
 
 

Dear Prof. Qiang Zhang, 

Thank you very much for the efficient handling of the reviewing process for our 

manuscript. We carefully addressed all of the referee's comments and made the requested 

revisions in the manuscript. The corresponding changes are described below in our point-

to-point responses to the referee's comments. All changes and corrections are highlighted 

in the revised manuscript which is also provided below. We hope that you will find our 

response satisfactory. 

Respectfully, 

Igor Konovalov 

on behalf of all the authors 

  



 
 

 

Authors' response to the comments of the anonymous referee # 1 

We thank the referee very much for the positive evaluation of our manuscript and for the thoughtful 
comments and remarks. All of the referee’s comments have been carefully addressed in the revised 
manuscript. Below we describe our point-to-point responses to the referee's comments.  

Referee's comment: P2, L14-15: This statement needs a bit more explanation, the 2014 emissions will 
be the starting point for what? 

We meant that the 2014 emissions would be the starting point for global and national emission 
reduction plans. However, this sentence is not quite needed in the given context and is removed from 
the revised version of our manuscript.  

Referee's comment: P3, L1: Technically speaking, the emissions (or emission parameters, depending on 
which is being optimized) are not in the transport model but are coupled to it. 

We agree with this remark. The corresponding sentence is corrected accordingly. 

Referee's comment: Section 2.2: The authors do not mention what the boundary conditions were for 
other species used in the MELCHIOR scheme that react NO2 and CO. Concentrations of NO2 are 
strongly affected by atmospheric chemistry (lifetime of ~1 day) so how important is the correct 
representation of chemistry on the NO2 simulations and thus in the emissions from the inversion? 
Similarly for CO, although owing to its longer lifetime this is perhaps not so important. How are the 
uncertainties in the lifetimes propagated into the emissions found from the inversions? 

It was mentioned in the reviewed manuscript (Sect. 2.2) that initial and boundary conditions for gases 
and aerosols were specified using monthly climatological data from LMDz-INCA global model. In the 
revised manuscript (Sect. 2.2), we addressed this point in more detail. In particular, we indicated several 
concrete species, for which the boundary conditions were specified using the LMDz-INCA data and 
noted that a full list of such species is provided in the CHIMERE documentation available on the web 
site www.lmd.polytechnique.fr/chimere. We also noted that influxes of other species, most of which are 
very reactive and short-lived (such as, e.g., OH and HO2) into a model domain, are not specified in 
CHIMERE.  

It is true that the correct representation of chemistry in the NO2 simulations is an important prerequisite 
for inferring reliable NOx emission estimates. The effect of uncertainties in simulations of chemical 
processes on our results was briefly discussed in Sect. 3.4 (P. 17, L. 13-17) of the reviewed manuscript. 
In particular, we argued that such model errors are likely to differ in different grid cells, and thus they 
are expected to contribute to the emission estimate uncertainties evaluated using the subsampling 
technique. In the revised manuscript, the discussion of this important point is improved and extended. In 
particular, we added that as the CO and NO2 evolution is governed by essentially different chemical 
processes, uncertainties due to a "chemical" part of model errors are likely to be manifested in 
differences between the CO2 emission estimates based on the NO2 and CO measurements. But we also 
noted that it is nonetheless not quite infeasible that some model errors associated with the representation 
of chemical interactions can result in similar (positive or negative) biases across the CO or NOx 
emission estimates inferred from the different data subsets, and so we cannot completely ensure that the 
confidence intervals for our CO and (especially) NOx emission estimates actually account for all 
possible model errors. A similar caveat is provided in Sect. 5 (Summary and conclusions) of the revised 
manuscript. In fact, the effects of "chemical" part of model errors on inversion results are very difficult 
to evaluate as the characteristics of such errors are mostly not known and probable errors in specific 
reactions or in the boundary conditions of certain species may constitute practically an infinite number 
of error combinations which would propagate into the emissions found from the inversions in different 
ways. So we believe that more accurate evaluation of the effects of possible errors in the model 
representation of chemical processes on NOx and CO emission estimates that can be derived from 
satellite measurements requires further research going beyond the scope of this study. One of the 
practical ways to address this issue (as mentioned in the revised manuscript) could involve multi-model 



 
 

inversions that might be performed in the framework of a dedicated project. The results of our study can 
provide an impetus for such a project. 

