, giving a seasonal amplitude of 15.6 <u>μmol mol⁻¹ppm</u>. 	Formatted: Font: Symbol Formatted: Superscript
364 365 366 367	 3.1. Temporal variations in the CO₂ mole fraction and δ¹³C The monthly CO₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>µmol mol⁻¹ppm</u> and 431.1 <u>µmol mol⁻</u> ¹ppm for January and July, respectively, giving a seasonal amplitude of 15.6 <u>µmol mol⁻¹ppm</u>. The mean CO₂ mole fraction was 439.7 <u>µmol mol⁻¹ppm</u> during the whole experimental 	Formatted: Font: Symbol Formatted: Superscript
364 365 366 367 368	 3.1. Temporal variations in the CO₂ mole fraction and δ¹³C The monthly CO₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>µmol mol⁻¹ppm</u> and 431.1 <u>µmol mol⁻</u> ¹ppm for January and July, respectively, giving a seasonal amplitude of 15.6 <u>µmol mol⁻¹ppm</u>. The mean CO₂ mole fraction was 439.7 <u>µmol mol⁻¹ppm</u> during the whole experimental period (March 2013 to August 2015), which is 40.6 <u>µmol mol⁻¹ppm</u>-higher than the value 	Formatted: Font: Symbol Formatted: Superscript Formatted: Not Superscript/ Subscript
364 365 366 367 368 369	3.1. Temporal variations in the CO ₂ mole fraction and δ^{13} C The monthly CO ₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>µmol mol⁻¹ppm</u> and 431.1 <u>µmol mol⁻</u> ¹ ppm for January and July, respectively, giving a seasonal amplitude of 15.6 <u>µmol mol⁻¹ppm</u> . The mean CO ₂ mole fraction was 439.7 <u>µmol mol⁻¹ppm</u> during the whole experimental period (March 2013 to August 2015), which is 40.6 <u>µmol mol⁻¹ppm</u> higher than the value observed and estimated at WLG for the same period. In 2014, the calendar year with	Formatted: Font: Symbol Formatted: Superscript Formatted: Not Superscript/ Subscript
364 365 366 367 368 369 370	3.1. Temporal variations in the CO ₂ mole fraction and δ^{13} C The monthly CO ₂ mole fraction during the summer was slightly lower than in the other seasons (Figure 2). The mean mole fraction was 446.7 <u>µmol mol⁻¹ppm</u> and 431.1 <u>µmol mol⁻</u> ¹ ppm for January and July, respectively, giving a seasonal amplitude of 15.6 <u>µmol mol⁻¹ppm</u> . The mean CO ₂ mole fraction was 439.7 <u>µmol mol⁻¹ppm</u> during the whole experimental period (March 2013 to August 2015), which is 40.6 <u>µmol mol⁻¹ppm</u> higher than the value observed and estimated at WLG for the same period. In 2014, the calendar year with complete data coverage, the mean CO ₂ mole fraction was 441.2 <u>µmol mol⁻¹ppm</u> , which is	Formatted: Font: Symbol Formatted: Superscript Formatted: Not Superscript/ Subscript

ī

372	The ${}^{13}C/{}^{12}C$ ratio ${}^{13}C$ composition of atmospheric CO ₂ displayed a more clear larger	Formatted: Superscript
		Formatted: Superscript
373	seasonal cycle than the mole fraction (Figure 2). The monthly mean value was (-9.07 \pm 0.91)-	
374	$9.07_{}$ % and $(-7.63 \pm 0.97_{}-7.63_{})$ for January and July, respectively, with a seasonal	
375	amplitude of 1.44_‰. The mean value for the whole experimental period was -8.48_‰, which	
376	is the same as the WLG value (-8.48_‰). The summertime (June <u>to</u> -August) δ^{13} C was	
377	0.39_‰-more enriched higher_than the WLG background value.	
378	The strongest di <u>el</u> urnal variation in the CO ₂ mole fraction was observed in the autumn	
379	season (September to November) and the weakest in the winter season (December to	
380	<u>February</u>), with a dieurnal amplitude of 27.9 <u>µmol mol⁻¹ppm</u> and 13.4 <u>µmol mol⁻¹ppm</u> ,	
381	respectively (Figure 3). In the summer season, the peak value was observed at 07:00 and the	
382	lowest value at 19:00. Contrary to the CO ₂ mole fraction, δ^{13} C showed the lowest value in the	
383	early morning and the highest value in the afternoon in all the four seasons. The digurnal	
384	amplitude was 1.36 __ ‰ in the summer and 0.66 __ ‰ in the winter.	
385		
386	3.2 <u>¹³C/¹²C</u> Isotop ratio composition of the surface sources (δ^{13} Cs)	Formatted: Superscript Formatted: Superscript
387	Figures 4 and 5 show an example of Applying the Miller-Tans approach applied to the month	
388	of January 2014. According to the slope parameter estimation, the ¹³ C/ ¹² C ratio of the	Formatted: Superscript
389	surface whole experimental period yielded an apparent sources was signature of $(-254.0175 \pm)$	
390	0.9026 (mean ± 95% confidence limitbound) for sources in the YRD (Figure 4) and (-	
391	$25.234.24 \pm 0.7421$) % for sources in Nanjing (Figure 5). Strictly, this method is not accurate	
392	when applied over such an extensive period because the source signature varies seasonally,	
393	violating the condition of constant source signal under which the method can be used. So-	

394	these data plots are meant more to show the range of variations of the hourly observations-	
395	than for determining the true annual mean source signatures.	
396	Figure 6 shows the monthly <u>isotopic ratio¹³C signature</u> calculated with the Miller-Tans	
397	method for the daytime and nighttime whole observation period. The reader is reminded here	
398	that the results obtained for the daytime and the nighttime period represent sources in the	
399	YRD and in Nanjing, respectively. During the two and a half years of observation, the	
400	monthly $\delta^{43}C_{s}$ for the YRD was lower in the winter [(-24.37 \pm 0.71) ‰] and higher in the	
401	summer [(-23.42 \pm 1.79) ‰]. The seasonal difference for Nanjing was smaller than for the	
402	<u>YRD [(-24.87 \pm 0.51) ‰ in the winter (December to February) and -24.80 \pm 1.79) ‰ in the</u>	
403	<u>summer months (June to August)]</u> The sources in the YRD had <u>slightly</u> higher δ_{S}^{43} C-	
404	compositions than those in in Nanjing. The January mean value (mean of January 2014 and	
405	January 2015) was -24.13‰ and -24.78‰, and the mean value of the three August months-	
406	was -20.67‰ and -22.76‰ for the YRD and Nanjing, respectively. The mean δ_{s} value of the	
407	whole observational period was (-24.37 ± 0.61) -23.26 % and (-25.58 ± 0.44) -23.72 % for the	
408	YRD and Nanjing, respectively. These mean values based on the monthly analysis were-	
409	1.49‰ and 0.52‰ greater than the apparent source signatures derived from the application of	
410	the Miller-Tans method to the whole dataset (Figures 4 and 5). The monthly δ^{13} Cs for the	
411	YRD (Figure 6 <u>a</u>) was highly correlated with the monthly atmospheric δ^{13} C [(Figure 2; <u>δ_{5} =</u>]	Formatted: Font: Symbol, Italic Formatted: Subscript
412	$(2.29 \pm 0.78) \delta^{13}C + (-5.71 \pm 6.37)$, -linear correlation <u>coefficient</u> = 0.4763, n = 30, p	
413	<0.001]). The correlation between the monthly $\delta^{13}C_S$ for Nanjing (Figure 6b) and the monthly	
414	atmospheric δ^{13} C was weaknot as strong [$(\underline{\delta_{5}} = (2.39 \pm 0.92) \delta^{13}$ C + (-3.71 ± 8.07), linear	
415	correlation <u>coefficient</u> = 0.0326 , n = 30, p = 0.8722]). <u>These correlation patterns suggest that</u>	

416 <u>atmospheric δ^{13} C was influenced more by surface sources at the regional scale than at the</u>

417 <u>local (city) scale.</u>

418

L

419 **3.3 Inventory data for anthropogenic sources**

420	The emission strength of anthropogenic sources and their <u>13C/12Cisotopic ratiossignature</u> were
421	calculated with the inventory method and the data found in the literature, as described in
422	section 2.3. In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ ,
423	contributing 70_% of the overall "fossil-plus" emission (Table 2). Here the "fossil-plus"
424	emission includes contributions from all forms of fossil fuel and from non-cement industrial
425	processes. The second and third largest source were ammonia synthesis and pig iron, with
426	fractional contributions of about 9_%. The "fossil-plus" source contribution to the total
427	anthropogenic emission was 91_%, with the remaining 9_% contributed by cement production
428	(Table 2).
429	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total
429 430	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia
429 430 431	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel-
429 430 431 432	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel-plus sources to the total anthropogenic emission was 96.4_% and the fractional contribution of
429 430 431 432 433	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel-plus sources to the total anthropogenic emission was 96.4_% and the fractional contribution of cement production was 3.6_% (Table 2). The isotopic <u>ratio</u> signature of the "fossil-plus"
429 430 431 432 433 434	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel-plus sources to the total anthropogenic emission was 96.4_% and the fractional contribution of cement production was 3.6_% (Table 2). The isotopic <u>ratiosignature</u> of the "fossil-plus" sources was 0.35_‰ lower for Nanjing than for the YRD.
429 430 431 432 433 434 435	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel-plus sources to the total anthropogenic emission was 96.4_% and the fractional contribution of cement production was 3.6_% (Table 2). The isotopic <u>ratiosignature</u> of the "fossil-plus" sources was 0.35_‰ lower for Nanjing than for the YRD. The overall effective isotopic <u>ratiosignature</u> of the anthropogenic sources weighted by
429 430 431 432 433 434 435 436	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" total was 52_%, lower than that for the YRD, and the other three major sources were ammonia synthesis (16_%), pig iron (13_%), and gasoline (11_%). The fractional contribution of fuel- plus sources to the total anthropogenic emission was 96.4_% and the fractional contribution of cement production was 3.6_% (Table 2). The isotopic <u>ratiosignature</u> of the "fossil-plus" sources was 0.35_‰ lower for Nanjing than for the YRD. The overall effective isotopic <u>ratiosignature</u> of the anthropogenic sources weighted by the source contributions was also lower for Nanjing than for the YRD (Table 3). The

