
	   1	  

Supplementary material to Emissions of Carbon Tetrachloride 
(CCl4) from Europe 
 
 
Dispersion model  5	  
 
We run the Lagrangian particle dispersion model FLEXPART v-9.02 (Stohl et al., 1998, 2005; 
http://www.flexpart.eu) releasing every three hours, from all measurement sites, 40 000 particles 
followed backward in time for 20 days. This in order to calculate the emission sensitivity footprint 
also called source-receptor-relationship (SRR). The SRR describes the relationship between the 10	  
contribution of potential sources at the receptor and the change in mixing ratios at the measurement 
site.  Fig.1S shows the SRR for the three single stations, highlighting how the two continental 
stations (CMN and JFJ) are influenced by air masses originating in central Europe, whereas MHD is 
predominately influenced by Atlantic/Arctic air masses.  
Fig. 2S shows the yearly (2012) emissions sensitivity produced using the three measurement sites. 15	  
We observe a good SRR in the whole European Geographic Domain (EGD), with the exception of a 
small region in the Aegean area.   
All the simulations are driven by European Centre for Medium-range Weather Forecast wind fields 
using 3-hourly ERA-Interim reanalyses (analysis fields at 00:00, 06:00, 12:00 and 18:00 UTC, and 
3-h forecasts at 03:00, 09:00, 15:00 and 21:00 UTC were used) with 1°x1° horizontal resolution and 20	  
91 vertical levels. 
  
 

 
Figure 1S. Single station SRR maps expressed in picoseconds per kilogram (ps kg-1) obtained from FLEXPART 20 days 25	  
backward calculations averaged over year 2012. Measurement sites are marked with black dots.  
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Figure 2S. As in Figure 1S, but for the three stations.  
 
Inversion method 30	  
 
To estimate the emissions of CTC from the EGD we used the inversion method, based on a 
Bayesian optimization technique, described by Stohl et al. (2009, 2010), where all mathematical 
details can be found. The emission distribution and intensity found by the inversion represent the 
best fit between observation data and model simulation. Using a limited number of stations not all 35	  
regions are well constrained by the observations, making the problem ill-conditioned and unstable. 
Therefore, to get the solution to our problem, we used an a priori gridded field of emission 
distribution and the associated uncertainty (Stohl et al., 2009; 2010).  
The cost function to be minimized is:   
 40	  

1) ! = !! − ! !!"#$ !!!! !! − ! + !!!"#$(!!!!)!  
 
 
Where the matrix M contains the model sensitivity, in our case all simulations produced by 40.000 
particles run in backward mode for 20 days; the term ! represents the difference between the a 45	  
posteriori and a priori emission vectors; ! is the difference between the observations and a priori 
simulated mixing ratios,  !!!! is the vector of the standard error of observations, and !!!! is the a 
priori standard error vector. 
Overall, the Bayesian inversion minimizes the cost-function reducing the model-observation misfit, 
represented by the first term on the right side of equation 1, optimizing the deviation of the solution 50	  
from a priori emissions and its uncertainty, expressed by the second term of equation 1. 
 
Uncertainty evaluation 
 
We associate for every grid cell an uncertainty value, !!

!   55	  
 

2) !!_!"#$"#
! = ! ∗max  (! ∗   !!; ! ∗ !!"#$) 
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Where p is an appropriate uncertainty scaling factor; !! the a priori emission value in grid j; !!"#$ 
the average land surface emissions flux; k and l are scaling factors set at 0.5 and 1, respectively 60	  
(Keller et al., 2011; Fang et al., 2014; Maione et al., 2014). The last term on the right side of 
equation 2 allows associating large uncertainty values even to low emission grid cells. We tested 
several uncertainty scaling factors p in order to optimise the agreement between modelled and 
observed mixing ratios. The increase of the uncertainty scaling factor p yields a higher variability of 
the a posteriori flux from the single grid cells, leading to a decreasing root mean square (RMS) and 65	  
increasing correlation coefficients between modelled and observed mixing ratios in all the three 
stations. However, for p values larger than 6, new hotspots emerge in the a posteriori emission field 
with unrealistically large emissions from low sensitivity regions. We used p = 2, a value giving 
higher correlation coefficients and lower RMS values. Noteworthy, differences in the EGD 
emissions lower than 5 % are obtained using p values ranging between 1.5 and 4. The minimisation 70	  

of the cost function reduces the a priori sigma value !!_!"#$"#
!  giving, for each inverted grid cell an 

uncertainty value !!_!"#$%&'"&'
! . For the whole domain we obtained an average uncertainty 