Referee's comment: P9, L1-2: Why were cement emissions of CO2 ignored? What is the impact of this if 
the system would be used in a region where cement emissions are more important? 

Emissions from cement production are not considered in our study mostly because cement production, 
unlike FF burning, is not associated with significant emissions of either NOx or CO, and so satellite 
measurements of the corresponding proxy species cannot provide strong constraints on cement emission 
of CO2. A corresponding explanation is added in the revised manuscript (Sect. 2.3). Even if cement CO2 
emissions would be more important in the case considered, our estimates of FF emissions would not be 
directly affected (again because cement production do not contribute to concentrations of the proxy 
species and corresponding emissions were excluded from our calculations of the conversion factors). 

Referee's comment: P9, L1-2: P9, L12-15: Do the authors mean that their motivation for solving for 2 
categories of sources (EHI and TCO) is to reduced the aggregation error, because these sources have 
different temporal/spatial errors? If so, this could be made clearer and stated early, e.g. P9, L3 when 
the grouping into these categories is first mentioned. 

Yes, our primary motivation for defining the two specific categories was to limit aggregation errors, but 
we expected also that consideration of these two categories would allow us to get more specific 
information on emission sources. The corresponding paragraph was revised accordingly.  

Referee's comment: P12, Eq. 4: How well conditioned is this expression? The authors use no 
regularization method? 

Indeed, we did not use any regularization method (or a priori constraints on the solution). The main 
reason is that the number of control parameters is very small (one or two) especially if considering the 
vast amount of atmospheric data which we use. This reason was briefly explained on P. 13 of the 
reviewed manuscript, and we tried to improve the corresponding discussion in the revised manuscript. 
Another reason is that we presume that each control variable is seen with some level of independence 
by subsets of these data given the geographical distribution of each. The results of our OSSEs based on 
the Monte Carlo method (see Sect. 3.5) show that the uncertainties in our emission estimates remain 
rather small in spite of very large uncertainties in the input data (see Sect. 2.4). In our understanding, 
this fact clearly indicates that the inverse problem considered is not ill-conditioned. This is mentioned in 
Sect. 3.5. The analysis of the relationship between the CO or NOx measurements and the emission 
estimates by using methods of linear algebra was beyond the scope of this complex and time-consuming 
study (and would be pointless in the important case where the control vector has only one component 
corresponding to the total NOx or CO emissions). Application of such methods to the inverse problem 
considered in our study is complicated due to the fact that the cost function given by Eq. (4) includes 
the "bias" term that depends on the model data (and thus on the emission estimates) in a rather complex 
manner (according to Eq. 6). 

Referee's comment: P13, L15-16: The condition given, i.e., that the control vector is smaller than the 
measurement vector is not sufficient. A sufficient condition is rather the condition number of the matrix 
inverted. One could imagine a case where there are more measurements than unknown variables but 
where each measurement provides only a weak constraint (or even no constraint) on the unknown 
variables. 

We agree with this critical remark and are sorry for the incorrect statement. The corresponding text is 
corrected accordingly. Specifically, instead of the incorrect statement given in the reviewed manuscript, 
we mention that avoiding formal a priori constraints (or any other regularization) does not necessary 
result in ill-conditioning of an inverse problem, as long as the dimension of the control vector does not 
exceed that of the measurement vector. We mention also that although satisfying this criterion alone 
cannot guarantee that the problem is well-conditioned, the numerical experiments presented below in 
Sect. 3.5 show that errors in our emission estimates due to probable errors in input data remain limited 
and thus the results of these experiments indicate that the problem considered in this study is not ill-
conditioned. 



 
 

Referee's comment: P17, L18-25: Are the results of these 2 cases discussed? They are mentioned here 
but there is no conclusion given about the uncertainty in the posterior due to potential errors in the 
seasonal cycle. 

Yes, the results of these two cases are discussed in Sect. 4.1 (in the 5th paragraph from the beginning of 
the section) and in Sect. 4.2 (in the last paragraph). A corresponding remark is also added in the second 
paragraph from the end of Sect. 4.2.  

Referee's comment: P18, L3-7: How independent are the conversion factors among the three 
inventories?  How are the factors determined? Do they rely on independent observations? This is 
important, as error in the conversion factor will translate directly into error in the CO2 emissions. 