Formatted: Superscript
Formatted: Superscript

438	combustion and cement production, which have relatively high ¹³ C contents, and a higher
439	fractional contribution of natural gas, which is the fuel type with the lowest ¹³ C content.
440	
441	3.4. CO ₂ fluxes in YRD and Nanjing
442	Figure 7 shows the biological flux F_P and surface flux F_S calculated from the mass balance,
443	and the cement flux F_C and "fossil-plus" F_F . The F_P flux obtained with the isotopic
444	partitioning method for the YRD agreed with the seasonal phenology expected for plants in
445	this region. It was <u>near zero or</u> slightly negative in the summer and <u>generally</u> positive in the
446	winter, indicating uptake and release, respectively. The annual mean daytime biological flux
447	was (-0.0 <u>3</u> ±1 0.6 <u>4</u>) mg m ⁻² ·s ⁻¹ in the YRD in the calendar year 2014. The net surface flux F_S
448	was (0.17 ± 2.02) 0.16 mg m ⁻² s ⁻¹ in 2014. The standard deviations of these estimates are
449	<u>quite large. If the extreme standard deviations of F_p (5.16 mg m⁻² s⁻¹) and F_s (22.00 mg m⁻² s⁻¹)</u>
450	¹) in March 2014 were excluded, the mean standard deviation of F_p would decrease to 0.23
451	$\underline{\text{mg m}^{-2} \text{ s}^{-1} \text{for and that of } F_{\underline{S}} \text{ to } 0.20 \text{ mg m}^{-2} \text{ s}^{-1}.}$
452	In Nanjing, the biological flux was positive throughout the year (Figure 8). This is
453	because the partitioning was done for the night hours when the natural ecosystems were a
454	source of CO_2 due to autotrophic and heterotrophic respiration. The flux was greater in the
455	summer than in the winter (Figure 8). The annual mean nighttime biological flux for the
456	calendar year 2014 was (0.06 \pm 0.26) -0.03 mg m ⁻² ·s ⁻¹ . The nighttime surface flux was (0.18)
457	± 0.22) 0.16 mg m ⁻² s ⁻¹ in 2014.

460 **4.1 CO₂ mole fraction and** δ^{13} C seasonality

461	The atmospheric CO ₂ mole fraction observed in Nanjing showed very small seasonal
462	variation (summer versus winter difference of 7.9 <u>umol mol⁻¹ ppm</u> , July versus January
463	difference of 15.6 <u>μmol mol⁻¹ppm</u>), in comparison with the data published for other cities.
464	The CO ₂ mole fraction difference between the cold and the warm season is about 66 μ mol
465	mol ⁻¹ ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO ₂ mole fraction
466	in the summer is about 31 <u>umol mol⁻¹ppm</u> lower than in the winter (Pataki et al., 2003). In
467	Chicago, USA, the CO ₂ mole fraction varied from 397 <u>µmol mol⁻¹ppm</u> in August 2011 to 427
468	<u>μmol mol⁻¹ppm</u> in January 2012, showing a seasonal amplitude of 30 <u>μmol mol⁻¹ppm</u> (Moore
469	and Jacobson 2015). In Beijing, China, the seasonal variation of atmospheric CO ₂ mole
470	fraction is about 64.5 <u>µmol mol⁻¹ppm</u> (August versus January; Pang et al. 2016). However, a
471	similar small seasonal amplitude of 5 <u>µmol mol⁻¹ppm</u> CO ₂ was observed in Pasadena, USA
472	during 2006 to 2013, which was consistent with the seasonal variation of background and
473	transport of emissions from fossil fuel combustion (Newman et al. 2016), which was-
474	consistence with the seasonal variation of background and emission from fossil fuel-
475	combustion (Miller et al. 2016).
476	Several factors contributed to the weak seasonality in Nanjing. The climate in the YRD
477	is relatively mild. The governmental energy policy prohibits winter heating in public
478	buildings. Most residential buildings also lack space heating in the winter. This is in contrast
479	to energy use patterns in northern cities in China and elsewhere. In London, UK, natural gas
480	usage in the winter heating season is 29_% greater than in the non-heating autumn season
481	(Helfter et al. 2011). In Salt Lake City, USA, energy consumption in the winter was 41_%

Formatted: Font: Symbol Formatted: Superscript

482	greater than in the summer (Bush et al, 2007). A similar seasonal trend of energy
483	consumption has also been reported for Beijing (Pang et al, 2016). In Chicago, natural gas
484	usage <u>comprises</u> varied 70_% to 80_% of total fossil fuel consumption in the winter and about
485	50_% in the summer (Moore and Jacobson 2015). The weak energy use seasonality in the
486	YRD partially explains why the observed CO ₂ mole fraction had a smaller seasonal
487	amplitude (Figure 2) than reported for other northern cities.
488	The weak seasonality of the observed mole fraction was also related to the low
489	vegetation cover in the YRD and in Nanjing. The forest cover ratio is about 35_% in Nanjing
490	and in the YRD, and the overall vegetation cover (forest plus other vegetation types) ratio in
491	the major cities in the YRD is lower than 45_% (CESY, 2013; CSY, 2013). For comparison,
492	the vegetation cover ratio is 56_% in Salt Lake City (Pataki et al. 2009) and 44_% in Chicago
493	(Rose et al. 2003). Dense vegetation is known to deplete atmospheric CO_2 in the summer
494	season via photosynthetic uptake, amplifying the CO2 seasonal amplitude.
495	Our δ^{13} C seasonal amplitude (January versus July difference 1.44_‰) was 4 times the
496	amplitude observed or estimated at WLG (Figure 2) but agreed with those reported by most
497	urban studies. For comparison, the seasonal amplitude of $\delta^{13}C_a$ in Bangalore, India, was 0.89
498	to 1.32_‰ (Guha and Ghosh 2015). Similar amplitudes have also been reported for Chicago
499	(January versus August difference 1.25_%; Moore and Jacobson, 2015) and Beijing (2.13_%;
500	Pang et al. 2016). In Salt Lake City, the seasonal amplitude of δ^{13} C was approximately 1.6_‰
501	because of much more natural gas consumption for heating in the winter than in the summer
502	(Pataki et al. 2006).

504 4.2 Influences of cement production on atmospheric δ^{13} C

505	The high summer δ^{13} C was one of the most unique characteristics at our site. The daytime
506	δ^{13} C reached -6.90 _, ‰ in July 2013 and -7.21 _, ‰ in August 2014, which were 1.28 _, ‰ and
507	0.95_‰ higher than the WLG values. The highest monthly mean δ^{13} C occurred in July: -
508	7.44_‰ in July 2013, -7.99_‰ in July 2014 and -7.46_‰ in July 2015. These values were
509	0.74_‰, 0.16_‰ and 0.77_‰ higher than the WLG value reported for the same months.
510	The high July values observed at our site cannot be fully explained by CO ₂ removal by
511	plant photosynthesis. Photosynthesis and respiration are the two processes that dominate the
512	$^{13}C/^{12}C$ seasonality in plant-dominated landscapes, leading to higher $\delta^{13}C$ values in the
513	summer and lower values in the winter. For example, in Park Falls, Wisconsin, USA, a site in
514	a heavily-forested landscape, δ^{13} C was -7.75 ₁ % in August 2011 and -8.77 ₂ % in February
515	2012 (Moore and Jacobson, 2015). For comparison, δ^{13} C was -8.24‰ and -8.38_‰ at the
516	Mauna Loa Observatory and -8.02_‰ and -8.66_‰ at WLG in these two months, respectively.
517	In other words, the photosynthetic effect raised the August δ^{13} C by 0.5_‰ above the
518	background value, a smaller enrichment than observed at our site. Because of the low
519	vegetation fraction, the summer photosynthetic CO ₂ uptake in the YRD and in Nanjing
520	should be lower than at Park Falls. According to the Carbon-Tracker inversion analysis
521	(Peters et al. 2007), the net ecosystem production at the grid point where Parks Fall is located
522	is -0.201 mg m ⁻² -s ⁻¹ in July, 2014 but is only -0.059 mg m ⁻² -s ⁻¹ at the grid point corresponding
523	to the YRD region. We would expect from the photosynthetic effect alone that the
524	summertime ¹³ C enrichment at our site to be smaller, not greater than that observed at Parks
525	Fall <u>s</u> .

