Response to Review 1

This manuscript examines the multi-year CO_2 and ${}^{13}CO_2$ time series as measured in Nanjing, China. Compared to other urban centers the seasonal ${}^{13}CO_2$ amplitude is much smaller attributed to weak biological sink in the summer, reduced anthropogenic emissions in the winter, and ${}^{13}C$ signature from cement production. They infer the ${}^{13}C$ source within Nanjing and the Yangtze River Delta by performing a Keeling regression during the night-time hours, and a Miller-Tans regression during the daytime hours, and also compare this seasonal cycle to other urban centers around the globe.

In general, it is an important contribution to expand this type of analysis to industrialized areas of China in an effort to provide more complete global coverage of CO_2 emissions, partitioning, and ^{13}C signatures. It was especially interesting to see how this region behaved compared to other urban centers. My main concerns with the manuscript are as follows:

Main concern 1)

There seems to be a misunderstanding by the authors in the purpose of implementing the Keeling vs. Miller-Tans approaches to calculating the ${}^{13}C$ source. The authors suggest in line 105 'the intensity of traffic emission varies strongly through the diurnal cycle. And therefore the effective source ¹³C signature cannot be assumed constant." Both methods, whether they are Keeling or Miller Tans cannot account for a varying source ¹³C signature over the diurnal cycle because this manuscript grouped the data into monthly aggregates, therefore either method will calculate a mean diurnal and even monthly signature, UNLESS the data is aggregated into finer time increments, morning, afternoon etc, which the authors have not done. However, they do not necessarily have to do this if they are only looking for ${}^{13}C$ source changes across months. The true benefit of the Miller-Tans approach, which the authors do not make clear, is that it accounts for varying BACKGROUND variation of both CO₂ and ¹³CO₂, thereby isolating only the local source contributions. Although this reviewer agrees with the authors that by performing a regression on the daytime readings it is representative of the greater YRD area, and that by performing a regression upon the night-time readings the footprint of the ¹³C source is more localized (although not always because even at night there can be sufficient mixing of the boundary layer during windy, unstable conditions, -the authors do not address this), this reviewer fails to see why the Miller Tans approach was not applied to both night-time and daytime readings. It is likely the more complete method, because it will correct for background variation, which even under stable night-time conditions will play a role in the observed nighttime $\delta^{13}C$. It would have been instructive to perform both methods during the night, and then use the ¹³C source inventory data to try to justify one approach over the other.

*

In response to this comment and the comments made by the other two reviewers, we now apply the Miller-Tans method to both daytime and nighttime data. In the discussion section, we have added a short paragraph to compare this method with the Keeling plot method:

"We argue that Keeling plot method is not appropriate for daytime periods because the surface air is influenced by both the surface sources and by entrainment of the background air from above the boundary layer. If we applied the Keeling method to the daytime observations, the linear correlation coefficient was on average -0.898 which is weaker than the correlation coefficient obtained with the Miller-Tans method (-0.956). The resulting mean $\delta^{13}C_S$ would be 0.61‰ lower than the mean value shown in Figure 6. The difference in $\delta^{13}C_S$ between the YRD (daytime observations, Keeling method) and Nanjing (nighttime observations, Miller-Tans method) would become too small (0.15‰).

In comparison, the Keeling plot method showed reasonably good performance when applied to the nighttime observations. This is because surface inversion conditions effectively prevented mixing of the free atmospheric air with the surface air, so that the single-source assumption implicit in the Keeling plot method was satisfied. If we applied Keeling plot method at monthly intervals to the nighttime data, the resulting $\delta^{13}C_8$ would decrease to -24.24‰ for Nanjing from - 23.72‰, the value obtained with application of the Miller-Tans method to the nighttime observations."

We also acknowledge in the methods section that our method has omitted the influences of wind conditions:

"...Admittedly, this interpretation of daytime versus nighttime source areas is a simplification because the actual source area also depends on thermal stratification and boundary layer wind. Nevertheless, it is supported by a trajectory analysis and by an analysis of the atmospheric methane to CO₂ emissions ratio (Shen et al. 2014)."

Main concern 2)

The authors never truly justify the use of MLO (the Mauna Loa Observatory) as a background site for their study. I would have liked an explanation that MLO represents the marine boundary layer, and is relatively unaffected by landmass contributions of anthropogenic and biogenic CO₂. Why did the authors use a site that was so far removed from Nanjing as a background correction? Air from MLO has to pass through North America, Europe and much of Asia before it reaches the site of interest, therefore it is likely a poor background. A similar type of analysis was performed globally (Ballantyne 2010, 2011) which discussed the issue of a background site when performing Miller Tans regression. This manuscript could have benefitted by reviewing that work, and at least discuss the motivation for using MLO.

*

In response to this suggestion, we have replaced MLO with Mount Waliguan (WLG, 36°17'N, 100°54'E, 3816 m above the mean sea level) as the background site. WLG is located at the northeastern edge of the Tibetan Plateau, and is the closest upwind NOAA background site for our study region.

This switch changes the monthly mean source signature slightly, from the original -23.25‰ to -23.26‰ for the YRD and from -24.24‰ to -23.72‰ for Nanjing. The change for Nanjing is larger because we have also replaced the original Keeling method with the Miller-Tans method in the analysis of nighttime observations.

The papers by Ballantyne et al. (2010 and 2011) are now cited.

Main concern 3)

I would have liked a better explanation of the ecological system: vegetation type, climate conditions etc. It would have been instructive to understand the growing conditions in Nanjing to better understand the seasonal cycle in carbon flux, and how it influenced the overall carbon flux. It was also unclear to me why Park Falls, Wisconsin was used as biological example to explain some of the behavior in Nanjing. They seem to be from two entirely different ecosystems.

*

We have added the following text:

"The YRD is influenced by subtropical moist monsoon climate. The mean annual temperature is about 15°C and the annual precipitation is between 1000 mm and 1800 mm. The main vegetation types are subtropical evergreen broad-leaved forest and shrubs, and the main crops are rice and winter wheat, all of which are C3 species."

We chose Park Falls because it is a well-documented site. Our main point is that even at a site with high photosynthetic activity (and hence high photosynthetic ¹³C enrichment of atmospheric CO₂), the summer time δ^{13} C is lower than that of the background atmosphere. So we would expect δ^{13} C in the YRD which has low photosynthetic activity, to be even lower. But our observation shows the opposite.

Main concerns 4) There was no explanation for how the CO₂ and δ^{13} CO₂ data was evaluated for quality. Was all raw data assumed to be valid? If that is the case the regressions could have been subject to large errors. Some explanation is necessary regarding qa/qc procedure of data.

*

We have added the following text in the methods section:

"The typical 5-min measurement precision is 0.3‰ for δ^{13} C and 0.05 ppm for CO₂ mole fraction according to the instrument manufacturer. Our own Allan variance analysis revealed a precision of 0.05‰ for δ^{13} C and 0.07 ppm for CO₂ mole fraction at the hourly averaging interval. We did not adopt the strict filtering technique used for background sites (Thoning et al. 1989) because of high natural variations in urban airsheds. We removed 40 3-minute data points during the transient periods after calibration gas changes. Additionally, data were removed if hourly CO₂ mole fraction was lower than 390 ppm or δ^{13} C were out of the range between -15‰ and -5.5‰.

Detailed Comments:

(1) Line 33: Do not use the term midnight and midday observations, because it makes it seem that only 12AM and 12PM readings were taken. Instead label this as night-time vs. day-time readings. Do this throughout the paper.

*We now use "daytime" and "nighttime" throughout the paper.

(2) Line 31-32: "The highly enriched ¹³C signal was attributed to the influence of cement production in the region." This is misleading because in the discussion you provide other reasons, and this was only one of them.

* We change the description to "The highly enriched ¹³C signal was partly attributed to the influence of cement production in the region."

(3) Line 90: Instead of "various" say something like "highly resolved" to emphasize the fine temporal nature of the measurements.

*Changed as recommended.

(4) Line 129: Need a citation.

*Citation added.

(5) Line 134-135: You use the term 'plant' in this paper to describe both vegetation/biology, and a cement manufacturing 'plant'. This is confusing and suggest you use 'biological' flux instead of 'plant flux'.

*Thank you. We have replaced "cement plant" with "cement factory" and used 'biological' flux instead of 'plant flux'.

(6) Line 140: You never explain the delta notation of ${}^{13}C$ ($\delta^{13}C$). This requires a definition and an equation.

*We do not feel that there is a need for an equation because the delta notation is widely used. We did point out the notation is in reference to the VPDB standard.

(7) Line 146-147: "Table 1 lists the concentrations and their isotopic composition of the standard gases used in this study". This is not true. Table 1 does not show this.

*Thank you for pointing out this omission. This table is now added.

(8) Lines 191-196: I assume you fitted the MLO data of both CO₂ and δ^{13} C with a harmonic fit, then used this as the background for your regressions for all years 2013-2015. This is not clear from the text.

*Yes. The text here has been improved:

"...we fitted the WLG data of both CO₂ and δ^{13} C with a four-harmonic quadratic function (Thoning et al. 1989) using the dataset from 2000 to 2014, and then used the function to estimate the monthly δ^{13} C_b and C_b values for 2015."

(9) Lines 198-200: This is a key point, but is hidden deep in the text. Would suggest that wherever you use daytime or nighttime readings in the figures, also explain that they represent YRD and Yanjing respectively for this reason.

*Suggestion adopted.

(10) Line 204 and line 209: Terminology of 'scope one' is strange. Either capitalize it, or remove.

*We have replaced the term with "SCOPE 1", and have given a definition: "The procedures consider only emissions from sources that lie within the geographic boundary of investigation."

(11) Line 279-280: It's unclear what you mean by 'data consistency check' and what purpose Figures 4 and 5 serve in the manuscript, if, as you suggest they violate the constant $\delta^{13}C$ requirement. A more relevant comparison of methods would be to perform full comparison of the Keeling and Miller-Tans method for determining $\delta^{13}C$ source.

*We have rephrased the text as: "So these data plots are meant more to show the range of variations of the hourly observations than for determining the true annual mean source signatures."

(12) Line 294-297: Not sure if this is necessary, it what this text is actually saying is statistically significant. Does this fall within the range of regression uncertainty?

*This short paragraph has been removed.

(13) Line 342-367: Very good discussion. Very informative.

*Thank you for your encouragement.

(14) Line 374: Get rid of negatives in front of o/oo.

*Removed.

(15) Line 380: Of course MLO is going to have negligible shift in $\delta^{13}C$ and CO₂, it is a marine boundary layer site in the middle of the Pacific Ocean. This should be discussed here, and also as to why it was chosen as the background.

*Please refer to our response to main point 2.

(16) Line 385: I found it peculiar that you chose Park Falls as a region in carbon-tracker as a comparison to Nanjing. Park Falls is at a far higher latitude, a forest, and no-where near an urban center. I understand that you are just making a comparison of $\delta^{13}C$ response to strength of biological carbon sink, but still it seemed strange to me.

*Please refer to our response to main point 3.

(17) Line 389-393: How do you suppose that emission in Nanjing during the summer season impacted the seasonal cycle? Earlier in the paper you mentioned that the government regulated limited heating in the winter (very low heating emissions). I wonder is the same enforcement exist in the summer (air conditioning)?

*No. The government does not restrict use of A/C in the summer. The inventory data available to us does not permit assessment of the emission seasonality, but according to a study for Shanghai, a city also in the YRD, the emission differs by less than 1% between the summer and the winter season (Liu et al. 2013, ACP, 13, 10873).

(18) Line 394: "cement production was factor responsible for high $\delta^{13}C$ ". I found this a bit strong. Maybe say a 'contributing factor'.

*Suggestion adopted.

(19) Line 416: instead of 'highly consistent' should use 'varied coherently' or 'highly correlated'

*Replaced with 'highly correlated'

(20) Line 438-440: What about the impact of methodology: Keeling vs. Miller-Tans approach at causing this difference?

*This cannot be explained by methodological difference (main point 1)

(21) Line 441-443: This is not a sufficient condition to violate the Keeling curve approach. You have to demonstrate that the background source is changing in flux magnitude for ^{13}C signature.

*We agree.

(22) Line 449-451: It is not clear to me why this condition will violate the Miller-Tans approach, or why the Keeling approach should be preferred under these conditions.

*Please refer to response to main point 1.

(23) Table 1: I don't like the use of 'fossil-plus' as a description of all non-cement anthropogenic emissions. It's not an intuitive description at all, and unless one reads deep into the text the reader cannot tell what it is. At least you should put it in quotations, or just get rid of that label. Also you should make it clear here in Table 1 and in all figures that: Also YRD: derived from daytime readings, Nanjing: derived from night-time readings

*We now put the term in quotations as "fossil-plus". In Table 3 and in the main text this term has been clearly explained:

"Here the "fossil-plus" category includes all non-cement anthropogenic emissions listed in Table 2."

(24) Table 2: Remove 'plant' and put 'biological'. Plant can refer to a manufacturing facility.

*Corrected

(25) Figure 1: You should make clear that this is the 'dependence of the observed STANDARD GASES of $\delta^{13}C$ '. Also it would be nice what the 'corrected' values are after applying equation (2).

*Clarified.

(26) Figure 2: The line markers need to be larger so you can tell the difference. The descriptions of the markers need to be better too. Extremely disappointing that MLO was defined as Mortgage Loan Origination, instead of Mauna Loa Observatory. Shows a complete lack of understanding of the science by contributor who created plot, and should have been caught by co-authors.

*This embarrassing mistake has been corrected. Figure quality has been improved according to your suggestion.

(27) Figure 3: State that this is for years 2013-2015.

*Done.

(28) Figure 4: Unclear what 'valid' midday data was. Was there a data filter on your raw data?

*Please refer to our response to main point 4

(29) Figure 6: Do error bars represent the 'regression' error from the Miller-Tans and Keeling approaches? Also would be nice to show both the Miller-Tans and Keeling regressions for night and day.

*Yes, the error bars represent the regression error from the Miller-Tans regression.

Response to Review 2

The authors use bottom-up inventories of various sectors producing local anthropogenic emissions of CO_2 combined with expected values of the stable carbon isotopic signatures of these emissions and measurements of ambient air to solve for the biosphere's emissions from Nanjing and the Yangzte River Delta region, using mass balance calculations. The most important contribution of this paper is evidence of contributions to the emissions of an urban region by cement production, as indicated by values of $\delta^{13}C$ of the high CO_2 end member that are higher than background and than those expected from the biosphere. The authors use Keeling plot intercepts and Miller-Tans slopes to determine the isotopic compositions of the local anthropogenic emissions for the city of Nanjing and the Yangtze River Delta, using nighttime and daytime measurements, respectively.

Main concern 1)

My major concern in this paper is the use of the two different methods for determining ¹³C for the high CO₂ end members. Why are two methods necessary? If concern is for varying background, then the Miller-Tans method is the method to use, since the Keeling plot method assumes that both end members remains constant during the time period of the data being examined. The authors mention that the Keeling plot method is appropriate at night because there is no mixing of free tropospheric air and boundary layer air when there is a stable shallow nocturnal boundary layer. However, most of the CO₂ in the nocturnal boundary layer is background, with mole fractions of 400-550 ppm, as seen in Figure 5, and the background used, from Mauna Loa Observatory (MLO), contains about 400 ppm. Therefore, there is mixing of background air and local emissions. The Miller-Tans method should probably be used for all of the data.

*We now use the Miller-Tans method for both time periods (Response to Review 1, main point 1).

Main concern 2)

Another important issue is whether the MLO data are the appropriate background to use. As shown by Turnbull et al. (2015) for Indianapolis, use of different backgrounds are appropriate for getting at the influence of emissions in different domains. Such a remote site as MLO may not be appropriate for looking at the sources of emissions in the region of Nanjing and the Yangtze River Delta. The background air there may be influenced by processes in the surrounding area, that may produce seasonal variations different from those observed at MLO.

*We have replaced MLO with Mount Waliguan (WLG) as the background site. The paper by Turnbull et al. (2015) is now cited (Response to Review 1, main point 2).