The NOx-to-CO2 (or CO-to-CO2) emission conversion factors were calculated in our study as the ratios 
of the corresponding emission annual totals provided by the emission inventories according to Eq. (7). 
In Sect. 3.4, we explain that we used two different sets of estimates for the conversion factors, one of 
which (considered as the main option) is based entirely on the EDGARv4.2 emission inventory, while 
another is based on the data for CO2 emissions from CDIAC and for NOx and CO emissions from the 
EMEP inventory. Therefore, we presume that the first question of the reviewer (How independent are 
the conversion factors among the three inventories?) can be reformulated as follows: are the differences 
between the CO2 emission estimates given by the CDIAC and EDGARv4.2 inventories and the 
differences between the NOx (CO) emission estimates provided by the EDGARv4.2 and EMEP 
inventories sufficiently representative of uncertainties in the inventory data (as assumed in our study)? 
Although we cannot provide a mathematically precise answer to this question, the fact is that there are 
considerable differences in both the data sources and the methodologies used across the three 
inventories. Specifically, while the fossil fuel burning CO2 emission data provided by CDIAC are based 
on the energy statistics published by the United Nations (UN, 2012), the EDGARv4.2 inventory uses 
energy activity data based on IEA (International Energy Agency) energy balances (IEA, 2012). The UN 
data used in CDIAC were compiled primarily from the annual energy questionnaire distributed by the 
United Nations Statistics Division and supplemented by official national statistical publications (UN, 
2012), while the IEA data were compiled following harmonized definitions and comparable 
methodologies across countries and do not necessary represent complete data sets available to national 
experts (IEA, 2010). Similarly, the methodologies used in CDIAC and EDGARv4.2 to convert fuel 
consumption into CO2 emissions have been developed independently and involve significantly different 
classifications of fuels and different sets of parameters. For example, while the key parameter involved 
in the EDGARv4.2 inventory is the net caloric value which is used to convert the activity data into the 
energy values (IEA, 2010) (that are then converted into quantities of carbon), CDIAC converts the 
quantity of fuel into the quantity of carbon directly by using the carbon content parameter (see Marland 
and Rotty, 1984 and IPCC, 2006 for more details on the methodologies used in the CDIAC and 
EDGARv4.2 inventories, respectively). The EMEP/CEIP inventory is based on emission reports 
provided by the national environment agencies. Accordingly, compared to the EDGARv.4.2 inventory, 
the emission data provided by EMEP inventory may better account for statistical information and 
sources specific for a given country. The set of emission factors which EMEP recommends to use while 
preparing national emission inventories (EMEP/EEA, 2013) is substantially different from that used in 
the EDGAR v4.2 inventory (IPCC, 2006), particularly because it involves the different sector 
definitions. Taking all these differences into account, we believe that it is indeed safe to assume that the 
two kinds of the conversion factor estimates considered in our study are sufficiently independent. 
Nonetheless, it is also not quite impossible that, in some hypothetical cases (but hardly in our study 
region), different inventories can be biased in a similar way due to, e.g., the sources and technologies 
that are accounted for neither in international nor in national energy data bases. In such cases, the 
conversion factor uncertainty evaluated with our approach may be underestimated. So, in a general 
situation, a statistically significant difference between our "hybrid" CO2 emission estimate and an 
estimate based on emission inventory data would strongly suggest that the latter is biased, although 
other, less probable, reasons, such as errors is the conversion factors or systematic uncertainties in the 
model representation of chemical processes should not be disregarded without special investigation.  



 
 

Consistently with the above discussion, we extended the description of the emission inventories in 
Sect. 2.3 of the revised manuscript and mentioned in Sect. 3.4 (without going into details) that taking 
into account considerable differences in the data sources and methodologies used across the three 
inventories, we assume that the main and alternative conversion factor estimates are sufficiently 
independent. A similar assumption concerning reliability of the confidence intervals is also mentioned 
in Sect. 4.2. Finally, we remarked in Sect. 5, that further research is needed to ensure that the 
confidence intervals for our emission estimates actually take into account all possible error sources, 
including uncertainties in the conversion factors.  

Referee's comment: P22, L31: It would help the reader to specify again what the analysis (in section 
2.4) is being referred to here, the lower sensitivity of the IASI measurements to CO emissions? 

