
	
	
We	thank	the	reviewers	for	their	constructive	feedback	and	suggested	
corrections.	Below	we	have	addressed	each	individual	comment	from	
reviewers	#1	and	#2	(reviewer	comments	are	shown	in	italics;	our	responses	
to	the	reviewers’	comments	are	shown	in	bold).	In	light	of	the	reviewers’	
comments,	our	revised	manuscript	now	includes	(a)	an	analysis	on	the	role	of	
CH4	retrieval	systematic	biases,	and	(b)	a	more	robust	quantification	of	the	
CH4	flux	requirements.	All	manuscript	changes	are	highlighted	as	‘tracked	
changes’	in	the	revised	manuscript	(the	bracketed	line	numbers	denote	the	
corresponding	line	numbers	in	the	revised	manuscript).	We	believe	that	the	
following	revisions	have	substantially	improved	the	overall	quality	of	our	
manuscript.	
	
Anonymous	Referee	#1		
	
The	paper	by	Bloom	et	al.	investigates	the	required	performance	parameters	of	
satellite	missions	aimed	at	gaining	quantitative	insight	into	the	biogeochemical	
processes	driving	methane	wetland	emission	in	the	Amazon	region.	To	this	end,	the	
authors	first	examine	the	variability	(in	space,	time,	magnitude)	of	the	carbon	cycle	
and	hydrological	processes	that	control	CH4	emissions.	Then,	they	use	observing	
system	experiments	to	derive	mission	requirements	(spatial	and	temporal	resolution;	
precision)	that	would	allow	for	disentangling	the	processes	under	natural	variability.	
The	study	covers	satellite	concepts	in	low-earth-orbit	(LEO)	as	well	as	in	geostationary	
orbit	(GEO).		
	
The	applied	methodology	is	most	interesting	since	it	outlines	an	approach	how	to	
quantitatively	derive	mission	requirements	based	on	the	actual	variability	of	the	
targeted	process	parameters.	I	would	tend	to	criticize	the	study	as	being	too	simplistic	
in	one	or	the	other	way	outlined	below.	But	certainly,	the	paper	is	well	written,	
methods	are	robust	and	rigorous,	and	thus,	it	is	suitable	for	publication	in	ACP	after	
considering	my	questions/comments	below.		
	
Questions/comments:		
	
(1.1)	(1)	A	shortcoming	of	the	study	is	the	assumption	of	purely	random	error	sources	
implying	that	measurement	uncertainty	improves	with	the	square	root	of	the	number	
of	binned	soundings.	This	assumption	results	in	maps	such	as	Figure	4	where	the	
measurement	precision	of	GEO	soundings	binned	on	300×300	km2	is	in	the	range	of	
0.1	ppb	(given	1800	ppb	background)	which	is	a	clearly	unrealistic	assumption	for	the	
overall	measurement	error.	Experience	with	the	current	generation	of	passive	
greenhouse	gas	sounders	such	as	GOSAT	and	OCO-2	tells	that,	at	aggregated	scales,	
random	errors	are	dwarfed	by	systematic	errors	which	typically	exceed	0.1	ppb	by	far.	
Systematic	errors	are	hard	to	address	and,	indeed,	the	manuscript	concedes	the	
neglect	of	systematic	errors	but	a	major	caveat	should	be	issued	when	discussing	the	
achievable	flux	precisions.		



	
We	have	now	amended	our	analysis	with	an	explicit	simulation	of	CH4	residual	
bias	errors.	We	describe	the	incorporation	of	a	residual	CH4	bias	structure	at	
the	end	of	section	2.3	of	the	revised	manuscript	(P14	L3-17).	We	now	show	
that	the	relative	advantage	of	a	GEO	mission	–	in	comparison	to	a	LEO	mission	
–	decreases	with	increasing	CH4	bias	(Figure	7).	We	have	revised	the	results	
and	discussion	section	(P15	L17-24),	and	the	abstract	(P1	L25	–	P2	L3)	to	
reflect	this.	
	
(1.2)	(2)	The	manuscript	restricts	the	advantage	of	a	GEO	sounder	to	massively	
enhanced	data	density.	Wouldn’t	it	make	sense	to	actually	exploit	the	quasi-contiguous	
temporal	sampling	of	a	GEO	sounder?	A	GEO	sounder	would	allow	for	resolving	
variability	due	to	source	and	transport	patterns	on	the	time	scale	of	hours.	Running	an	
inverse	model	with	monthly	flux	resolution	(and	probably	imposed	sub-monthly	
variability)	might	simply	discard	some	of	the	available	process	information.		
	
We	agree	that	additional	constraints	may	be	achievable	under	certain	process	
scenarios;	for	example,	emissions	from	spatially	concentrated	wetland	CH4	
sources	(e.g.	across	the	main	stem	of	the	Amazon	river)	could	potentially	be	
constrained	based	on	higher	resolution	CH4	concentration	gradients,	and	
fluxes	can	be	estimated	using	alternative	approaches.	Conversely,	monthly	
CH4	inversions	are	more	suitable	for	spatially	and	temporally	diffuse	CH4	
emission	process	scenarios.	We	now	discuss	the	additional	potential	
advantages	of	GEO	OS	in	the	revised	manuscript	(P17	L13-16).	
	
Technical	comments:		
	
(1.3)	P5,L16:	Focusing	the	study	on	March	reduces	data	amount	and	related	logistics	
but	it	neglects	seasonal	variability.	Is	there	any	indication	that	March	is	a	benign	or	
malign	case?	For	example:	is	the	CH4	flux	precision	requirement	of	3	mg	CH4/m2/day	
valid	for	all	seasons?		
	
We	have	now	included	a	more	robust	quantification	of	the	CH4	precision	
requirement:	for	a	given	resolution	requirement,	we	derive	a	year-round	
precision	requirement	(now	10mg	m-2	day-1)	as	the	CH4	precision	needed	to	
statistically	distinguish	between	wetland	CH4	process	hypotheses	with	a	95%	
confidence.	The	precision	requirement	and	its	derivation	are	described	in	P7	
L4-6,	P8	L15	–P9	L6	and	Appendix	B.	The	results	of	our	precision	requirement	
analysis	are	shown	in	Figure	4.	
	
In	the	reviewer’s	words,	March	2007	is	a	“malign	case”:	we	now	state	that	“the	
atmospheric	CH4	OS	requirement	as	the	ability	to	meet	the	CH4	flux	resolution	
and	precision	requirements	during	the	cloudiest	time	of	year”	(P5	L19-20).	
We	also	clarify	March	2007	is	the	cloudiest	month	in	the	Jan	–	Apr	2007	
season	(84%	cloud	cover)	and	it	is	considerably	higher	than	the	subsequent	
dry	season	(46%	-	56%	cloud	cover)	in	P5	L22-24.	



	
(1.4)	P5,L16:	MODIS	cannot	provide	information	on	diurnal	variability	in	cloud	cover.	
Would	you	expect	a	significant	effect	e.g.	for	choosing	an	optimal	LEO	overpass	or	for	
optimizing	GEO	revisits?		
	
We	agree	with	the	reviewer	that	diurnal	variability	may	amount	to	a	key	
component	of	assessing	and	optimizing	GEO	and	LEO	missions.	Based	on	ERA-
interim	cloud-cover	re-analyses,	we	show	that	the	annual	mean	diurnal	
coefficient	of	variation	of	cloud-free	Amazon	basin	spans	7%	-	80%	(median	=	
29%).	Given	the	non-linear	relationship	between	data	yield	and	1km	x	1km	
cloud-free	domain	shown	in	Figure	B1,	we	highlight	that	choice	of	diurnal	
variability	could	have	a	substantial	influence	on	LEO	and	GEO	data	yield.	We	
now	make	these	points	in	the	discussion	section	of	our	revised	manuscript	
(P16	L22	–	P17	L2).	
	
(1.5)	P7,L8:	Looking	at	the	correlation	matrix	(Figure	A1),	there	is	substantial	
correlation	among	(C1,	C2,	C4)	and	(H1,H2)	on	spatial	scales	down	to	100	km	which	
means	that	they	would	be	hard	to	distinguish	by	an	observing	system.	So,	actually,	the	
requirement	L≤300	km	only	allows	for	discriminating	carbon	and	hydrological	
controls	but	not	for	discriminating	the	type	of	carbon	(except	for	C3	vs	(C1,C2,C4))	or	
the	type	hydrological	process	(except	for	H3	vs	(H1,H2)).	Is	that	correct?	Probably,	this	
should	be	discussed	in	more	detail.		
	
We	have	now	removed	this	figure	(formerly	“Figure	A1”)	from	the	revised	
manuscript,	since	our	precision	derivation	approach	implicitly	accounts	for	
both	spatial	and	temporal	correlations	(see	response	to	1.3	and	Figure	4).	
	
(1.6)	P9,L1:	It	would	be	appropriate	to	cite	an	original	TROPOMI	paper	at	least	once	
(instead	of	Wecht	et	al.,	2014,	repeatedly):	P.	Veefkind,	I.	Aben,	K.	McMullan,	H.	Förster,	
J.	de	Vries,	G.	Otter,	J.	Claas,	H.J.	Eskes,	J.F.	de	Haan,	Q.	Kleipool,	M.	van	Weele,	O.	
Hasekamp,	R.	Hoogeveen,	J.	Landgraf,	R.	Snel,	P.	Tol,	P.	Ingmann,	R.	Voors,	B.	
Kruizinga,	R.	Vink,	H.	Visser,	P.F.	Levelt,	TROPOMI	on	the	ESA	Sentinel-5	Precursor:	A	
GMES	mission	for	global	observations	of	the	atmospheric	composition	for	climate,	air	
quality	and	ozone	layer	applications,	Remote	Sensing	of	Environment,	Volume	120,	15	
May	2012,	Pages	70-83,	ISSN	0034-4257,	http://dx.doi.org/10.1016/j.rse.2011.09.027.		
	
We	now	cite	the	Veefkind	et	al.,	(2012)	paper	as	a	reference	for	the	TROPOMI	
mission	in	P4	L23	and	P15	L14.	
	
(1.7)	P10,L9:	“March	and	September	2007”.	The	rest	of	the	paper	is	restricted	to	
March.	So,	I	guess,	September	needs	to	be	removed.		
	
We	have	now	removed	“September”.	
	



(1.8)	Equation	(2):	The	multiplication	of	the	vectors	N	and	O	is	not	a	scalar	product	
but	an	element-wise	multiplication,	right?	Probably,	this	needs	to	be	stated	
somewhere.		
	
We	now	use	an	appropriate	symbol	and	explicitly	state	this	in	P12	L21.	
	
(1.9)	P11,L7:	Is	the	unperturbed	CH4	flux	assumed	constant	(12	mg/m2/day)	
throughout	the	domain?		
	
In	response	to	the	second	reviewer’s	comments	(see	responses	to	2.2	and	2.9)	
we	now	report	flux	uncertainties	in	mg	m-2	day-1,	and	we	have	revised	
equation	5	accordingly.		Since	the	explicit	definition	of	f{L,0}	is	now	
redundant,	it	has	been	removed	from	the	revised	manuscript.		
	
(1.10)	P11,L17:	Figure	A2	->	Figure	C1	
	
We	now	correctly	reference	figure	“D1”	(previously	figure	C1)	in	P13	L11	of	
the	revised	manuscript.	
	
(1.11)	P11,L11:	A	further	advantage	of	GEO	is	several	revisits	per	day.		
	
We	now	clearly	state	this	in	P14	L24	–	P15	L2	of	the	revised	manuscript	
	
(1.12)	Appendices:	It	would	be	useful	to	have	a	meaningful	title	for	the	appendices	
(instead	of	only	Appenix	A,	B,	C).		
	
We	have	now	added	descriptive	titles	to	Appendices	A-D.	
	
(1.13)	Equation	C1:	What	is	the	inverse	of	a	vector,	f′−1?		
	
We	have	now	added	a	sentence	to	better	clarify	that	f’	is	an	N	×	N	array,	
comprised	of	N	flux	vectors	(P21	L16-18).	
	
(1.14)	P16,L22:	Figure	A1	->	Figure	A2.		
	
Figure	reference	now	corrected	
	
Anonymous	Referee	#2		
	
This	study	presents	an	OSSE	for	different	hypothetical	LEO	and	GEO	satellite	instru-	
ments.	The	focus	is	on	the	requirements	on	these	observing	systems	for	obtaining	
process-relevant	information	on	wetland	emissions	in	the	Amazon	region.	As	
explained	below	some	assumptions	are	made,	which	are	not	well	justified	but	have	a	
potentially	large	influence	on	the	conclusions.	These	will	have	to	be	dealt	with	in	a	
satisfactory	manner	to	make	this	paper	suitable	for	publication	in	ACP.		
	