Main concern 3) Please give uncertainties in measurements and values derived from them. *We have provided information about measurement uncertainties (Response to Review 2, main point 4). We have also (1) performed Monte Carlo simulations to assess error propagation in the flux partitioning analysis, and (2) in response to review 3, have estimated errors arising from human metabolism. The following text has been added to the discussion section:

"We conducted Monte Carlo simulations to assess the sensitivity of the partitioned fluxes to uncertainties in $\delta^{13}C_P$ and $\delta^{13}C_F$. Errors in these parameters were assumed to follow a uniform distribution and varied in the range of ±1‰. The mean and standard deviation of F_s were 0.167 and 0.003 mg m⁻²s⁻¹, and those of F_P were -0.005 and 0.003 mg m⁻²s⁻¹, respectively for the YRD, based on an ensemble of 10,000 simulations. For Nanjing, the mean ± standard deviation of F_s and F_P was 0.209 ± 0.024 and 0.086 ± 0.022 mg m⁻²s, respectively. These mean flux values are essentially the same as those obtained with the default $\delta^{13}C_P$ and $\delta^{13}C_F$ values giving in Table 3 and the standard deviations represent uncertainties of the partitioned fluxes.

Another source of uncertainty in our flux partitioning analysis is related to human breath (Affek and Eiler 2006). Using the method of Prairie and Duarte (2007), we estimated that human respiration flux was 0.006 and 0.013 mg m⁻²s⁻¹, or 3.7% and 11.65% of anthropogenic emission in the YRD and in Nanjing, respectively. The food diet in the region is predominantly C3 grains. By including this additional source in Equations 3 and 4 and by assuming that the isotopic signature of human respiration is the same as $\delta^{13}C_P$ shown in Table 3, F_s and F_P would increase by 0.008 and 0.001 mg m⁻²s⁻¹ in the YRD and by 0.018 mg m⁻²s⁻¹ and 0.005 mg m⁻²s⁻¹ in Nanjing, respectively."

Specific comments: (1) Throughout: use "mole fraction" not "mole fraction"

*Corrected

Detailed Comments: (1) Line 29: insert "δ" before "¹³C"

*Added

(2) Lines 32-35: Consider adding a sentence explaining that you distinguish between signals from the city of Nanjing and the YRD by looking at data collected at the same site at night and during the day, respectively, consistent with differing diurnal footprints. This is a very important part of your analysis.

*Added.

(3) Line 33: Replace "midnight" with "nighttime" and "midday" with "daytime". "Midnight" is a specific moment of the day.

*Corrected through whole paper.

(4) Line 51: insert "fuel" after "fossil"

*Added

(5) Line 58: capitalize "Ternberg"

*Corrected as "Sternberg".

(6) Line 77: "reveals" should be "reveal"

*Corrected.

(7) Line 82: "deployed" should be "employed"

*Corrected.

(8) Line 120: See Newman et al., 2016, ACP for 8 years of ¹³C data in a megacity Line 125: "include" should be "includes"

*This paper is now cited. The typo is corrected.

(9) Line 129: Reference?

*A reference is added.

(10) Line 145: Is 5 minutes enough time to settle and measure for good statistics? Picarro specs are for 5-minute averages, but you have to run the standard for at least a few minutes first in order to stabilize on this instrument, especially if your standards are dry and your ambient air stream is not. What are the statistics for accuracy and precision of your standards?

*Because we used very small tube to deliver the standard gas, the transition to step change was fast enough so that 5 min sampling was adequate. (We did discard the data in the first 3 min after valve switching.) Humidity is not an issue because humidity was measured simultaneously and its effect was removed by firmware.

We have added a sentence here to clarify our calibration procedure: "(To avoid transient effects, only the data collected in the last 2 minutes was used.)"

We have added the information on measurement precision (Response to Review 1, main point 4).

(11) Line 150: "NOAA-EASL" should be "NIST" (The NOAA group is NOAA-ESRL, but these standards are from NIST.)

*Corrected.

(12) Lines 156-157: There is no power plant on campus?

*There is no power plant on campus.

(13) Line 159: Delete "at"

*Removed.

(14) Line 175: Add "%" after "2.03" What are the uncertainties of your measurements, and how do the corrections for H_2O to $\delta^{13}C$ affect them?

*Since we defined H in the text as volume %, we choose not to include the unit in the equation.

The magnitude of the humidity correction is shown in Figure 1. Please also refer to Response to Review 3, detailed comment (9)

(15) Line 182: Zobitz et al. (2006, Agricultural and Forest Meteorology 136, 56-75) recommended ordinary least squares regression as introducing less bias to the results relative to geometric mean regression.

*We adopted the GMR for two reasons. First, there exists a self-correlation between the dependent and independent variables of the Miller-Tans scatter plot. The GMR can reduce the error caused by the self-correlation. Second, the OLS has a better performance only when the CO_2 range of variables is small (< than 20 ppm). But in the present study the range of variation was greater than 80 ppm on monthly intervals.

(16) Lines 181-187: See discussion above. Monthly intervals may be too long to consider that the background isotopic composition has remained constant. It would be more appropriate to use the Miller-Tans method.

*Done.

(17) Line 189: The first "Ca" should be "Ca-Cb".

*Corrected.

(18) Lines 198-200: The footprints during nighttime and daytime are critical to this study comparing the city and the region. Therefore it would be good to show back trajectories, at least in an appendix, indicating that the nighttime data emphasize the city and the daytime data include air coming in from a much broader region.

*The trajectory analysis was performed in an earlier study (Shen et al. 2014) showing that the daytime source area extends to the YRD. Our argument that nighttime observations had a smaller source area is based on the fact that CO_2 and pollution buildups in stable stratification is restricted mostly to the urban airshed, and is in agreement with the analysis of the CO_2 to methane emissions ratio for Nanjing (Shen et al. 2014).

(19) Line 203: Where are the results of these calculations presented, in Table 1? "process" should be "processes".

*Corrected.

(20) Line 204: Please explain what "the scope one procedure" is. This is not commonly known in this field.

*We have added this sentence:

"The procedure considers only emissions from sources that lie within the geographic boundary of investigation."

(21) Line 208: How are the emissions from electricity generation considered?

*Coal is the main fossil used to generate electricity. We only included the coal consumption in geographic boundary. Electricity imported from outside the YRD is not included in the SCOPE I emission.

(22) Line 219: This might be a good place to have a transition that explains how you are going to derive the important biospheric contribution. "biosphere" is probably a better term to use than "plant"

*Done.

(23) Line 231: Consider replacing "solved" with "determined".

*Replaced

(24) Lines 237-243: You only mention trees? What about grasses? C4 versus C3 plants?

*Please refer to Response to Review 1, main point 3.

(25) Line 260: Consider replacing "stronger" with "larger". Do you mean that the relative seasonality is larger for $\delta^{13}C$ than for CO_2 mole fraction?

*Replaced.

(26) Line 269: Are times given as local time?

*Yes. This is now noted.

(27) Lines 274-280: What is the conclusion of this paragraph – that the two methods give the same value over the same period? But then you say that the methods are not strictly valid over the entire period? Please see discussion of the Keeling plot and Miller-Tans methods above.

*We have rephrased the text here:

"...violating the condition of constant source signal under which the method can be used. So these data plots are meant more to show the range of variations of the hourly observations than for determining the true annual mean source signatures."

(28) Lines 294-297: Are the values being compared statistically distinct? Give uncertainties, including propagated errors where appropriate.

*Please see the response to main concern 3.

(29) Line 300: need a transition sentence here indicating how you got the values given below

*Done.

(30) Line 304: replace "fuel" with "fossil"

*Corrected

(31) Line 311: Is "0.35‰" a statistically significant difference?

*This difference was derived from the inventory estimates. We did not perform a statistical test.

(32) Line 341: See Newman et al. (2016, ACP) for a similar discussion for Los Angeles.

*This paper is now cited. Thank you.

(33) Line 401: Add ", respectively" after "Nanjing".

*Added

(34) Lines 435-438: Give more details explaining these pieces of evidence supporting your conclusion, so the reader does not have to go to this paper.

*Since the paper is already quite long, we chose to keep the conclusion section concise.

(35) Lines 444-445: Are these correlation coefficients statistically different?

*Yes. The p value is now indicated in the figure.

(36) Line 448: How do you know that 0.38‰ is "too small"? How do you know what the correct value is?

*We compared it with the bottom-up method: the difference between the overall δ^{13} Cs of the anthropogenic sources in the YRD and Nanjing is 1.76‰ (Table 3)

(37) Figure 1. The isotopic compositions of the tanks used are industrial CO₂, not ambient. The values are much lower than those measured in the study. Have you tested whether the H₂O correction is dependent on the value of $\delta^{13}C$?

*This is a good point. We did not evaluate the $\delta^{13}C$ dependence on both the CO₂ concentration and the ambient humidity. However, the dependence on the CO₂ concentration itself has already been corrected by our calibration procedure.

(38) What are the 2 panels – different tanks? different time periods?

*Yes. They are from two tests with different tanks. This is now noted in the figure caption.

(39) Figure 2. Move the year labels to the bottom – I didn't notice them at first.

*Edited

(40) Line 798: What does the phrase "The solid line with cycle" mean – "The solid lines with circles"? What does this represent? "Mortgage Loan Origination" must mean "Mauna Loa Observatory" but suggests some lack of care in proof reading!

*These errors have been corrected. Thank you for catching these embarrassing errors.

(41) Figure 3: Standard errors/standard deviations to show uncertainties and variability of the data?

*These are 95% confidence bound from the regression. (It is now noted in the figure caption.)

Response to Review 3

The study presents CO_2 and $\delta^{13}C$ data from a densely populated area in China. The diurnal and seasonal cycles in CO_2 mole fraction and ^{13}C composition are discussed in detail. The authors apply the Keeling and Miller – Tans methods for estimating the night and day-time emission signatures, and assume these represent the fluxes in Nanjing and YRD respectively. The plant and total fluxes are calculated using combined mole fractions and isotope mass balance. One interesting point is the significant contribution of CO_2 from cement production to the total CO_2 isotopic signature.

I think such a paper is in principle interesting and useful, especially for this high emission region, however I see some issues with the manuscript in its current form.

Main concern 1) Measurement quality (precision and accuracy)

I did not find sufficient information on the measurement precision and accuracy estimates. Through the paper, the isotope values are given with two decimals – does this reflect the real precision?

*This information is now added (Response to Review 1, main point 4).

Main concern 2) Use of Mauna Loa (MLO) as a background

The choice of the background site is important, since a significant part of the paper is related to the differences between the measurement site and the background. The choice of MLO as a background is not convincingly supported in the paper. I would think the air masses do not pass over MLO before arriving at Nanjing, but please state this in the paper if they do.

A second issue with this site is the unavailability of the data for the time interval of interest. The MLO background used here is extrapolated from the 2000 - 2013 dataset. This is an additional source of error, at both intra-annual and inter-annual scales.

I recommend (1) *explaining the MLO choice or using a more suitable background, and* (2) *using actual data, if they became available in the meantime.*

*We have replaced MLO with another more suitable site as the background (Response to Review 1, main point 2). The extrapolation was done only for 2015. But if we exclude the data for 2015, our conclusions would still stand.

Main concern 3) Use of Miller-Tans versus Keeling plots

The authors promise in the Introduction to evaluate the use of Miller-Tans and Keeling methods. However, I didn't find a real evaluation. The authors choose to apply Miller-Tans during day and Keeling during night, and the tentative argumentation on why these choice are correct comes mostly afterwards in discussion (Sect. 4.4). Some of the arguments used are also not valid in my opinion, like the fact that the results would change if the other method was used, see e.g. line 448.

Another issue, that comes I think from a misunderstanding, is as follows. The Miller-Tans method had the advantage (over the Keeling method) that it can take into account a variable background. It does however not need a variable background. Thus Miller Tans method can in principle be used during night time as well. The fact that the surface inversion prevents vertical mixing during night (see lines 449 – 451) does not forbid the use of Miller-Tans method. In any case, the way it is applied here, the Miller-Tans method would not account for the variable background within one night, but only on monthly time scale.

The Miller-Tans method has also a potentially significant disadvantage, that is, the results are dependent on the choice of the background. An error in the background will produce an error in the isotopic signature calculate. In view of point 2 above, please estimate the error in $\delta^{13}C$ that is due to the MLO data processing (fitting and extrapolation).

As the authors show in Sect. 4.4, the differences between MLO, YRD and Nanjing would be quite different if the same method were used for both YRD and Nanjing. That means, for example, that part of the signal that is interpreted as cement influence could be in fact an artifact due to different data processing.

Please consider either using the same method, or demonstrate the use of the two methods for two sites better, including estimating and discussing the errors.

*Thank you for your suggestion. We now use the same method (Miller- Tans) for both daytime and nighttime period. The result is not very sensitive to choice of the background site. (Response to Review 1, main point 1).

Main concern 4) Photosynthesis (fractionation) not taken into account

The Miller-Tans (MT) method was used for estimating the day-time fluxes. This method assumes that we have a background and an emission, but no sink. In reality, however, both uptake and emission are present during day. The photosynthesis flux and its ¹³C discrimination can affect the MT results, and this is not a simple linear effect that can be easily corrected for. I think this should be taken into account in calculations, or at least the potential error should be discussed.

*As pointed out by the reviewer, the exact ¹³C signature of the photosynthesis flux is not known. (In our analysis, it was assumed to be the same as the ¹³C of plant materials found in the region.) In response, we have conducted a Monte Carlo simulation to provide an error bound to the partitioned fluxes (Response to Review 2, main point 3).

Main concern 5) Day and night plant fluxes

The plant fluxes seem to be an important result of the paper, and are compared to other estimates, for example from Carbon Tracker. I think it should be stated very clearly that these are night (respiration) flux for Nanjing and day (mainly photosynthesis) flux for YRD. They should not be given as plant fluxes (e.g. lines 416, 425, 474...), but it should always be specified what they actually are. Since the day-night difference in plant fluxes can be large, none of these day or night fluxes can be assumed as representing the overall plant flux and should not be directly compared to overall fluxes from e.g. Carbon Tracker.

*Suggestion adopted.

Main concern 6) CO₂ from human breath

It has been shown that CO_2 from human respiration can account, in densely populated areas, for a significant proportion of the total CO_2 emitted (Lopez et al., 2013; Prairie and Duarte, 2007). For example in Paris, human respiration CO_2 can be 15% of the fossil fuel CO_2 (Lopez et al., 2013). Measurements of ¹³C-CO₂ in human breath give $\delta^{13}C$ values of -24.5 to-22.3 (Affek and Eiler, 2006, Horvath et al., 2012), thus slightly enriched compared to the "fossil plus" category in this study.

Has this contribution been estimated? If yes, it should be mentioned; if not, I think this should be done, as the YRD region population is about 140 million.

*This is a very interesting point. In response, we have added a paragraph in the discussion section to address this issue (Response to Review 2, main point 3).

Detailed Comments:

(1) page 3, line 42: plant uptake is not a source, consider reformulating

*Edited

(2) page 3, lines 48 – 49: please give values or send to the information in the paper

*Reference added

(3) page 5, lines 104 - 106: "the intensity of traffic emissions varies ... and therefore the effective source ¹³C cannot be assumed constant" – I do not see the causality here, maybe something missing? – please check

*We have modified the text as:

"...the intensity of traffic emissions varies strongly through the diurnal cycle (McDonald et al. 2014), and therefore the composition of the surface source varies, and its ¹³C signature cannot be assumed constant."

(4) page 6, lines 115 – 118: I do not understand this statement. Both Keeling and Miller-Tans methods make this assumption. The difference is that the Miller-Tans method can account for a

background that varies.

*We now state:

"We argue that because this approach takes into account the fact the background atmosphere varies, it is more suitable than the Keeling method for inferring $\delta^{13}C_S$ from the observations made in the urban area with complex emission sources"

(5) page 7, Methods: I think a subsection on Nanjing and YRD (location, population, climate, plant types C3/C4) etc is missing.

*This information is added (Response to Review 1, main point 3).

(6) page 7, Methods: please consider moving the information from page 8, lines 153 – 159 to line 141, after the phrase ending in "2015".

*Moved

(7) page 7, line 146: I could not find this information on the standard gases in Table 1, or anywhere else; I think however it should be included.

*Added.

(8) page 8, line 168: please give also the relative humidity values, for comparison with the values given later

*Done.

(9) page 9, line 178: What was the humidity range in the real atmospheric measurements? How large was the correction? What is the potential error resulted from this correction?