We added an explanation. The corresponding revised sentence reads as follows: "Taking into account 
our preliminary analysis (see Sect. 2.4) indicating that the contribution of the anthropogenic CO 
emissions in the study region into the corresponding CO columns is relatively small and the results of 
the OSSEs (see Sect. 3.5), it is also not surprising that the uncertainties in our CO emission estimates 
are much larger than those in the NOx emission estimates." 

Referee's comment: P23, L23: I would suggest either removing “robust” here or rephrasing the 
sentence to e.g. “. . .uses an approach, which is deemed more robust at the global scale”, because the 
current formulation sounds somewhat contradictory, i.e., the EDGARv4.2 inventory is worse than 
EMEP in Europe but uses a more robust approach. 

The corresponding sentence has been rephrased following the referee's suggestion and reads as follows: 
"This is an expected result because the methodology used in the EMEP inventory is specific to national 
statistical data available from European countries, while the EDGAR v4.2 inventory uses another 
approach which is deemed to be robust at the global scale." 

Referee's comment: P25, L24-27: I’m somewhat confused. The conversion factors were determined 
from the ratios of CO2:NOx and CO2:CO in the inventories, so if the inversion results for NOx and CO 
are not significantly different from EDGARv4.2 then how can the result for CO2 be significantly 
different from EDGARv4.2? 

Actually, the inversion results for NOx are significantly different from EDGARv4.2, but this was not 
explicitly stated in the reviewed manuscript. This point is clarified in Sect. 4.1 of the revised 
manuscript. 

The technical comments by the referee were carefully considered. The corresponding changes are made 
in the revised manuscript. 
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Response to the comments of the anonymous referee # 2 

We are very grateful to the Referee for the positive evaluation of our paper and for the useful comments 
which were carefully addressed in the revised manuscript. Below we describe our point-to-point 
responses to the referee's comments.  

Referee's comment: One major issue seems to be the (lack of) distinction between NOx emissions and 
NO2 observations. It seems that the authors use NOx emission data (reported "as NOx", "as N", "as 
NO2"?) in conjunction with NO2 measurements. They should explain how the uncertainty in the NO/NO2 
partitioning (which can change with season and local time) influences their results, and it should be 
made clear to the reader that the difference between NOx emissions and NO2 observations is not 
problematic in this context (if this is actually the case). This is important, e.g., in the discussion of Eq. 
7, and on p.21/l.14. 

The NOx emissions are conventionally reported in inventories in grams of NO2 (although actually most 
of them are coming in the atmosphere in the form of NO and then are being oxidized to NO2). We agree 
that the distinction between NOx emissions and NO2 observations (as well as the distinction between the 
species NOx and NO2) was not sufficiently clear in our manuscript. Partly, it was so because we wanted 
to simplify our discussion, presuming (implicitly) that not only NO2 columns but also NOx columns 
could (in principle) be retrieved from satellite measurements by using (to different extents) modeled 
data. In the revised version, we tried to clarify this distinction. In particular, we specify (in Abstract and 
Introduction) that one of the proxy species considered in this study is NO2 (rather than NOx). 
Accordingly, NOx emissions are referred throughout the revised manuscript not as emissions of the 
proxy species, but rather as emissions for (or corresponding to) the proxy species. To clarify the role of 
a chemistry transport model in our study, we note (in Sect. 3.2, first paragraph) that Eq. (3) is used 
specifically to express the modeled relationships between NO2 measurements and NOx emissions, as 
well as between CO measurements and CO emissions. The uncertainties in the NO/NO2 partitioning can 
indeed influence our results. Due to the very complex nature of this uncertainty (which may, in 
particular, be due to errors in the chemical reaction rates and in the boundary conditions, as well as due 
to inaccuracies in the reduced chemical mechanism used in our model), we cannot and did not attempt 
to evaluate this uncertainty explicitly. However, we expect that particularly because the NO/NO2 
partitioning changes with season and geographical location, its uncertainty is mostly included into the 
confidence intervals evaluated with the subsampling technique described in Sect. 3.4.  