!!_!"#$%&'"&'
! ≅30%, with a smaller uncertainty (≈20 %) in high sensitivity boxes close to the 

receptors (e.g., FR and UK) and a larger uncertainty (≈80 %) in low sensitivity regions far away 
from the receptors (e.g., Scandinavian region). 75	  
 
E-PRTR database  
 
The a priori emission field used in this study makes use of the European Pollutant Release and 
Transfer Register (E-PRTR) inventory. E-PRTR is the Europe-wide register that provides data from 80	  
industrial facilities in European Union Member States and in Iceland, Liechtenstein, Norway, 
Serbia and Switzerland. It replaced and improved upon the previous European Pollutant Emission 
Register (EPER). 
The register contains data reported annually by more than 30,000 industrial facilities covering 65 
economic activities across Europe. For each facility, information are provided concerning the 85	  
amounts of pollutant releases to air, water and land as well as off-site transfers of waste and of 
pollutants in wastewater from a list of 91 key pollutants including CTC. The “industrial scale 
production of basic organic chemical” is the main CTC declared source in the database, being 
responsible for the 93.9 % of total European emissions. Figure 3S shows the percentage 
contribution to CTC emissions from each industrial facility, averaged over 2007-2013.  90	  
As reported in the paper main text (paragraph “Emission hot spots”), the inversion results estimate a 
CTC emission flux much larger than that declared in the E-PRTR. For major detail, we report In 
Fig. 4S the percent ratio between emissions reported in the E-PRTR and our estimates for each 
macro-area in the domain during 2007-2013. The E-PRTR reported emissions from the EGD 
represent on average, over the considered period, 4 % of the emissions obtained through the 95	  
inversion. Lower discrepancies are found for the BE-NE-LUX and FR macro areas where the 
declared emissions reach the 43 % and 21% of inversion estimation, respectively.  
 
 
 100	  
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Figure 3S. Average percentage contribution of different source sectors to the total CTC emissions reported in the E-PRTR 
(2007 -2013). 
 

 105	  
Figure 4S. Percent ratio between emissions as in the E-PRTR and the inversion results for each macro-area in the domain 
during 2007-2013. 
 
Subsets of data  
 110	  
Because of the limited numbers and localisation of the receptors, the simulations cannot produce a 
homogeneous sensitivity over the study domain. In order to assess to what extent our results are 
sensitive to the receptors used, we run the inversions removing one station at a time  
The EGD emissions obtained with different subsets of observation data are consistent with those 
obtained using the full set. The larger difference, 26 %, is registered when removing MHD. 115	  
Removing JFJ and CMN, produced a similar percentage difference of -10 % and -9 %, respectively, 
as a consequence of the similar footprint of the two receptors. This result indicates the stability of 
the inversion system even when using a subset of data and reinforce the benefit of the increased 
sensitivity over domain when using an increasing number of receptors. 
 120	  
Model performance at the stations 
 