*In response, we have added the following text:

"The ambient humidity varied from 0.16 to 3.64 V% during the measurement period. About 35% of the observations exceeded the threshold humidity of 2.03% V and required correction. The largest hourly correction was 0.74‰."

The potential error from this correction is not known. But the fact that the two dewpoint tests done at two different times yielded nearly identical correction factors indicated that this post-field correction method was reasonably robust.

(10) pages 7-9, Sect. 2.: Please discuss the precision and the accuracy of the measurements.

*This information is now added (Response to Review 1, main point 4).

(11) page 9, line 181 and through the paper: "midnight" and "midday" are misleading. Consider using "nighttime" and "daytime".

*Changed

(12) page 9, line 182: what is the "geometric regression"?

*We meant to say "geometric mean regression".

(13) page 9, line 189: The Miller-Tans slope was obtained by linear regression of ($\delta aCa-\delta bCb$) against (Ca-Cb)

*Corrected.

(14) page 9, line 191: please specify more precisely what data were used for MLO, and give a reference; also give coordinates

*Done.

(15) pages 10–11, Sect 2.3: I could not understand most of this section, please consider rewriting. Is "scope one" a name? Line 209 "already considered in scope one" – is this not the discussion about the scope one? Lines 209 – 210: "CO₂ emission were estimated with IPCC methodology..." – were these not estimated following scope one (line 204)? Line 214: vehicle number, average annual driving distance ...- are these not statistical data?

*Clarified and references added wherever appropriate.

(16) page 11, line 229: I think the cement source was separated from the other fossil fuel sources

*Yes. It is named "fossil-plus".

(17) page 11, line 229: please give values for the source signatures, or send already to the tables containing them.

*Added.

(18) page 12, line 257: "value observed at MLO for the same period" – this is misleading, the values used in this paper are not observed, but calculated based on previous years. (same for page 18, line 374)

*Edited.

(19) page 13, lines 274–276: Please state clearly (again) that the Miller-Tans was applied to daytime data and is considered to represent YRD, and Keeling was applied to night time data and represents Nanjing.

*Added.

(20) page 14, line 281: I suggest to state here that Fig 6 shows monthly ¹³C signatures calculated

again with the Keeling method for the night and the Miller- Tans method for the day, and only afterwards comment on the results.

*Edited.

(21) page 15, lines 304 and 309: "is "fuel-plus" the same "fossil-plus" used before?

*Corrected. (Fuel-plus was a typo.)

(22) page 15, line 320: I suggest to first state that Fig. 7 shows the Fp and Fs calculated from the mass balance, and the Fc and Ff obtained (how), and only afterwards discuss the results. Also, from here the fluxes are given in mg/m2s – how were these obtained from the inventories mentioned before? (this info should be included in the Methods section)

* These suggestions are adopted. The flux density was computed as the ratio of the total emission to the geographic area. We have added this sentence: "These fluxes are obtained by dividing the total emission by the surface area within the geographic boundary of Nanjing or YRD, having dimensions of mg CO₂ m⁻²s⁻¹."

(23) page 16, line 324: the "annual mean plant flux" is in this case daytime flux, please specify.

*Edited

(24) page 16, line 325: "the plant flux" is in this case the night-time flux, and it could only be positive.

*Correct.

(25) page 17, line 350: Fig. 2 does not show energy use seasonality

*Figure 8 does not show seasonality, consistent with a previous study for a nearby city showing that winter-versus-summer change is less than 1% (Response to Review 1, point 17).

(26) page 17, line 356: what about the vegetation cover outside cities?

*This information is now added (Response to Review 1, main point 3).

(27) page 18, line 374: can you exclude, as a reason for the high $\delta^{13}C$, any calibration issue?

*Except for the high humidity interference—which we have corrected, we could not find any instrument related issues that can cause the high values.

(28) page 19, lines 394 – 395: does the cement production have a strong seasonality? Why would it have a seasonal effect?

*Yes. There is some seasonality (Figures 8 and 9) primarily related to the Chinese New Year

holidays.

(29) page 21, lines 435 – 437: I think such explanations should be included in the method

*Moved to method.

(30) page 39, Fig 7: please add error bars if possible

*We prefer to discuss the error in the text (Response to Review 2, main point 3).

(31) page 40, Fig 8: please add error bars if possible

*We prefer to discuss the error in the text (Response to Review 2, main point 3).

(32) general comment: the paper does not take advantage of the high frequency Picarro data, why? If it's a technical reason, it should be stated in the method section.

*The high frequency data was actually used in determining the source signature.

Text / technical comments (1) page 3, line 58: typo in Yakir and Sternberg

*Corrected.

(2) page 4, line 66: I think "the fact the degree ... " should be " the fact that the degree", please check

*Corrected.

(3) page 4, line 68: typo, "to quantity" should be "to quantify"

*Corrected.

(4) page 5, line 104: I think "strictly do not hold" should be "do not strictly hold" – please check

*Corrected.

(5) page 9, line 175: typo H>2.03'

*Corrected

(6) page 11, line 222: "we partitioned net ..." should be "we partitioned the net" – please check

*Corrected.

(7) page 11, line 236: I think "the cement isotopic composition" should be "the isotopic composition of CO_2 from cement production"

*Corrected.

(8) page 17, line 355: "the overall he vegetation cover" – typo?

*Corrected as "the overall vegetation cover".

(9) pages 17 – 18, lines 365 – 366: "because much more" should be "because of much more" – please check

*Corrected.

(10) page 31, line 767 – 768: "Mortgage Loan Origination" should be "Mauna Loa Observatory"; same for page 34, lines 800 – 801

*Thank you for pointing out this embarrassing mistake.

(11) page 34, line 798: "monthly total" should be "monthly mean"?

*Corrected.

(12) page 34, line 798: "the solid line with cycle" – something seems to be missing

*Corrected.

1	Interpreting the ¹³ C/ ¹² C ratio of carbon dioxide in an urban airshed in the Yangtze
2	River Delta, China
3	
4	Jiaping_Xu ¹ , Xuhui Lee ^{1,2*} , Wei Xiao ¹ , Chang Cao ¹ , Shoudong Liu ¹ , Xuefa Wen ³ , Jingzheng
5	Xu ¹ , Zhen Zhang ¹ , Jiayu Zhao ¹
6	
7	¹ Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information
8	Science & Technology, Nanjing, China
9	
10	² School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut,
11	USA
12	
13	³ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
14	Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
15	
16	* Corresponding author
17	Dr. Xuhui Lee
18	Sara Shallenberger Brown Professor
19	School of Forestry and Environmental Studies, Yale University,
20	21 Sachem Street, New Haven, Connecticut 06510, USA
21	Phone: (203)432-6271; Fax: (203)432-5023
22	E-mail: xuhui.lee@yale.edu

24	Abstract: Observations of atmospheric CO ₂ molar fractionmole fraction and its ¹³ C isotope	
25	composition (δ^{13} C) in urban airsheds provide constraints on the roles of anthropogenic and	
26	natural sources in local and regional C cycles. In this study, we report observations of these	
27	quantities in Nanjing at hourly intervals from March 2013 to August 2015 using a laser-based	
28	optical instrument. Nanjing is the second largest city located in the highly industrialized	
29	Yangtze River Delta (YRD), Eastern China. The mean CO ₂ molar fractionmole fraction and	
30	$\underline{\delta}^{13}$ C were 439.7 ppm and -8.48‰ over this observational period. The peak monthly mean	
31	δ^{13} C (-7.44‰, July 2013) was <u>04.7403</u> ‰ higher than that observed at the Mauna Loa-	
32	ObservatoryMount Waliguan. The highly enriched ¹³ C signal was partly attributed to the	
33	influence of cement production in the region. By applying the Keeling plot and the Miller-	
34	Tans method to midnight nighttime and middaydaytime observations, respectively, tofor	
35	representing signals from the city of Nanjing and the YRD, respectively, compared with the	
36	results of applying the Keeling plot line methodwe showed that the ¹³ C signal of C sources	
37	in the Nanjing Municipality was 0.48‰ lower than that in the YRD. Flux partitioning	
38	calculations revealed that natural ecosystems in the YRD were a negligibly small sink of	
39	atmospheric CO ₂ , consistent with the Carbon Tracker inverse modeling result	Form
40		
41	Keywords: urban areas; CO ₂ flux; Industrial process; Carbon isotope; In-situ observation	

2

Formatted: Font: Not Bold

42

43 **1 Introduction**

44	Atmospheric CO ₂ sources and sinks in urban areas consist mainly of plant uptake and release
45	and fossil fuel combustion. These sourcescontributors have their-unique ¹³ C isotopic
46	signatures. City clusters are human-dominated systems with high carbon emission intensity,
47	contributing over 70% of the total anthropogenic CO ₂ to the atmosphere (Satterthwaite 2008).
48	Previous urban isotopic studies emphasize carbon emissions from fossil combustion
49	(Zondervan and Meijer 1996, Pataki et al. 2003, Zimnoch et al. 2004, Affek and Eiler 2006,
50	Newman et al. 2008). Relatively little attention is given to the isotopic signature of carbon
51	dioxide released by cement production, which is much heavier than that of fossil fuel origin
52	(Andres et al. 1994). Likewise, the CO ₂ emitted from burning of minerals in non-energy
53	consumption industrial processes, such as iron and steel production, has higher ¹³ C
54	composition than that of fossil fuel (Table 1, Widory 2006). In China, cement production and
55	industrial processes contribute 13% of the total anthropogenic CO ₂ emission (Mu et al. 2013).
56	Many of these industrial activities occur in or near urban areas. So far, little is known about
57	their roles in the atmospheric δ^{13} C budget.
58	One scientific motivation for quantifying the ${}^{13}C$ signature of atmospheric CO ₂ is that it
59	provides constraints that allow partitioning of the net surface flux into component fluxes
60	(Farquhar and Lloyd 1993, Yakir and ternberg Sternberg 2000, Pataki et al. 2003). The ¹³ C-
61	based partitioning method has been used primarily for vegetation ecosystems, such as forests
62	(Lloyd et al. 1996, Lloyd et al. 2001, Ometto, et al. 2006, Zobitz et al. 2008), grasses (Ometto
63	et al. 2002, Pataki et al. 2003), and crops (Leavitt et al. 1995, Griffis et al. 2005). The
64	approach has also been used in a limited number of urban studies (Pataki et al. 2003,

Formatted: Font: 12 pt

	65	Zimnoch et al. 2004, Newman et al. 2008, Jasek et al. 2014). Compared with vegetation
	66	ecosystems, urban ecosystems have more complex CO_2 source configuration. We must
	67	consider both natural sources (plants and soils) and anthropogenic sources (fossil combustion
	68	and non-energy industrial processes) and the fact that the degree of mixing of urban air with
•	69	the free troposphere and the air outside the urban boundary varies diurnally and seasonally.
	70	Anthropogenic emissions are hard to quantify because they depend on multiple factors
-	71	including city size, population density, fossil mix, and climate.
	72	One of the first measurements of the carbon isotope composition of CO_2 in an urban
	73	atmosphere was made by Friedman and Irsa (1967). Since then, a few more experiments have
	74	been conducted in urban environments. The data collected have been used to partition CO_2
	75	contributors (Koerner and Klopatek 2002, Clark-Thorne and Yapp 2003), to quantify diurnal
	76	variations in the CO ₂ molar fractionmole fraction and its δ^{13} C in urban air (Zimnoch et al.
	77	2004, Guha and Ghosh 2010) and across urban to rural gradients (Lichtfouse et al. 2003,
	78	Pataki et al. 2007), and variations among different land uses in urban areas (Clark-Thorne and
	79	Yapp 2003, Widory and Javoy 2003). The isotopic data revealer insights into energy
	80	consumption patterns (Widory and Javoy 2003, Bush et al. 2007), impacts of meteorology
	81	including temperature (Clark-Thorne and Yapp 2003, Zimnoch et al. 2004), atmospheric
	82	stability (Pataki et al. 2005) and wind (Clark-Thorne and Yapp 2003) on urban carbon
_	83	cycling, and the role of vegetation phenology (Ehleringer et al. 2002, Takahashi et al. 2002,
	84	Wang and Pataki 2012). The analytical technique emdeployed in these studies is mainly
	85	based on mass-spectrometry (MS). Because sample collection, preparation and analysis are

4

labor intensive, the majority of these studies are limited to short campaigns (less than 60days).

88	In recent years, the development of isotope ratio infrared spectroscopy (IRIS) and on-line
89	calibration technology provides a new solution for long-term in-situ observation of the CO_2
90	molar fraction mole fraction and its δ^{13} C at high frequencies (1 Hz to 1 hour; Pataki et al.
91	2006, Griffis. 2013, -Gorski et al. 2015). Compared with the MS method, IRIS can capture
92	diurnal or even shorter temporal variations with relatively high accuracy, enabling us to
93	understand how anthropogenic emissions change atmopheric CO ₂ at highly resolved various
94	temporal and spatial scales. Nevertheless, application of the IRIS technology in urban
95	monitoring is still limited in terms of cities covered and measurement duration:(less than
96	35 days <u>in</u> ; McManus et al. (2002), Pataki et al. 2006 <u>and</u> , Wada et al. (2011) and; 3 seasons
97	in ;-Moore and Jacobson (2015). Oand only one published study has presented data that spans
98	one full annual cycle (Pang et al. 2016).
98 99	one full annual cycle (Pang et al. 2016). Simultaneous measurement of atmospheric CO ₂ concentration and its isotopic
99	Simultaneous measurement of atmospheric CO ₂ concentration and its isotopic
99 100	Simultaneous measurement of atmospheric CO_2 concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_s$.
99 100 101	Simultaneous measurement of atmospheric CO_2 concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_8$. All published urban studies to date have deployed the Keeling plot method (Keeling 1958,
99 100 101 102	Simultaneous measurement of atmospheric CO_2 concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_s$. All published urban studies to date have deployed the Keeling plot method (Keeling 1958, Keeling 1961) for the determination of $\delta^{13}C_s$. In this approach, a linear relationship is
99 100 101 102 103	Simultaneous measurement of atmospheric CO_2 concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_s$. All published urban studies to date have deployed the Keeling plot method (Keeling 1958, Keeling 1961) for the determination of $\delta^{13}C_s$. In this approach, a linear relationship is established between $\delta^{13}C$ and the reciprocal of the CO_2 molar fractionmole fraction from the
99 100 101 102 103 104	Simultaneous measurement of atmospheric CO_2 concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_8$. All published urban studies to date have deployed the Keeling plot method (Keeling 1958, Keeling 1961) for the determination of $\delta^{13}C_8$. In this approach, a linear relationship is established between $\delta^{13}C$ and the reciprocal of the CO_2 molar fractionmole fraction from the observed time series, and the intercept of the linear regression is taken as the isotopic
99 100 101 102 103 104 105	Simultaneous measurement of atmospheric CO ₂ concentration and its isotopic composition is used to determine the overall isotopic signature of local surface sources $\delta^{13}C_s$. All published urban studies to date have deployed the Keeling plot method (Keeling 1958, Keeling 1961) for the determination of $\delta^{13}C_s$. In this approach, a linear relationship is established between $\delta^{13}C$ and the reciprocal of the CO ₂ molar fractionmole fraction from the observed time series, and the intercept of the linear regression is taken as the isotopic composition of the local CO ₂ emissions. The method assumes that the isotopic signature of

1		
108	carbon sources (Pataki et al. 2003). However, these assumptions <u>do not</u> strictly <u>do not</u> hold in	
109	an urban environment because the intensity of traffic emissions varies strongly through the	
110	diurnal cycle (McDonald et al. 2014), and therefore the composition of the surface effective	
111	source varies, and its ¹³ C signature cannot be assumed constant. In addition, because of	
112	strong atmospheric mixing in the daytime convective boundary layer, the background air in	
113	the upper troposphere can be easily entrained to the surface layer, mixing the CO ₂ that	
114	originates from regional sources with that emitted locally in the urban airshed.	
115	Miller and Tans (2003) propose that $\delta^{13}C_S$ be determined as the slope of the linear	
116	relationship	
117	$\delta_{a}C_{a}-\delta_{b}C_{b} = \delta^{13}C_{s}(C_{a}-C_{b}) $ ⁽¹⁾	
118	where C_a is CO_2 molar fractionmole fraction in urban air, C_b is CO_2 molar fractionmole	
119	fraction in a background site [taken in this study as that observed at the Mauna Loa-	
120	Observatory <u>Mount Waliguan (MLOWLG)</u> , δ_a is ¹³ C isotopic composition of C _a , and δ_b is ¹³ C	
121	isotopic composition of C_b . We argue that because this approach \underline{t} akes into account mixing-	
122	of CO2 generated locally with CO2 in the the fact the background atmosphere varies, , thereby	
123	isolating only the local source contribution. So this method it is more suitable than the	
124	Keeling method for inferring $\delta^{13}C_S$ from the observations made in <u>the urban area with</u>	
125	complex emission sources the daytime when such mixing occursThe method has been	
126	applied to local and regional carbon budget studies in nonurban settings (Miller et al. 2003).	
127	Here we We are not aware of studies that extend the method to an urban environment.	Formatted: Not Highlight
128	In this study, we report the results of long-term (30 months) continuous measurement of	Formatted: Indent: First line: 1.5 ch
129	atmospheric CO ₂ molar fractionmole fraction and its δ^{13} C at a suburban site in Nanjing using	
-		