In the revised manuscript, the discussion of possible effects of model errors on our emission estimates is 
extended. In particular we note (in Sect. 3.4) that it is not quite infeasible that some model errors 
associated with the representation of chemical interactions can result in similar (positive or negative) 
biases across the CO or NOx emission estimates inferred from the different data subsets. As an 
example, we mention that systematic underestimations of the NOx emissions may be due to persistent 
positive biases in the ozone formation rate and in boundary conditions for tropospheric ozone 
concentration (as ozone concentration accounts for partitioning of NOx between NO and NO2) as well 
as due to other numerous factors (such as e.g. underestimation of the hydrocarbon emissions or of the 
ozone photolysis rate) that may result in underestimation of concentration of hydroxyl radical providing 
a major sink for NOx and determining its atmospheric lifetime. We conclude that more accurate 
evaluation of effects of possible errors in the model representation of chemical processes on NOx and 
CO emission estimates that can be derived from satellite measurements by using our inverse modeling 
method requires further research (involving, e.g., multi-model inversions) that goes beyond the scope of 
this study. Corresponding caveats are also provided in Sect 3.5 and in the final section of the manuscript 
(Summary and Conclusions).  

Eq. (7) does not involve any emission estimates that were obtained using a model. In the corresponding 
discussion, we have additionally clarified the distinction between the emission estimates obtained from 
a bottom-up emission inventory and optimal emission estimates inferred from the measurements by 
using the modeled relationships between the column amounts of a given proxy species and 
corresponding emissions. 



 
 

 

Referee's comment: The authors should comment on to what extent limiting themselves to measurements 
over land produces a bias in their estimates, as NO2 and CO emitted over land and transported over the 
ocean is not considered (due to the limitation to land pixels) while the emissions are included in the 
emission totals. The same holds for emissions outside the study area (i.e., Ireland and Eastern Europe), 
which can be transported to the study area and thus be included in the measurements but not in the 
emission totals. 

First of all, we would like to emphasize that our inversion method, in essence, involves extrapolating 
information on pieces of the emission signature in the atmosphere, based on an atmospheric transport 
model, rather than simple estimation of the atmospheric budget of a proxy species. So, when removing 
ocean data and data outside the modeling domain, we just reduce the number of elements for such an 
extrapolation. Specifically, the fact that we analyzed the measurements and emissions only over land 
(and only over the study region) means that the measurements of NO2 and CO emitted over land but 
transported over the ocean were not used to constrain the corresponding emissions. This limitation 
affected the amount of data used in the analysis (and thus the size of the vectors Cm and Co). However, 
we do not see any reason to expect that this limitation could result in any biases in our emission 
estimates, which would not be covered by their uncertainty intervals (evaluated as explained in Sect. 
3.4). Likewise, we do not expect that any biases in our emission estimates can be caused by NOx and 
CO emissions outside of the study region. Indeed, on the scales considered, it seems reasonable to 
regard temporal and spatial variations of NO2 and CO originating from any sources (including ship 
emission) outside of the study region as model errors on top of the modeled variations of NO2 and CO 
originating from inside of the study region. Accordingly, we do not distinguish such variations from 
other errors and treat their systematic and random parts in the same ways as explained in Sect. 3.2 (see 
Eq. 6) and in Sect. 3.4, respectively. A corresponding discussion is provided in the revised manuscript 
(see Sect.3.2, the last paragraph). 

Referee's comment: As the present study uses the DOMINO NO2 product (version 2), the reference to 
Bucsela et al., 2013 given on p.5/l. 29 for the AMF uncertainties seems to be off, as that study addresses 
the NASA OMI NO2 product and not the DOMINO product. 

This is, of course, a correct remark. We presumed that the algorithms which were used to develop the 
NASA and KNMI data products were very similar, while, in fact, there are some noticeable differences 
between them. Accordingly, the reference to Bucsela et al., 2013 is replaced by the reference to 
Boersma et al., 2011. 

 Referee's comment: In the discussion p.10/l.32 and following, it should be stated if the same sampling 
(coming from cloud and intensity filtering and satellite coverage) is also applied to the CTM values. 
Also, it should be clearly stated that the satellite retrieval’s averaging kernels are applied to all CTM 
profiles to get the modelled columns (at least I hope that this is the case!). Furthermore, the authors 
should state how they determined tropospheric columns from the CTM profiles (i.e., use of tropopause 
information). 