	
GENERAL	COMMENTS	
	
(2.1)	Autocorrelation	scales	have	been	derived	for	several	parameters	to	motivate	the	
choice	of	spatial	scale	that	the	measurements	should	be	able	to	resolve	in	order	for	the	
OS	to	help	us	gain	process	understanding.	It	is	presented	as	a	novel	approach	that	
could	be	applied	to	other	related	problems.	Although	I	appreciate	the	attempt	to	
derive	such	scales	(which	indeed	addresses	an	important	question),	I	do	not	agree	that	
the	presented	method	solves	this	problem.	The	reason	is	that	the	results	presented	in	
figure	3	depend	on	the	scale	of	the	data	sets	that	are	used.	What	is	shown	is	the	
autocorrelation	of	parameters	that	are	averaged	on	a	scale	of	0.5x0.5	degree.	If	the	
resolution	of	the	datasets	were	much	higher,	then	other	more	local	processes	would	
contribute	to	variability	shortening	the	overall	auto-correlation	scale.	Indeed	it	is	
questionable	whether	the	methane	emission	from	a	local	pond	really	correlates	with	
one	that	is	100	km	away.	What	is	the	motivation	to	use	datasets	at	0.5x0.5	degree?	If	
the	processes	themselves	motivate	this	choice	then	this	should	be	explained.	In	absence	
of	such	a	motivation	it	is	a	probably	more	a	practical	choice.	I	have	no	problem	with	
this	choice	as	long	as	its	limitation	is	made	clear,	and	that	it	requires	reconsideration	
for	any	other	application.		
	
We	agree	with	the	reviewer	that	our	assessment	of	carbon	and	hydrological	
process	variable	correlation	scales	requires	reconsideration	for	any	
subsequent	application.	We	now	clarify	that	the	auto-correlation	scales	are	
specific	to	the	Amazon	river	basin;	we	also	highlight	the	limitation	of	our	auto-
correlation	approach,	and	we	clarify	that	finer-scale	analyses	may	require	
higher	resolution	datasets	to	quantify	GHG	measurement	requirements	(P17	
L4	–	5	and	P17	L8-11).	
	
We	also	agree	with	the	reviewer	that	finer-scale	variability	from	higher-
resolution	datasets	could	potentially	contribute	to	alternative	assessments	of	
auto-correlation	scales.	However,	in	our	derivation	of	Moran’s	I	at	each	L,	we	
aggregate	our	data	at	an	L	×	L	resolution	(see	Appendix	A),	and	therefore	fine-
scale	variability	is	averaged	out	(regardless	of	the	native	resolution	of	the	
dataset).	
	
(2.2)	If	it	is	considered	important	that	the	inversion	resolves	the	autocorrelation	scale	
then	it	is	not	sufficient	to	evaluate	the	posterior	uncertainty	at	that	scale.	This	is	
because	the	off-diagonals	of	the	posterior	covariance	matrix	might	indicate	that	
neighboring	fluxes	are	not	independently	determined.	In	this	study,	however,	the	
performance	criterion	only	considers	values	on	the	diagonal.	In	addition,	the	choice	of	
25%	confuses	monthly	and	annual	fluxes.	The	requirement	is	on	monthly	fluxes,	but	it	
is	derived	from	an	estimate	of	Melack	et	al	on	the	annual	time	scale.		
	
We	agree	with	the	reviewer	that	using	a	“%”	precision	is	misleading.	We	now	
present	flux	precision	in	flux	units	(mg	CH4	m-2	day-1)	throughout	the	
manuscript	and	in	Figures	(6-8).	The	units	are	now	consistent	with	our	



revised	precision	requirement	(10mg/m2/day;	see	response	to	reviewer	
comment	1.3).	
	
We	agree	with	the	reviewer	that	“off-diagonal”	error	correlations	in	retrieved	
fluxes	would	likely	indicate	that	neighbouring	fluxes	are	not	independently	
determined.	However,	as	long	as	all	diagonal	terms	meet	the	precision	
requirement		(10mg/m2/day),	the	OS	can	resolve	underlying	spatial	flux	
patterns	at	the	required	precision	(regardless	of	posterior	error	covariance).		
	
(2.3)	It	is	unclear	why	a	special	effort	is	made	to	derive	requirements	on	horizontal	
resolution	looking	at	the	drivers	of	processes,	whereas	this	is	not	done	for	the	
requirements	on	flux	precision	and	temporal	resolution.	Since	the	inversion	solves	for	
net	fluxes	it	remains	unclear	anyway	if	these	requirements	really	allow	us	to	constrain	
specific	processes.	Wouldn’t	it	have	been	more	logical	to	vary	process	model	
parameters	to	determine	what	is	needed	to	resolve	them?	You	might	wonder	whether	
it	is	even	realistic	to	constrain	processes	only	by	measuring	XCH4	using	a	single	
instrument.	Atmospheric	measurements	are	useful	for	constraining	regional	emission	
budgets,	which	-	in	combination	with	other	information	-	can	be	used	to	derive	
improved	process	under-	standing.	The	OSSE	approach	that	is	taken	disqualifies	
instruments	that	provide	useful	constraints	on	larger	scales	as	part	of	a	multi-
component	global	monitoring	system.		
	
We	now	include	a	quantification	of	the	CH4	flux	precision	requirements	for	
distinguishing	between	both	spatial	and	temporal	CH4	emission	hypotheses	
(see	response	to	reviewer	comment	1.3).	We	have	also	now	included	a	lagged	
Pearson’s	correlation	analysis	to	determine	the	temporal	process	control	
correlation	lengths	(P8	L5-11).	
	
We	agree	with	the	reviewer	that	varying	process	parameters	in	a	model	is	
potentially	a	useful	approach	for	quantifying	the	OS	needed	to	improve	
process	understanding.	However,	due	to	the	scarcity	of	top-down	constraints	
and	in-situ	measurements	in	tropical	wetland	environments	(P6	L23	–	P7	L1),	
little	is	known	about	whether	current	models	are	able	to	capture	the	first-
order	spatial	and	temporal	variability	of	wetlands.	We	have	expanded	our	
discussion	in	P17	L20	-	P18	L9	to	clearly	state	that	model	approaches	can	be	
used	–	albeit	with	due	caution	–	to	define	CH4	OS	measurement	requirements	
of	the	revised	manuscript.	
	
We	also	highlight	the	need	to	investigate	the	added	advantages	of	a	multi-
component	global	monitoring	system	in	P17	L16-18	of	the	revised	manuscript.	
	
(2.4)	This	OSSE	is	extremely	(and	unrealistically	I	would	say)	optimistic	about	the	
uncertainty	reduction	that	can	be	achieved	by	averaging	large	numbers	of	data.	It	is	
mentioned	that	the	’cumulative’	uncertainty	of	GEO	OS	may	be	as	low	as	0.02	ppb.	It	is	
probably	a	main	reason	why	the	GEO	measurement	concept	performs	so	well	in	this	
study.	In	reality,	however,	systematic	uncertainties	will	kick	in	at	much	reduced	



precisions	preventing	any	further	improvements	upon	averaging.	Some	attempt	should	
be	made	to	assess	the	sensitivity	of	the	conclusion	that	improved	process-
understanding	calls	for	the	GEO	approach,	to	the	presence	of	systematic	errors	in	the	
data.		
	
We	agree	with	the	reviewer	that	systematic	biases	are	a	limiting	factor	in	the	
potential	performance	of	a	GEO	approach.	We	have	now	included	a	residual	
CH4	bias	analysis	to	address	this	comment	(see	response	to	comment	1.1).		
	
(2.5)	Further	effort	is	needed	to	quantify	the	impact	of	errors	due	to	the	simplified	
treatment	of	atmospheric	transport.	In	general,	surface	fluxes	are	proportional	to	
spatio-temporal	concentration	gradients	in	the	atmosphere.	Looking	at	figure	C1	it	
becomes	clear	that	the	east-west	gradient	in	WRF	is	substantially	stronger	than	in	
LPDM.	It	has	probably	to	do	with	the	north-	and	southward	transport	along	the	Andes	
in	WRF,	which	is	missing	in	LPDM.	The	impact	of	this	should	be	quantified.		
	
We	agree	with	the	reviewer	that	the	LPDM	approach	underestimates	the	east-
west	gradient	(see	response	to	2.18),	and	we	now	highlight	that	the	LPDM	
provides	a	conservative	estimate	on	the	observable	CH4	gradients	across	the	
region	(P16	L12-14).	To	quantify	the	potential	bias	stemming	from	
underestimated	CH4	gradient	across	the	Amazon	domain,	we	conduct	a	
sensitivity	test	on	the	GEO	and	LEO	median	flux	precision	retrievals,	where	the	
LPDM-derived	transport	operator	is	multiplied	by	1.5.	We	find	that	this	leads	
to	an	inversely	proportional	(~33%)	reduction	in	the	GEO	and	LEO	flux	
precision	(we	report	this	in	lines	P16	L14-16	of	the	revised	manuscript).	
	
(2.6)	It	should	be	made	clearer	why	the	analysis	is	limited	to	the	month	of	March.	
Many	things	are	different	in	other	months	(atmospheric	dynamics,	cloud	cover,	CH4	
fluxes,	etc.).	March	doesn’t	sound	like	a	particularly	good	choice	as	average,	or	
representative	month.		
	
We	now	define	our	OS	requirements	as	the	ability	to	resolve	monthly	CH4	
fluxes	at	the	required	resolution	and	precision	during	the	cloudiest	part	of	the	
2007	wet	season	(see	response	to	comment	1.3).	We	also	highlight	that	March	
is	the	cloudiest	month	in	the	2007	wet	season	(P5	L23-25).	Finally,	we	
highlight	the	need	to	investigate	the	role	seasonal	transport	variability	
(amongst	other	factors)	on	GEO	and	LEO	CH4	flux	retrievals	(P16	L18-20).	
	
SPECIFIC	COMMENTS		
	
(2.7)Page	7,	line	14:	’Throughout	...	CH4	emissions"	I	don’t	see	why	the	fact	that	25%	is	
in	between	the	dynamic	ranges	of	monthly	GPP	and	inundation	variability	would	make	
it	suitable	for	separating	their	influences.	Apart	from	this,	what	justifies	the	assumed	
linearity	between	these	drivers	and	methane	emissions?		
	



We	have	now	addressed	this	concern	with	a	more	robust	derivation	of	CH4	flux	
requirements	(see	response	to	comment	1.3).		
	
(2.8)Page	9,	line	11:	’i.e.	all	accepted	...	100%	cloud-free’	According	to	Appendix	B,	
MODIS	data	that	is	probably	cloud-free	are	considered	as	fully	cloud-free.	These	two	
statements	do	not	fit	together.		
	
We	have	grouped	“probably	cloud	free”	and	“cloud	free”	flags	together,	and	
“probably	cloudy”	and	“cloudy”	flags	together.	We	have	clarified	this	in	P11	
L8-10	in	the	revised	manuscript,	and	we	have	added	a	sentence	in	Appendix	C	
to	clarify	our	assumptions	(P21	L4-6).	
	
(2.9)Page	11,	equation	3:	Why	is	c{L,0}	calculated?	In	the	end	all	that	matters	is	the	
spread	in	’c’	due	to	the	random	perturbation	and	how	it	maps	on	’f’	using	’A’.	The	
uncertainty	in	’f’	does	not	depend	on	the	mean	of	’c’.		
	
We	agree	with	the	reviewer’s	statement,	since	our	derivation	of	f	(equation	5)	
is	independent	of	c{L,0}.	For	the	sake	of	simplicity,	we	now	set	all	c{L,0}	values	
to	zero:	we	clarify	this	in	P13	L15-16	of	the	revised	manuscript.	
	
(2.10)Page	13,	line	21:	’If	Amazon	CH4	fluxes	....	likely	be	lower’	This	depends	on	the	
distribution	of	cloud	cover.	The	wettest	regions	will	likely	be	measured	the	least	
frequent.	This	calls	for	further	motivation	of	why	uniform	emissions	have	been	
assumed.		
	
In	the	revised	manuscript,	we	now	clearly	define	our	OS	requirement	as	the	
ability	to	statistically	distinguish	between	biogeochemical	process	hypotheses	
based	on	cloud	cover	statistics	during	the	cloudiest	time	of	the	2007	wet	
season	(P5	L23-25,	and	see	response	to	comment	1.3).	
	