Formatted: Superscript

526	Furthermore, in a human-dominated landscape, the plant photosynthetic enhancement of		
527	13 C is offset by the CO ₂ from fossil fuel combustion which has low <u>er</u> $^{13}C_{\underline{12}C}$ ratios than the		
528	<u>atmosphere</u> contents. In Chicago, the monthly mean δ^{13} C peaked in August at -8.29 w during		
529	the calendar year 2011, which is 0.05_‰ lower than the WLG <u>value</u> for the same month.		
530	Similarly, in Beijing, the monthly mean δ^{13} C peaked at -9.49_‰ in August 2014, which is		
531	1.23_‰ lower than the WLG value for the same month.		
532	We suggest that cement production was the contributing factor responsible for the high		
533	δ^{13} C values in the summer. The evidence supporting this interpretation is provided by data in		
534	Table 3 and Figure 7. The <u>$-\partial^{13}C$ signal delta value</u> of anthropogenic CO ₂ in the YRD would		
535	be $(-26.36 \pm 0.42) - 26.42$ without cement production and increased to (-23.95 ± 0.41) -		
536	$\frac{23.71}{5}$ % after inclusion of the cement source (Table 3). This <u>delta</u> $-\delta^{13}$ C value is much		
537	higher than those reported for other urban lands, such as -30.7_‰ for Los Angeles, USA		
538	(Newman et al. 2008) and about -31_‰ for Salt Lake City, USA (Bush et al. 2007). The		
539	overall surface source <u>1³C/¹²C</u> <u>ratio</u> signal derived from atmospheric measurements (Figure		
540	6 <u>:24.37 ‰ and -24.58 ‰ -23.26‰ and -23.72‰</u> for the YRD and Nanjing, respectively)		
541	was also more enriched than those obtained from atmospheric measurements in other cities,		
542	such as <u>(-28.1_±_0.8</u>) ‰ for Chicago in August and September (Moore and Jacobson, 2015), -		
543	32.4_‰ to -27.4_‰ for Salt Lake City in the growing season (Pataki et al. 2003), -27.00_‰		
544	for Beijing in the winter heating season (Pang et al. 2016), and -29.3_‰ for Los Angeles,		
545	USA (Newman et al. 2008).		
546	The influence of cement production on atmospheric δ^{13} C has also been suggested for at		
1			

Formatted: Superscript

Formatted: Font: 12 pt Formatted: Font: 12 pt

Formatted: Superscript
Formatted: Superscript

547

least two other urban sites. In Bangalore, India, δ^{13} C is 0.05 % higher than that observed at

an island station in the Indian Ocean, and cement production in southern India –is offered as a reason to explain the enrichment of urban δ^{13} C (Guha and Ghosh 2015). The other urban site is Beijing, China, where the δ^{13} C measurement may have been influenced by cement factories outside the city (Ren et al. 2015, Pang et al. 2016).

552

553 4.3 Net surface and biological fluxes in the YRD

554 As a human-dominated landscape, the YRD was a net source of CO₂ on the monthly scale even in the growing season (Fs, Figure 7). The seasonal trends of the net surface flux Fs and 555 556 the biological flux F_P were highly correlated with each other because the anthropogenic 557 source strengths were almost constant. The mean F_s between March 2013 and February 2015 was $(0.19 \pm 1.16) - 0.17$ mg m⁻²·s⁻¹, which consisted of (0.156 ± 0.02) -mg m⁻²·s⁻¹ from fossil 558 combustion and industrial processes, (0.02 ± 0.002) mg m⁻²s⁻¹ from cement production and 559 560 $(0.05 \pm 1.31) - 0.01$ mg m⁻² s⁻¹ from biological activities. The total anthropogenic CO₂ flux was (0.17 ± 0.02) & mg m⁻² s⁻¹ in the YRD, a 7067 % increase from the value of 0.10 mg m⁻² s⁻¹ 561 ¹ reported for 2009 (Shen et al. 2014). From 2009 to 2012, the GDP increased by 56 % 562 563 according to the National Statistic Yearbook.

For comparison, we extracted the flux data from the Carbon-Tracker database for the 6 by 6 pixels that cover the YRD region. The results show that the mean daytime (11:00 to 17:00 local time) biological flux is slightly negative at -0.014 mg m⁻²s⁻¹ for 2014 (Peter et al. 2007). Our estimate of F_P for 2014 was (0.03 ± 0.64) mg m⁻²s⁻¹. As pointed out earlier, the F_p value for March 2014 was highly uncertain [(0.21± 5.16) mg m⁻²s⁻¹]; If we replace this value by the mean value of February and April 2014, the 2014 mean F_p also indicates that the-

Formatted: Subscript

Formatted: Subscript

570	region was a negligibly small biological sink of CO ₂ would be reduced to $((0.02 \pm 0.22))$ -
571	$\frac{0.009}{100}$ -mg m ⁻² -s ⁻¹).
572	We conducted Monte Carlo simulations to assess the sensitivity of the partitioned fluxes-
573	to uncertainties in $\delta^{13}C_P$ and $\delta^{13}C_F$. Errors in these parameters were assumed to follow a
574	uniform distribution and varied in the range of ± 1 %. The mean and standard deviation of
575	F_{S} -were 0.167 and 0.003 mg m ⁻² s ⁻¹ , and those of F_{P} were -0.005 and 0.003 mg m ⁻² s ⁻¹ ,
576	respectively for the YRD, based on an ensemble of 10,000 simulations. For Nanjing, the
577	mean \pm standard deviation of F _S and F _P was 0.209 \pm 0.024 and 0.086 \pm 0.022 mg m ⁻² s,
578	respectively. These mean flux values are essentially the same as those obtained with the
579	default $\delta^{43}C_P$ and $\delta^{43}C_P$ values giving in Table 3 and the standard deviations represent
580	uncertainties of the partitioned fluxes
581	Another source of uncertainty in our flux partitioning analysis is related to human breath
582	(Affek and Eiler 2006). Using the method of Prairie and Duarte (2007), we estimated that
583	human respiration flux was 0.006 and 0.013 mg m ⁻² -s ⁻¹ , or 3.7_% and 11.65_% of
584	anthropogenic emission in the YRD and in Nanjing, respectively. The food diet in the region
585	is predominantly C3 grains. By including this additional source in Equations 3 and 4 and by
586	assuming that the isotopic <u>ratio</u> signature of human respiration is the same as $\delta^{13}C_P$ shown in
587	Table 3, F_S and F_P would increase by 0.008 and 0.001 mg m ⁻² ·s ⁻¹ in the YRD and by 0.018 mg

590 4.4 Comparison of the Miller-Tans and the Keeling method

 $m^{\text{-}2}\text{-}s^{\text{-}1}$ and 0.005 mg $m^{\text{-}2}\text{-}s^{\text{-}1}$ in Nanjing, respectively.