Indeed, exactly the same sampling (based on the measurement information used in the satellite retrieval 
procedure) was applied to both the satellite data and the CTM values. Furthermore, the satellite 
retrieval’s averaging kernels were applied to all CTM profiles that were used to get the modeled 
columns. In the revised version of our manuscript, the corresponding explanations (that were provided 
in Sect.2.2 and 2.4 of the reviewed manuscript) are extended and formulated more clearly. We also note 
(in Sect. 2.2) that in relatively rare cases (constituting less than 20 % of the total number of valid 
observations available for the study region and period) where the tropopause pressure was less than the 
pressure at the top of the model grid (200 hPa), the lack of the simulated data at altitudes exceeding the 
height of the upper model layer could result in some underestimation of the modeled tropospheric 
columns, but such a minor inconsistency between the modeled and simulated NO2 columns is not 
expected to result in underestimation of NOx emissions in our analysis, owing to application of a 
debiasing technique described in Sect. 3.2 and validated in Sect. 3.5.  



 
 

Referee's comment: In p.11/l.8 and following, and the corresponding description in Sect. 3.2. it should 
be noted that the seasonal changes in the "bias" between observations and models strongly points 
towards systematic errors in the assumed seasonal cycle of emissions and the satellite retrievals (which 
mostly come from the assumed surface reflectance climatology and the emissions used in the a-priori 
NO2 profiles used for the AMF calculations in the DOMINO retrieval). 

The corresponding remark is added in Sect. 2.2 of the revised manuscript. In particular, we note (in 
Sect. 2.2) that the seasonal changes in the monthly biases may partly be due to errors in the seasonal 
cycles of the emissions specified in CHIMERE and in the global models that were used to obtain the a 
priori NO2 and CO profiles for the corresponding retrieval procedures; such changes may also be 
indicative of some errors in the assumed seasonal variations of other parameters of the retrieval 
procedures, such as, e.g., surface reflectance or atmospheric scattering by clouds and aerosol in the case 
of the NO2 retrievals and surface temperature, local emissivity, vertical distributions of atmospheric 
temperature and humidity in the case of the CO retrievals. 

Referee's comment: In the context of Eq. 3 (and in general), it would help if the authors clearly stated 
that their emission estimates are annual totals for the whole study region, divided by sector and species. 

The components of the control vector involved in Eq. 3 are explained more clearly (as suggested by the 
referee) in the first paragraph of Sect. 3.2 of the revised manuscript. Note that our idea was to provide 
(in Sect. 3.2 and Sect. 3.3) first a description of our procedure for a general case (that is, for an arbitrary 
region and the arbitrary numbers of emission source categories and proxy species), since we believe that 
the method proposed can be used in other similar studies. Some details specific to the given study are 
provided in the end of Sect. 3.2 and in Sect. 3.4). 

Referee's comment: Furthermore, the authors should explain how they derive the Jacobian matrix S. 

The estimation method used in this study requires the knowledge of the product of the Jacobean matrix, 
 ௖௦, while the knowledge of the Jacobean matrix itself is notࢇ ,௖௦, and of the emission allocation vector܁
needed. The corresponding remark is added in the second paragraph from the end of Sect.3.2. 

Referee's comment: In Eq. 4, it should read "argmin" instead of "agrmin". 

We are sorry for this misprint. The equation is corrected in the revised manuscript. 

Referee's comment: Furthermore, in p.12/l.30, the authors should explain if and how their results are 
biased towards summer observations, as a result of more available satellite measurements in summer 
(due to cloud/intensity filtering). 

A difference in the numbers of observations in summer and winter can result in a bias in our estimates if 
the assumed seasonal cycle of emissions is incorrect. For example, if the seasonal cycle overestimates 
the emissions in summer and underestimates in winter, then, taking into account that more satellite 
observations are available in summer than in winter, our annual estimates can be biased negatively. We 
attempted to take into account possible errors in our estimates due to errors in the temporal allocation of 
the emissions in the uncertainty analysis as explained in Sect. 3.4. A corresponding remark is added in 
Sect. 3.2 (see the paragraph before Eq. 6). 

Referee's comment: In the discussion of Eq. 6, it might help the reader if the authors would clearly state 
that i

s is the average difference between modelled and observed columns for the month m in which 
observation i lies. (Or did I understand this wrong? In that case, the authors should clarify their 
explanation of what exactly they did.) 

Indeed, i
s is the average difference between the modeled and observed columns for the month m in 

which observation i lies. An explanation provided before Eq. (6) is revised accordingly. 

Referee's comment: In Eq. 10, the authors should explicitly define ܧ෠௧௢௧
௦ .   

The explanation that was provided after Eq. (10) in the reviewed manuscript is revised and ܧ෠௧௢௧
௦   is 

defined explicitly. 