(2.11)Page	15,	line	7:	Why	is	the	purpose	of	the	parentheses	here?	Please	clarify	
further	at	what	p-level	the	autocorrelations	are	required	to	be	significant,	and	how	
this	is	determined.	For	example	in	the	following	sentence	if	is	not	clear	what	r_i	refers	
to.	Please	revise	the	description	to	explain	more	clearly	what	was	done.		
	
We	have	now	revised	this	sentence	to	better	convey	our	derivation	of	the	
Moran’s	I	p-value	(P19	L6-8).	
	
(2.12)	Figure	1:	What	are	the	different	lines	in	the	inset	figure?		
	
The	green	lines	denote	the	average	WETCHIMP	model	Amazon	basin	monthly	
CH4	emissions.	We	have	revised	the	figure	caption	to	clarify	this.		
	
(2.13)Figure	4:	Why	do	you	call	this	’cumulative	precision’?	Isn’t	it	rather	the	precision	
of	a	300x300km2	average?		
	



We	now	explicitly	define	CH4	“cumulative	precision”	in	P10	L10-11	of	the	
revised	manuscript.	For	the	sake	of	clarity,	we	also	define	CH4	“cumulative	
precision”	in	the	figure	caption	(now	Figure	5).	
	
(2.14)Figure	5:	Why	isn’t	cloud	filtering	affecting	the	number	of	data,	comparing	GEO,	
GEO-	Z1,	GEO-Z2?		
	
Observations	per	unit	area	include	all	attempted	measurements	(both	cloud	
and	cloud-free	measurements).	We	have	revised	the	figure	caption	(now	
Figure	6)	to	reflect	this.	
	
(2.15)Figure	B1:	I	assume	that	both	panels	represent	March	2007.	If	so,	then	this	
should	be	made	clear.		
	
Figure	caption	updated	
	
(2.16)	Figure	C1:	Do	these	values	represent	the	total	column?	If	so,	then	mention	this.		
	
Figure	caption	updated	
	
(2.17)Appendix	B,	line	18:	f(omega,i)	is	not	used	in	equation	1.	Where	do	the	
30x30km2	areas	come	from?		
	
We	now	correctly	use	‘phi’	(as	opposed	to	‘f’)	in	referencing	the	fraction	of	
cloud-free	observations	in	equation	1.	We	have	also	corrected	‘30x30km’	to	‘L	
×	L’.	(P21	L8-9)	
	
(2.18)	Appendix	C,	line	17:	The	mean	in	CH4	is	not	the	relevant	quantity	to	compare	
LPDM	and	WRF	(it	is	the	gradient	in	the	wind	direction	that	matters).		
		
We	now	also	report	the	LPDM-approach	and	WRF	gradients	across	the	domain	
in	Appendix	D	(P23	L11-13;	13.14ppb	and	17.24ppb	respectively);	we	
calculate	the	gradients	as	the	CH4	difference	between	the	North-East	and	
South-West	sub-regions	of	Amazon	basin	domain.	We	have	also	updated	
Figure	D1	to	mark	the	delineation	between	the		“North-East”	and	“South-West”	
regions.	
	
Additional	changes	
	
We	have	rectified	a	minor	bug	in	our	Moran’s	I	code.	We	have	updated	the	
results	and	Figure	3	accordingly.		
	
For	consistency	with	the	new	precision	requirement	derivation,	we	have	
changed	our	spatial	CH4	requirement	from	“300km”	to	“~333km”.	
	



We	have	updated	Figure	8	to	include	bias	simulations	and	the	precision	and	
resolution	requirements.		
	
We	have	removed	the	first	paragraph	of	Appendix	A,	as	the	text	was	
redundant.	
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Abstract. Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. 10 

Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely 

heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging.  Consequently, top-down or 

integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based 

estimates of greenhouse gas fluxes – such as CO2 and CH4 – could potentially provide the constraints needed to resolve 

biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which 15 

amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing 

system requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between 

hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve 

monthly CH4 fluxes at a ~333km resolution and with a ≤10 mg CH4 m-2 d-1 flux precision. We simulate a range of low-earth 

orbit (LEO) and geostationary orbit (GEO) CH4 observing system configurations to evaluate the ability of these approaches 20 

to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ~333km Amazon wetland fluxes 

at a 17.0 mg CH4 m-2 d-1 and 2.7 mg CH4 m-2 d-1 median uncertainty level. Improving LEO CH4 measurement precision by 

2 would only reduce the median CH4 flux uncertainty to 11.9 mg CH4 m-2 d-1. A GEO mission with targeted observing 

capability could resolve fluxes at a 2.0 – 2.4 mg CH4 m-2 d-1 median precision by increasing the observation density in high 

cloud-cover regions at the expense of other parts of the domain. We find that residual CH4 concentration biases can 25 
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potentially reduce the ~5-fold flux CH4 precision advantage of a GEO mission to a ~2-fold advantage (relative to a LEO 

mission). For residual CH4 bias correlation lengths of 100km, the GEO can nonetheless meet the ≤10 mg CH4 m-2 d-1 

requirements for systematic biases ≤10ppb. Our study demonstrates that process-driven greenhouse gas observing system 

simulations can enhance conventional uncertainty reduction assessments by quantifying the OS characteristics required for 

testing biogeochemical process hypotheses.  5 

 

1. Introduction 

 

Quantitative knowledge of biogeochemical processes regulating global carbon-climate feedbacks remains highly uncertain 

(Friedlingstein et al., 2013).  Quantifying the sensitivity of biogeochemistry to climate variables directly from observations 10 

of atmospheric concentrations has long been a goal of researchers (Bacastow et al., 1980; Vukicevic et al, 1997; Gurney et 

al., 2008). Estimating the climate sensitivity of carbon fluxes is complicated by both the spatial scale and structure of climate 

anomalies and the variations of factors affecting ecosystem responses: soils, vegetation, land use and natural disturbance 

(King et al., 2015). Current ground-based and even space-based carbon cycle observing systems produce flux estimates at 

continental or even zonal resolution, limiting direct estimation of relationships between climate forcing, ecosystem 15 

properties and carbon fluxes (Huntzinger et al., 2012, Peylin et al., 2013).  The uncertainty of carbon fluxes at continental 

and finer scales is high, and different systems for flux estimation often produce strikingly different spatial patterns (Schimel 

et al 2015a; Bloom et al., 2016).  Because of the high uncertainty in the spatial regionalization of fluxes, some of the most 

compelling studies of carbon and climate have eliminated the spatial information and instead have used correlative 

approaches to identify the regions likely to be responsible for observed global concentration anomalies (Braswell et al., 20 

1997; Cox et al., 2013; Chen et al., 2015; Franklin et al., 2016). 

 

The expansion of surface and aircraft observing networks has increased our understanding of the carbon cycle, and is 

essential for precise quantification of trace gas concentrations (Andrews et al., 2014, Sweeney et al., 2015; Wilson et al., 

2016). Surface networks are intrinsically limited in their density, by cost, access to remote terrestrial and marine 25 

environments, environmental conditions and other logistical constraints (Schimel et al., 2015b).  The first-generation trace 
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gas observing satellites were designed to make global-scale measurements of concentrations with unprecedented frequency 

and accuracy, but were not designed to test specific hypotheses about biogeochemical processes. The successes of GOSAT 

(Yokota et al., 2009) and OCO-2 (Crisp et al., 2004) open the door to designing a next generation of spaceborne greenhouse 

gas measurements to test specific hypotheses about the terrestrial biosphere or the oceans.  In this paper, we report an 

observing system design exercise aimed at identifying the observing system needed to increase understanding of a long-5 

standing uncertainty in the global carbon budget, specifically the role of tropical wetlands in the global CH4 budget (Mitsch 

et al., 2010; Bloom et al., 2010; Melton et al., 2013).  While we focus this analysis on CH4, we note that the models and 

methodology are equally applicable to other gases (such as CO2), and other regions or mechanisms. 

 

Wetland CH4 emissions 10 

 

Biogenic methane (CH4) emission processes are one of the principal components of global carbon-climate interactions; CH4 

is a potent greenhouse gas (Myhre et al., 2013) and wetlands account for roughly 20-40% of the global CH4 source (Kirschke 

et al., 2013). The processes controlling the magnitude and temporal evolution of CH4 outgassing from wetland environments 

remain largely un-quantified on continental scales. As a result, global scale wetland CH4 emissions (Melton et al., 2013) and 15 

their role in the inter-annual growth of atmospheric CH4 remain highly uncertain. 

 

Global wetland CH4 emissions largely depend on soil inundation, temperature and substrate carbon availability. The major 

sources of wetland CH4 emissions include boreal North America, boreal Eurasia, the Indonesian archipelago, the Congo and 

Amazon river basins (Figure 1, map) which are all characterized by high soil carbon content (Hiederer and Köchy, 2011) and 20 

substantial seasonal or year-round inundation extent (Prigent et al., 2012). By and large, Amazon wetland CH4 emissions 

dominate both the magnitude and uncertainty of global wetland CH4 emissions (Melton et al., 2013). Estimates of Amazon 

wetland CH4 emissions range between 20 – 60 Tg CH4 yr-1 (Fung et al., 1991; Riley et al., 2011; Bloom et al., 2012; Melack 

et al., 2004), roughly equivalent to 10 – 30% of the global wetland CH4 source. Major uncertainties are also associated with 

the spatial and temporal variability of CH4 emissions (Figure 1). Uncertainties in tropical wetland CH4 emission estimates 25 



4 
 

largely stem from a lack of quantitative knowledge of process controls on wetland CH4 emissions, and a lack of data 

constraints on the drivers of wetland emissions. In terms of processes, a range of factors including soil pH, wetland 

vegetation cover, wetland depth, salinity and air-water gas exchange dynamics, likely impose fundamental controls on the 

rate of wetland CH4 emissions. On a continental scale, spatially-explicit knowledge of carbon cycling and inundation remain 

highly uncertain in the wet tropics, primarily due to a sparse in-situ measurement network, high cloud cover and biomass 5 

density 

 

Top-down CH4 flux estimates 

 

Top-down constraints on CH4 fluxes – from atmospheric CH4 observations – are key to retrieving quantitative information 10 

on continental-scale CH4 biogeochemistry (Bousquet et al., 2011; Pison et al., 2013; Basso et al., 2016; Wilson et al., 2016). 

Low-earth orbit satellite missions, including SCIAMACHY, IASI, TES, and GOSAT have surveyed global CH4 

concentrations for over a decade (Frankenberg et al., 2008; Crevoisier et al., 2009; Butz et al., 2011; Worden et al., 2012). In 

particular, column CH4 retrievals from SCIAMACHY have proven sensitive to wetland and other CH4 emissions (Bloom et 

al., 2010; Bergamaschi et al., 2013). However, cloud cover is a major inhibiting factor when measuring atmospheric 15 

greenhouse gas concentrations within the proximity of tropical wetland regions. In particular, densely vegetated seasonally 

inundated areas of the Amazon and Congo river basins can experience more than 95% monthly mean cloud cover. With 

fewer cloud-free observations of lower tropospheric CH4
 concentrations, atmospheric inversion estimates of wetland CH4 

emissions remain exceedingly difficult, especially in the absence of well-characterized prior information on the magnitude, 

location and timing of emissions. 20 

 

Atmospheric inverse estimates of CH4
 emissions are expected to improve with tropospheric CH4 measurements from the 

upcoming ESA TROPOMI mission (Butz et al., 2012; Veefkind et al., 2012). Furthermore, geostationary missions (such as 

GEOCAPE) will potentially provide the measurements needed to substantially improve CH4 emission estimates (Wecht et 

al., 2014; Bousserez et al., 2015). Ultimately, the precision and sampling configuration of atmospheric CH4 observations 25 
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both determine the observing system (OS) capability of retrieving surface CH4 fluxes. It is currently unclear whether future 

CH4 measurements will be sufficient to resolve key CH4 fluxes – such as the Amazon basin wetlands – at a process-relevant 

resolution.  

 

In this study we characterize the satellite observations required to quantify the biogeochemical process controls on Amazon 5 

wetland CH4 emissions. Specifically, we identify and characterize the Amazon CH4 emission processes (section 2.1), define 

the process-relevant CH4 flux resolution and precision required to statistically distinguish between hypothesized wetland 

CH4 emission scenario based on several hydrological and carbon datasets (section 2.2), we simulate atmospheric 

measurements throughout the Amazon basin for a range of low-earth orbit and geo-stationary orbit satellite OS, and we 

derive the corresponding CH4 flux uncertainty using an idealized atmospheric inversion (section 2.3). Based on our results, 10 

we establish the OS requirements and discuss the potential of future OS to resolve Amazon wetland CH4 emission processes 

(section 3). We conclude our paper in section 4. 