592 obtained the effective source <u>introsignatures</u> that are consistent with the inventory analysis for 593 the YRD and for the Nanjing Municipality. The daytime measurement revealed that the 594 1 ² C/ ² C ratio of the sources were on average 0.2416 % higher than more enriched by lithin the signature 3 ³ Cs, obtained with the nighttime measurement. For comparison, the 595 than the signature 3 ³ Cs, obtained with the nighttime measurement. For comparison, the 596 overall δ^{12} Cs of the anthropogenic sources in the YRD was also higher than that in Nanjing, 597 the difference being 24 0176 % (Table 2). The interpretation that the daytime observations 598 capture the influence of surface sources in the YRD region is supported by a trajectory 599 analysis and by an analysis of the atmospheric methane to CO ₂ emissions ratio observed at 600 the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller 601 difference between the YRD and Nanjing than that obtained by the inventory data, likely 602 because of different biological contributions between the two spatial scales. 603 We also calculated the 1 ¹ C/ ² C Cratic of the surface sources with the We ensure that Keeling. 604 plot method, Using the daytime data, the Keeling result was lower and more variable than. 605 that inferred from the Miller-Tans method usi	5	91	By applying the Miller-Tans method to daytime and nighttime observations separately, we			
 the YRD and for the Nanjing Municipality. The daytime measurement revealed that the, <u>PCUPC ratio of the sources were on average 0.2416 % higher than more enriched(hat in PC.</u> <u>Permatted: Superscript</u> Formatted: Superscript Formatted: Supers	5	92	obtained the effective source <u>ratio</u> signatures that are consistent with the inventory analysis for			
594 L ¹ C/L ² C ratio of the sources were on average 0.2416 % higher than more enriched[hat in ¹⁴ C Formatted: Superscript 595 than the signature 8 ¹⁹ C _* obtained with the nightime measurement. For comparison, the in the signature 8 ¹⁹ C _* obtained with the nightime measurement. For comparison, the 596 overall 8 ¹⁴ C _* of the anthropogenic sources in the YRD was also higher than that in Nanjing, Formatted: Superscript 597 the difference being 24.0126 % (Table 2). The interpretation that the daytime observations capture the influence of surface sources in the YRD region is supported by a trajectory 598 capture the influence of surface sources in the YRD region is supported by a trajectory analysis and by an analysis of the atmospheric methane to CO ₂ emissions ratio observed at 600 the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller 601 difference between the YRD and Nanjing than that obtained by the inventory data, likely 602 because of different biological contributions between the two spatial scales. 603 We also calculated the ¹² C/ ¹² C ratio of the surface sources with the We argue that Keeling 604 plot method, Using the daytime data, the Keeling result was lower and more variable than 605 that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not- 606 oppropriate for daytime periods becau	5	93	the YRD and for the Nanjing Municipality. The daytime measurement revealed that the_			
595 than the signature 8**Cs obtained with the nighttime measurement. For comparison, the 596 overall 8**Cs of the anthropogenic sources in the YRD was also higher than that in Nanjing, 597 the difference being 24-0176,% (Table 2). The interpretation that the daytime observations 598 capture the influence of surface sources in the YRD region is supported by a trajectory 599 analysis and by an analysis of the atmospheric methane to CO2 emissions ratio observed at 600 the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller 601 difference between the YRD and Nanjing than that obtained by the inventory data, likely 602 because of different biological contributions between the two spatial scales. 603 We also calculated the ¹² C/ ¹² C ratio of the surface sources with the We arraye that Keeling 604 plot method, Using the daytime data, the Keeling result was lower and more variable than 605 that inferred from the Miller-Tans method using the daytime data (Figure 6a). is not- 606 oppropriate for daytime periods because the surface air is influenced by both the surface. 607 sources and by entrainment of the background air from above the boundary layer. If we- 608 applied the Keeling method to the daytime observations, the linear correlation coefficient was 609 on ave	5	94	$^{13}C/^{12}C$ ratio of the sources were on average 0.2416 % higher than more enriched that in ^{13}C	/ 	Formatted: Superscript Formatted: Superscript	
 overall d¹²Cs of the anthropogenic sources in the YRD was also higher than that in Nanjing, the difference being 24.0176% (Table 2). The interpretation that the daytime observations capture the influence of surface sources in the YRD region is supported by a trajectory analysis and by an analysis of the atmospheric methane to CO₂ emissions ratio observed at the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller difference between the YRD and Nanjing than that obtained by the inventory data, likely because of different biological contributions between the two spatial scales. We also calculated the ¹²Cl¹²C ratio of the surface sources with the We argue that Keeling plot method, Using the daytime data, the Keeling result was lower and more variable than that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not appropriate for daytime periods because the surface air is influenced by both the surface sources and by entrainment of the background air from above the boundary layer. If we applied the Keeling method to the daytime observations, the linear correlation coefficient was on average 0.898 which is weaker than the correlation coefficient obtained with the Miller- Tans method (0.956). The resulting mean 3¹³Cs- two methods differed by an average ofwould be -1.510.641% (Supplementary Table S2)-lower than the mean value shown in- 	5	95	than the signature δ^{13} Cs obtained with the nighttime measurement. For comparison, the			
597the difference being $2+0.176$ ‰ (Table 2). The interpretation that the daytime observations598capture the influence of surface sources in the YRD region is supported by a trajectory599analysis and by an analysis of the atmospheric methane to CO2 emissions ratio observed at600the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller601difference between the YRD and Nanjing than that obtained by the inventory data, likely602because of different biological contributions between the two spatial scales.603We also calculated the $^{13}C/^{12}C$ ratio of the surface sources with the We argue that Keeling604plot method, Using the daytime data, the Keeling result was lower and more variable than.605that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not-606appropriate for daytime periods because the surface air is influenced by both the surface-607sources and by entrainment of the background air from above the boundary layer. If we-608applied the Keeling method to the daytime observations, the linear correlation coefficient was609on average 0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (0.956). The resulting mean $3^{14}C_{s-}$ two methods differed by an average611ofwould be -1.510-64 ‰ (Supplementary Table S2) lower than the mean value shown in	5	96	overall δ^{13} C_{s} of the anthropogenic sources in the YRD was also higher than that in Nanjing,			
 capture the influence of surface sources in the YRD region is supported by a trajectory analysis and by an analysis of the atmospheric methane to CO₂ emissions ratio observed at the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller difference between the YRD and Nanjing than that obtained by the inventory data, likely because of different biological contributions between the two spatial scales. We also calculated the ¹³C/²C ratio of the surface sources with the We argue that Keeling. plot method, Using the daytime data, the Keeling result was lower and more variable than that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not- appropriate for daytime periods because the surface air is influenced by both the surface sources and by entrainment of the background air from above the boundary layer. If we applied the Keeling method to the daytime observations, the linear correlation coefficient was on average 0.898 which is weaker than the correlation coefficient of an average. of would be -1.510-64.‰ (Supplementary Table S2) lower than the mean value shown in- 	5	97	the difference being 24.0176 (Table 2). The interpretation that the daytime observations			
599analysis and by an analysis of the atmospheric methane to CO2 emissions ratio observed at600the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller601difference between the YRD and Nanjing than that obtained by the inventory data, likely602because of different biological contributions between the two spatial scales.603We also calculated the $\frac{12}{12}C/2C$ ratio of the surface sources with the We argue that Keeling604plot method, Using the daytime data, the Keeling result was lower and more variable than.605that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not-606appropriate for daytime periods because the surface air is influenced by both the surface.607sources and by entrainment of the background air from above the boundary layer. If we-608applied the Keeling method to the daytime observations, the linear correlation coefficient was609on average -0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (0.956). The resulting mean $\delta^{12}C_8$ - two methods differed by an average.611ofworld be -1.510-64 ‰ (Supplementary Table S2)-lower than the mean value shown in-	5	98	capture the influence of surface sources in the YRD region is supported by a trajectory			
600 the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller 601 difference between the YRD and Nanjing than that obtained by the inventory data, likely 602 because of different biological contributions between the two spatial scales. 603 We also calculated the <u>1³C/1²C</u> ratio of the surface sources with the We argue that Keeling 604 plot method, Using the daytime data, the Keeling result was lower and more variable than. 605 that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not- 606 appropriate for daytime periods because the surface air is influenced by both the surface. 607 sources and by entrainment of the background air from above the boundary layer. If we- 608 applied the Keeling method to the daytime observations, the linear correlation coefficient was 609 on average 0.898 which is weaker than the correlation coefficient obtained with the Miller- 610 Tans method (0.956). The resulting mean $\delta^{13}C_{k-}$ two methods differed by an average. 611 ofwould be -1.510.61 ‰ (Supplementary Table S2)-lower than the mean value shown in-	5	99	analysis and by an analysis of the atmospheric methane to CO_2 emissions ratio observed at			
601difference between the YRD and Nanjing than that obtained by the inventory data, likelyformatted:602because of different biological contributions between the two spatial scales.Formatted:Superscript603We also calculated the ¹³ C/ ¹² C ratio of the surface sources with the We argue that KeelingFormatted:Superscript604plot method, Using the daytime data, the Keeling result was lower and more variable than.Formatted:Superscript605that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not-appropriate for daytime periods because the surface air is influenced by both the surface.Formatted:Superscript606appropriate for daytime periods because the surface air is influenced by both the surface.Formatted:Superscript608applied the Keeling method to the daytime observations, the linear correlation coefficient wasFormatted:Formatted:609on average 0.898 which is weaker than the correlation coefficient obtained with the Miller-Formatted:Formatted:610Tans method (.0.956). The resulting mean 3 ¹³ Cs two methods differed by an average.Formatted:Formatted:611offwould be -1.510.61.% (Supplementary Table S2) lower than the mean value shown in-Formatted:Formatted:	6	00	the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller			
602 because of different biological contributions between the two spatial scales. Formatted: Superscript 603 We also calculated the ¹³ C/ ¹² C ratio of the surface sources with the We argue that Keeling. Formatted: Superscript 604 plot method, Using the daytime data, the Keeling result was lower and more variable than. Formatted: Superscript 605 that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not- Formatted: Superscript 606 appropriate for daytime periods because the surface air is influenced by both the surface. Formatted: Superscript 607 sources and by entrainment of the background air from above the boundary layer. If we. Formatted: Superscript 608 applied the Keeling method to the daytime observations, the linear correlation coefficient was: Formatted: Superscript 610 Tans method (-0.956). The resulting mean $\delta^{13}C_{8-}$ two methods differed by an average. Formatted: Superscript 611 of would be -1.510.61 % (Supplementary Table S2) lower than the mean value shown in- Formatted: Superscript	6	01	difference between the YRD and Nanjing than that obtained by the inventory data, likely			
603 We also calculated the ¹³ C/ ¹² C ratio of the surface sources with the We argue that Keeling Formatted: Superscript 604 plot method, Using the daytime data, the Keeling result was lower and more variable than. Formatted: Superscript 605 that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not- Formatted: Superscript 606 appropriate for daytime periods because the surface air is influenced by both the surface. Formatted: Superscript 607 sources and by entrainment of the background air from above the boundary layer. If we- Formatted: Superscript 608 applied the Keeling method to the daytime observations, the linear correlation coefficient was Formatted: Superscript 609 on average - 0.898 which is weaker than the correlation coefficient obtained with the Miller- Formatted: Superscript 610 Tans method (-0.956). The resulting mean $\delta^{13}C_{s-}$ two methods differed by an average Formatted: Superscript 611 ofwould be1.510.61_‰ (Supplementary Table S2) lower than the mean value shown in- Formatted: Superscript	6	02	because of different biological contributions between the two spatial scales.			
604plot method, Using the daytime data, the Keeling result was lower and more variable than.605that inferred from the Miller-Tans method using the daytime data (Figure 6a), is not-606appropriate for daytime periods because the surface air is influenced by both the surface.607sources and by entrainment of the background air from above the boundary layer. If we-608applied the Keeling method to the daytime observations, the linear correlation coefficient was.609on average - 0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (-0.956). The resulting mean δ ¹³ Cs two methods differed by an average.611ofwould be -1.510.61_‰ (Supplementary Table S2)-lower than the mean value shown in-	6	603	We also calculated the ${}^{13}C/{}^{12}C$ ratio of the surface sources with the We argue that Keeling	/ 	Formatted: Superscript Formatted: Superscript	
605that inferred from the Miller-Tans method using the daytime data (Figure 6a). is not-606appropriate for daytime periods because the surface air is influenced by both the surface-607sources and by entrainment of the background air from above the boundary layer. If we-608applied the Keeling method to the daytime observations, the linear correlation coefficient was-609on average -0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (-0.956). The resulting mean δ ¹⁴ Cs- two methods differed by an average611of would be -1.510.61_‰ (Supplementary Table S2)-lower than the mean value shown in-	6	604	plot method. Using the daytime data, the Keeling result was lower and more variable than			
606appropriate for daytime periods because the surface air is influenced by both the surface.607sources and by entrainment of the background air from above the boundary layer. If we.608applied the Keeling method to the daytime observations, the linear correlation coefficient was609on average - 0.898 which is weaker than the correlation coefficient obtained with the Miller.610Tans method (-0.956). The resulting mean δH3Cs two methods differed by an average611of would be -1.510.61_‰ (Supplementary Table S2)-lower than the mean value shown in-	6	05	that inferred from the Miller-Tans method using the daytime data (Figure 6a). is not-			
607sources and by entrainment of the background air from above the boundary layer. If we-608applied the Keeling method to the daytime observations, the linear correlation coefficient was609on average - 0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (-0.956). The resulting mean δ ¹³ Cs two methods differed by an average611ofwould be -1.510.61-‰ (Supplementary Table S2)-lower than the mean value shown in-	6	06	appropriate for daytime periods because the surface air is influenced by both the surface			
608applied the Keeling method to the daytime observations, the linear correlation coefficient was609on average -0.898 which is weaker than the correlation coefficient obtained with the Miller-610Tans method (-0.956). The resulting mean δ ¹³ Cs- two methods differed by an average611ofwould be -1.510.64.‰ (Supplementary Table S2)-lower than the mean value shown in-	6	07	sources and by entrainment of the background air from above the boundary layer. If we-			
 on average -0.898 which is weaker than the correlation coefficient obtained with the Miller- Tans method (-0.956). The resulting mean δ¹³C₈- two methods differed by an average ofwould be -1.510.61 % (Supplementary Table S2)-lower than the mean value shown in- 	6	608	applied the Keeling method to the daytime observations, the linear correlation coefficient was			
610Tans method (-0.956). The resulting mean δ^{13} Cs- two methods differed by an average611ofwould be -1.510.61 % (Supplementary Table S2)-lower than the mean value shown in-	6	609	on average -0.898 which is weaker than the correlation coefficient obtained with the Miller-			
611 <u>ofwould be -1.510.61_% (Supplementary Table S2)</u> lower than the mean value shown in-	6	510	Tans method (-0.956). The resulting mean $\delta^{13}C_8$ - two methods differed by an average			
	6	511	ofwould be -1.510.61 % (Supplementary Table S2)-lower than the mean value shown in-			