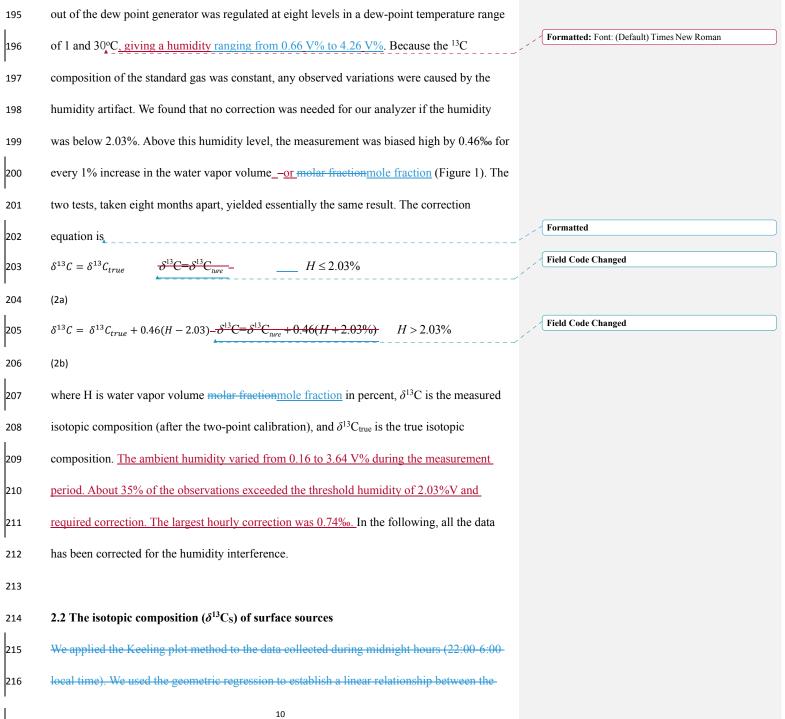
l

130	an IRIS instrument. Nanjing is the second largest city in the Yangtze River Delta (YRD),		
131	Eastern China, with a build-up area of 753 km ² and a population of 8.2 million.		
132	Geographically, the YRD includes the provinces of Jiangsu, Zhejiang and Anhui and the		
122	Shanghai municipality (20.04° 22.41°N 118.22° 122.05°E) with a nonulation of 1.0 hundred	1	Formatted: Font: (Default) Times New Roman, 12 pt
133	Shanghai municipality (29.04°-33.41°N, 118.33°-122.95°E) with a population of 1.9 hundred	(Formatted: Font: 12 pt
134	million. – <u>The YRD is influenced by subtropical moist monsoon climate. The mean annual</u>	111	Formatted: Font: (Default) Times New Roman, 12 pt
154	inimition The, TKD is initiacticed by subtropical moist monston climate. The mean annual	11/1	Formatted: Font: 12 pt
135	temperature is about 15°C and the annual precipitation is between 1000 mm and 1800 mm.		Formatted: Font: (Default) Times New Roman, 12 pt
133		11.11	Formatted: Font: Times New Roman
136	The main vegetation types, all of which are C3 species. The YRD is the most industrialized		Formatted: Font: Times New Roman
			Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
137	region in China and had a higher urban land fraction of 10.8% as of 2014 than the global		Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
138	mean (2.4%, Akbari et al. 2009). In 2014, more than 220 large cement production factories	1 mil	Formatted: Font: (Default) Times New Roman, 12 pt
139	(daily output exceeding 1000 tons) were located in the YRD (China Cement, 2016),		Formatted: Font: (Default) Times New Roman, Superscript
135	(durfy output exceeding 1000 tons) were rocated in the Trub (onnu content, 2010),	1111	Formatted: Font: (Default) Times New Roman
140	contributing about 20% of the national cement output.	111	Formatted: Font: (Default) Times New Roman, 12 pt
		11	Formatted: Font: (Default) Times New Roman, 12 pt
141	÷	н П	Formatted: Font: (Default) Times New Roman, 12 pt
		N. I	Formatted: Font: (Default) Times New Roman, 12 pt
142	<u>TheOur</u> objectives <u>of this study</u> are (1) to characterize the atmospheric δ^{13} C diurnal,		Formatted: Font: (Default) Times New Roman, 12 pt
143	seasonal and annual variations in this urban environment, in a region where such		Formatted: Don't adjust right indent when grid is defined, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
144	measurement is nonexistent, (2) to investigate the influence of cement production on	Ň	Formatted: Indent: First line: 1.5 ch
145	atmospheric δ^{13} C, (3) to evaluate the performance of the Keeling plot and the Miller-Tans		
146	method for determining $\delta^{13}C_s$, and (4) to explore the utility of the isotopic constraints for		
147	inferring the net surface flux and the plant CO ₂ flux in Nanjing and in the YRD.		
148			
149	2 Methods		

150 2.1 Atmospheric observation

7

151	An IRIS analyzer (model G1101-i, Picarro Inc., Sunnyvale, CA) was used to measure	
152	atmospheric CO ₂ molar fractionmole fraction and its ¹³ C isotope composition (δ^{13} C)	
153	continuously from February 2013 to August 2015. The analyzer was housed on the 9 th floor	
154	of our laboratory building on the campus of Nanjing University of Information, Science and	
155	Technology (NUIST, 32°12'N, 118°43'E), in the northern suburb of Nanjing, at a linear	
156	distance of 20 km to the city center. The instrument inlet was at a height of 34 m above the	
157	ground. There was no anthropogenic CO ₂ source in the 3 km radius except for a commuting	
158	road located about 300 m east of the observation site. The nearest industrial complex, the	
159	Nanjing Iron & Steel Group Co. Ltd. and the Nanjing Chemical Industry Group, was located	
160	\sim 5 km to the south of the site. The measurement was made at 0.3 Hz and at an air flow rate of	
161	30 mL min ⁻¹ at standard temperature and pressure. One three-way solenoid valve was	
162	combined with two two-way solenoid valves, so the analyzer could be switched for	
163	atmospheric sampling and for sampling of two standard gases. Calibration was carried out	
164	every 3 h by sampling each standard gas for 5 minutes following the procedure of Bowling et	
165	al. (2003) and Wen et al. (2013). (To avoid transient effects, only the data collected in the last	
166	<u>2 minutes was used.</u>) Table $\pm \underline{12}$ lists the concentrations and their isotopic compositions of	
167	the standard gases used in this study. The CO ₂ molar fractionmole fraction of the standard	
168	gases was traceable to the WMO 2007 scale reported by the Central Calibration Laboratory	
169	of the World Meteorological Organization and their δ^{13} C was based on the NBS-19 and the	
170	NBS20 standards of <u>NISTNOAA-EASL</u> . The ambient measurement was averaged to hourly	Formatted: Font: (Default) Times New Roman, 12 pt
171	intervals. The isotopic composition was expressed in the delta notation (δ^{13} C) in reference to	
172	the VPDB scale	Formatted: Font color: Red
•		


|

173	The analyzer was housed on the 9 th floor of our laboratory building on the campus of
174	Nanjing University of Information, Science and Technology (NUIST, 32°12'N, 118°43'E), in
175	the northern suburb of Nanjing, at a linear distance of 20 km to the city center. The-
176	instrument inlet was at a height of 34 m above the ground. There was no anthropogenic CO2-
177	source in the 3 km radius except for a commuting road located about 300 m east of the-
178	observation site. The nearest industrial complex, the Nanjing Iron & Steel Group Co. Lt and
179	the Nanjing Chemical Industry Group, was located at ~5 km to the south of the site.
180	The typical 5-min measurement precision is $\pm 0.3\%$ for $\delta^{13}C$ and 0.05 ppm for $\frac{12}{CO_2}$
181	mole fraction according to the instrument manufacturer. Our own Allan variance analysis
182	revealed a precision of 0.05% for δ^{13} C and 0.07 ppm for CO ₂ mole fraction at the hourly
183	averaging interval. W, we did not adopt the strict filtering technique used foras background
184	sites used (Thoning et al. 1989), because of high natural variations in urban airsheds. We
185	removed 40 3-minute data points during the transient periods after calibration gas changes.
186	Additionally, data were removed if hourly CO ₂ mole fraction was lower than 390 ppm or
187	δ^{13} C were out of the range between -15‰ and -5.5‰.
188	The δ^{13} C measured by the analyzer in high humidity conditions suffers a high bias error
189	due to spectral broadening and direct spectral interference (Rella 2011). To correct for the
190	humidity interference, we carried out two tests using a dew-point generator (model 610, LI-
191	COR, Inc., Lincoln, NE). A CO ₂ standard gas (secondary standard gas, 439 ppm in test one
192	and 488 ppm in test two, balanced by dry air) was fed into the dew-point generator. The
193	outlet of the dew-point generator was connected with a 3-way union with one end linked to
194	the inlet of the analyzer and the other open to the room. The humidity level of the air coming

9

Formatted: Indent: First line: 2 ch Formatted: Subscript

Formatted: Not Highlight

2	17	hourly δ^{13} C and the reciprocal of the hourly CO ₂ molar fraction over monthly intervals. The	
2	18	intercept of the regression gives the effective isotopic composition of net surface CO2-	
2	219	emissions. The buildup of CO2 at night is primarily the result of sources in the city (Shen et-	
2	20	al. 2014), so we considered the $\delta^{13}C_s$ determined from the nighttime observations to represent	
2	21	the signal of the sources located in the city	
2	22	We applied the Miller-Tans method to the data collected in middaydaytime hours (10:00 to	Formatted: Indent: First line: 0"
2	23	16:00 local time; Equation 1) to represent YRD and to the data collected during nighttime	
2	24	hours (22:00-6:00 local time) to represent Nanjing. The slope was obtained by linear	
2	25	regression of (C_a-C_b) –against $(\delta_a C_a-\delta_b C_b)$, again over monthly intervals. The monthly mean	
2	26	CO ₂ molar fractionmole fraction and the isotopic composition of the background air were	
2	27	those observed at MLOWLGMount Waliguan (WLG, 36°17'N, 100°54'E, 3816 m above the	
2	28	mean sea level; Zhou et al., 2005) located at the northeastern edge of the Tibetan Plateau, the	
2	29	closest upwind background station for Nanjing. Because the MLOWLG data were not	
2	30	available for 2015 at the time of this analysis, we fitted the WLG data of both CO ₂ and δ^{13} C	
2	.31	with a four-harmonic guadratic function (Thoning et al. 1989) using the dataset from 2000 to _	Formatted: Not Highlight
2	.32	2014, and then used the function to estimate the monthly $\delta^{13}C_b$ and C_b values for 2015. we	Formatted: Not Highlight
2	.33	first established a four-harmonic quadratic function (Thoning et al. 1989) using the dataset	
2	234	from 2000 to 2013, and then used the function to estimate the monthly $\delta^{13}C_b$ and C_b values	
2	35	for 2015.	Formatted: Not Highlight
2	36	The selection of a background site is a critical issue when applying the Miller-Tans	Formatted: Not Highlight
2	.37	method (Ballantyne et al., 2011 <u>& 2010</u> , Turnbull et al., 2015). Ideally, the background site	Formatted: Indent: First line: 2 ch Formatted: Not Highlight
2	38	should not be affected by local and regional emission and should lies in the upwind direction	Formatted: Not Highlight
1			

239	of the observation site. Based on these criteria, we chose WLG as the background site for our		
240	analysis.		
241	*	×	Formatted: Font color: Custom Color(RGB(34,34,34)), Pattern: Clear (White), Not Highlight
242	We also applied the Keeling plot method to calculate δ^{13} C in YRD and Nanjing by using		Formatted: Indent: First line: 2 ch
243	data in daytime and nighttime. We used the geometric regression to establish a linear		
244	relationship between the hourly δ^{13} C and the reciprocal of the hourly CO ₂ mole fraction over		
245	monthly intervals. The intercept of the regression gives the effective isotopic composition of		
246	net surface CO ₂ emissions.		
247	We interpreted the daytime results to represent the influence of surface sources in the	1	Formatted: Not Highlight Formatted: Indent: First line: 2 ch
248	YRD region and interpreted the nighttime results to represent the influence of surface sources		
249	in the Nanjing. BTecause the vigorous turbulent exchange in the daytime boundary layer	1	Formatted: Not Highlight
250	diminishes the role of local sources in the measured concentration and isotopic ratio,	1	Formatted: Not Highlight
251	other words, the daytime measurement has a much larger source footprint than the size of the		
252	urban land itself or the footprint of the nighttime measurement. In contrast, And the buildup of		
253	CO ₂ at night is primarily the result of sources in the city (Shen et al. 2014), so we considered		
254	the $\delta^{13}C_8$ determined from the nighttime observations to represent the signal of the sources		
255	located in the city, Admittedly, this interpretation of daytime versus nighttime source areas is	1	Formatted: Not Highlight
256	a simplification because the actual source area also depends on thermal stratification and		
257	boundary layer wind. Nevertheless, it is This interpretation is also supported by a trajectory	1	Formatted: Not Highlight
258	analysis and by an analysis of the atmospheric methane to CO ₂ emissions ratio (Shen et al.		
259	2014)	1	Formatted: Not Highlight

l

260	The vigorous turbulent exchange in the midday boundary layer diminishes the role of-	4-	Formatted: Indent:
261	local sources in the measured concentration and isotopic ratio, or in other words, the midday-		
262	measurement has a much larger source footprint than the size of the urban land itself or the		
263	footprint of the midnight measurement. Hence we interpreted the midday results to represent-		
264	the influence of surface sources in the YRD region. This interpretation is supported by a		
265	trajectory analysis and by an analysis of the atmospheric methane to CO2 emissions ratio-		
266	(Shen et al. 2014).		
267		4-	Formatted: Indent:
268	2.3 Inventory of anthropogenic sources		
269	We calculated the anthropogenic CO ₂ fluxes from energy consumption and industrial process		
270	following the SCOPE 1scope one procedure, which only includes direct emissions from		
271	sources within the geographic boundary of investigation, issued by the International Council		
272	for Local Environmental Initiatives (ICLEI, 2008). The procedure considers only emissions		
273	from sources that lie within the geographic boundary of investigation. The energy		
274	consumption source consistsed of direct emissions from the three main energy consumption		
275	sectors (industry, transport, and household). We ignored the commerce sector here because		
276	the main energy consumption in this sector in Nanjing and in the YRD was electric power		
277	generated by coal and coal consumption which was already considered in <u>scope-SCOPE</u>		
278	<u>lone</u> . The amounts of CO_2 emission were estimated with the IPCC methodology adopting the	;	
279	emission factors for each fossil fuel type recommended by IPCC. The calculations were done		
280	separately for both the YRD region and for the Nanjing municipality. Because no statistical		
281	data were available for energy consumption in the transport sector in Nanjing, the CO ₂		

First line: 2 ch

First line: 2 ch

282	emission from the transport sector was deduced according to vehicle number, average annual	
283	driving distance and coefficients of fuel economy (Bi et al. 2011). We obtained the data on	
284	energy consumption from official sources (CESY 2013, CSY 2013, NSY, 2013).	
285	The non-energy industrial processes included cement, raw iron, crude steel, and	
286	ammonia synthesis processes. In the YRD, the data were available at monthly intervals. For	
287	the city of Nanjing, only annual statistics were available.	
288		
289	2.4 Partitioning the net surface flux	
290	We partitioned $\frac{\text{net-the}}{\text{surface CO}_2}$ flux (F _S) into three component fluxes according to the	
291	following mass conservation equations	
292	$F_{\rm S} = F_{\rm F} + F_{\rm C} + F_{\rm P} \tag{43}$	
293	$\delta^{13}C_{S}F_{S} = \delta^{13}C_{F}F_{F} + \delta^{13}C_{C}F_{C} + \delta^{13}C_{P}F_{P} $ (54)	
294	where F_F is the flux from fossil fuel combustion and industrial emission except cement	
295	production (termed "fossil plus"), F_C is the flux due to cement production, F_P is the	
296	<u>biological</u> plant flux, and $-\delta^{13}C_F$, $\delta^{13}C_C$, and $\delta^{13}C_p$ are the ¹³ C isotope composition of F _F , F _C	
297	and F _P , respectively. These fluxes are obtained by dividing the total emission by the surface	
298	area And F _F and F _C are the unit CO ₂ emission within the geographic boundary of Nanjing or	Formatted: Not Superscript/ Subscript
299	<u>YRD</u> , having dimensions of mg CO_2^2 m ⁻² s ⁻¹ . We separated the cement source from other non-	Formatted: Superscript
300	energy consumption industrial processes because its isotopic signature is much higher. In	
301	these equations, the monthly net surface flux (F_S) and the <u>biological plant</u> flux (F_P) are	
302	unknowns to be solved, and all other terms are either provided by the atmospheric	
303	measurement or by the inventory calculation. The partitioning analysis was done for both	

l

Nanjing and the YRD using the <u>midnight nighttime</u> and <u>middaydaytime</u> observations,
 respectively.