 

2. Methods 

 15 

We construct an Observing System Simulation Experiment (OSSE) dedicated to characterizing the spaceborne OS needed to 

resolve the processes controlling wetland CH4 fluxes from Amazon basin (Figure 2). Our OSSE involves the following 3 

steps: we (1) characterize the variability of wetland CH4 process controls; (2) define CH4 flux resolution and precision 

requirements; and (3) derive the atmospheric CH4 concentration OS requirements. We define the atmospheric CH4 OS 

requirement as the ability to meet the CH4 flux resolution and precision requirements during the cloudiest time of year. We 20 

focus our analysis on March 2007: all temporally-resolved carbon and hydrological observations chosen for this study 

overlap in 2007, and March 2007 mean cloud cover (84%) amounts to the highest cloud cover across the whole Amazon 

river basin within the January – April 2007 wet season (cloud cover range = 76% - 84%) and is considerably higher than the 

June – September 2007 dry season cloud cover (46% - 56%).  

 25 
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2.1 Wetland process controls  

 

Wetland CH4 emissions are controlled by a range of biogeochemical processes: inundation is likely to be a first order control 

of wetland emissions, as soil CH4 production largely occurs in oxygen-depleted soils (Whalen et al., 2005). However, 

extensive studies of wetland CH4
 emissions suggest that inundation is not the sole determinant of spatial and temporal CH4 5 

emission dynamics. CH4 can be transferred directly into the atmosphere via macrophytes, thus circumventing the aerobic soil 

layer (Whalen et al., 2005). Water-body depth (Mitsch et al., 2010), type (Devol et al., 1990) together with aquatic 

macrophyte density (Laanbroek 2010) can affect the proportion of wetland CH4
 transferred to the atmosphere. 

 

Carbon (C) availability is also a determinant of wetland CH4 emissions. Methanogen-available C turnover rates (Miyajima et 10 

al., 1997), composition (Wania et al., 2010), temporal dynamics (Bloom et al., 2012) and C stocks together drive spatial and 

temporal variability of carbon limitation on CH4 production in wetlands. C cycle state variables, including the spatial 

variability of total biomass (Saatchi et al., 2011; Baccini et al., 2012) and soil carbon (Hiederer and Köchy, 2011) vary at 

<1000km scales. Methanogen-available C sources – such as gross primary production (GPP) and leaf litter –vary 

substantially at monthly timescales in the wet tropics (Beer et al., 2010; Chave et al., 2010; Caldararu et al., 2012). In the 15 

next section, we establish the CH4 flux resolution and precision requirements based on the variability of potential tropical 

wetland CH4 emissions process controls (namely carbon uptake, live biomass and dead organic matter stocks, inundation and 

precipitation).  

 

2.2 Wetland CH4 flux requirements 20 

 

Here we define a set of wetland CH4 flux precision and resolution requirements suitable for the formulation and testing of 

wetland CH4 emissions process control hypotheses. Measurement and model-based analyses of Amazon wetland CH4 

emissions provide a range of contradictory estimates on spatial patterns and seasonality (Devol et al., 1990; Riley et al., 

2011; Bloom et al., 2012; Melton et al., 2013; Basso et al., 2016) suggesting that the basin-wide process controls on wetland 25 
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CH4 emissions remain virtually unknown. Here, our aim is to provide a first order, model-independent characterization of 

wetland CH4 flux resolution and precision requirements based on the basin-wide variations in carbon and hydrological 

processes. Our resolution requirement is based on the correlation lengths of hypothesized wetland CH4 emission process 

controls. At the required resolution, our precision requirement is that wetland CH4 emissions scenarios – derived from a 

range of hypothesized carbon and hydrological process controls – are (a) statistically inter-distinguishable and (b) 5 

distinguishable from a spatio-temporally uniform wetland CH4 flux (i.e. a null hypothesis).  

 

Given our process-level understanding of wetland CH4 emissions, we propose four carbon and three hydrological proxies as 

the dominant drivers of wetland CH4 emission variability (C1-C4 and H1-H3 respectively). We use carbon stocks and fluxes 

as proxies for variation in C availability for wetland CH4 production. We characterize the spatial variability of carbon uptake 10 

based on the Jung et al., (2009) eddy-covariance based monthly 0.5° × 0.5° GPP product (C1), and monthly 0.5° × 0.5° 

solar-induced fluorescence retrieved from the Global Ozone Monitoring Experiment measurements (Joiner et al., 2013; C2). 

We use the Saatchi et al., (2011) biomass map (C3) and the Hiederer and Köchy, (2011) live biomass and dead organic 

matter carbon stocks (C4). We define the spatial variability of hydrological controls over methane flux based on two 

inundation fraction datasets (Prigent et al., 2012; Schroeder et al., 2015; H1 and H2) and the NASA Tropical Rainfall 15 

Measuring Mission (TRMM; Huffman et al., 2007) precipitation retrievals (H3).  

 

CH4 flux resolution 

 

Our resolution requirement is based on a first-order assessment of the process variable correlation length scales: we 20 

anticipate that retrieving wetland CH4 fluxes at much finer scales may be redundant, while retrieving fluxes at much coarser 

scales may hinder the potential to investigate biogeochemical process controls on wetland CH4 emission variability. We use 

an auto-correlative approach to identify the variability length-scales of potential CH4 emissions process controls (see 

Appendix A). The spatial auto-correlation coefficients (Moran’s I) of the seven limiting process variables indicate coherent 

spatial structures spanning up to ~ 333km – 666km across the Amazon river basin (Figure 3): process variables exhibit high 25 
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auto-correlation at a 1° × 1° resolution (L ~ 111km), and no significant spatial correlation at 6° × 6° (L ~ 666km). Based on 

our correlative analysis, we expect that wetland CH4 flux estimates at 3° × 3° (L ~333km) will likely be critical for a first-

order distinction between the roles of carbon and water processes on Amazon wetland CH4 emissions: we propose a ~333km 

CH4 flux resolution as the spatial resolution required to determine the role of process control variability on wetland CH4 

emissions. For all time-varying datasets (C1, C4, H1, H2 and H3), we conducted a lagged Pearson’s correlation analysis: the 5 

time varying datasets indicate varying levels of statistically significant 1-month auto-correlations across the study region  

(percent of area exhibiting significant autocorrelations: C1 = 98%; C4 = 6%; H1 = 47%; H2 = 51%; H3 = 64%), while 

virtually 0% of the study region exhibits significant 2-months temporal auto-correlations. For this study, we opt for a 

monthly temporal resolution requirement: however, we note that higher-temporal resolution datasets (given their availability) 

can potentially provide an improved assessment of the temporal correlation scales of carbon and hydrological process 10 

controls.  

 

CH4 flux precision 

 

We next derive the CH4 flux precision required to distinguish between hypothesized wetland CH4 process controls at a 15 

~333km monthly resolution. We derive the precision requirements assuming one continuous year of CH4 flux retrievals. We 

formulate (a) spatial CH4 emission hypotheses, where wetland CH4 emissions linearly co-vary with the hypothesized 

processes at ~333km scales, and (b) temporal CH4 emission hypotheses, where wetland CH4 emissions linearly co-vary with 

the hypothesized processes on monthly timescales scales. Our motivation for evaluating both spatial and temporal 

hypotheses is that we do not necessarily expect the spatial and temporal process controls on wetland CH4 emissions to be the 20 

same. For example, Amazon wetland CH4 emissions could be spatially limited by carbon uptake (GPP) and temporally 

driven by inundation. Each wetland hypothesis is scaled to an annual mean flux of 12 mg m-2 day-1, which corresponds to the 

Melack et al., (2004) annual Amazon-wide wetland CH4 emission estimate (29.3 Tg CH4 yr-1 across 668 Mha). The explicit 

formulation of spatial and temporal wetland CH4 emission hypotheses is described in Appendix B.  

 25 
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For a range of retrieved CH4 flux precisions across the Amazon basin (spanning 1 – 100 mg m-2 day-1), we test whether each 

spatial and temporal wetland CH4 emission hypothesis is statistically distinct from alternative hypotheses and a “no 

variability” hypothesis (i.e. a null hypothesis); the derivation of the statistical confidence in distinguishing between 

hypotheses is described in Appendix B. The distinction confidence (%) for spatial and temporal hypotheses is shown in 

Figure 4: at a monthly ~333km resolution, both spatial and temporal wetland CH4 emission hypotheses are inter-5 

distinguishable with >95% confidence at a ≤ 10 mg m-2 day-1 CH4 flux precision.  

 

CH4 requirements 

 

Given the spatial and temporal variability of potential hydrological and carbon controls, we define the following 10 

requirements for wetland CH4 flux retrievals: 

 

• CH4 flux spatial resolution = ~333km 

• CH4 flux temporal resolution: monthly 

• CH4 flux precision: = 10 mg CH4 m-2 day-1 15 

 

Our resolution and precision requirements provide a first-order assessment of the wetland CH4 emission biogeochemical 

process control variability. We anticipate that satellite-based CH4 flux estimates meeting the above-stated requirements will 

provide robust characterization of spatial variation in Amazon wetland CH4 emissions on the scale of variation in the major 

carbon and water controls, allowing forcing (hydrology and carbon) and response (CH4 flux) to be related directly. 20 

Therefore, by retrieving CH4 fluxes at the required resolution and precision, carbon and hydrological process hypotheses on 

the dominant drivers of Amazon wetland CH4 emissions can be adequately investigated. However, depending on the nature 

of the scientific investigation, we recognize that the trade-off space between spatial resolution, temporal resolution, precision 

and study duration can be further explored to derive an optimal combination of CH4 flux requirements. 
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Throughout the next subsections, we characterize the required satellite column CH4 measurements needed to resolve CH4 

flux with the above-stated requirements. To quantify the sensitivity of our results to the above-mentioned requirements, we 

repeat our analysis for a range of CH4 flux spatial resolution requirements (L = 150km – 990km) and we derive the 

corresponding CH4 flux precision requirements.  

 5 

2.3 CH4 observation requirements 

 

We define the atmospheric CH4 observation requirements by retrieving CH4 fluxes from a range of low-earth orbit (LEO), 

and geo-stationary orbit (GEO) OS simulated CH4 retrieved concentrations, or “observations”. Our approach is three-fold: 

(a) we simulate LEO and GEO CH4 observations for March 2007; (b) we derive the precision of CH4 measurement averaged 10 

at an L × L resolution (henceforth the “cumulative CH4 measurement precision”), and (c) we employ an idealized inversion 

to simulate CH4 flux retrieval uncertainty for March 2007 based on the cumulative CH4 measurement precision. We note that 

wetland emissions are the largest and most uncertain source of CH4 within the Amazon river basin (Wilson et al., 2016; 

Melton et al., 2013). We henceforth assume that the non-wetland CH4 contribution (namely fires and anthropogenic CH4 

sources) can be relatively well characterized using ancillary datasets and global inventories (Bloom et al., 2015; Turner et al., 15 

2015 and references therein).   

 

LEO and GEO CH4 observations 

 

The advantage of LEO systems is a near-global coverage; for the TROPOMI mission CH4 orbit and measurement 20 

parameters, this equates to a 1-day maximum re-visit period globally. While a GEO system can only view a fixed area on the 

globe, revisit periods can be far shorter. To relate CH4 observation requirements to current technological capabilities, we 

explore six OS configurations based on LEO and GEO OS parameters used to simulate the up-coming GEOCAPE and 

TROPOMI missions’ observations in North America by Wecht et al., (2014) (Table 1). We note that, for regional CH4 

emission estimates, the GEO OS configurations are expected outperform LEO due to a larger data volume: the fixed viewing 25 
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area permits multiple re-visits per day (Wecht et al., 2014), and the smaller GEO footprint size typically leads to lower 

cloud-contamination (Crisp et al., 2004). Our aim here is not to compare CH4 emission estimates from LEO and GEO CH4 

retrievals. Rather, our aim is to determine whether CH4 emission estimates from a range of LEO and GEO OS configurations 

are able meet the wetland process requirements outlined in section 2.1. 