612	Figure 6. The difference in $\delta^{13}C_8$ between the YRD (daytime observations, Keeling method)	
613	and Nanjing (nighttime observations, Miller-Tans method) would become too small (0.15%).	
614	In comparison, the Keeling plot method showed reasonably good performance when	
615	applied to the nighttime observations. This is because surface inversion conditions effectively	
616	prevented mixing of the free atmospheric air with the surface air, so that the single-source	
617	assumption implicit in the Keeling plot method could be was satisfied. If we applied Keeling	
618	plot method at monthly intervals to the nighttime data, the resulting δ^{13} Cs showed very	
619	similar month-to-month variations with would decrease to -24.24‰ for Nanjing from -	
620	$\frac{23.72\%}{1000}$, the value obtained with application of the Miller-Tans method to the nighttime	
621	observations (Figure 6b). The two method differed by an average of 0.21 % (Supplementary	
622	Table S2).	
623		
624	5. Conclusion	
625	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of	
626	anthropogenic and biologic CO_2 emissions, with lower values in the winter than in the	
627	summer. An unusual feature that has not been seen in other urban environments is that the	
628	δ^{13} C exceeded that of the background atmosphere in some of the summer months. The	
629	highest monthly δ^{13} C was -7.44 w observed in July 2013, which was 0.74 w greater than the	
630	WLG value for the same month. Evidence points to cement production as the key reason for	
631	why the atmospheric δ^{13} C was higher than at the background site. In contrast to the <u>isotope</u>	
632	ratio ¹³ C signal, the CO ₂ mole fraction displayed very weak seasonality (July to January	
633	difference 15.6 <u>umol mol⁻¹ppm</u>).	Formatted: Font: Symbol Formatted: Superscript

634	We hypothesized that the Miller-Tans method applied to the daytime and nighttime		
635	observations should yield the effective <u>13C/12C isotopic ratiosignature</u> of surface sources at		
636	the regional (YRD) and the local (Nanjing) scale, respectively. According to the results of the		
637	Miller-Tans method, the effective source $\frac{{}^{13}C/{}^{12}C}{ratio}$ in the YRD was -24.37 %-		
638	$\frac{23.25\%}{23.25\%}$, which was 0.2146% higher than that in the Nanjing Municipality. These results		
639	were consistent with inventory estimates of anthropogenic source ratiosignatures at these two		
640	spatial scales.		
641	By combining inventory data on anthropogenic <u>carbon</u> sources and the atmospheric		
642	measurement of CO ₂ mole fraction and $\frac{11}{110}$ $\frac{13}{10}$ C ratio $\frac{13}{10}$ C composition in an isotopic		
643	partitioning framework, we inferred that natural ecosystems in the YRD were a negligibly		
644	small <u>source sink</u> of atmospheric CO ₂ , with an average flux of (0.02 ± 0.22) mg m ⁻² s ⁻¹ -0.009 -		
645	mg m ⁻² s ⁻¹ for 2014 For comparison, t ^T he Carbon-Tracker inverse analysis also reveals a		
646	small annual mean daytime biological flux (-0.014 mg m ⁻² s ⁻¹) for this region <u>for 2014</u> .		
647			
648	Data availability:		
649	The atmospheric data are available upon request and from the Yale-NUIST Center website		
650	http://yncenter.sites.yale.edu/publications.		
651			
652	Acknowledgments:		
653	This research was supported by the National Natural Science Foundation of China (Grant		
654	41475141, 41505005), the U. S. National Science Foundation (Grant 1520684), the Ministry		
655	of Education of China (Grant PCSIRT), and the Priority Academic Program Development of		

Formatted: Superscript
Formatted: Superscript

Formatted: Superscript Formatted: Superscript

656	Jiangsu Higher Education Institutions (Grant PAPD). The first author also acknowledged a
657	visiting scholarship from China Scholarship Council and a Graduate Student Innovation
658	Grant from Jiangsu Provincial Government (Grant KYLX_0848). We thank the handling
659	editor Dr. Jan Kaiser and three anonymous reviewers whose constructive comments have
660	greatly improved this paper.

661	References	
662	Affek, H. P., Eiler, J. M. (2006), Abundance of mass 47–CO ₂ in urban air, car exhaust, and	Formatted: Subscript
663	human breath. Geochimica et Cosmochimica Acta 70 (1): 1-12.	
664		
665	Akbari H, Menon S, Rosenfeld A. Global cooling: increasing world-wide urban albedos to	
666	offset CO ₂ . Climatic Change, 2009, 94 (3-4): 275-286.	Formatted: Subscript
667	fv	
668	An, H (2012) Ammonia synthesis: current status and future outlook (in Chinese), Coal	
669	Chemsitry of Western China, 2: 4-13.	Formatted: Font: Bold
670		
671	Andres, R. J., Marland, G., Boden, T., Bischof, S. (1994). Carbon dioxide emissions from	
672	fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their	
673	isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN (United	
674	States);	
675		
676	Bai, Y., (2011) A Ceomparative Setudy on Teurbulent Feluxes Eexchange over Nanjing	
677	<u>U</u> urban and <u>S</u> uburban in <u>S</u> ummer- (<u>i</u> in Chinese) Nanjing , <u>Master's Thesis</u> , Nanjing	
678	University of Information Science & Technology.	
679		
680	Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., White, J. W. C. (2011). Novel	
681	applications of carbon isotopes in atmospheric CO ₂ : what can atmospheric measurements	Formatted: Subscript
682	teach us about processes in the biosphere?- Biogeosciences, 8(10), 3093-3106.	
683		
684	Ballantyne, A. P., Miller, J. B., Tans, P. P. (2010). Apparent seasonal cycle in isotopic	
685	discrimination of carbon in the atmosphere and biosphere due to vapor pressure	
686	deficit. Global Biogeochemical Cycles, 24(3), 1-16.	
687		
688	Bowling, D. R., S P Burns, T. J. Conway, R. K. Monson, and J. W. C. White (2005) Extensive	
689	observations of CO_2 carbon isotope content in and above a high-elevation subalpine forest,	Formatted: Subscript
690	Global Biogeochemical Cycles, 19: GB3023.	Formatted: Font: Bold
691	Di I. Thong D. Wang H. Lin M. W. V. (2011) The honohyperics of earboy emissions and	
692	BI, J., Zhang, K., Wang, H., Liu, M., Wu, Y. (2011). The benchmarks of carbon emissions and	
693	poncy implications for China's cities. Case of Nanjing. Energy Poncy 39(9), 4783-4794.	
605	Bowling D.R. Sargent S.D. Tanner B.D. and Ehleringer I.R. (2003) Tunable diode	
695	laser absorption spectroscopy for stable isotope studies of ecosystem_atmosphere CO ₂	Formatted: Subscript
697	exchange Δ gric Forest Meteorol 118 : 1–19	
698	exemunge, righter 1 effect interested. 1 110. 1 17.	
699	Bush S E Pataki D E Ehleringer J R (2007) Sources of variation in δ^{13} C of fossil fuel	- Formatted: Superscript
700	emissions in Salt Lake City, USA, Applied Geochemistry 22(4): 715-723	······································
701		