306	The $\delta^{13}C_F$ was weighted average of the $\delta^{13}C$ signal of individual fuel types and industrial
307	processes (Widory 2006; Table 2^{-1}). The <u>cement</u> -isotopic composition <u>of CO₂ from cement</u> .
308	production is provided by Tans (1981) and Anders (1994). We adapt a value of (-28.2‰) for
309	$\delta^{13}C_P$ for the YRD and Nanjing, on account of a linear relationship between $\delta^{13}C_P$ and tree
310	age (Fessenden and Ehleringer 2002), a typical tree age in this region (40 years) and an U-
311	shaped relationship between $\delta^{13}C_P$ and annual precipitation (Pataki et al. 2007). Our $\delta^{13}C_P$ is
312	more negative than that reported for a boreal forest (-26.2‰; Pataki et al. 2007) but is in
313	closer agreement with the value reported for a Ginkgo tree in Nanjing (-29.3%; Sun et al.
314	2003). A summary of the isotopic compositions of the three source categories is given in
315	Table <u>23</u> .
316	To partition the nighttime flux for Nanjing, we assumed that the nighttime F_F was 20%
317	of the daily value. The parameter 20% was determined by the diurnal variation of the CO_2
318	flux observed with an eddy covariance system in Nanjing (Bai 2011) and in several other
319	cities (Coutts et al. 2007, Song and Wang. 2011, Liu et al. 2012). At night, most of the
320	factories in the city were closed and the traffic flow was reduced to about 80% of the daytime
321	volume (Yang et al. 2011).

I

3. Results

3.1. Temporal variations in the CO₂ molar fraction mole fraction and δ^{13} C

325	The monthly CO ₂ molar fractionmole fraction during the summer was slightly lower than in
326	the other seasons (Figure 2). The mean molar fractionmole fraction was 446.7 ppm and 431.1
327	ppm for January and July, respectively, giving a seasonal amplitude of 15.6 ppm. The mean
328	CO ₂ molar fractionmole fraction was 439.7 ppm during the whole experimental period
329	(March 2013 to August 2015), which is 40. <u>67</u> ppm higher than value observed <u>and estimated</u>
330	at <u>MLOWLG</u> for the same period. In 2014, the calendar year with complete data coverage,
331	the mean CO ₂ molar fractionmole fraction was 441.2 ppm, which is 42.5 ppm higher than the
332	<u>MLOWLG</u> value for the same year.
333	The ¹³ C composition of atmospheric CO ₂ displayed a <u>largerstronger</u> seasonal cycle than
334	the molar fractionmole fraction (Figure 2). The monthly mean value was -9.07‰ and -7.63‰
335	for January and July, respectively, with a seasonal amplitude of 1.44‰. The mean value for
336	the whole experimental period was -8.48‰, which is the <u>slightly more negativesame as</u>
337	than the <u>MLOWLG</u> value (-8.4 <u>8</u> 4‰). The summertime (June-August) δ^{13} C was 0. <u>39</u> 55‰
338	more enriched than the \underline{MLOWLG} background value.
339	The strongest diurnal variation in the CO ₂ molar fractionmole fraction was observed in
340	the autumn season and the weakest in the winter season, with a diurnal amplitude of 27.9
341	ppm and 13.4 ppm, respectively (Figure 3). In the summer season, the peak value was
342	observed at 07:00 and the lowest value at 19:00. Contrary to the CO ₂ molar fractionmole
343	fraction, δ^{13} C showed the lowest value in the early morning and the highest value in the
344	afternoon in all the four seasons. The diurnal amplitude was 1.36‰ in the summer and
345	0.66‰ in the winter.

l

347	3.2 Isotopic composition of the surface sources ($\delta^{13}C_s$)	
348	Again, Both Miller-Tans and Keeling plot method were applied to daytime data and nighttime	/ (
349	data. Daytime data is considered to represent YRD and nighttime data is considered to) \
350	represent Nanjing_Applying the Miller_Tans method and the Keeling plotthe Miller-Tansis	
351	approach to the whole experimental period yielded an apparent source signature of -	
352	$245.7551\pm0.26\%$ (mean \pm 95% confidence bound) for sources in the YRD (Figure 4) and -	
353	245.2499±0.21‰ for sources in Nanjing (Figure 5). Strictly, this neither method is not.	
354	accurate when applied valid over such an extensive period because the source signature	
355	varies seasonally, violating the condition of constant source signal under which the methods	
356	can be used. So these data plots are meant more as a data consistency checkto show the range	
357	of variations of the hourly observations than for determining the true annual mean source	
358	signatures.	
359	Figure 6 shows the monthly, ¹³ C signatures calculated again with the Miller-Tans method	/
360	for the daytime and nighttime. The reader is reminded here that the results obtained for the	
361	daytime and the nighttime period represent sources in the YRD and in Nanjing, respectively.	
362	During the two and a half years of observation, the monthly $\delta^{13}C_S$ was lower in the winter and	
363	higher in the summer (Figure 6). The sources in the YRD had higher ¹³ C compositions than	Ň
364	those in in Nanjing. The January mean value (mean of January 2014 and January 2015) was -	
365	24.13‰ and $-24.784.66\%$, and the mean value of the three August months was -20.6667%	
366	and -223.3576% for the YRD and Nanjing, respectively. The mean value of the whole	
367	observational period was -23.2526‰ and -2423.2472‰ for the YRD and Nanjing,	
368	respectively. These mean values based on the monthly analysis were 12.4926% and	

1	Formatted: Font: (Default) Times New Roman, 12 pt
(Formatted: Font: (Default) Times New Roman, 12 pt
1	Formatted: Font: (Default) Times New Roman, 12 pt
	Formatted: Font: (Default) Times New Roman, 12 pt
1-1	Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt	
Formatted: Font: (Default) Times New Roman, 12 pt	
Formatted: Font: (Default) Times New Roman, 12 pt	
Formatted: Font: (Default) Times New Roman, 12 pt, Superscript	
Formatted: Font: (Default) Times New Roman, 12 pt	
Formatted: Font: (Default) Times New Roman, 12 pt	
Formatted: Font: 12 pt	
Formatted: Font: 12 pt	

Formatted: Not Highlight

369	0+.5275% greater than the apparent source signatures derived from the application of the
370	Miller-Tans method to and the Keeling method to the whole dataset (Figures 4 and 5),
371	respectively. The monthly $\delta^{13}C_S$ for the YRD (Figure 6) was highly correlated with the
372	monthly atmospheric δ^{13} C (Figure 2; linear correlation = 0.63, n = 30, p <0.001). The
373	correlation between the monthly $\delta^{13}C_S$ for Nanjing and the monthly atmospheric $\delta^{13}C$ was not
374	as strong (linear correlation = 0.2652 , n = 30, p = 40.2201).
375	-There appears to be some inter-annual variability in δ^{13} C _S . In the YRD, the 12-month-
376	mean $\delta^{13}C_{S}$ was -23.321‰ from March 2013 to February 2014 and -23.276‰ from March
377	2014 to February 2015. The atmospheric δ^{13} C also showed an increasing trend, from -8.36‰-
378	in the first period to -8.15‰ in the second period.
379	
379 380	3.3 Inventory data for anthropogenic sources
	3.3 Inventory data for anthropogenic sources The emission strength Inventory data of Inventory data for anthropogenic sources
380	
380 381	The emission strength Inventory data of for anthropogenic sources and their isotopic signature
380 381 382	The emission strength Inventory data of for anthropogenic sources and their isotopic signature were calculated with based on the inventory method described in section 2.3_{\pm} . In the YRD,
380 381 382 383	The emission strength <u>Inventory data of</u> for anthropogenic sources and their isotopic signature were calculated with <u>based on the inventory method described in section 2.3.</u> In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ , contributing 70% of the
380 381 382 383 384	The emission strength <u>Inventory data offor anthropogenic sources and their isotopic signature</u> were calculated with based on the inventory method described in section 2.3, In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ , contributing 70% of the overall "fossil-plus" –emission (Table 24). Here the "fossil-plus" fossil-plus emission
380 381 382 383 384 385	The emission strength <u>Inventory data offor anthropogenic sources and their isotopic signature</u> were calculated with based on the inventory method described in section 2.3,- In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ , contributing 70% of the overall "fossil-plus" – emission (Table 2+). Here the "fossil-plus" fossil plus emission includes contributions from eombustion of all forms of fossil fuel and from non-cement
380 381 382 383 384 385 386	The emission strength <u>Inventory data offor anthropogenic sources and their isotopic signature</u> were calculated with <u>based on the inventory method described in section 2.3.</u> In the YRD, coal combustion was by far the largest source of anthropogenic CO ₂ , contributing 70% of the overall "fossil-plus" –emission (Table 2+). Here the "fossil-plus" fossil-plus emission includes contributions from combustion of all forms of fossil fuel and from non-cement industrial processes. The second and third largest source were ammonia synthesis and pig

1	Formatted: Font: Not Bold
-(Formatted: Font: Not Bold
-{	Formatted: Font: Not Bold
-(Formatted: Font: Not Bold
	Formatted: Font: Not Bold
Ì	Formatted: Font: Not Bold
1	Formatted: Font: Not Bold
-{	Formatted: Font: Not Bold

l

390	In the Nanjing municipality, the fractional contribution of coal to the "fossil-plus" fossil-
391	plus total was 52%, lower than that for the YRD, and the other three major sources were
392	ammonia synthesis (16%), pig iron (13%), and gasoline (11%). The fractional contribution of
393	fuel-plus sources to the total anthropogenic emission was 96.4% and the fractional
394	contribution of cement production was 3.6% (Table $2+$). The isotopic signature of the <u>"fossil-</u>
395	plus"fossil-plus sources was 0.35% lower for Nanjing than for the YRD.
396	The overall effective isotopic signature of the anthropogenic sources weighted by the
397	source contributions was also lower for Nanjing than for the YRD (Table 32). The difference
398	was 1.76‰ and was a result of lower fractional contributions in Nanjing of coal combustion
399	and cement production, which have relatively high ¹³ C contents, and a higher fractional
400	contribution of natural gas, which is the fuel type with the lowest ¹³ C content.
401	
402	3.4. CO ₂ fluxes in YRD and Nanjing
403	Figure 7 shows the biological flux $F_{\rm P}$ and surface flux $F_{\rm S}$ calculated from the mass balance.
404	and the cement flux F_{C} and "fossil-plus" F_{F} . The plant flux F_{P} flux obtained with the isotopic
405	partitioning method for the YRD agreed with the seasonal phenology expected for plants in
406	this region (Figure 7). It was slightly negative in the summer and positive in the winter,
407	indicating net-uptake and net-release, respectively. The annual mean daytime biological plant
408	flux in daytime (YRD) for the calendar year 2014 was -0.01 mg m ⁻² s ⁻¹ i n the YRD in the
409	<u>calendar year 2014.</u> The net surface flux $F_S = \frac{1}{1000} \text{ was } 0.16 \text{ mg m}^{-2} \text{s}^{-1}$.
410	In Nanjing, the biologicalplant flux was positive throughout the year. This is because the
411	partitioning was done for the night hours when the natural ecosystems were a source of CO ₂

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Subscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Subscript
Formatted: Font: (Default) Times New Roman, 12 pt

412	due to autotrophic and heterotrophic respiration. The flux was greater in the summer than in	
413	the winter (Figure 8). The annual mean <u>nighttime biological plant</u> flux in nighttime (Nanjing)	
414	for the calendar year 2014 was $0.06-03$ mg m ⁻² s ⁻¹ . The net nighttime surface flux	
415	nighttime (Nanjing) was 0.18-16 mg m ⁻² s ⁻¹ .	
416	4-	Formatted: Indent: First line: 0"
417	4 Discussion	
418	4.1 CO ₂ molar fractionmole fraction and δ^{13} C seasonality	
419	The atmospheric CO ₂ molar fractionmole fraction observed in Nanjing showed very small	
420	seasonal variation (summer versus winter difference of 7.9 ppm, July versus January	
421	difference of 15.6 ppm), in comparison with the data published for other cities. The $\rm CO_2$	
422	molar fractionmole fraction difference between the cold and the warm season is about 66	
423	ppm in Phoenix, USA (Idso et al. 2002). In Salt Lake City, USA, the CO ₂ molar fractionmole	
424	fraction in the summer is about 31 ppm lower than in the winter (Pataki et al., 2003). In	
425	Chicago, USA, the CO ₂ molar fractionmole fraction varied from 397 ppm in August 2011 to	
426	427 ppm in January 2012, showing a seasonal amplitude of 30 ppm (Moore and Jacobson	
427	2015). In Beijing, China, the seasonal variation of atmospheric CO ₂ molar fractionmole	
428	fraction is about 64.5 ppm (August versus January; Pang et al. 2016). However, a similar	
429	small seasonal amplitude of 5 ppm CO ₂ was observed in Pasadena, USA during 2006 to 2013,	Formatted: Font: 12 pt Formatted: Font: 12 pt
430	which was consistence with the seasonal variation of background and emission from fossil	
431	fuel combustion (Miller et al. 2016).	
432	Several factors contributed to the weak seasonality in Nanjing. The climate in the YRD	
433	is relatively mild. The governmental energy policy prohibits winter heating in public	Formatted: Not Highlight
1	20	

i.	
434	buildings. Most residential buildings also lack space heating in the winter. This is in contrast
435	to energy use patterns in northern cities in China and elsewhere. In London, UK, natural gas
436	usage in the winter heating season is 29% greater than in the non-heating autumn season
437	(Helfter et al. 2011). In Salt Lake City, USA, energy consumption in the winter was 41%
438	greater than in the summer (Bush et al, 2007). A similar seasonal trend of energy
439	consumption has also been reported for Beijing (Pang et al, 2016). In Chicago, natural gas
440	usage varied 70% to 80% in winter and about 50% in summer (Moore and Jacobson 2015).
441	The weak energy use seasonality in the YRD (Figure 2)-partially explains why the observed
442	CO ₂ molar fractionmole fraction had a smaller seasonal amplitude (Figure 2) than reported
443	for other northern cities.
444	The weak seasonality of the observed molar fractionmole fraction was also related to the
445	low vegetation cover in the YRD and in Nanjing. The forest cover ratio is about 35% in
446	Nanjing and in the YRD, and the overall-he vegetation cover (forest plus other vegetation
447	types) ratio in the major cities in the YRD is lower than 45% (CESY, 2013; CSY, 2013). For
448	comparison, the vegetation cover ratio is 56% in Salt Lake City (Pataki et al. 2009) and 44%
449	in Chicago (Rose et al. 2003). Dense vegetation is known to deplete atmospheric CO ₂ in the
450	summer season via photosynthetic uptake, amplifying the CO2 seasonal amplitude.
451	Our δ^{13} C seasonal amplitude (January versus July difference 1.44‰) was $\frac{30-4}{2}$ times the
452	amplitude observed or estimated at MLOWLG (Figure 2) but agreed with those reported by
453	most urban studies. For comparison, the seasonal amplitude of $\delta^{13}C_a$ in Bangalore, India, was
454	0.89 to 1.32‰ (Guha and Ghosh 2015). Similar amplitudes have also been reported for
455	Chicago (January versus August difference 1.25‰; Moore and Jacobson, 2015) and Beijing