 5 

Cloud cover is a major limiting factor in Amazon basin trace-gas retrievals. Mean March 2007 cloud cover is 89% – ranging 

from 38% to 98% at a 1° × 1° resolution – throughout the Amazon river basin (based on MODIS cloud-cover data, Figure 

B1). We quantify the data-rejection due to cloud cover based on 1km March 2007 MODIS cloud cover data. Based on four 

MODIS cloud cover flags, we categorize 1km × 1km cloud-cover observations into “cloud-contaminated” and “cloud free” 

observations (see Appendix C). Any cloud-contaminated 3km×3km (GEO) or 7km×7km (LEO) CH4 measurement footprints 10 

are rejected, i.e. all accepted footprints are 100% “cloud-free”.  

 

To assess the relative importance of CH4 measurement density in high cloud-cover areas, we test two additional geo-

stationary configurations: “GEO-Z1” carries out two visits per day and 6 visits per day in the top 50% cloudiest areas; 

“GEO-Z2” carries out two visits per day and 10 visits per day in the top 25% cloudiest areas (we note that these two OS 15 

would require targeting capabilities to optimize the sampling strategy over the cloudiest area of the basin). We further 

explore OS space by testing LEO with a 2 precision enhancement (“LEO+”) and GEO with 8 visits per day instead of 4 

(“GEO×2”).  

 

Cumulative CH4 measurement precision 20 

 

For each OS ω (“GEO”,”LEO”, etc.), 𝐎 !,!  is the cumulative CH4 measurement precision at a L × L  resolution. 𝐎 !,!  is an 

N × 1 array, where N is the number of Amazon river basin grid-cells at resolution L × L. We derive the cumulative 

atmospheric CH4 precision within each L × L grid-cell i, 𝑂!
{!,!} as follows: 

 25 
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𝑂!
{!,!} =

𝜎!

𝑎 𝜙!
{!} 𝑛 !  𝐿!

                                        (1) 

 

where σω is the single observation precision (table 1), 𝜙!
{!} is the  fraction of cloud-free observations at location i, 𝑛 !  is the 

number of observations per km2 per month for OS ω (based on Table 1 values), and a the fraction of accepted cloud-free 

CH4 column retrievals (set to a = 0.5); The derivation of 𝜙!
{!} is based on MODIS 1-km cloud cover data over the Amazon 

river basin in March 2007 (Appendix C). The square of the denominator in (1) corresponds to the number of atmospheric 5 

column CH4 measurements per L × L grid-cell. For all OS, 𝑛 !  is calculated assuming continuous basin-wide coverage at 

the single-sounding footprint resolution (see Table 1). We highlight that our formulation of cumulative CH4 precision in 

equation 1 implies retrieved CH4 errors are spatially and temporally uncorrelated. 

 

OS retrieved CH4 flux precision 10 

 

We calculate the monthly retrieved CH4 flux precision for OS ω at an L × L resolution – 𝐅{!,!} –based on 𝐎 !,!  (equation 

1). 𝐅{!,!} is a N × 1 array, where N is the number of Amazon basin grid-cells at resolution L × L. To calculate 𝐅{!,!} we 

simulate an ensemble of 1000 retrieved CH4 concentrations vectors (𝐜∗,!
!,!  for n = 1 – 1000) over the Amazon river basin, 

where: 15 

 

𝐜∗,!
!,! = 𝐜 !,! + 𝐍 0,1 ∘ 𝐎 !,! ;    (2) 

 

𝐜 !,!  is a N × 1 array of L × L gridded unperturbed CH4 concentrations, N(0,1) is an N × 1 array of normally distributed 

random numbers with mean zero and variance one (“∘” denotes element-wise multiplication). We relate the concentrations 20 

𝐜 !,∗  to the underlying CH4 fluxes 𝐟 !,∗  as follows: 

 

𝐜 !,∗ = 𝐀 ! 𝐟 !,∗ ,      (3) 
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where 𝐀 !  is the atmospheric transport operator (the N × N matrix transforming fluxes to concentrations over the Amazon 

river basin domain) and 𝐟{!,∗} is an N × 1 array of surface CH4 fluxes. For the sake of brevity, we present a summary of 𝐀 !  

here, and the complete derivation of 𝐀 !  in Appendix D. We use a Lagrangian Particle Dispersion Model (LPDM: Uliasz, 

1994; Lauvaux and Davis, 2014) to derive an “influence function” (or "column footprint") relating satellite-retrieved 5 

atmospheric CH4 concentrations to surface fluxes (the inverse solution of the transport from the surface to higher altitudes) at 

the center of the study area. We simulate 30km × 30km CH4 transport – 𝐀 !"#$  – by spatially translating the LPDM 

influence function throughout the domain. To assess the robustness of the LPDM approach, we also simulated CH4 column 

mixing ratios over the Amazon river basin at 30km using the Weather Research and Forecasting model (WRF v2.5.1, 

Skamarock et al., 2008). The WRF model March 2007 Amazon river basin concentrations and the corresponding LPDM 10 

approximations are shown in Figure D1. Finally, we used a Monte Carlo approach to statistically construct 𝐀 !  based 

on 𝐀 !"#$ . The LPDM, WRF and the Monte Carlo derivation of A are fully described in Appendix D.  

  

For each L, we simulate the flux uncertainty based on the inverse of 𝐀 ! , (𝐀 ! )!! and simulated CH4 concentrations vectors 

(𝐜∗,!
{!,!}, equation 2). For the sake of simplicity, we set all unperturbed concentrations – 𝐜 !,!  in equation 2 – to be equal to 15 

zero, since these do not influence our subsequent derivation of 𝐅{!,!}. The nth retrieved flux estimate – 𝐟∗,!
{!,!} – is calculated 

as: 

 

𝐟∗,!
{!,!} = (𝐀 ! )!! 𝐜∗,!

{!,!}.     (4) 

 20 

Finally, we calculate the flux precision 𝐅{!,!} at grid-cell i as follows: 

 

𝐹!
{!,!} = 𝑆𝑡𝐷𝑒𝑣 𝐟!,∗

{!,!} .     (5) 
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Residual CH4 bias simulation 

 

Despite the implementation of CH4 bias correction methods based on satellite CH4 retrieval comparison against ground 

measurements of total column CH4 (Parker et al., 2011), spatial structures in residual CH4 biases are a key limiting factor in 

top-down CH4 flux accuracy. Here we quantify the role residual CH4 biases for each OS configurations. We simulate a 5 

retrieved pseudo-random CH4 bias structure with a spatial correlation of s = 100km and no temporal correlation, which is 

consistent with the likely first order predictors of retrieved CH4 residual biases (Worden et al., 2016). Here we simulate a 

range of pseudo-random bias distributions with standard deviations spanning b = 0.5 – 50ppb. For each b, we calculate the 

bias-influenced flux uncertainty 𝐅{!,!,!} based on equations 4 and 5: to incorporate spatially correlated biases, we adapt eq. 2 

to derive the mean concentration uncertainty 𝐜′∗,!
!,!,!  as 10 

 

𝐜′∗,!
!,!,! = 𝐍 0,1 ∙ 𝐎 !,! +  𝐍 0,1  ∙ 𝑏 ∙ !

! !
    (6) 

 

where b represents the standard deviation of the pseudo-random CH4 bias, v represents the number of visits per month; for  

bias errors correlated across spatial scales s, the scale factor !
! !

 accounts for the pseudo-random behaviour of bias errors b at 15 

a monthly L × L resolution. We assess the role CH4 biases on 𝐅{!,!,!} for the LEO and GEO OS configurations at L = 

~333km.  

 

3. Results and Discussion 

 20 

Cumulative CH4 precision for mean monthly atmospheric column CH4 measurements is 0.10 – 0.98 ppb for the LEO OS 

(Figure 5, left) and 0.02 – 0.20 ppb for the GEO OS (Figure 5, right). The lowest CH4 concentration precision occurs in the 

East and central Amazon river basin. A crucial advantage of the smaller GEO OS footprint is the 88–148% higher 

probability of cloud-free observations in the cloudiest regions of the Amazon river basin (Figure B1); the probability of 



15 
 

acquiring cloud-free observations in cloud-prone areas is further enhanced by the GEO OS ability to conduct multiple visits 

per day (see eq. 1). 

 

For L  = ~333km, median monthly retrieved CH4 flux precision for the LEO OS  (i.e. the median of 𝑭{!,!}) is 17.0 mg CH4 

m-2 day-1 (Figure 6); increasing the single sounding retrieval precision by 2 (from 0.6ppb to 0.42ppb) for LEO observations 5 

(LEO+) reduces the retrieved flux uncertainty to 11.9 mg CH4 m-2 day-1. This uncertainty reduction is equivalent to a second 

LEO visit per day (see table 1): the factor 3-to-10 lower uncertainties for cumulative GEO CH4 concentrations (Figure 5) 

lead to a 2.7 mg CH4 m-2 day-1 median uncertainty in the retrieved flux (Figure 6). Doubling the number of GEO visits per 

day (GEOx2 OS) reduces the retrieved flux uncertainty to 1.9 mg CH4 m-2 day-1. GEO-Z1 and GEO-Z2 uncertainties (2.4 

and 2.0 mg CH4 m-2 day-1) are both lower than GEO. These results indicate that – despite a lower number of accepted 10 

observations – a higher observation density in the high cloud-cover areas of the Amazon basin (and lower observation 

density elsewhere) can be used to reduce the retrieved CH4 flux uncertainty without increasing the number of observations 

per day. Based on the LEO OS, we anticipate that missions similar to the ESA TROPOMI observation configuration 

(Veefkind et al., 2012; Wecht et al., 2014) will lead to lower-than-required information content for Amazon wetlands and are 

unlikely to provide sufficient observational constraints to resolve the dominant CH4 flux processes. 15 

 

Our bias CH4 analysis (Figure 7) indicates that GEO retrieved CH4 flux precisions at L = ~333km are relatively unaffected 

by residual CH4 biases <1ppb, while LEO retrieved CH4 flux precisions are relatively unaffected by residual CH4 biases 

<5ppb. We find that the advantage of GEO CH4 flux precision over LEO diminishes from almost one order of magnitude at 

residual CH4 biases <1ppb, to roughly a factor of 2 for residual biases >20ppb. Here we assume a residual CH4 bias 20 

correlation scale of 100km (section 2.3); based on eq. 6, we expect a larger impact of residual CH4 biases on OS retrieved 

CH4 flux precision for residual CH4 bias correlation lengths >100km or for temporally correlated CH4 biases. Overall, the 

relative advantage of GEO over LEO OSs is contingent on both the cumulative CH4 precision (Figure 5) as well as the 

anticipated spatiotemporal structure of residual CH4 bias.  

 25 
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Estimates of fluxes at L = 150 – 990km show that median GEO retrieved CH4 flux uncertainty is consistently a factor of ~5 

lower than the median LEO retrieved CH4 flux uncertainty (Figure 8); for a 10ppb residual pseudo-random bias, the median 

GEO retrieved flux uncertainty is consistently a factor of ~3 lower than LEO-retrieved flux uncertainty. GEO-derived CH4 

fluxes meet the both the precision and resolution requirements for L =  ~180 – 333km; for a 10ppb residual bias, GEO-

derived CH4 fluxes meet both requirements at L =  ~280 – 333km. At the expense of the resolution requirement, both GEO 5 

simulations meet the precision requirements for all L ≥ ~333 km. Unbiased median LEO-derived CH4 fluxes meet the 

precision requirements at L>500km; LEO-derived CH4 fluxes with a 10ppb pseudo-random bias meet the precision 

requirement at L>800km and partially meet the precision requirement for 550km>L>800km.  

 

In our analysis we have assumed (i) no systematic biases in our atmospheric inversion simulation, and (ii) perfectly known 10 

boundary conditions. Significant systematic atmospheric CH4 retrieval and transport model biases can undermine the 

enhanced accuracy of geostationary OSs. For example, we find that our LPDM-derived transport operator yields a 

conservative estimate of the monthly mean CH4 gradient across the domain relative to the WRF model simulation (Appendix 

D; Figure D1). We assess the sensitivity of our results to a factor of 1.5 increase in the LPDM-derived transport operator 

(𝐀 ! ); OS CH4 flux precision results exhibit an inversely proportional response, corresponding to a ~33% uncertainty 15 

reduction (median GEO flux precision of 1.8 mg CH4 m-2 day-1 and a LEO precision of 11.3 mg CH4 m-2 day-1). GEO 

missions are likely to provide a higher volume of observations at the boundaries of the observation domain, relative to LEO 

OS: therefore, boundary conditions are likely to reinforce the potential of GEO OS compared to LEO. We recognize that 

further efforts are required to fully assess the role of seasonal transport variability, transport errors, boundary condition 

assumptions and atmospheric CH4 bias structures on the accuracy of GEO and LEO CH4 flux retrievals.  20 

 

We note that a limiting factor in our analysis is the lack of data constraints on diurnal cloud-cover variability (since the 

MODIS cloud cover dataset does not provide diurnal constraints). The March 2007 ERA-interim monthly mean 3h cloud 

cover dataset indicates a 7 – 80% (median 29%) coefficient of variation of cloud-free fraction diurnal variability throughout 

the Amazon basin. Given the non-linear sensitivity of data yield to synoptic cloud cover (Figure B1), the cloud-free fraction 25 
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coefficient of variation may amount to an important component in assessing and optimizing the performance of LEO and 

GEO OSs over the Amazon basin, as well as other high cloud-cover regions across the globe.  