702 703 704	CESY (2013). China Energy Statistical Yearbook 2013: China Statistical Publishing House, Beijing. (in Chinese) Also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm	
705		
706	Clark-Thorne S. T. C. J. Yapp (2003) Stable carbon isotone constraints on mixing and mass	
707	balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA, Applied	
708 709	Geochemistry 18(1): 75-95.	
710	Coutts, A. M., Beringer, J., Tapper, N.J. (2007). Characteristics influencing the variability of	
711	urban CO ₂ fluxes in Melbourne, Australia. Atmospheric Environment 41 (1): 51-62.	Formatted: Subscript
712		
713 714	China Cement: http://hy.ccement.com/map/, last access: 6 July 2016 (in Chinese).	
715	CSY (2013). China Statistical Yearbook. National Bureau of Statistics of China. (in Chinese)	
716	Also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm	
717		
718	Duan Y. (1995) Study of characteristics of coal isotope conposition in China. Coal Geology &	
719	Exploration 23 (1) 29-33.	
720		
721	Ehleringer, J.R., Bowling, D.R., Flanagan, L.B., Fessenden, J., Helliker, B., Martinelli, L.A.,	
722	Ometto, J.P. (2002). Stable isotopes and carbon cycle processes in forests and grasslands.	
723	Plant biology 4 (2): 181-189.	
724		
725	Farquhar, G., J. Lloyd (1993). Carbon and oxygen isotope effects in the exchange of carbon	
726	dioxide between terrestrial plants and the atmosphere. Stable isotopes and plant carbon-water	
727	relations 40 : 47-70.	
728		
729	Fessenden, J. E., J. R. Ehleringer (2002). Age-related variations in δ_{13}^{13} C of ecosystem	Formatted: Superscript
730	respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree	
731	Physiology 22 (2-3): 159-167.	
732		
733	Friedman, L., A. P. Irsa (1967). Variations in isotopic composition of carbon in urban	
734	atmospheric carbon dioxide. Science 158(3798): 263-264.	
735	Carebi C. Strang C. Cood S.D. Darge, D. Eblevinger, I.D. Derver, C. I. (2015). Verser	
736	Gorski G, Strong C, Good S P, Bares, K., Enteringer, J. K., Bowen, G. J. (2015) vapor	
131	nyurogen and oxygen isotopes reflect water of compusition in the urban atmosphere.	
738	Proceedings of the National Academy of Sciences, $\frac{2013}{112}$, $112(11)$: $3247-3252$.	
739	Griffis T. I. Lee, Y. Baker, I.M. Sargent S.D. King, I.V. (2005). Eassibility of quantifying	
740	consisten_atmosphere $C^{18}O^{16}O$ exchange using laser spectroscopy and the flux gradient	Formatted: Superscript
741	method Agricultural and Forest Meteorology 135 (1-4): 44-60	Formatted: Superscript
742 742	$\frac{1}{100}(1^{-7}).$	· ····································
743		

744 745 746 747	Griffis, T J. (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174 :85-109.	
748 749 750	Guha, T., P. Ghosh (2010). Diurnal variation of atmospheric CO ₂ concentration and delta C- 13 in an urban atmosphere during winter-role of the <u>nNocturnal bBoundary lLayer</u> . Journal of Atmospheric Chemistry, 65 (1): 1-12.	Formatted: Subscript
751 752 753 754 755	Guha, T. and P. Ghosh (2015). Diurnal and seasonal variation of mixing ratio and delta C-13 of air CO ₂ observed at an urban station Bangalore, India. Environmental Science and Pollution Research, 22 (3): 1877-1890.	Formatted: Subscript
755 756 757 758 759	Helfter, C., Famulari, D., Phillips, G.J., Barlow, J.F., Wood, C.R., Grimmond, C.S.B., Nemitz, E. (2011). Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics 11 (5): 1913-1928.	
760 761 762 763	ICLEI (International Council for Local Environmental Initiatives). (2008). Local government operations protocol for the quantification and reporting of greenhouse gas emissions inventories. [Available online at http://www.arb.ca.gov/cc/protocols/localgov/archive/final lgo protocol 2008–09–25.pdf.]	
764 765 766 767 768	Idso, S. B., Idso, C.D., Balling, R.C. (2002). Seasonal and diurnal variations of near-surface atmospheric CO_{k^2} concentration within a residential sector of the urban CO_{k^2} dome of Phoenix, AZ, USA. Atmospheric Environment _x 36 (10): 1655-1660.	Formatted: Subscript Formatted: Subscript
769 770 771 772	Jasek, A., Zimnoch, M., Gorczyca, Z., Smula, E., Rozanski, K. (2014). Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland. Isotopes in Environmental and Health Studies, 50 (2): 143-155.	
773 774 775	Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta _a $13(4)$: 322-334.	
776 777 778	Keeling, C. D. (1961). The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta _a 24 (3): 277-298.	
779 780 781	Koerner, B., J. Klopatek (2002). Anthropogenic and natural CO ₂ emission sources in an arid urban environment. Environmental Pollution, 116 : S45-S51.	Formatted: Subscript
782 783 784	Leavitt, S. W., Paul, E.A., Galadima, A., Nakayama, F.S., Danzer, S.R., Johnson, H., Kimball, B.A. (1995). Carbon isotopes and carbon turnover in cotton and wheat FACE experiments. Plant and Soil 187 (2): 147-155.	

786	Lichtfouse, E., Lichtfouse, M., Jaffrezic, A. (2003), delta C-13 values of grasses as a novel		
787	indicator of pollution by fossil-fuel-derived greenhouse gas CO ₂ in urban areas.		Formatted: Subscript
788	Environmental Science & Technology, 37 (1): 87-89.	-	
789			
790	Liu, H., Feng, J., Järvi, L., Vesala, T. (2012). Four-vear (2006–2009) eddy covariance		
791	measurements of CO_2 flux over an urban area in Beijing. Atmospheric Chemistry and		Formatted: Subscript
792	Physics, 12 (17): 7881-7892.		
793			
794	Lloyd, J., Kruijt, B., Hollinger, D.Y., Grace, J., Francey, R.J., Wong, S., Kelliher, F.M.,		
795	Miranda, A.C., Farquhar, G.D., Gash, J.H.C. (1996). Vegetation effects on the isotopic		
796	composition of atmospheric CO ₂ at local and regional scales: theoretical aspects and a		Formatted: Subscript
797	comparison between rain forest in Amazonia and a boreal forest in Siberia. Functional Plant		
798	Biology 23 (3): 371-399.		
799			
800	Lloyd, J., Francey, R.J., Mollicone, D., Raupach, M.R, Sogachev, A., Arneth, A., Byers, J.N.,		
801	Kelliher, F.M., Rebmann, C., Valentini, R. (2001). Vertical profiles, boundary layer budgets,		
802	and regional flux estimates for CO ₂ and its ¹³ C/ ¹² C ratio and for water vapor above a		Formatted: Subscript
803	forest/bog mosaic in central Siberia. Global Biogeochemical Cycles, 15(2): 267-284.		Formatted: Superscript
804			Formatted: Superscript
805	McDonald, B.C., McBride, Z. C., Martin, E. W., Harley, R. A. (2014). High-resolution		
806	mapping of motor vehicle carbon dioxide emissions. Journal of Geophysical Research:		
807	Atmospheres, 2014, 119 (9): 5283-5298.		
808			
809	McManus, J. B., Zahniser, M.S., Nelson, D.D., Williams, L.R., Kolb, C.E. (2002). Infrared		
810	laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon		
811	gases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 58(11): 2465-		
812	2479.		
813			
814	Miller, J. B., P. P. Tans (2003). Calculating isotopic fractionation from atmospheric		
815	measurements at various scales Tellus B, 55(2): 207-214.		
816			
817	Miller, J.B., Ians, P.P., White, J.W.C., Conway, I.J., Vaughn, B.W. (2003). The atmospheric		
818	signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon		
819	$fluxes_{1}$ - $fellus B_{1} 55(2): 197-206.$		
820	Nouman S. Yu. Y. Curney, K.D. Hey, Y.K. Li, K.E. Jiang, Y. Kasling, D. Eang, S.		
821	Newman, S., Au, A., Gurney, K.K., Hsu, Y.K., LI, K.F., Jiang, A., Keeling, K., Feng, S., Olkasfa, D., Detersoul, D. and Wang, K.W. (2016). Toward consistency, between teen do in		
822	bettem up CO, emissions and ten down etmospheric measurements in the Les Angeles		Formattade Subscript
023 071	magacity Atmospheric Chemistry and Dhysics 16(6):2242 2262		Formatted: Font: Bold
024 925	megacity. Autospheric Chemistry and Physics, $10(0):3843-3803$.		Formatted, Font. Bold
020 976	Moore I. Jacobson A.D. (2015). Seasonally varying contributions to urban COs in the		Formatted: Subscript
020 827	Chicago Illinois USA region: Insights from a high-resolution CO ₂ concentration and d ¹³ C		Formatted: Subscript
828	record Elementa: Science of the Anthronocene 3 -000052		Formatted: Superscript
829	record. Elemental belence of the Anthropotenc <u>,</u> 0,000052.		