(2.13%; Pang et al. 2016). In Salt Lake City, the seasonal amplitude of δ^{13} C was 456 457 approximately 1.6% because of much more natural gas consumption for heating in the winter than in the summer (Pataki et al. 2006). 458 459 4.2 Influences of cement production on atmospheric δ^{13} C 460 The high summer δ^{13} C was one of the most unique characteristics at our site. The 461 462 middaydaytime δ^{13} C reached -6.90% in July 2013 and -7.21% in August 2014, which were 1.2857‰ and 04.9511‰ higher than the MLOWLG values. The highest monthly mean δ^{13} C 463 occurred in July: -7.44‰ in July 2013, -7.99‰ in July 2014 and -7.46‰ in July 2015. These 464 465 values were -0+.7403%, -0.1644% and -0.7793% higher than the MLOWLG value reported 466 for the same months. The high July values observed at our site cannot be fully explained by CO₂ removal by 467 plant photosynthesis. Photosynthesis and respiration are the two processes that dominate the 468 ¹³C seasonality in plant-dominated landscapes, leading to higher δ^{13} C values in the summer 469 and lower values in the winter. For example, iIn Park Falls, Wisconsin, USA, a site in a 470 heavily-forested landscape, δ^{13} C was -7.75‰ in August 2011 and -8.77‰ in February 2012 471 (Moore and Jacobson, 2015). For comparison, $\delta^{13}C$ at MLO was -8.24‰ and -8.38‰ at the 472 Mauna Loa Observatoryin these two months; And S13 C at WLG and was -8.02‰ and -8.66‰ 473

at WLG in these two months, respectively. In other words, the photosynthetic effect raised the August δ^{13} C by 0.5‰ above the background value, a smaller enrichment thant observed at our site. Because of the low vegetation fraction, the summer photosynthetic CO₂ uptake in the YRD and in Nanjing should be lower than at Park Falls. According to the–_Carbon Tracker Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: Not Italic

inversion analysis (Peters et al. 2007), the net ecosystem production at the grid point where
Parks Fall is located is -0.20122-_mg m⁻²s⁻¹ in July<u>2014</u> but is only -0.13-059 mg m⁻²s⁻¹-_at
the grid point corresponding to the YRD region<u>in 2014</u>. We would expect from the
photosynthetic effect alone that the summertime ¹³C enrichment at our site to be smaller, not
greater than that observed at Parks Fall.

Furthermore, in a human-dominated landscape, the plant photosynthetic enhancement of ¹³C is offset by the CO₂ from fossil fuel combustion which has low ¹³C contents. In Chicago, the monthly δ^{13} C peaked in August at -8.29‰ during the calendar year 2011, which is 0.05‰ lower than the <u>MLOWLG</u> for the same month. Similarly, in Beijing, the monthly δ^{13} C peaked at -9.49‰ in August 2014, which is 1.2317‰ lower than the <u>MLOWLG</u> value for the same month.

489 We suggest that cement production was the contributing factor factor responsible for the 490 high δ^{13} C values in the summer. The evidence supporting this interpretation is provided by data in Table 2-3 and Figure 7. The δ^{13} C signal of anthropogenic CO₂ in the YRD would be -491 492 26.42‰ without cement production and increased to -23.71‰ after inclusion of the cement 493 source (Table 32). This δ^{13} C value is much higher than those reported for other urban lands, 494 such as -30.7‰ for Los Angeles, USA (Newman et al. 2008) and about -31‰ for Salt Lake 495 City, USA (Bush et al. 2007). The overall surface source signal derived from atmospheric 496 measurements (Figure 6, -23.265‰ and -234.2472‰ for the YRD and Nanjing, respectively) was also more enriched than those obtained from atmospheric measurements in other cities, 497 498 such as -28.1±0.8‰ for Chicago in August and September (Moore and Jacobson, 2015), -499 32.4‰ to -27.4‰ for Salt Lake City in the growing season (Pataki et al. 2003), -27.0‰ for

Formatted: Font: (Default) Times New Roman, 12 pt

Beijing in the winter heating season (Pang et al. 2016), and -29.3‰ for Los Angeles, USA
(Newman et al. 2008).

The influence of cement production on atmospheric δ^{13} C has also been suggested for at least two other urban sites. In Bangalore, India, δ^{13} C is 0.05‰ higher than that observed at an island station in the Indian Ocean, and cement production in southern India (Guha and Ghosh 2015) is offered as a reason to explain the enrichment of urban δ^{13} C (Guha and Ghosh 2015). The other urban site is Beijing, China, where the δ^{13} C measurement may have been influenced by cement plants-factories outside the city (Ren et al. 2015, Pang et al. 2016).

1	
509	4.3 Net surface and <u>biologicalplant</u> fluxes in the YRD
510	As a human-dominated landscape, the YRD was a net source of CO_2 on the monthly scale
511	even in the growing season (Fs, Figure 7). The seasonal trends of the net surface flux $F_{\rm S}$ and
512	the <u>biological</u> flux F_P were highly <u>correlated</u> consistent-with each other because the
513	anthropogenic source strengths were almost constant. The mean $F_{\rm S}$ between March 2013 and
514	February 2015 was 0.17 mg m ⁻² s ⁻¹ , which consisted of 0.16 mg m ⁻² s ⁻¹ from fossil combustion
515	and industrial processes, 0.02 mg m ⁻² s ⁻¹ from cement production and -0.01 mg m ⁻² s ⁻¹ from
516	biological activities. The total anthropogenic CO ₂ flux was 0.18 mg m ⁻² s ⁻¹ in the YRD, a 67%
517	increase from the value of 0.10 mg m ⁻² s ⁻¹ reported for 2009 (Shen et al. 2014). From 2009 to
518	2012, the GDP increased by 56% according to the National Statistic Yearbook.
519	For comparison, we extracted the flux data from the Carbon Tracker database for the $9-6$
520	by $\frac{11:00}{10}$ to be the two sets that cover the YRD region. The results show that the mean daytime (11:00 to
E 2 1	17:00 local time) biological plant flux $E_{\rm p}$ (daytime 11:00 to 17:00 LT) is slightly negative at -

521 <u>17:00 local time) biological plant</u> flux F_{P} (daytime 11:00 to 17:00 LT) is slightly negative at -

Formatted: Font: Bold

522	0.014 mg m ⁻² s ⁻¹ for 20142 (Peter et al. 2007). Our estimate of F _P for 2014 also indicates that
523	the region was a negligibly small biological sink of CO_2 (-0.00909 mg m ⁻² s ⁻¹).
524	We conducted Monte Carlo simulations to assess the sensitivity of the partitioned fluxes
525	to uncertainties in $\delta^{13}C_P$ and $\delta^{13}C_F$. Errors in these parameters were assumed to follow a
526	uniform distribution and varied in the range of ± 1 %. The mean and standard deviation of
527	$F_{\underline{S}}$ were 0.167 and 0.003 mg m ⁻² s ⁻¹ , and those of $F_{\underline{P}}$ were -0.005 and 0.003 mg m ⁻² s ⁻¹ ,
528	respectively for the YRD, based on an ensemble of 10,000 simulations. For Nanjing, the
529	mean \pm standard deviation of F _S and F _P was 0.209 \pm 0.024 and 0.086 \pm 0.022 mg m ⁻² s,
530	respectively. These mean flux values are essentially the same as those obtained with the
531	default $\delta^{13}C_P$ and $\delta^{13}C_F$ values giving in Table 3 and the standard deviations represent
532	uncertainties of the partitioned fluxes.
533	Another source of uncertainty in our flux partitioning analysis is related to human breath
534	(Affek and Eiler 2006). Using the method of Prairie and Duarte (2007), we estimated that
535	human respiration flux was 0.006 and 0.013 mg m ⁻² s ⁻¹ , or 3.7% and 11.65% of anthropogenic
536	emission in the YRD and in Nanjing, respectively. The food diet in the region is
537	predominantly C3 grains. By including this additional source in Equations 3 and 4 and by
538	assuming that the isotopic signature of human respiration is the same as $\delta^{13}C_P$ shown in Table
539	3, F_S and F_P would increase by 0.008 and 0.001 mg m ⁻² s ⁻¹ in the YRD and by 0.018 mg m ⁻² s ⁻¹
540	and 0.005 mg m ⁻² s ⁻¹ in Nanjing, respectively.
541	

542 4.4 Comparison of the Miller-Tans and the Keeling method

i

543	By applying the Miller-Tans-and the Keeling plot method separately to the both of
544	middaydaytime and midnight nighttime observation periods, separately, we obtained the
545	effective source signatures that are consistent with the inventory analysis for the YRD and for
546	the Nanjing Municipality. The daytime Miller-Tans methodmeasurement revealed that the
547	sources were on average $\frac{1.010.46}{0.46}$ % more enriched in ¹³ C than the signature $\delta^{13}C_S$ obtained
548	with the nighttime Miller TansKeeling plot analysismeasurement. For comparison, the overall
549	$\delta^{13}C_S$ of the anthropogenic sources in the YRD was also higher than that in Nanjing, the
550	difference being 1.76‰ (Table 2). The interpretation that the middaydaytime observations
551	capture the influence of surface sources in the YRD region is supported by a trajectory
552	analysis and by an analysis of the atmospheric methane to CO ₂ emissions ratio observed at
553	the same site (Shen et al. 2014). We note that the atmospheric measurements gave a smaller
554	difference between the YRD and Nanjing than that obtained by the inventory data, likely
555	because of different biological contributions between the two spatial scales.
556	We argue that Keeling plot method is not appropriate for middaydaytime periods
557	because the surface air is influenced by both the surface sources and by entrainment of the
558	background air from above the boundary layer. If we applied the Keeling method to the
559	middaydaytime observations, the linear correlation coefficient was on average -0.898 which
560	is weaker than the correlation coefficient obtained with the Miller-Tans method (-0.956). The
561	resulting mean $\delta^{13}C_S$ would be 0.61‰ lower than the mean value shown in Figure 6. The
562	difference in $\delta^{13}C_S$ between the YRD (middaydaytime observations,Keeling method) and
563	Nanjing (midnight nighttime observations, Keeling plot Miller-Tans method) would become
564	too small (0. <u>15</u> 38‰).
•	

Formatted: Not Highlight

	In comparison Compared Harmony the Miller Tene Karling also mathed abound 4*	Formatted: Indent: First line: 2 ch
565	In comparison, Conversely <u>However</u> , the Miller Tans Keeling plot method showed	
566	reasonablyhas good performance when applied to intheis not recommended for midnight-	
567	nighttime observations. This is because surface inversion conditions effectively prevented	
568	mixing of the free atmospheric air with the surface air, so that the single-source assumption	
569	implicit in the Keeling plot method was satisfied. If we applied Keeling plot the Miller Tans-	
570	method at monthly intervals to the midnight-nighttime data, the resulting $\delta^{13}C_S$ for Nanjing-	
571	would <u>deincrease to -24.243.72</u> ‰ for Nanjing from -23.72‰, the value obtained with	
572	application of the Miller-Tans method to the nighttime observations. (Figures S4 and S6). For	
573	comparison, the $\delta^{13}C_8$ for the YRD, obtained by applying the Miller-Tans method to the	
574	midday <u>nighttime</u> data, was -23.25 <u>72</u> ‰.—-	
575		
		Formatted: Indent: First line: 2 ch
576	4-	Formatted. Indent. I list line. 2 ch
	47	
576 577	5. Conclusion	Pormateer. Internet. 2 en
	5. Conclusion We showed that the temporal changes of δ^{13} C followed the seasonal patterns of	Pormateer. Internet. 2 en
577		Pormateer. Insente. 2 en
577 578	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of	
577 578 579	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the	
577 578 579 580	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the summer. An unusual feature that has not been seen in other urban environment <u>s</u> is that the	
577 578 579 580 581	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the summer. An unusual feature that has not been seen in other urban environment <u>s</u> is that the δ^{13} C exceeded that at the Mauna Loa ObservatoryMount Waliguanof the background.	
577 578 579 580 581 582	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the summer. An unusual feature that has not been seen in other urban environments is that the δ^{13} C exceeded that at the Mauna Loa ObservatoryMount Waliguanof the background. atmosphere in some of the summer months. The highest monthly ¹³ C was -7.44‰ observed in	
577 578 579 580 581 582 583	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the summer. An unusual feature that has not been seen in other urban environments is that the δ^{13} C exceeded that at the Mauna Loa ObservatoryMount Waliguanof the background atmosphere in some of the summer months. The highest monthly ¹³ C was -7.44‰ observed in July 2013, which was <u>40.7403</u> ‰ greater than the <u>MLOWLG</u> value for the same month.	
577 578 579 580 581 582 583 584	We showed that the temporal changes of δ^{13} C followed the seasonal patterns of anthropogenic and biologic CO ₂ emissions, with lower values in the winter than in the summer. An unusual feature that has not been seen in other urban environments is that the δ^{13} C exceeded that at the Mauna Loa ObservatoryMount Waliguanof the background atmosphere in some of the summer months. The highest monthly ¹³ C was -7.44‰ observed in July 2013, which was <u>40.7403</u> ‰ greater than the <u>MLOWLG</u> value for the same month. Evidence points to cement production as the key reason for why the atmospheric δ^{13} C was	

587	We hypothesized that the Miller-Tans method applied to the middaydaytime-observations
588	and the Keeling plot method applied to the midnight nighttime observations should yield the
589	effective isotopic signature of surface sources at the regional (YRD) and the local (Nanjing)
590	scale, respectively. According to the results of themonthly interval Miller-Tans method, the
591	effective source signal in the YRD was $-23.255.51\%$, which was $00.46-48\%$ higher than that
592	in the Nanjing Municipality-according to the Keeling plot method. These results were
593	consistent with inventory estimates of anthropogenic source signatures at these two spatial
594	scales.
595	By combining inventory data on anthropogenic C sources and the atmospheric
596	measurement of CO ₂ molar fractionmole fraction and its ¹³ C composition in an isotopic
597	partitioning framework, we inferred that natural ecosystems in the YRD were a negligibly
598	small sink of atmospheric CO ₂ , with an average flux of -0.009 mg m ⁻² s ⁻¹ . The Carbon Tracker
599	inverse analysis also reveals a small annual mean $\frac{\text{daytime}}{\text{biological flux}}$ (-0.014 mg m ⁻² s ⁻¹)
600	for this region.
601	
602	Data availability:
603	The atmospheric data are available upon request and from the Yale-NUIST Center website
604	http://yncenter.sites.yale.edu/publications.
605	
606	Acknowledgments:
607	This research was supported by the National Natural Science Foundation of China (Grant
608	41475141, 41505005), the U. S. National Science Foundation (Grant 1520684), the Ministry

- of Education of China (Grant PCSIRT), and the Priority Academic Program Development of
- 610 Jiangsu Higher Education Institutions (Grant PAPD). The first author also acknowledged a
- 611 visiting scholarship from China Scholarship Council and a Graduate Student Innovation
- Grant from Jiangsu Provincial Government (Grant KYLX_0848).