 

Our CH4 flux resolution requirement (monthly L = ~333km CH4 flux retrievals) is derived based on an assessment of carbon 

and hydrological auto-correlation scales across the Amazon river basin. Although our sensitivity analysis (Figure 8) shows 5 

that GEO can potentially distinguish between the hypothesized CH4 emission scenarios at L > ~333km, we anticipate that 

additional biogeochemical investigations – such as the second-order interactions between carbon and hydrological drivers on 

wetland CH4 emissions – would likely be increasingly challenging at coarser resolutions. We recognize that our resolution 

requirement and our quantification of correlation scales is specific to our study region: for example, quantification of 

greenhouse gas measurement requirements for finer-scale studies would yield a unique set of requirements, and supporting 10 

analyses may require higher-resolution datasets. Our approach provides the means to examine trade-offs between spatial and 

temporal resolutions. For example, further analyses can be conducted to establish the space-time trade-offs to optimize 

biogeochemical investigations and process uncertainty reduction. We also note that GEO OSs provide unprecedented 

volume of observations: the enhanced sampling approach can potentially be used at shorter timescales to optimally resolve 

source and transport patterns. This approach could be particularly useful in instances wetland CH4 emissions are densely 15 

focused in space or time.  Finally, we highlight the potential for combining multiple OSs (e.g. LEO and GEO systems) to 

optimally constrain CH4 fluxes and biogeochemical process controls; the potential of OS synergies undoubtedly requires 

further investigation. 

 

In contrast to our approach, CH4 flux uncertainty requirements can alternatively be derived by quantifying process-based 20 

wetland CH4 emission model uncertainty (Melton et al., 2013), or by characterizing the CH4 flux uncertainty stemming from 

wetland CH4 model parametric uncertainty (Bloom et al., 2012). An advantage of model-based requirements is the ability to 

assess CH4 flux uncertainties associated with the complex interactions between wetland CH4 processes (e.g. Riley et al., 

2011). Prior information on the magnitude and variability of fluxes can also be introduced (e.g. in a Bayesian atmospheric 

transport and chemistry inversion framework) to re-assess posterior uncertainty estimates. 25 
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However, as outlined in section 2.1, large unknowns preside over the processes governing the spatial and temporal 

variability of wetland CH4 fluxes. Moreover, wetland CH4 models often exhibit structural similarities (Melton et al., 2013); 

for example, wetland CH4 emission models (Melton et al., 2013) suggest major CH4 emissions along the main stem of the 

Amazon river (Figure 1). Since model spatiotemporal CH4 flux variations – and their associated processes – have not been 5 

adequately assessed due to insufficient in-situ measurements (particularly in the tropics), the introduction of prior spatial and 

temporal correlations in wetland CH4 flux estimates would hinder the potential to independently investigate biogeochemical 

process controls on wetland CH4 emissions. To our knowledge, our analysis provides a first quantification of the OS 

requirements for confronting prior knowledge on CH4 fluxes at a process-relevant resolution.  

 10 

4. Concluding remarks 

 

Quantitative knowledge of biogeochemical processes controlling biosphere-atmosphere greenhouse gas fluxes remains 

highly uncertain. Optimally designed satellite greenhouse gas observing systems can potentially resolve the processes 

controlling critical boreal and tropical greenhouse gas fluxes. In this study, we have characterized a satellite OS able to 15 

resolve the principal process controls on Amazon river basin wetland CH4 emissions. Conventional low-earth orbit satellite 

missions will likely be unable to resolve Amazon wetland CH4 emissions at a process-relevant scale and precision. 

Observation density in time and space, and its reduction by cloud cover are the major limiting factors. Increasing the number 

of daily CH4 measurements in cloudy regions at the expense of other measurements can further reduce the retrieved CH4 flux 

precision from geostationary satellite CH4 measurements. OSSEs based on reducing process uncertainty can inform 20 

observation requirements for future greenhouse gas satellite missions in a far more targeted way than simply quantifying 

overall flux uncertainty reduction for a given OS.  

 

Appendix A: Correlation lengths 

 25 
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All datasets described in section 2.2 were aggregated to a common 0.5° × 0.5° resolution. For each process control dataset, 

we derive the Moran’s I spatial auto-correlation coefficient (rMI) at an L × L resolution, where L = 0.5°, 1°, 1.5°, … , 10°. For 

every L we aggregated the dataset to L × L resolution. To determine whether the derived rMI are significant relative to the 

null hypothesis, we repeat the Moran’s I derivation 2000 times for normally distributed random numbers (in the place of the 

L × L gridded dataset), which together statistically represent the Moran’s I distribution (RMI) for statistically insignificant 5 

spatial correlation. When rMI > median(RMI), the rMI p-value is twice the fraction of instances where RMI > rMI; when rMI < 

median(RMI), the rMI p-value is twice the fraction of instances where RMI < rMI. A p-value ≥ 0.05 indicates that the null 

hypothesis cannot be rejected with a 95% confidence.  

 

Appendix B: Spatial and temporal wetland CH4 emission hypotheses 10 

 

Detectability of wetland CH4 hypotheses 

 

Based on the four carbon and three hydrological proxies (see section 2.2), we formulate spatial and temporal wetland CH4 

emission hypotheses (henceforth S and T respectively) – at a monthly ~333km × 333km resolution – and determine our 15 

ability to statistically distinguish between these at a range of retrieved CH4 flux precisions (p = 1  - 100 mg m-2 day-1). For all 

S, we prescribe temporally constant CH4 emissions and for T we annually normalize mean annual emissions to 12 mg m-2 

day-1 within each ~333km ×	333km area; For both S and T we also include a “no variability” scenario, where all emissions 

in space and time are 12 mg m-2 day-1. We note that by minimizing the variability of each hypothesis to a single temporal or 

spatial variable, we effectively assume a “worst-case” scenario for the detectability S and T hypotheses relative to the null 20 

hypothesis. 

 

For hypothesized process control h we derive the temporal wetland CH4 emission hypothesis T*,*,h, as: 

 

𝑇!,!,! = 𝑠! 𝑃!,!,!          (B1) 25 
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where Px,t,h represents the hypothesized process control h at location x and time t, and sx is a scaling factor such that 𝑻!,∗,!  = 

12 mg m-2 day-1. For the temporal hypotheses we omit the soil carbon and carbon stock proxies, as these datasets are not 

temporally resolved. Each spatial hypothesis S*,*,h is defined as  

 5 

𝑆!,!,! = 𝑠 𝑷𝒙,∗,!          (B2) 

 

where s is a scaling factor such that 𝐒∗,!,! = 12 mg m-2 day-1. For each hypothesis h and each precision p we simulate 

retrieved CH4 fluxes Fx,t,h,p  as 

 10 

𝐹!,!,!,! =  𝐻!,!,! + 𝑁 0,1  ∙ 𝑝                    (B3) 

 

where Hx,t,h is the spatial or temporal hypothesis CH4 flux (Tx,t,h  or Sx,t,h) and N(0,1) is a normally distributed number with 

mean 0 and variance of 1. For each h, we compare F*,*,h,p against all hypothesized process controls h’ as follows: 

 15 

𝐽!,!!,! = (𝐹!,!,!,! − 𝐻!,!,!!)!,!
!      (B4) 

 

We repeat the derivation of J 500 times, and we define the detectability confidence Ch,p as the percentage of times where 

Jh,h,p = min(Jh,*,p); the min() function denotes the minimum of all Jh,*,p elements. In summary, Ch,p is the probability of 

distinguishing a hypothesized wetland CH4 process control h from alternative wetland CH4 process controls when wetland 20 

CH4 fluxes are retrieved with precision p. Ch,p values for spatial and temporal wetland CH4 hypotheses are summarized in 

Figure 4. We henceforth define a wetland CH4 hypothesis as “distinguishable” from alternative hypotheses at precision p 

when Ch,p > 95%. 

 

Appendix C: MODIS cloud cover 25 
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The MODIS cloud cover analysis was performed based on the MOD06_L2 1km cloud mask product (downloaded from 

modis.gsfc.nasa.gov). We consider “probably cloudy” and “cloudy” 1km × 1km pixel flags as cloud-covered areas (CC = 1), 

and the remaining pixel flag categories (“probably clear” and “clear”) as cloud-free areas (CC=0): here we assume that the 

statistical patterns of cloud-cover across the Amazon domain remain well characterized when assigning “probably clear” and 5 

“probably cloudy” pixels to the “cloud-free” and “cloud-covered” categories. We aggregate the 1km data to Nkm × Nkm (N 

is the OS footprint resolution; GEO N = 3km; LEO N = 7km; see Table 1) to calculate the number of cloud-free Nkm × Nkm 

areas within each MODIS cloud cover scene. The monthly fraction of cloud-free observations 𝜙!
{!} (see equation 1) is 

calculated by deriving the ratio of cloud-free to total Nkm × Nkm areas within each L × L area. A regional summary of the 

observation yields (% of cloud-free Nkm × Nkm areas) for a range of footprint resolutions (N = 1 – 10km) is shown in Figure 10 

B1. 

 

Appendix D: Atmospheric transport operator 

 

For L  = 150km - 990km, we derive the N × N atmospheric transport operator 𝐀{!} for L × L resolution fluxes based on N 15 

random CH4 flux vectors (𝐟! ! ) and their corresponding concentrations (𝐜! !  ): 𝐟! !  and 𝐜! !  are N × N arrays, where each 

column of 𝐟! !  is a vector of randomly sampled CH4 fluxes throughout the domain, and each column in 𝐜! !  is a vector of 

the corresponding CH4 concentrations. 𝐀{!} is derived as: 

 

𝐀{!} = 𝐟! !
!!
𝐜! ! .     (D1) 20 

 

For each n, random CH4 fluxes at grid-cell i are derived as 𝑓!,!
! ! = R(0,1), where R(0,1) is a random number sampled from a 

normal distribution with mean zero and variance 1. Atmospheric concentrations are firstly simulated at resolution L0 = 30km; 
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the fluxes 𝐟∗,!
! !  are downscaled to L0 × L0 resolution (𝐟∗,!

! !! ). For each 30km × 30km grid-cell i, the mean atmospheric CH4 

concentration c!
{!!} is calculated as  

 

c′!,!
{!!} = 𝐈!𝐟∗,!

! !!    (D2)   

 5 

where 𝐟∗,!
!!  is the N × 1 array of CH4 fluxes, Ii  is the N × 1 influence function array for grid-cell i. We derive Ii using a 

Lagrangian Particle Dispersion Model (LPDM, Uliasz, 1994). The influence function derivation (i.e. the column sensitivity 

to the surface fluxes) is described in Lauvaux and Davis (2014). The influence function was computed for an averaged 

column observation in the model of the simulation domain, for every hour of March 2007. The inverse calculation of surface 

fluxes requires the use of the adjoint of the transport at the mesoscale (~2000km). Here, we only simulated the fraction of the 10 

column influenced by surface fluxes. We assume boundary conditions are well constrained by satellite and surface network 

measurements: therefore, only the first 6km of the column was described by the particles released backward in the model.  

  

To simulate total column CH4 retrieval influence functions, we incorporate a mean GOSAT CH4 retrieved averaging kernel 

(Parker et al., 2011) for the Amazon river basin region (Figure A1). To minimize the computational cost of simulating 15 

atmospheric transport, we (i) derive the influence function for the center of the domain (I0, Lat = 4.9°S and Lon = 63.8°W), 

and (ii) we derive Ii by spatially translating I0 to gridcell i latitude and longitude coordinates. Finally, we derive mean L × L 

resolution concentrations used in equation C1, (𝐜∗,!
! ! ), based on the spatial aggregation of L0 × L0 resolution concentrations 

𝐜∗,!
! !! . 