Referee's comment: On p.15/l.17, I believe it should read ܧ෠௖௢௠௕,௖
஼ைଶ (missing hat). 



 
 

We are sorry for this misprint which is corrected in the revised manuscript. 

Referee's comment: On p.17/l.31 it might be instructive if the authors gave the sample sizes (number of 
daily values going into the calculations) resulting from the subsampling. 

The requested numbers are provided in Sect. 3.4 of the revised manuscript. 

Referee's comment:   The authors should discuss to what extent limiting themselves to only one 
alternative emission inventory (EDGAR and CDIAC for NO2 and CO) might be problematic after all, in 
principle there are more alternatives, and the authors could in principle use an ensemble of alternative 
inventories. 

Ideally, it would indeed be best to consider an ensemble of several independent inventories providing 
the data on spatial distributions of emissions of all the species (NOx, CO and CO2) involved in our 
analysis. We tried but, apart from the data of the EDGAR inventory, we could not find publicly open 
inventory data satisfying these criteria and available for the region and period considered. In particular, 
we examined several inventories presented in the GEIA data base (http://eccad.sedoo.fr/). So, in this 
study, in view of the limited practical availability of necessary inventory data, the "ensemble" approach 
could not be fully realized. A corresponding remark is added in Sect. 3.4 of the revised manuscript. 
Limitations of a simpler and slightly different approach used in this study are in detail discussed in Sect. 
3.4.  

Referee's comment:  On p.20/l.24, the authors should explain how a Cholesky decomposition (of what?) 
is used to create error samples.  

The requested explanation is added in Sect. 3.5 of the revised manuscript. In particular, we explain that 
samples of the errors with the covariance structure given by Eq. (16) were generated from a Gaussian 
distribution by using a standard method (Press et al., 1992) involving the Cholesky decomposition of 
the correlation matrices that were specified, in our case, using the covariance functions given by Eqs. 
(16) and (17). The Cholesky decomposition of a correlation matrix gives a lower-triangular matrix, L; 
applying this matrix to a vector of uncorrelated samples of Gaussian noise, u, gives a vector, Lu, with 
the components satisfying the original correlation matrix. 

Referee's comment:  In p.21/l.6, it seems that the word "not" is missing in "Note that not only 
anthropogenic. . . ". 

Indeed, the word "not" was missing. We are sorry for this misprint which is corrected in the revised 
manuscript. 

Referee's comment:  The authors should explicitly state if they consider the CO2 intensive cement 
production as part of the TCO or EHI sector. 

We stated in Sect. 2.3 that CO2 emissions from cement production are not considered in our study. A 
reason is that, unlike FF burning, cement production is not associated with considerable emissions of 
either NOx or CO, and so satellite measurements of the corresponding proxy species cannot provide 
strong constraints on CO2 emissions from cement production.  

Referee's comment:  Comparing the "more than 60%" in p.28/l.24 to Fig. 10, it seems to me that this is 
a bit overestimated; from the figure alone it looks more like 50% to me. 

Actually, we say about 60% relative to our estimates, not relative to the EDGAR data. A clarifying 
remark is added in the revised manuscript. 

Referee's comment: Fig. 2 should explicitly state the units on the y-axis (at least use the word 
"normalized" in the caption).  

It is indicated in the revised manuscript, that the values shown in Fig 2 are the normalized monthly NOx 
and CO emissions and are unitless. 

Referee's comment:  Figs. 10+11 should be more specific in the units on the y-axis: NOx emissions in 
Tg NOx (which NO/NO2 ratio?), or Tg N, or Tg NO2, . . . ? The same holds for CO and CO2 emissions.  



 
 

We indicated on the y-axis of Figs 10 and 11 that NOx emissions are given in Tg NO2 and CO2 
emissions are given in Pg CO2. 

Referee's comment:  The bar for EDGAR in Fig. 11 should be the same color as the bar for EDGAR in 
Fig. 10. 