613 References

,10					
514	Affek, H. P., Eiler, J. M. (2006). Abundance of mass 47 CO2 in urban air, car exhaust, and				
515	human breath. Geochimica et Cosmochimica Acta 70(1): 1-12.				
516					
517	Akbari H, Menon S, Rosenfeld A. Global cooling: increasing world-wide urban albedos to				
518	offset CO2. Climatic Change, 2009, 94(3-4): 275-286.				
519					
520	Andres, R. J., Marland, G., Boden, T., Bischof, S. (1994). Carbon dioxide emissions from				
521	fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their				
522	isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN (United				
523	States);				
524					
525	Bai, Y., (2011) A comparative study on turbulent fluxes exchange over Nanjing urban and				
526	suburban in summer. (in Chinese) Nanjing, Nanjing University of Information Science & Technology.				
527 528	Technology.		Formatted: Indent: Left:	0"	
528 529	Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., White, J. W. C. (2011). Novel		of matted. meent. Eert.	0	
530	applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements				
531	teach us about processes in the biosphere?. Biogeosciences, 8(10), 3093-3106.				
532					
533	Ballantyne, A. P., Miller, J. B., Tans, P. P. (2010). Apparent seasonal cycle in isotopic				
534	discrimination of carbon in the atmosphere and biosphere due to vapor pressure				
535	deficit. Global Biogeochemical Cycles, 24(3), 1-16.				
536	—	[F	Formatted: Indent: Left:	0"	
537	Bi, J., Zhang, R., Wang, H., Liu, M., Wu, Y. (2011). The benchmarks of carbon emissions and				
538	policy implications for China's cities: Case of Nanjing. Energy Policy 39 (9): 4785-4794.				
539					
540	Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R. (2003). Tunable diode				
541	laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2				
542	exchange, Agric. Forest Meteorol. 118: 1–19.				
543	Bush, S. E., Pataki, D.E., Ehleringer, J.R. (2007). Sources of variation in $\delta 13C$ of fossil fuel				
544 545	emissions in Salt Lake City, USA. Applied Geochemistry 22 (4): 715-723.				
546	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
547	CESY (2013). China Energy Statistical Yearbook 2013: China Statistical Publishing House,				
548	Beijing. (in Chinese) Also available at: http://www.stats.gov.cn/tjsj/ndsj/				
549	2013/indexch.htm>.				
550					
551	Clark-Thorne, S. T., C. J. Yapp (2003). Stable carbon isotope constraints on mixing and mass				
552	balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA. Applied				
553	Geochemistry 18(1): 75-95.				
554					

Coutts, A. M., Beringer, J., Tapper, N.J. (2007). Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmospheric Environment 41 (1): 51-62.
China Cement: http://hy.ccement.com/map/, last access: 6 July 2016 (in Chinese).
CSY (2013). China Statistical Yearbook. National Bureau of Statistics of China. (in Chinese) Also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm
Duan Y. (1995) Study of characteristics of coal isotope conposition in China Coal Geology & Exploration 23 (1) 29-33.
Ehleringer, J.R., Bowling, D.R., Flanagan, L.B., Fessenden, J.,Helliker, B., Martinelli, L.A., Ometto, J.P. (2002). Stable isotopes and carbon cycle processes in forests and grasslands. Plant biology 4 (2): 181-189.
Farquhar, G., J. Lloyd (1993). Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. Stable isotopes and plant carbon-water relations 40 : 47-70.
Fessenden, J. E., J. R. Ehleringer (2002). Age-related variations in δ 13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree Physiology 22 (2-3): 159-167.
Friedman, L., A. P. Irsa (1967). Variations in isotopic composition of carbon in urban atmospheric carbon dioxide. Science 158 (3798): 263-264.
Gorski G, Strong C, Good S P, Bares, R., Ehleringer, J.R., Bowen, G.J Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. Proceedings of the National Academy of Sciences, 2015, 112 (11): 3247-3252.
Griffis, T. J., Lee, X., Baker, J.M., Sargent, S.D., King, J.Y. (2005). Feasibility of quantifying ecosystem–atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agricultural and Forest Meteorology 135 (1-4): 44-60.
Griffis, T J. (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174 :85-109.
Guha, T., P. Ghosh (2010). Diurnal variation of atmospheric CO2 concentration and delta C- 13 in an urban atmosphere during winter-role of the Nocturnal Boundary Layer. Journal of Atmospheric Chemistry 65 (1): 1-12.

l

697 698 699 700	Guha, T. and P. Ghosh (2015). Diurnal and seasonal variation of mixing ratio and delta C-13 of air CO2 observed at an urban station Bangalore, India. Environmental Science and Pollution Research 22 (3): 1877-1890.
701 702 703 704	Helfter, C., Famulari, D., Phillips, G.J., Barlow, J.F., Wood, C.R.,Grimmond, C.S.B., Nemitz, E. (2011). Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics 11 (5): 1913-1928.
705 706 707 708 709	ICLEI (International Council for Local Environmental Initiatives). (2008). Local government operations protocol for the quantification and reporting of greenhouse gas emissions inventories. [Available online at http://www.arb.ca.gov/cc/protocols/localgov/archive/final lgo protocol 2008–09–25.pdf.]
710 711 712 713	Idso, S. B., Idso, C.D., Balling, R.C. (2002). Seasonal and diurnal variations of near-surface atmospheric CO 2 concentration within a residential sector of the urban CO 2 dome of Phoenix, AZ, USA. Atmospheric Environment 36 (10): 1655-1660.
714 715 716 717	Jasek, A., Zimnoch, M., Gorczyca, Z., Smula, E.,Rozanski, K. (2014). Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland. Isotopes in Environmental and Health Studies 50 (2): 143-155.
718 719 720	Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13 (4): 322-334.
721 722 723	Keeling, C. D. (1961). The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta 24 (3): 277-298.
724 725 726	Koerner, B., J. Klopatek (2002). Anthropogenic and natural CO2 emission sources in an arid urban environment. Environmental Pollution 116 : S45-S51.
727 728 729 720	Leavitt, S. W., Paul, E.A., Galadima, A., Nakayama, F.S., Danzer, S.R., Johnson, H., Kimball, B.A. (1995). Carbon isotopes and carbon turnover in cotton and wheat FACE experiments. Plant and Soil 187 (2): 147-155.
730 731 732 733 734	Lichtfouse, E., Lichtfouse, M., Jaffrezic, A. (2003). delta C-13 values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas. Environmental Science & Technology 37 (1): 87-89.
735 736 737 738	Liu, H., Feng, J., Järvi, L., Vesala, T. (2012). Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmospheric Chemistry and Physics 12 (17): 7881-7892.
739 740	Lloyd, J., Kruijt, B., Hollinger, D.Y., Grace, J., Francey, R.J., Wong, S., Kelliher, F.M., Miranda, A.C., Farquhar, G.D., Gash, J.H.C. (1996). Vegetation effects on the isotopic
	32

741 742 743 744	composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Functional Plant Biology 23 (3): 371-399.	
745 746 747 748 749	Lloyd, J., Francey, R.J., Mollicone, D., Raupach, M.R, Sogachev, A., Arneth, A., Byers, J.N., Kelliher, F.M., Rebmann, C., Valentini, R. (2001). Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochemical Cycles 15 (2): 267-284.	
750 751 752 753	McDonald, B.C., McBride, Z. C., Martin, E. W., Harley, R. A. High-resolution mapping of motor vehicle carbon dioxide emissions. Journal of Geophysical Research: Atmospheres, 2014, 119 (9): 5283-5298.	
754 755 756 757 758	McManus, J. B., Zahniser, M.S., Nelson, D.D., Williams, L.R., Kolb, C.E. (2002). Infrared laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon gases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58 (11): 2465-2479.	
759 760 761	Miller, J. B., P. P. Tans (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B 55 (2): 207-214.	
762 763 764 765	Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J., Vaughn, B.W. (2003). The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus B 55 (2): 197-206.	
766	Newman, S., Xu, X., Gurney, K.R., Hsu, Y.K., Li, K.F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R. and Wong, K.W. (2016). Toward consistency between trends in	
767 768	bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles	
769	megacity, Atmospheric Chemistry and Physics, 16(6):3843-3863.	Formatted: Font: Not Italic
770 771 772		
773	Moore J., Jacobson A.D. (2015). Seasonally varying contributions to urban CO2 in the	
774	Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and d13C	
775	record. Elementa: Science of the Anthropocene 3, 000052.	
776		
777 778 779	Mu, H., Li, H., Zhang, M., Li, M. (2013). Analysis of China's carbon dioxide flow for 2008. Energy Policy 54 : 320-326.	
780	Newman, S., Xu, X., Affek, H.P., Stolper, E., Epstein, S. (2008). Changes in mixing ratio and	
781	isotopic composition of CO2in urban air from the Los Angeles basin, California, between	
782 783	1972 and 2003. Journal of Geophysical Research 113 (D23) : 1-15.	

784	NSY (2013). Nanjing Statistical Yearbook. Nanjing Municipal Bureau Statistics. (in Chinese)
785	Also available at: < http://www.njtj.gov.cn/2004/2013/renmin/index.htm>
786	
787	Ometto, J. P., Flanagan, L.B., Martinelli, L.A., Moreira, M.Z., Higuchi, N., Ehleringer, J.R.
788	(2002). Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin,
789	Brazil. Global Biogeochemical Cycles 16(4):1-10.
790	
791	Ometto, J.P., Ehleringer, J.R., Domingues, T.F., Berry, J.A., Ishida, F.Y., Mazzi, E., Higuchi,
792	N., Flanagan, L.B., Nardoto, G.B., Martinelli, L.A. (2006). The stable carbon and nitrogen
793	isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil.
794 795	Biogeochemistry 79 (1-2): 251-274.
796	Pang, J., Wen, X., Sun, X. (2016). Mixing ratio and carbon isotopic composition investigation
797	of atmospheric CO2 in Beijing, China. Sci Total Environ 539: 322-330.
798	
799	Pataki, D. E. (2005). Can carbon dioxide be used as a tracer of urban atmospheric transport?
800	Journal of Geophysical Research 110(D15102) : 1-8.
801	
802	Pataki, D. E., Bowling, D.R., Ehleringer, J.R. (2003). Seasonal cycle of carbon dioxide and
803	its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal
804	of Geophysical Research-Atmospheres 108 (D23) : 1-8.
805	
806	Pataki, D. E., Bowling, D.R., Ehleringer, J.R., Zobitz, J.M. (2006). High resolution
807	atmospheric monitoring of urban carbon dioxide sources. Geophysical Research Letters
808	33 (3): 1-5.
809	
810	Pataki, D. E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J.,
811	Buchmann, N., Kaplan, J.O., Berry, J.A. (2003). The application and interpretation of Keeling
812	plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17(1): 1-14
813	
814	Pataki, D. E., Lai, C., Keeling, C.D., Ehleringer, J.R. (2007). Insights from stable isotopes on
815	the role of terrestrial ecosystems in the global carbon cycle. Terrestrial Ecosystems in a
816	Changing World, Springer: 37-44.
817	
818	Pataki, D.E., Emmi, P.C., Forster, C.B., Mills, J.I., Pardyjak, E.R., Peterson, T.R.,
819	Thompson, J.D., Dudley-Murphy, E., An integrated approach to improving fossil fuel
820	emissions scenarios with urban ecosystem studies. Ecological Complexity, 2009, 6(1): 1-14.
821	
822	Pataki, D. E., Xu, T., Luo, Y.Q., Ehleringer, J.R. (2007). Inferring biogenic and anthropogenic
823	carbon dioxide sources across an urban to rural gradient. Oecologia 152(2): 307-322.
824	
825	Peters, W., Jacobson, A.R., Sweeney, C., Andrews, A.E., Conway, T.J., Masarie, K., Miller, J.B.,
826	Bruhwiler, L.M., Petron, G., Hirsch, A.I., Worthy, D.E., van der Werf, G.R., Randerson, J.T.,
827	Wennberg, P.O., Krol, M.C., Tans, P.P., An atmospheric perspective on North American carbon

828 829 830	dioxide exchange: CarbonTracker.Proceedings of the National Academy of Sciences, 2007, 104 (48): 18925-18930.	
831 832	Prairie, Yves T., and Carlos M. Duarte. (2007). Direct and indirect metabolic CO ₂ release by <u>+</u> humanity. Biogeosciences 4(2): 215-217.	
833 834 835 836 837	Rella, C. (2011). Accurate stable carbon isotope ratio measurements with rapidly varying carbon dioxide concentrations using the Picarro δ 13C G2101-i gas analyzer, Picarro White Paper. Picarro Inc.	
837 838 839 840 841	Ren, L., Wang, W., Wang, J., Liu, R. (2015). Analysis of energy consumption and carbon emission during the urbanization of Shandong Province, China. Journal of Cleaner Production 103 : 534-541.	
842 843 844	Rose L S, Akbari H, Taha H. Characterizing the fabric of the urban environment: a case study of Greater Houston, Texas. Lawrence Berkeley National Laboratory, 2003.	
845 846 847	Satterthwaite D. Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 2008, 20 (2): 539–549.	
848 849 850 851	Shen, S., Yang, D., Xiao, W., Liu, S., Lee, X. (2014). Constraining anthropogenic CH4 emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO2 and CH4 mixing ratios. Advances in Atmospheric Sciences 31 (6): 1343-1352.	
852 853 854	Song, T., Wang Y. (2012). Carbon dioxide fluxes from an urban area in Beijing. Atmospheric Research 106 : 139-149.	
855 856 857 858	Sun, B., Dilcher, D.L., Beerling, D.J., Zhang, C., Yan, D., Kowalski, E. (2003). Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences 100 (12): 7141-7146.	
859 860 861 862	Takahashi, H. A., Konohira, E., Hiyama, T., Minami, M., Nakamura, T., Yoshida, N. (2002). Diurnal variation of CO2 concentration, Delta C-14 and delta C-13 in an urban forest: estimate of the anthropogenic and biogenic CO2 contributions. Tellus B 54 (2): 97-109.	
863 864 865	Tans, P. (1981). 13C/12C of industrial C02. In SCOPE 16: Carbon Qcle Modelling (B.Bolin, ed.), John Wiley and Sons, Chichester, England, 127-129.	
866 867 868	Thoning, K. W., Tans, P.P., Komhyr, W.D. (1989). Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research: Atmospheres (1984–2012) 94 (D6): 8549-8565.	
869 870 871	Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P.P., Davis, K.J., Lauvaux, T., Miles, N.L., Richardson, S.J., Cambaliza. (2015). Toward quantification and	

Formatted: Indent: Left: 0"

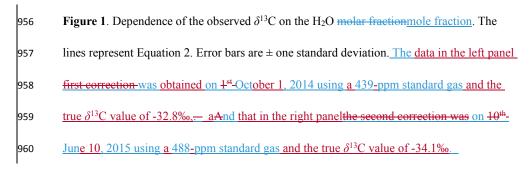
Formatted: Subscript

	Description Descripti Description Description Description Description Descript	Formatted: Font: Not Italic
	2005). Long - term record of atmospheric CO2 and stable isotopic ratios at Waliguan	Formatted: Font: (Default) Cambria Math
	Chou, L., Conway, T.J., White, J.W., Mukai, H., Zhang, X., Wen, Y., Li, J. and MacClune, K.,	Formattadi Fonti (Dofouli) Combrie Mad
_		
p	ollution events using isotopic and radiocarbon analysis. Tellus B 48 (4): 601-612.	
	Condervan, A., H. A. Meijer (1996). Isotopic characterisation of CO2 sources during regional	
E	Biology 14(8): 1785-1800.	
	arbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Global Change	
Z	Cobitz, J. M., Burns, S.P., Reichstein, M., Bowling, D.R. (2008). Partitioning net ecosystem	
	Environmental and Health Studies $40(2)$: 129-143.	
	nd delta O-18 of atmospheric CO2 in the urban atmosphere of Krakow, Poland. Isotopes in	
7	Zimnoch, M., Florkowski, T., Necki, J., Neubert, R. (2004). Diurnal variability of delta C-13	
I	low in Nanjing. (in Chinese) Environmental Science and Technology 24(2): 98-101.	
	Vang, H.M., Wang, H.Z., Wu, Y.B. (2011). Observation and characteristics analysis of traffic	
*	Vara U.M. Wara U.Z. Wa V.D. (2011) Observation and the statistic and the form	
e	exchange. Oecologia 123 (3): 297-311.	
	<i>Cakir</i> , D., L. da SL Sternberg (2000). The use of stable isotopes to study ecosystem gas	
F	Earth and Planetary Science Letters 215(1-2): 289-298.	
	Widory, D., M. Javoy (2003). The carbon isotope composition of atmospheric CO2 in Paris.	
c	arbon isotopes. Combustion Theory and Modelling 10(5): 831-841.	
V	Vidory, D. (2006). Combustibles, fuels and their combustion products: A view through	
	• • • • • • • • • • • • • • • • • • •	
	Atmospheric Measurement Techniques Discussions 6(1): 795-823.	
	or isotope ratio infrared spectroscopy for atmospheric ${}^{13}CO_2/{}^{12}CO_2$ measurement.	
V	Ven, X. F., Meng, Y., Zhang, X., Sun, X., Lee, X. (2013). Evaluating calibration strategies	
Ũ		
	composition in the Los Angeles basin. Plant and Soil 350 (1-2): 323-338.	
v	Vang, W., D. E. Pataki (2012). Drivers of spatial variability in urban plant and soil isotopic	
16	aser absorption spectroscopy. Autrospheric Environment 4 5(5), 1100-11/4.	
	aser absorption spectroscopy. Atmospheric Environment 45 (5): 1168-1174.	
	f carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR	
v	Vada, R., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., Shibata, T. (2011). Observation	
<u>1</u>	NFLUX experiment. Journal of Geophysical Research: Atmospheres, 120(1), 292-312.	
T	NELLIN	