With the aim of evaluating the model performance and the station specific errors, we compared the 
observed and modelled time series at the three stations, taking into account different statistical 
parameters, in a similar way as described in Stohl et al. (2009), Maione et al. (2014) and Graziosi et 125	  
al. (2015). The results of this comparison, carried out for the year 2012, are reported in Table 1S. 
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1− !!/!! is the relative error reduction, where Ea and Eb are the a priori and a posteriori RMS 
errors. The values achieved at the stations used in this study are in a range between 16 % and 23 %, 
in spite of the different station characteristics.  
The Pearson correlation coefficients described in the following show a better performance for MHD 130	  
because of the poorer model performance in the mountain area. However, as stated in Mahowald et 
al. (1997), using receptors closer to the main source regions would improve the model performance 
to acquire source information. 
!!! is the squared Pearson correlation coefficients between the time series obtained at receptor using 
the a priori emission field and the observed time series, and !!! between the a posteriori and 135	  
observed time series. These coefficients are used to evaluate the proximity of the modelled emission 
field to the real one. The obtained  !!! values higher than !!! are an indication of the improvement of 
the a posteriori emission field with respect to the a priori.  
Analogously to !!! and !!!, the squared Pearson correlation coefficients !!"!   (and !!!! ) between the 
modelled a priori (and a posteriori) and the measured baseline mixing ratios at the three stations 140	  
indicate the capability of the system to reproduce the variability and trends of the baseline. 
Transport events from the source regions to the receptors generate the variability in the observed 
enhancements above the baseline. The correlation analyses between the observed and simulated a 
priori (!!"    ! ) and the a posteriori (!!"! ) polluted mixing ratios describe the system capability to 
reproduce concentrations above the background.  Higher correlation values are obtained at the 145	  
remote station of MHD. Despite the relatively low !!"    ! and  !!"!  values at CMN and JFJ, data from 
these two mountain stations improve the inversions on the regional scale, thanks to the station 
sensitivity to the main source regions. For the same reason, the two mountain stations also present 
higher standard deviation (SD) of the observed mixing ratios.  
 150	  
Table 1S. Station parameters. Mean, mean CTC mixing ratios; SD, standard deviation of the observed mixing ratios; N, 
number of observations; Ea, RMS a priori error; Eb, RMS a posteriori error; 1−Ea/Eb, relative error reduction; r2

a and r2
b, 

squared Pearson correlation coefficients between the observations and the a priori (r2
a) and a posteriori (r2

b) simulated time 
series; !!"!  (and !!!! ) is the squared Pearson correlation coefficients between the a priori (and a posteriori) baseline and the 
measured concentrations; !!"!  (and !!"! ) is the squared Pearson correlation coefficients between the a priori (and a posteriori) 155	  
enhancements above the baseline and the measured concentrations. 
 

Station Mean 
(ppt) 

SD 
(ppt) N Ea (ppt) Eb (ppt) 

1-
Eb/Ea 

r2
a r2

b r2
ba r2

bb r2
ea r2

eb 

CMN 85.7 1.1 2039 0.84 0.65 0.23 0.48 0.58 0.51 0.55 0.23 0.32 
JFJ 84.7 0.8 2124 1.15 0.94 0.19 0.35 0.44 0.24 0.26 0.19 0.22 
MHD 84.9 0.3 2833 0.64 0.50 0.21 0.70 0.79 0.73 0.75 0.54 0.63 
 
 
Relevance of the inclusion of the E-PRTR database in the a priori emission field 160	  
 
As reported in the main text, the best model performances have been obtained using for the a priori 
the European emission values estimated by Xiao et al. (2010) combined with the industrial 
emissions declared in the E-PRTR database. We refer to such a priori field as the reference a priori 
field. 165	  
To investigate the relevance of the inclusion of the E-PRTR database in the a priori emission field, 
we compared the squared Pearson correlation coefficients between observations and the a priori 
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emission field (!!!) and a posteriori (!!!) model results, with those obtained using an alternative a 
priori field that does not include the emission fluxes reported by E-PRTR.  
Figure 5S shows !!! and   !!! values of all stations derived using both the reference and the 170	  
alternative a priori emission fields (!!_!"#"!"$%"

!  !!_!"#"!"$%"! ;!"#  !!_!"#$%&$#'($
!  and   !!_!"#$%&!#'($! , 

respectively). The comparison between the correlation results obtained using the two different a 
priori emission fields highlighted how the inclusion of the E-PRTR information improved the 
performance of the inversion. This despite the finding, reported in the main text, that the industry 
declared emissions are systemically lower than the emissions obtained by the inversion.   175	  
Due to the inversion model skills, smaller differences are achieved between the two a posteriori 
correlation parameters  !!! comparing the two a priori correlation values !!! (fig 5S). An EGD 
emission difference of only 5 % between the two different a posteriori fields is achieved. This 
thanks to the inversions capability of generating similar a posteriori emissions starting from 
different a priori values. 180	  
 

 
 
Figure 5S. Inversion model performance using the “reference” and “alternative” a priori emission field at the three stations.   
 185	  
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