830	Mu, H., Li, H., Zhang, M., Li, M. (2013). Analysis of China's carbon dioxide flow for 2008.	
831	Energy Policy 54 : 320-326.	
832		
833	Newman, S., Xu, X., Affek, H.P., Stolper, E., Epstein, S. (2008). Changes in mixing ratio and	
834	isotopic composition of CO2in urban air from the Los Angeles basin, California, between	
835	1972 and 2003,- Journal of Geophysical Research, 113(D23)-: 1-15.	
836		
837	NSY (2013). Nanjing Statistical Yearbook. Nanjing Municipal Bureau Statistics. (in Chinese)	
838	Also available at: < http://www.njtj.gov.cn/2004/2013/renmin/index.htm>	
839		
840	Ometto, J. P., Flanagan, L.B., Martinelli, L.A., Moreira, M.Z., Higuchi, N., Ehleringer, J.R.	
841	(2002). Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin,	
842	Brazil,- Global Biogeochemical Cycles, 16(4):1-10.	
843		
844	Ometto, J.P., Ehleringer, J.R., Domingues, T.F., Berry, J.A., Ishida, F.Y., Mazzi, E., Higuchi,	
845	N., Flanagan, L.B., Nardoto, G.B., Martinelli, L.A. (2006). The stable carbon and nitrogen	
846	isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil,-	
847	Biogeochemistry, 79(1-2): 251-274.	
848		
849	Pan, J. (2007) Theoretical and Process Studies of the Abatement of Fuel Gas Emissions	
850	during Iron Ore Sintering (in Chinese), PhD Dissertation, Southcentral University of China.	
851		
852	Pang, J., Wen, X., Sun, X. (2016). Mixing ratio and carbon isotopic composition investigation	
853	of atmospheric CO ₂ in Beijing, China. Sci Total Environ, 539: 322-330.	Formatted: Subscript
854		
855	Pataki, D. E. (2005). Can carbon dioxide be used as a tracer of urban atmospheric transport?	
856	Journal of Geophysical Research 110(D15102)-: 1-8.	
857		
858	Pataki, D. E., Bowling, D.R., Ehleringer, J.R. (2003). Seasonal cycle of carbon dioxide and	
859	its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal	
860	of Geophysical Research-Atmospheres, 108(D23)-: 1-8.	
861		
862	Pataki, D. E., Bowling, D.R., Ehleringer, J.R., Zobitz, J.M. (2006). High resolution	
863	atmospheric monitoring of urban carbon dioxide sources. Geophysical Research Letters,	
864	33 (3)-: ÷1-5.	
865		
866	Pataki, D. E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J.,	
867	Buchmann, N., Kaplan, J.O., Berry, J.A. (2003). The application and interpretation of Keeling	
868	plots in terrestrial carbon cycle research. Global Biogeochemical Cycles. 17 (1): 1-14	
869	r · · · · · · · · · · · · · · · · · · ·	
870	Pataki, D. E., Lai, C., Keeling, C.D., Ehleringer, J.R. (2007), Insights from stable isotopes on	
871	the role of terrestrial ecosystems in the global carbon cycle. Terrestrial Ecosystems in a	
872	Changing World. Springer: + 37-44.	
873		

874	Pataki, D.E., Emmi, P.C., Forster, C.B., Mills, J.I., Pardyjak, E.R., Peterson, T.R.,		
875	Thompson, J.D., Dudley-Murphy, E., An integrated approach to improving fossil fuel		
876	emissions scenarios with urban ecosystem studies. Ecological Complexity, 2009, 6(1): 1-14.		
877	Detaki D. E. Yu. T. Luc. V.O. Ekleringer, I.D. (2007) Inferring history is and anthronogenia		
8/8	Pataki, D. E., Xu, T., Luo, T.Q., Enteringer, J.K. (2007). Intering biogenic and antihopogenic		
879 880	carbon dioxide sources across an urban to rural gradient. Oecologia $152(2)$: $307-322$.		
881	Peters W. Jacobson, A.R. Sweeney, C. Andrews, A.F. Conway, T.I. Masarie, -K. Miller		
882	J.B., Bruhwiler, L.M., Petron, G., Hirsch, A.I., Worthy, D.E., van der Werf, G.R., Randerson,		
883	J.T., Wennberg, P.O., Krol, M.C., Tans, P.P. (2007), An atmospheric perspective on North		
884	American carbon dioxide exchange: CarbonTracker, -Proceedings of the National Academy		
885	of Sciences, 2007, 104 (48): 18925-18930.		
886			
887	Prairie, Yves T., and Carlos M. Duarte, C. M. (2007). – Direct and indirect metabolic CO ₂	`	Formatted: Font color: Text 1
888	release by humanity. Biogeosciences. 4(2): 215-217.		Formatted: Font color: Text 1
889			Formatted: Font color: Text 1
890	Rella, C. (2011). Accurate stable carbon isotope ratio measurements with rapidly varying	111 × 1	Formatted: Font color: Text 1
891	carbon dioxide concentrations using the Picarro δ_{1}^{13} C G2101-i gas analyzer, Picarro White	$\frac{11}{11}$	Formatted: Font color: Text 1
892	Paper. Picarro Inc.	11	Formatted: Font color: Text 1
893		1	Formatted: Font: Bold, Font color: Text 1
894	Ren, L., Wang, W., Wang, J., Liu, R. (2015). Analysis of energy consumption and carbon	Ň	Formatted: Font color: Text 1
895	emission during the urbanization of Shandong Province, China. Journal of Cleaner		Formatted: Superscript
896	Production, 103: 534-541.		
897			
898	<u>Röckmann1 T, S Eyer, C. van der Veen1, ME Popa, B Tuzson, G Monteil1, S Houweling,</u>		
899	Eliza Harris, D Brunner, H Fischer, G Zazzeri, D Lowry, EG Nisbet, WA Brand, JM Necki, L		
900	Emmenegger, and J Mohn (2016). In situ observations of the isotopic composition of		
901	methane at the Cabauw tall tower site. Atmos. Chem. Phys., 16 : 10469–10487.	'	Formatted: Font: Bold
902			
903	Rose L S, Akbari H, Taha H. Characterizing the fabric of the urban environment: a case study		
904	of Greater Houston, Texas. Lawrence Berkeley National Laboratory, 2003.		
905			
906	Satterthwaite D. Cities' contribution to global warming: notes on the allocation of greenhouse		
907	gas emissions. Environment and Urbanization, 2008, 20(2): 539–549.		
908			
909	Shen, S., Yang, D., Xiao, W., Liu, S., Lee, X. (2014). Constraining anthropogenic CH ₄	'	Formatted: Subscript
910	emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO ₂ and CH ₄		Formatted: Subscript
911	mixing ratios ₁ -Advances in Atmospheric Sciences ₁ 31 (6): 1343-1352.		Formatted: Subscript
912			
913	Song, T., Wang Y. (2012). Carbon dioxide fluxes from an urban area in Beijing. Atmospheric		
914	Research_ 106: 139-149.		
915			

916 917 918 919	Sun, B., Dilcher, D.L., Beerling, D.J., Zhang, C., Yan, D., Kowalski, E. (2003). Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences. 100 (12): 7141-7146.	
920	Takahashi, H. A., Konohira, E., Hiyama, T., Minami, M., Nakamura, T., Yoshida, N. (2002).	
921	Diurnal variation of CO ₂ concentration, Delta C-14 and delta C-13 in an urban forest:	Formatted: Subscript
922	estimate of the anthropogenic and biogenic CO ₂ contributions, Tellus B, 54(2): 97-109.	Formatted: Subscript
923		
924	Tans, P. (1981). ¹³ C/ ¹² C of industrial CO ⁴² . In SCOPE 16: Carbon Qcle Modelling (B.Bolin,	Formatted: Superscript
925	ed.), John Wiley and Sons, Chichester, England, 127-129.	Formatted: Superscript
926		Formatted: Superscript
927	Thoning, K. W., Tans, P.P., Komhyr, W.D. (1989). Atmospheric carbon dioxide at Mauna Loa	
928	Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical	
929 930	Research: <u>Atmospheres</u> (1984–2012) 94 (D6): 8549-8565.	
931	Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P.P., Davis, K.J.,	
932	Lauvaux, T., Miles, N.L., Richardson, S.J., Cambaliza, (2015), Toward quantification and	
933	source sector identification of fossil fuel CO ₂ emissions from an urban area: Results from the	Formatted: Subscript
934	INFLUX experiment. Journal of Geophysical Research: <u>Atmospheres</u> , 120(1):, 292-312.	
935		
936	Sanam Noreen Vardag, S. N., S. Hammer, I. Levin (2016) Evaluation of 4 years of continuous	
937	¹³ C(CO ₂) data using a moving Keeling plot method, Biogeosciences, Biogeosciences, 13:	Formatted: Superscript
938	<u>4237–4251.</u>	Formatted: Subscript
939		Formatted: Font: Bold
940	Wada, R., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., Shibata, T. (2011). Observation	
941	of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR	Formatted: Subscript
942 943	laser absorption spectroscopy. Atmospheric Environment, 45(5): 1168-1174.	
944	Wang, D. (2013) Method and Empirical Research of Urban Greenhouse Gas Measurement (in	
945	Chinese), Master's Thesis, Tianjin University.	
946		
947	Wang, W., D. E. Pataki (2012). Drivers of spatial variability in urban plant and soil isotopic	
948	composition in the Los Angeles basin. Plant and Soil, 350(1-2): 323-338.	
949		
950	Wen, X. F., Meng, Y., Zhang, X., Sun, X., Lee, X. (2013). Evaluating calibration strategies	
951	for isotope ratio infrared spectroscopy for atmospheric ¹³ CO ₂ / ¹² CO ₂ measurement.	
952 953	Atmospheric Measurement Techniques, Discussions $6(1)$: 795-823.	
954	Wehr, R., and S. R. Saleska (2017) The long-solved problem of the best-fit straight line:	
955	application to isotopic mixing lines, Biogeosciences, 14: 17-29.	Formatted: Font: Bold
956		
957	Widory, D. (2006). Combustibles, fuels and their combustion products: A view through	
958	carbon isotopes. Combustion Theory and Modelling, 10(5): 831-841.	
959		