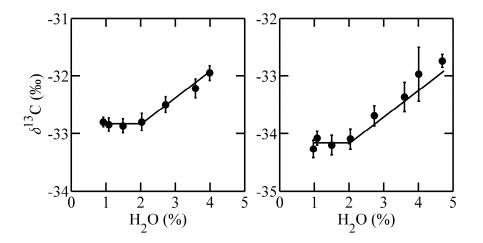
914 List of Figure Captions

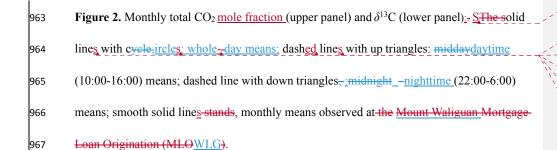
I

915					
916	Figure 1. Dependence of the observed δ^{13} C on the H ₂ O molar fraction <u>mole fraction</u> . The lines				
917	represent Equation <u>32b</u> . Error bars are \pm one standard deviation. The first correction was on	1	F	ormatted: Font: (D	Default
918	1 st Oct, 2014 using 439ppm standard gas. And the second correction was on 10 th Jun, 2015-	1	F	ormatted: Font: (D)efault
919	using 488ppm standard gas. When the H ₂ O is higher than 2.03%, the raw atmospheric δ^{43} C-	1		ormatted: Font: (D ubscript	0efault
920	observed will be corrected.		F	ormatted: Font: (D	0efault
921					
922	Figure 2. Monthly total CO ₂ (upper panel) and δ^{13} C (lower panel). The solid line with cycle, dash-				
923	line with up triangles: middaydaytime (10:00-16:00) means; dashed line with down triangles,-				
924	midnight nighttime (22:00-6:00) means; smooth solid line stands, monthly means observed at				
925	the Mount WaliguanMortgage Loan Origination (MLOWLG). (YRD: derived from daytime-				
926	readings, Nanjing: derived from night-time readings)				
927					
928	Figure 3. Mean diurnal variation of the CO2 molar fractionmole fraction (upper panels) and				
929	the δ^{13} C value (bottom panels) between March, 2013 and August, 2015.				
930					
931	Figure 4. Application of the Miller-Tans method to all valid middaydaytime (10:00-16:00)-				
932	data obtained between March, 2013 and August, 2015. Each data point is one hourly mean				
933	The solid line is the geometric mean regression according to Equation 1. (YRD: derived from				
934	daytime readings)				
935					
1					

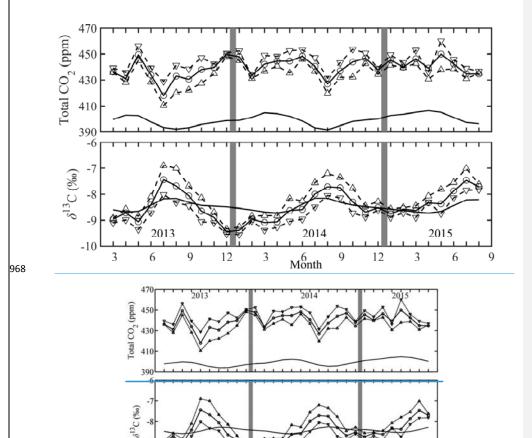

) Times New Roman, 12 pt

) Times New Roman, 12 pt


t) Times New Roman, 12 pt, t) Times New Roman, 12 pt

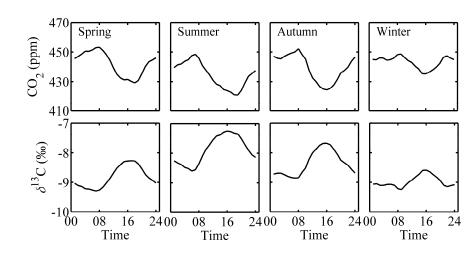

936	Figure 5. Application of the Miller TansKeeling mixing line method to all valid midnight
937	nighttime (22:00-6:00) data obtained between March, 2013 and August, 2015. Each data-
938	point is one hourly mean. The solid line is the geometric mean regression according to
939	Equation 1. The solid line is the geometric mean regression according to Keeling-
940	plot(Nanjing: derived from night-time readings)
941	
942	Figure 6. Time series of monthly ¹³ C signature of surface sources in the YRD obtained with
943	the Miller-Tans method (black line) and that in Nanjing obtained with the Miller-TansKeeling
944	plot method (grey line). The error bars are \pm one standard deviation. (YRD: derived from
945	daytime readings, Nanjing: derived from night-time readings)
946	
947	Figure 7. Time series of monthly net surface CO ₂ flux (F _S), biologicalplant CO ₂ flux (F _P),
948	anthropogenic CO ₂ -flux excluded cement emission (F_F) and cement CO ₂ -flux (F_e) in the
949	YRD. All the fluxes are in mg m ⁻² s ⁻¹ . (YRD: derived from daytime readings)
950	
951	Figure 8. Time series of monthly net surface CO ₂ flux (F _S), biologicalplant CO ₂ flux (F _P),
952	anthropogenic CO ₂ -flux excluded cement emission (F_F) and cement CO ₂ -flux (F_e) in the
953	Nanjing. All the fluxes are in mg m ⁻² s ⁻¹ . (Nanjing: derived from night-time readings)
954	
955	

l



Formatted: Font: 12 pt

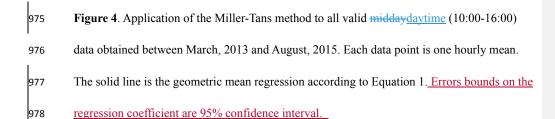
-1	Formatted: Font: 12 pt
{	Formatted: Font: 12 pt
Ì	Formatted: Font: 12 pt
Ì	Formatted: Font: 12 pt
1	Formatted: Font: 12 pt

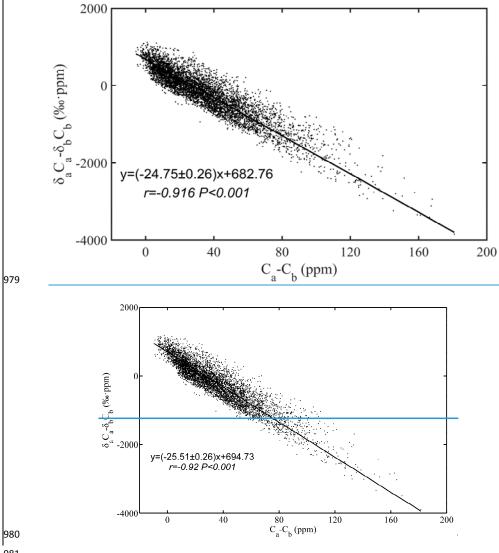


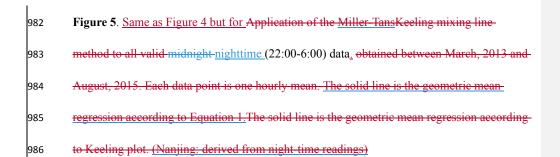
Month

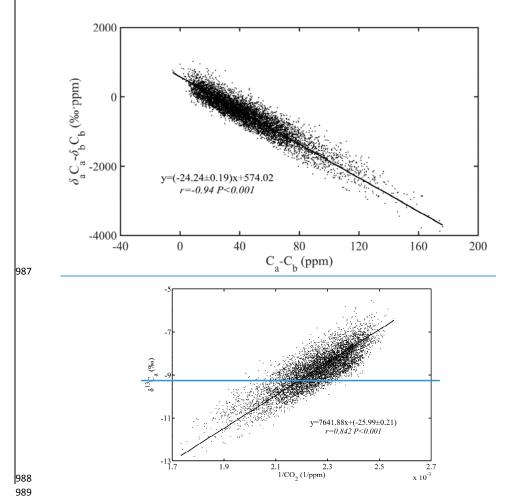
¢

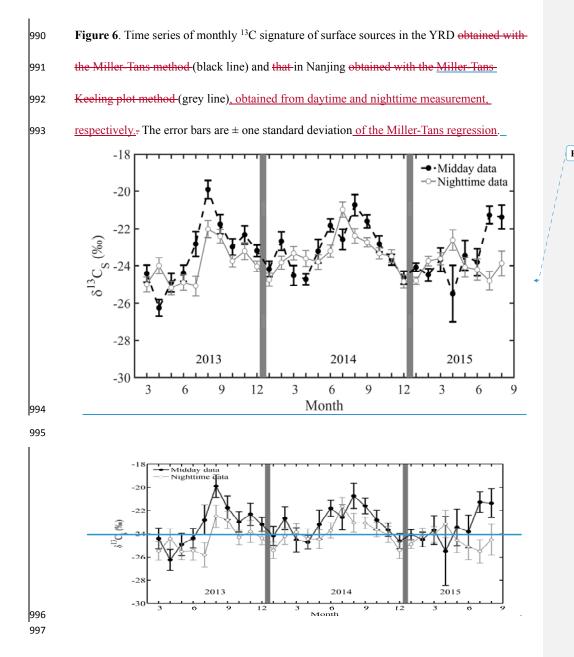
-1

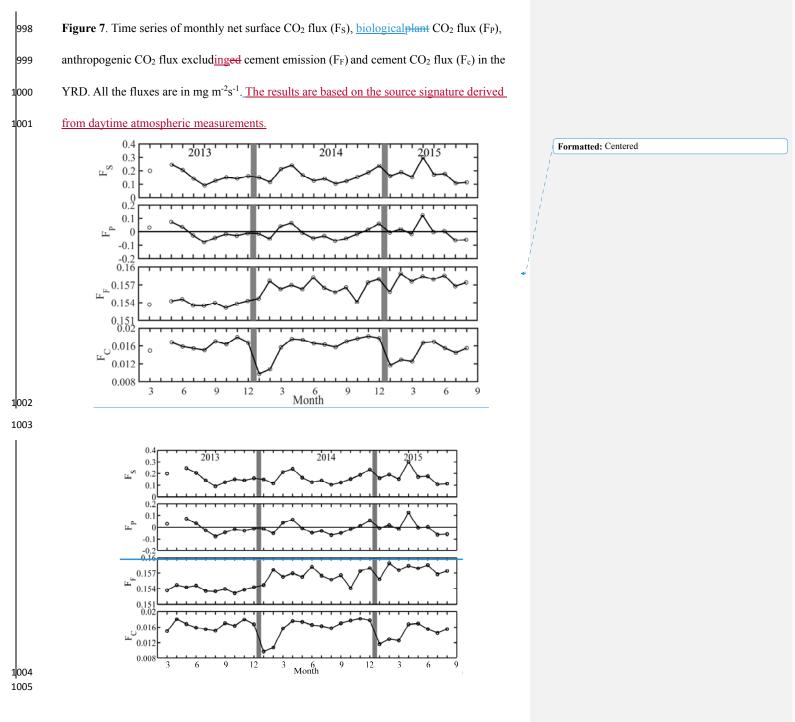

Figure 3. Mean diurnal variation of the CO₂ molar fractionmole fraction (upper panels) and

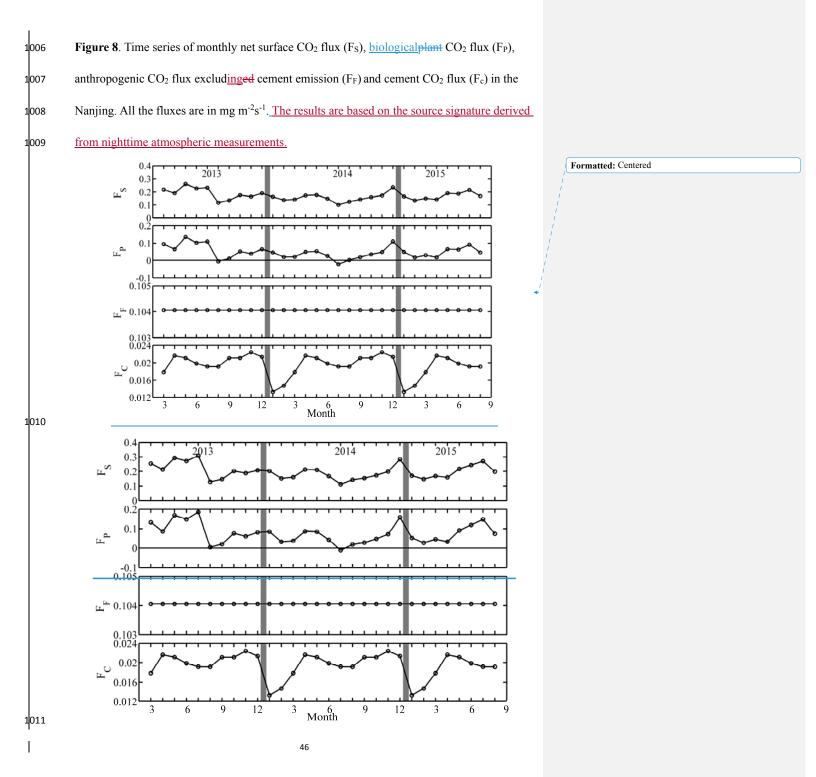



972 the δ^{13} C value (bottom panels) between March, 2013 and August, 2015.


I


971





Formatted: Centered

l

13 <u>Tab</u>	ole 1 Standard gase	es used for instrum	ent calibration.	
-	ID	<u>CO₂ (ppm)</u>	<u>δ13C (‰)</u>	Period
-	<u>1 Low</u>	381.89	-29.75	Mar, 2013 - Aug, 2014
	<u>1 High</u>	<u>502.35</u>	<u>-30.01</u>	Mar, 2013 - Aug, 2014
	<u>2 Low</u>	<u>380.92</u>	<u>-29.75</u>	<u>Sep, 2014 - Aug, 2015</u>
	<u>2 High</u>	<u>501.05</u>	<u>-30.01</u>	<u>Sep, 2014 - Aug, 2015</u>

5	Table 1-2 Percentage of "fossil-plus" sources and their δ^{13} C values for the YRD and

Formatted: Font: 12 pt

	Perce	entage (%)	δ^{13}	C (‰)	
Sources	YRD	Nanjing	YRD	Nanjing	References
Coal	70.0	52.3	-25.46	-25.46	Duan 1995, Widory 2006
Gasoline	2.1	11.4	-28.80	-28.80	Widory and Javoy 2003
Diesel	3.2	1.6	-29.80	-29.80	Widory 2006
Fuel oil	2.1	0.3	-28.93	-28.93	Widory and Javoy 2003
Natural gas	2.7	5.0	-39.50	-39.50	Pang et al. 2016
LPG	0.7	0.2	-31.70	-31.70	Widory 2006
Pig iron	8.7	12.7	-24.58	-24.58	this study
Crude steel	1.5	0.7	-24.82	-24.82	this study
Ammonia synthesis	9.0	15.9	-28.50	-28.50	this study
Total	100	100	-26.07	-26.42	

1017

I

1015

1019	Table 23.	Inventory data	for tThe isotopic co	mposition of surfac	e CO ₂ sources and their
------	-----------	----------------	----------------------	---------------------	-------------------------------------

percentage of contribution in the YRD and <u>in</u> Nanjing. <u>Here the "fossil-plus" category</u>

)21	includes	all non-	cement	anthropo	ogenic	emissions	listed in	Table 2.

S	YF	RD	Nanjing		
Sources	δ^{13} C (‰)	Percentage (%)	δ^{13} C (‰)	Percentage (%)	
<u>"</u> Fossilplus"	-26.07	91.0	-26.42	96.4	
Cement	0.20	9.0	0.20	3.6	
Anthropogenic	-23.71	100	-25.47	100	
<u>BbiologicalPlant</u>	-28.2		-28.2		

Formatted: Font: 12 pt

Formatted: Font: 10.5 pt

Formatted Table

1022

l