 20 

To assess the viability of our approach, we simulate March 2007 L0 × L0 atmospheric concentrations – based on 𝐟{!!,!}, 

where for i=1 – N,  𝑓!
!!,! = 12 mg m-2 day-1  – throughout the Amazon river basin domain using (a) equation D2, and (b) 

WRF CH4 atmospheric transport model. In the WRF model, 𝐟{!!,!} was coupled to the atmospheric model through the 

chemistry modules (WRF-Chem) for passive tracers, as described in Lauvaux et al. (2012). The physics configuration of the 
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model used Mellor-Yamada-Nakanishi-Niino scheme for the Planetary Boundary Layer (Nakanishi and Niino, 2004), the 

NOAH land surface model (Pan and Mahrt, 1987), the WSM-5 microphysics scheme (Hong et al., 2004), and the Kin-

Fritsch cumulus parameterization (Kain, 2004). The meteorological driver data from the Global Forecasting System (FNL) 

analysis products at 1° × 1° resolution was used at the boundaries of the simulation domain. The simulation domain spans 

120x100 L0 × L0 grid-points, and 60 vertical levels to describe the atmospheric column up to 50 hPa. The atmospheric 5 

column was extracted from the surface to the top of the modeled atmosphere, which represents about 90% of the total air 

mass. A dilution factor of 0.9 was used to compensate for the partial model column. 

 

The LPDM approach emulates the large-scale WRF CH4 enhancement (r2 = 0.85 see Figure D1); the smoothing effect is due 

to the use of a single footprint throughout the entire domain. Mean CH4 concentrations based on our approach (equation D2) 10 

and WRF are 15.23ppb and 17.42ppb respectively. The gradient of CH4 between the North-East and South-West sub-regions 

for our approach (equation D2) and WRF are 13.14ppb and 17.24ppb respectively; the delineation of the North-East and 

South-West domain is shown in Figure D1. 

 

Acknowledgments 15 

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract 

with the National Aeronautics and Space Administration. Inundation datasets are available at noaacrest.org/rscg/ and 

wetlands.jpl.nasa.gov. TRMM data is available at mirador.gsfc.nasa.gov. The gross primary production dataset was 

obtained from bgc-jena.mpg.de. The soil carbon dataset is available at esdac.jrc.ec.europa.eu. ERA-interim synoptic 

monthly mean re-analyses were downloaded from apps.ecmwf.int. 20 

References 

 

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., 

Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., 

Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, 25 



24 
 

and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas 

Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas 

monitoring efforts, Atmos. Meas. Tech., 7, 647–687, doi:10.5194/amt-7-647-2014, 2014. 

 

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, 5 

R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation 

improved by carbon-density maps, Nat. Climate Change, 2, 182– 185; doi:10.1038/nclimate1354, 2012. 

 

Bacastow, R. B., Adams, J. A., Keeling, C. D., Moss, D. J., Whorf, T. P., and Wong, C. S.: Atmospheric carbon dioxide, the 

Southern Oscillation, and the weak 1975 El Niño, Science, 210, 66–68, doi:10.1126/science.210.4465.66, 1980. 10 

 

Basso, L. S., Gatti, L. V., Gloor, M., Miller, J. B., Domingues, L. G., Correia, C. S., and Borges, V. F.: Seasonality and 

interannual variability of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles. J 

Geophys Res-Atmos, 121, 168–184, doi: 10.1002/2015JD023874, 2016. 

 15 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., 

Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., 

Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide 

Uptake: Global Distribution and Covariation with Climate, Science, 329, 834– 838, doi:10.1126/Science.1184984, 2010. 

 20 

Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., 

Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first 

decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface 

measurements, J. Geophys. Res., 118, 7350–7369, doi:10.1002/jgrd.50480, 2013. 

 25 



25 
 

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-Scale Controls of Methanogenesis Inferred 

from Methane and Gravity Spaceborne Data, Science, 327, 322–325, doi:10.1126/Science.1175176, 2010. 

 

Bloom, A. A., Palmer, P. I., Fraser, A., and Reay, D. S.: Seasonal variability of tropical wetland CH4 emissions: the role of 

the methanogen-available carbon pool, Biogeosciences, 9, 2821– 2830, doi:10.5194/bg-9-2821-2012, 2012.  5 

 

Bloom, A. A., Worden, J., Jiang, Z., Worden, H., Kurosu, T., Frankenberg, C., and Schimel, D.: Remote sensing constraints 

on South America fire traits by Bayesian fusion of atmospheric and1140 surface data, Geophys. Res. Lett., 42, 1268–1274, 

doi: 10.1002/2014GL062584, 2015. 

 10 

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., Williams., M. The decadal state of the terrestrial carbon cycle: 

Global retrievals of terrestrial carbon allocation, pools, and residence times. P. Natl. Acad. Sci., 113, 1285–1290, doi: 

10.1073/pnas.1515160113, 2016. 

 

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., 15 

Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, 

S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. 

Chem. Phys., 11, 3689-3700, doi:10.5194/acp-11-3689-2011, 2011. 

 

Bousserez, N., Henze, D. K., Rooney, B., Perkins, A., Wecht, K. J., Turner, A. J., Natraj, V., and Worden, J. R.: Constraints 20 

on methane emissions in North America from future geostationary remote sensing measurements, Atmos. Chem. Phys. 

Discuss., 15, 19017-19044, doi:10.5194/acpd-15-19017-2015, 2015. 

 

Braswell, B. H., Schimel, D. S., Linder, E., & Moore, B. I. I. I.: The response of global terrestrial ecosystems to interannual 

temperature variability. Science, 278, 870-873, doi: 10.1126/science.278.5339.870, 1997. 25 

 



26 
 

Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze, A., 

Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., 

Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, 

doi:10.1029/2011GL047888, 2011. 

 5 

Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: TROPOMI aboard Sentinel-5 Precursor: Prospective 

performance of CH4 retrievals for aerosol and cirrus loaded atmospheres, Remote Sens. Environ., 120, 267–276, 

doi:10.1016/j.rse.2011.05.030, 2012. 

 

Caldararu, S., Palmer, P. I., and Purves, D. W.: Inferring Amazon leaf demography from satellite observations of leaf area 10 

index, Biogeosciences, 9, 1389–1404, doi:10.5194/bg-9-1389- 2012, 2012.  

 

Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O. C., Bonal, D., Châtelet, P., Silva-Espejo, J. E., Goret, J.-

Y., von Hildebrand, P., Jiménez, E., Patiño, S. , Peñuela, M. C., Phillips, O. L., Stevenson, P., and Malhi, Y.: Regional and 

seasonal pat- terns of litterfall in tropical South America, Biogeosciences, 7, 43–55, doi:10.5194/bg-7-43-2010, 2010. 15 

 

Chen, Y., Randerson, J. T., and Morton, C. D.: Tropical North Atlantic ocean‐atmosphere interactions synchronize forest 

carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 42: 6462-6470, doi: 

10.1002/2015GL064505, 2015. 

 20 

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., and Luke, C. M.: Sensitivity of 

tropical carbon to climate change constrained by carbon dioxide variability, Nature, 494, 341–344, doi:10.1038/nature11882, 

2013. 

 



27 
 

Crevoisier, C., Nobileau, D., Fiore, A. M., Armante, R., Chédin, A., and Scott, N. A.: Tropospheric methane in the tropics – 

first year from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9, 6337-6350, doi:10.5194/acp-9-6337-2009, 

2009. 

 

Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, S. C., Fung, I. Y., Jacob, 5 

D. J., Miller, C. E., O’Brien, D., Pawson, S., Randerson, J. T., Rayner, P., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, 

G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, 

B., Pollock, R., Kenyon, D., and Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700–

709, doi:10.1016/j.asr.2003.08.062, 2004.  

 10 

Devol, A. H., Richey, J. E., Forsberg, B. R., and Martinelli, L. A.: Seasonal dynamics in methane emissions from the 

Amazon River floodplain to the troposphere, J. Geophys. Res., 95, 16417–16426, doi:10.1029/JD095iD10p16417, 1990. 

 

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, D., Reichstein, M., Tomelleri, E., 

Trudinger, C. M., and Van Wijk, M. T.: The REFLEX project: Comparing different algorithms and implementations for the 15 

inversion of a terrestrial ecosystem model against eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615, 

doi:10.1016/j.agrformet.2009.05.002, 2009.  

 

Frankenberg, C., Bergamaschi, P., Butz, A., Houweling, S., Meirink, J. F., Notholt, J., Petersen, A. K., Schrijver, H., 

Warneke, T., and Aben, I.: Tropical methane emissions: A re- vised view from SCIAMACHY onboard ENVISAT, Geophys. 20 

Res. Lett., 35, L15811, doi:10.1029/2008GL034300, 2008. 

 

Franklin, J., Serra-Diaz, J. M., Syphard, A. D., and Regan, H. M.: Global change and terrestrial plant community dynamics, 

P. Natl. Acad. Sci., 113, 3725–3734, doi: 10.1073/pnas.1519911113, 2016 

 25 



28 
 

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Three-dimensional model synthesis of 

the global methane cycle, J. Geophys. Res., 96, 13033–13065,  doi:10.1029/91JD01247, 1991. 

 

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in 

CMIP5 climate projections due to carbon cycle feedbacks, J. Climate, 27, 511–526, doi:10.1175/JCLI-D-12-00579.1, 2013. 5 

 

Gurney, K. R., Baker, D., Rayner, P., Denning, S., Law, R., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I., 

Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M., Pak, B., and S. Taguchi, S.: Interannual variations in 

continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for 

the period 1980–2005, Global Biogeochem. Cy., 22, GB3025, doi:10.1029/2007GB003082, 2008. 10 

 

Hong, S., Dudhia, J., and Chen, S.: A revised approach to ice microphysical processes for the bulk parameterization of 

clouds and precipitation, Mon. Weather Rev., 132, 103–120, 2004. 

 

Hiederer, R. and M. Köchy: Global soil organic carbon estimates and the harmonized world soil database, EUR, 79, 25225, 15 

doi:10.2788/13267, 2011. 

 

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: 

The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates 

at fine scales, J. Hydrometeorol., 8, 38–55, doi:10.1175/JHM560.1, 2007. 20 

 

 

Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., Baker, I. T., Chen, J. M., Davis, K. 

J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, S., McGuire, A. D., Neilson, R. P., Potter, C., Poulter, B., Price, D., 

Raczka, B. M., Tian, H. Q., Thornton, P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, R.: 25 



29 
 

North American Carbon Project (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparison, Ecol. 

Model., 224, 144–157, doi:10.1016/j.ecolmodel.2012.02.004, 2012. 

 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and 

Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared 5 

satellite mea- surements: methodology, simulations, and application to GOME- 2, Atmos. Meas. Tech., 6, 2803–2823, 

doi:10.5194/amt-6-2803- 2013, 2013. 

 

Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance 

observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001-2013, 10 

doi:10.5194/bg-6-2001-2009, 2009. 

 

Laanbroek, H. J.: Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial pro- 

cesses, A mini-review, Ann. Bot.-London, 105, 141–153, 2010. 

 15 

Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J. Appl. Meteorol., 43, 170–181, doi:10.1175/1520- 

0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. 

 

King, A. W., Andres, R. J., Davis, K. J., Hafer, M., Hayes, D. J., Huntzinger, D. N., de Jong, B., Kurz, W. A., McGuire, A. 

D., Vargas, R., Wei, Y., West, T. O., and Woodall, C. W.: North America's net terrestrial CO2 exchange with the 20 

atmosphere 1990–2009, Biogeosciences, 12, 399-414, doi:10.5194/bg-12-399-2015, 2015. 

 

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., 

Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. 

L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.- F., Langenfelds, R. L., Le Quéré, C., Naik, V., 25 



30 
 

O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, 

M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., 

Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and 

sinks, Nat. Geosci., 6, 813–823, doi:10.1038/ngeo1955, 2013. 

 5 

Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., Diaz, L. I., Martins, D., 

Shepson, P. B., and Davis, K. J.: Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions 

in a mesoscale inverse system, Atmos. Chem. Phys., 12, 337-354, doi:10.5194/acp-12-337-2012, 2012. 

 

Lauvaux, T. and Davis, K. J.: Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 10 

measurements, J. Geophys. Res.-Atmos., 119, 490–508, doi:10.1002/2013jd020175, 2014. 