960	Widory, D., M. Javoy (2003). The carbon isotope composition of atmospheric CO ₂ in Paris.		Formatted: Subscript
961	Earth and Planetary Science Letters, 215(1-2): 289-298.		
962			
963	Yakir, D., L. da SL Sternberg (2000). The use of stable isotopes to study ecosystem gas		
964	exchange. Oecologia. 123(3): 297-311.		
965			
966	Yang, H.M., Wang, H.Z., Wu, Y.B. (2011). Observation and characteristics analysis of traffic		
967	flow in Nanjing. (in Chinese), Environmental Science and Technology, 24(2): 98-101.		
968			
969	Zimnoch, M., Florkowski, T., Necki, J., Neubert, R. (2004). Diurnal variability of delta C-13		
970	and delta O-18 of atmospheric CO2 in the urban atmosphere of Krakow, Poland, Isotopes in		Formatted: Subscript
971	Environmental and Health Studies, 40(2): 129-143.		
972			
973	Zobitz, J. M., Burns, S.P., Reichstein, M., Bowling, D.R. (2008). Partitioning net ecosystem		
974	carbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Global Change		
975	Biology, 14(8): 1785-1800.		
976			
977	Zondervan, A., H. A. Meijer (1996). Isotopic characterisation of CO2 sources during regional		Formatted: Subscript
978	pollution events using isotopic and radiocarbon analysis. Tellus B, 48(4): 601-612.		
979			
980	Zhou, L., Conway, T.J., White, J.W., Mukai, H., Zhang, X., Wen, Y., Li, J. and MacClune, K.,		Formatted: Font: (Default) Times New Roman
981	(2005). Longterm record of atmospheric CO ₂ and stable isotopic ratios at Waliguan		Formatted: Font: (Default) Times New Roman
982	Observatory: Background features and possible drivers, 1991–2002. Global Biogeochemical		Formatted: Font: (Default) Times New Roman, Subscript
983	Cycles, 19 (3) <u>: GB3021</u> .	1	
984			Formatted: Font: (Default) Times New Roman
			Formatted: Font: (Default) Times New Roman

Figure 1. Dependence of the observed δ^{13} C on the H₂O mole fraction. The lines represent Equation 2. Error bars are \pm one standard deviation. The data in the left panel was obtained

on October 1, 2014 using a 439 <u>- μ mol mol⁻¹ppm standard gas and the true δ^{13} C value of -</u>

32.8_‰, and that in the right panel on June 10, 2015 using a 488 <u>µmol mol⁻¹-ppm</u> standard

gas and the true δ^{13} C value of -34.1_%.

990

991

Formatted: Font: Symbol

Formatted: Superscript

1 (bottom panels) between March, 2013 and August, 2015.

Figure 4. Application of the Miller-Tans method to <u>theall valid</u> daytime (10:00-16:00) data
 obtained <u>in Januarybetween March, 2013 and August, 20145</u>. Each data point is one hourly
 mean. The solid line is the <u>least squares regression geometric mean regression</u> according to
 Equation <u>34</u>. Errors bounds on the regression coefficients are 95% confidence intervals.

--- **Formatted:** Line spacing: Double

1038Figure 8. Time series of monthly net surface CO_2 flux (Fs), biological CO_2 flux (Fp),1039anthropogenic CO_2 flux excluding cement emission (FF) and cement CO_2 flux (Fe) in_-the1040Nanjing. All the CO_2 mass fluxes are in mg m⁻²s⁻¹. The flux terms FF and Fc are assumed to1041have a 10 % uncertainty typical of fossil fuel consumption data. The partitioning results (Fp.1042and Fs) The results are based on the source $\frac{13}{12}C/\frac{12}{12}C$ ratiosignature derived from nighttime ______ Formatted: Superscript1043atmospheric measurements.

$\frac{1}{100}$ Low $381.89 \pm$	ID	CO ₂ (<u>µmol mol</u> -	$\delta^{13}\mathrm{C}$ (‰)	Period
$0.99381.89$ 29.75 High $502.35 \pm$ -30.01 ± 0.18 - Mar, 2013 - Aug, 2014 $0.28502.35$ 30.01 Low $380.92 \pm$ -29.75 ± 0.27 - Sep, 2014 - Aug, 2015 $0.95380.92$ 29.75 High $501.05 \pm$ -30.01 ± 0.18 - Sep, 2014 - Aug, 2015 $0.33501.05$ 30.01	l Low		-29.75 ± 0.27 -	Mar, 2013 - Aug, 2014
High $502.35 \pm -30.01 \pm 0.18$ - Mar, 2013 - Aug, 2014 $0.28502.35$ Mar, 2013 - Aug, 2014 30.01 Low $380.92 \pm -29.75 \pm 0.27$ - Sep, 2014 - Aug, 2015 $0.95380.92$ 29.75 High $501.05 \pm -30.01 \pm 0.18$ - Sep, 2014 - Aug, 2015 $0.33501.05$ 30.01		<u>0.99</u> 381.89	29.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	High	<u>502.35 ±</u>	-30.01 ± 0.18 -	Mar, 2013 - Aug, 2014
Low $380.92 \pm -29.75 \pm 0.27$ - Sep, 2014 - Aug, 2015 0.95380.92 $29.75High 501.05 \pm -30.01 \pm 0.18- Sep, 2014 - Aug, 20150.33501.05$ 30.01		<u>0.28</u> 502.35	<u>30.01</u>	
$0.95380.92$ 29.75 High $501.05 \pm$ -30.01 ± 0.18 - Sep, 2014 - Aug, 2015 $0.33501.05$ 30.01	Low	<u>380.92 ±</u>	<u>-29.75 ± 0.27-</u>	Sep, 2014 - Aug, 2015
$501.05 \pm$ -30.01 ± 0.18 - Sep, 2014 - Aug, 2015 $0.33501.05$ 30.01		<u>0.95<mark>380.92</mark></u>	<u>29.75</u>	
<u>0,33</u> 501.05 <u>30.01</u>	High	<u>501.05 ±</u>	<u>-30.01 ± 0.18</u> -	Sep, 2014 - Aug, 2015
		<u>0.33501.05</u>	<u> </u>	

 Table 1 Standard gases used for instrument calibration.
 The mean and standard deviation of

Formatted: Subscript

Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt
Formatted:	Font: (Default) Times New Roman, 12 pt

Table 2 Percentage of "fossil-plus" sources and their δ^{13} C values for the YRD and Nanjing.

1053 The uncertainty in the total "fossil-plus" source is a weighted mean of the individual

1054 <u>uncertainties.</u>

	Perce	entage (%)	δ^{13} C (‰))			
Sources	YRD	Nanjing	YRD	Nanjing	References -		Formatted Table
			-25.46 ± 0.39 -	<u>-25.46 ±</u>	Duan, 1995, Widory		
			25.46	<u>0.39-25.46</u>	<u>2003</u> Duan 1995, Widory-		
Coal	70.0	52.3			2006		
			-28.69 ± 0.50 -	<u>-28.69 ±</u>	Widory and Javoy		
			28.80	<u>0.50 28.80</u>	2003 Widory and Javoy		
Gasoline	2.1	11.4			2003		
			-28.93 ± 0.26	<u>-28.93 ±</u>			Formatted: Font: (Default) Times New Roman
Diesel	3.2	1.6	29.80	<u>0.26</u> -29.80	Widory 2006 Widory 2006		Formatted: Font: (Default) Times New Roman
			-29.32 ± 0.15-	<u>-29.32 ±</u>	Widory and Javoy	ì	Formatted: Font: (Default) Times New Roman
			28.93	<u>0.15</u> -28.93	2003Widory and Javoy		Formatted: Font: (Default) Times New Roman
Fuel oil	2.1	0.3			2003	N	Formatted: Font: (Default) Times New Roman
			-39.06 ± 1.07 -	<u>-39.06 ±</u>	Widory 2003Pang et al.	, in	Formatted: Font: (Default) Times New Roman
Natural gas	2.7	5.0	39.50	<u>1.07</u> -39.50	2016		
			-31.70 ± 0.40 -	<u>-31.70 ±</u>			
LPG	0.7	0.2	31.70	<u>0.40 31.70</u>	Widory 2006 Widory 2006		
			-24.90 ± 0.40	<u>-24.90 ±</u>			
Pig iron	8.7	12.7	24.58	<u>0.40</u> -24.58	Pan 2007this study		
			-25.28 ± 0.40	<u>-25.28 ±</u>			
Crude steel	1.5	0.7	24.82	<u>0.40</u> 24.82	Wang 2013this study		
			-28.18 ± 0.55	<u>-28.18 ±</u>			
Ammonia synthesis	9.0	15.9	28.50	<u>0.55 28.50</u>	An 2012this study		
			-26.36 ± 0.42 -	-26. <u>9</u> 4 <u>7 ±</u>			
Total	100	100	26.07	<u>0.46</u> 2			

1056	Table 3. Inventory data for the isotopic composition of surface CO2 sources and their
1057	percentage of contribution in the YRD and in Nanjing. Here the "fossil-plus" category
1058	includes all non-cement anthropogenic emissions listed in Table 2. The cement isotopic ratio
1059	is based on Andres et al. (1994). The uncertain range in the biological isotope ratio is based

1060 <u>on Vardag et al. (2016).</u>

S	YRI	D	Nanjing		
Sources	δ^{13} C (‰)	Percentage (%)	δ^{13} C (‰)	Percentage (%)	
"Fossil-plus"	-26.36 ± 0.42 -	91.0	-26.97 ± 0.46	96.4	
	26.07		-26.42		
Cement	$0 \pm 0.30 + 0.20$	9.0	$0 \pm 0.30 + 0.20$	3.6	
Anthropogenic	-23.99 ± 0.41 -	100	-26.00 ± 0.45	100	
	23.71		-25.47		
Biological	-28.20 ± 1.00 -		-28.20 ± 1.00	·	
	28.2		28.2		