 

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., 

Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and water stress in Amazonia: observations from GOSAT 

chlorophyll fluorescence, Proc. R. Soc. B, 280, 20130171, doi:10.1098/rspb.2013.0171, 2013. 15 

 

Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, W. R., Camargo, H., Paredes Riveros, M., and Diaz Pabló, A.: Two 

Contrasting Severe Seasonal Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in Northeast 

Brazil. J. Climate, 26, 9137–9154, doi: 10.1175/JCLI-D-12-00642.1, 2013. 

 20 

Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Nova, E. M. L. M.: 

Regionalization of methane emissions in the Amazon basin with microwave remote sensing, Global Change Biol., 10, 530–

544, 2004. 

 



31 
 

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, 

G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., 

Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland 

extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 

10, 753-788, doi:10.5194/bg-10-753-2013, 2013. 5 

 

Mitsch, W., Nahlik, A., Wolski, P., Bernal, B., Zhang, L., and Ram- berg, L.: Tropical wetlands: seasonal hydrologic 

pulsing, carbon sequestration, and methane emissions, Wetlands Ecol. Manage., 18, 573–586, doi:10.1007/s11273-009-

9164-4, 2010. 

 10 

Miyajima, T., Wada, E., Hanba, Y. T., and Vijarnsorn, P.: Anaerobic mineralization of indigenous organic matters and 

methanogene- sis in tropical wetland soils, Geochimica et Cosmochimica Acta, 61, 3739–3751, doi:10.1016/S0016-

7037(97)00189-0, 1997. 

 

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, 15 

B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: 

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., 

Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA, 2013. 20 

 

Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model with condensation physics: its design and 

verification, Bound.-Lay. Meteorol., 112, 1–31, doi:10.1023/B:BOUN.0000020164.04146.98, 2004. 

 



32 
 

Oki, T. and Sud, Y. C.: Design of Total Runoff Integrating Pathways (TRIP) – A global river channel network, Earth 

Interact., 2, 1–37, 1998. 

 

Pan, H-L., and Mahrt, L.: Interaction between soil hydrology and boundary-layer development. Bound.-Lay. Meteorol. 38, 

185-202, doi:10.1007/BF00121563, 1987. 5 

 

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J., Deutscher, N., Griffith, D. W. T., 

Notholt, J., Wennberg, P. O., and Wunch, D.: Methane observations from the greenhouse gases observing satellite: 

comparison to ground-based TCCON data and model calculations, Geophys. Res. Lett., 38, L15807, 

doi:10.1029/2011GL047871, 2011. 10 

 

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, 

P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble 

of atmospheric CO2 inversions, Biogeosciences, 10, 6699-6720, doi:10.5194/bg-10-6699-2013, 2013. 

 15 

Pison, I., Ringeval, B., Bousquet, P., Prigent, C., and Papa, F.: Stable atmospheric methane in the 2000s: key-role of 

emissions from natural wetlands, Atmos. Chem. Phys., 13, 11609-11623, doi:10.5194/acp-13-11609-2013, 2013. 

 

 

Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., and Matthews, E.: Changes in land surface water dynamics 20 

since the 1990s and relation to population pressure, Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276, 2012. 

 

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: 

Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry 

model integrated in CESM, Biogeosciences, 8, 1925-1953, doi:10.5194/bg-8-1925-2011, 2011. 25 



33 
 

 

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., 

Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions 

across three continents, P. Natl. Acad. Sci., 108, 9899–9904, doi: 10.1073/pnas.1019576108, 2011. 

 5 

Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on the terrestrial carbon cycle, Proc. Natl. Acad. 

Sci., 112, 436–441, doi:10.1073/pnas.1407302112, 2015a. 

 

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., Miller, C., Frankenberg, C., Hibbard, K., and 

Cox, P.: Observing terrestrial ecosystems and the carbon cycle from space, Glob. Change Biol., 21, 1762–1776, 10 

doi:10.1111/gcb.12822, 2015b. 

 

Schroeder, R., McDonald, K. C., Chapman, B. D., Jensen, K., Podest, E., Tessler, Z. D., Bohn, T. J., and Zimmermann, R.: 

Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave 

Remote Sensing Data. Remote Sensing, 7, 16688-16732, doi:10.3390/rs71215843, 2015. 15 

 

Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting 

applications, J. Comput. Phys., 227, 3465–3485, doi:10.1016/j.jcp.2007.01.037, 2008. 

 

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Andrews, A. E., Lang, P. M., Neff, D., 20 

Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., 

Crotwell, A. M., Thoning, K., and Tans, P. P.: Seasonal climatology of CO2 across North America from aircraft 

measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network, J. Geophys. Res. Atmos., 120, 

doi:10.1002/2014JD022591, 2015. 

 25 



34 
 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., 

Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, 

R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating 

global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 

15, 7049-7069, doi:10.5194/acp-15-7049-2015, 2015. 5 

 

Uliasz, M.: Lagrangian particle modeling in mesoscale applications, Environmental Modelling II, ed. P. Zanetti, 

Computational Mechanics Publications, 71–102, 1994. 

 

Veefkind, J. P., Aben, I., McMullan, K., Fo ̈rster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, 10 

Q., van Weele, M., Hasekamp, O., Hoogeven, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, 

R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of 

the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, 

doi:10.1016/j.rse.2011.09.027, 2012. 

 15 

Vukicevic, T., Braswell, B. H., and Schimel, D.: A diagnostic study of temperature controls on global terrestrial carbon 

exchange, Tellus, Ser. B, 53, 150–170, doi:10.1034/j.1600-0889.2001.d01-13.x, 2001. 

 

Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially 

resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) 20 

and future (TROPOMI, geostationary) satellite observations, Atmos. Chem. Phys., 14, 8173-8184, doi:10.5194/acp-14-8173-

2014, 2014. 

 

Whalen, S. C.: Biogeochemistry of methane exchange between natural wetlands and the atmosphere, Environ. Eng. Sci., 22, 

73–94, doi:10.1089/ees.2005.22.73, 2005. 25 



35 
 

 

Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global 

vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565-584, doi:10.5194/gmd-3-565-2010, 2010. 

 

Wilson, C., Gloor, M., Gatti, L. V., Miller, J. B., Monks, S. A., McNorton, J., Bloom, A. A., Basso, L. S., and Chipperfield, 5 

M. P.: Contribution of regional sources to atmospheric methane over the Amazon Basin in 2010 and 2011. Global 

Biogeochem. Cy., 30, doi:10.1002/2015GB005300, 2016. 

 

Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K., Cady-Peirara, K., Wecht, K., Lee, J.-E., and Noone, D.: 

Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances, 10 

Atmos. Meas. Tech., 5, 397-411, doi:10.5194/amt-5-397-2012, 2012. 

 

Worden, J., Doran, G., Kulawik, S., Eldering, A., Crisp, D., Frankenberg, C., O'Dell, C., and Bowman, K.: Evaluation And 

Attribution Of OCO-2 XCO2 Uncertainties, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-175, in review, 2016. 

 15 

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and Maksyutov, S.: Global concentrations of CO2 

and CH4 retrieved from GOSAT: First preliminary results, SOLA, 5, 160– 163, doi:10.2151/sola.2009-041, 2009. 

 

 

 20 

 

 

 

 

 25 

 

 

 



36 
 

Tables 

 

 

Table 1: Observation system characteristicsa 

Observation 

System 

Single sounding 

footprint size 

Single CH4 

measurement 

precision 

Visits 

per day 

LEO 7km × 7km 0.6% (10.8 ppb) 1 

GEO 3km × 3km  0.6% (10.8 ppb) 4 

LEO+ b 7km × 7km 0.42% (7.6 ppb) 1 

GEO×2 3km × 3km  0.6% (10.8 ppb) 8 

GEO-Z1 3km × 3km 0.6% (10.8 ppb) 4c 

GEO-Z2 3km × 3km 0.6% (10.8 ppb) 4d 

aLEO and GEO observation parameters are broadly consistent with TROPOMI and GEOCAPE simulations by Wecht et 5 

al.,(2014); to simplify comparisons, we set GEO and LEO default single CH4 sounding precision to 0.6%. 

bSingle measurement precision is a factor of 2 higher than LEO; this is the equivalent to doubling the visits per day for 

LEO. 

c2 (6) visits per day in 0 – 50%ile (50 – 100%ile) cloud-cover areas;  

d2 (10) visits per day in 0 – 75%ile (75 – 100%ile) cloud-cover areas; 10 
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Figures 

 

 

Figure 1: Mean annual wetland and rice CH4 emissions (central maps), and associated longitudinal and latitudinal 

uncertainty (grey bands), based on the WETCHIMP model inter-comparison project (Melton et al., 2013). Inset: 5 

WETCHIMP model total Amazon basin monthly CH4 emissions. 
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Figure 2. Wetland CH4 emissions into the atmosphere are regulated by wetland biogeochemical processes (left column). 

Continental-scale wetland CH4 process controls can be retrieved by (i) resolving surface CH4 fluxes from retrieved satellite 

CH4 observations; (ii) resolving process parameters from retrieved CH4 fluxes (middle column). The optimal satellite CH4 5 

observation requirements are a function of the flux resolution and precision required to resolve wetland CH4 process controls 

(right column): OSSE steps 1-3 are described in sections 2.1-2.3. 
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Figure 3: Spatial autocorrelation (Moran’s I) for potential carbon controls (left column) and hydrological controls (right 

column) on wetland CH4 emissions. The spatial variability of carbon controls are derived from satellite observations 

(Biomass, Saatchi et al., 2011; solar induced fluorescence; Joiner et al., 2013), the Harmonized World Soil database (soil 5 

carbon, Hiederer & Köchy, 2011) and FLUXNET derived GPP (Jung et al., 2009). The spatial variability estimates for 

hydrological controls are based on satellite measurements of inundation (A: Prigent et al., 2007; B: Schroeder et al., 2015), 

and precipitation (the NASA Tropical Rainfall Measuring Mission). Significant Moran’s I values (where the Moran’s I p-

value < 0.05) are highlighted as circles. We set a ~333km spatial resolution requirement for monthly CH4 flux retrievals, 
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based on the maximum correlation lengths of potential carbon and hydrological controls on wetland CH4 emissions. The 

details of the Moran’s I analysis are fully described in Appendix A. 

 

 

 5 

 

Figure 4: Distinction confidence between Amazon basin spatial and temporal wetland CH4 emission hypotheses against 

monthly ~333km x 333km CH4 flux precision. Spatial and temporal wetland CH4 emission hypotheses are distinguishable 

a	

b	
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with a 95% confidence at a <10 mg m-2 day-1 precision. For this study we define our ~333km x 333km CH4 flux precision 

requirement as 10 mg m-2 day-1. 
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Figure 5: Retrieved monthly ~333km CH4 cumulative precision (i.e. the combined precision of monthly-averaged CH4 

measurements) for LEO and GEO observing systems (OS); the OS configurations are described in Table 1.  
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Figure 6: CH4 observations density (observations per unit area; y-axis) versus retrievable ~333km flux precision (x-axis) for 

six CH4 observation systems (see Table 1 for details). The “observation density” includes all attempted CH4 measurements, 

including accepted (cloud-free) and rejected (cloudy) observations. 
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Figure 7: Retrieved GEO and LEO flux precision for L = ~333km with modelled pseudo-random residual bias error. See 

table 1 for details on GEO and LEO CH4 observing systems. 
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Figure 8: Median retrieved LEO and GEO CH4 fluxes for L = 150 – 990km; the dashed lines indicate precision and 

resolution requirements. See table 1 for details on GEO and LEO CH4 observing systems. The bias value of 10ppb indicates 

modelled systematic CH4 measurement biases with 100km spatial correlations (see section 2.3). 
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Figure A1. January to December 2010 GOSAT averaging kernels (AK) for the broader Amazon region (green dots). The 

black line denotes the AK cubic fit (w.r.t. pressure p; equation shown at the top of the figure). This AK was used to 

vertically weight the LPDM footprint and sample WRF CH4 concentrations (see Appendix D).  

 

 5 

Figure B1. Left: March 2007 mean MODIS cloud cover aggregated to 1° ×1°. Right: Summary of March 2007 cloud-free 

observations versus footprint size for the broader study area, the Amazon river basin, and two sub-regions (east and west 

Amazon river basin). 
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Figure D1. March 2007 simulations of atmospheric CH4 concentration enhancements – based on 12 mg m-2 day-1 fluxes 

throughout the Amazon basin – derived using the WRF atmospheric transport model (a) and the LPDM influence function 

approach (b). The dashed line denotes our delineation of “North-East Amazon basin” and “South-West Amazon basin” 

regions (see Appendix C). 5 
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