Actually, the both figures were plotted using exactly the same color settings. Nonetheless, to avoid a 
possible impression (which may be due to differences in surroundings) that green color used in the bar 
for EDGAR in Fig. 10 is darker than that in Fig. 11, the figures are re-plotted using a different color 
scheme.    
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Abstract. Fossil fuel (FF) burning releases carbon dioxide (CO2) together with many other chemical species, some of which, 

such as, e.g., nitrogen dioxide (NO2) and carbon monoxide (CO), are routinely monitored from space. This study examines 

the feasibility of estimation of FF CO2 emissions from large industrial regions by using NO2 and CO column retrievals from 

satellite measurements in combination with simulations by a mesoscale chemistry transport model (CTM). To this end, an 

inverse modeling method is developed that allows estimating FF CO2 emissions from different sectors of the economy, as 

well as the total CO2 emissions, in a given region. The key steps of the method are (1) inferring "top-down" estimates of the 

regional budget of anthropogenic NOx and CO emissions of proxy species (that is, NOx and CO in the case considered) from 

satellite measurements of proxy species (NO2 and CO in the case considered) without using formal a priori constraints on 

these budgets, (2) application of emission factors (the NOx-to-CO2 and CO-to-CO2 emission ratios in each sector) that relate 

FF CO2 emissions to the proxy species emissions of the proxy species and are evaluated by using data of "bottom-up" 

emission inventories, (3) cross-validation and optimal combination of the estimates of CO2 emission budgets derived from 

measurements of the different proxy species. Uncertainties in the top-down estimates of the NOx and CO emissions of the 

proxy species are evaluated and systematic differences between the measured and simulated data are taken into account by 

using original robust techniques validated with synthetic data. To examine the potential of the method, it was applied to the 

budget of emissions for a western European region including 12 countries by using NO2 and CO column amounts retrieved 

from, respectively, the OMI and IASI satellite measurements and simulated by the CHIMERE mesoscale CTM, along with 

the emission conversion factors based on the EDGAR v4.2 emission inventory. The analysis was focused on evaluation of 

the uncertainty levels for the "top-down" NOx and CO emission estimates and "hybrid" estimates (that is, those based on 

both atmospheric measurements of a given proxy species and respective "bottom-up" emission inventory data) of FF CO2 

emissions, as well as on examining consistency between the FF СO2 emission estimates derived from measurements of the 

different proxy species. It is found that NO2 measurements can provide much stronger constraints to the total annual FF CO2 

emissions in the study region than CO measurements, the accuracy of the NO2-measurement-based CO2 emission estimate 

being mostly limited by the uncertainty in the top-down NOx emission estimate. Nonetheless, CO measurements are also 

found to be useful as they provide additional constraints to CO2 emissions and enable evaluation of the hybrid FF CO2 

emission estimates obtained from NO2 measurements. Our most reliable estimate for the total annual FF CO2 emissions in 

the study region in 2008 (2.71±0.30 Pg CO2) is found to be about 11 % and 5 % lower than the respective estimates based on 

the EDGAR v.4.2 (3.03 Pg CO2) and CDIAC (2.86 Pg CO2) emission inventories, with the difference between our estimate 

and the CDIAC inventory data being not statistically significant. In general, the results of this study indicate that the 

proposed method has the potential to become a useful tool for identification of possible biases and/or inconsistencies in the 

bottom-up emission inventory data regarding CO2, NOx and CO emissions from fossil fuel burning in different regions of the 

world. 



 
 

1 Introduction 

Carbon dioxide (CO2) is commonly recognized as the major greenhouse gas providing  whose increase is the driving force of 

recent and future climate change (IPCC, 2013). Its atmospheric concentration has considerably increased (by 40 %) since the 

industrial revolution (Petit et al., 1999).  This increase, the rate of which has accelerated in athe  recent past decade, is 

attributed mostly to anthropogenic sources, such as fossil fuel (FF) burning (Canadell et al., 2007). Curbing further growth of 

CO2 concentration has become a goal of international agreements such as the Kyoto protocol (UNFCCC, 1998) and the Paris 

Agreement on Climate Change (UNFCCC, 2015). In the latter, almost all countries are on board in an equal setting, and so 

95% of the 2014 global CO2 emissions are the starting point. Thus accurate knowledge of anthropogenic CO2 emissions is of 

paramount importance both for climate prediction and mitigation policy purposes. 

Over the past few decades a lot of efforts have been put into the compilation of global (e.g., Olivier et al., 2005; GCP, 2010; 

Ciais et al., 2010a; Janssens-Maenhout et al., 2015) as well as regional (Gurney et al., 2009; Huang et al., 2011; Kurokawa et 

al., 2013; Zhao et al., 2012; Wang et al., 2013) inventories of CO2 emissions from FF burning and other smaller 

anthropogenic sources (such as, e.g., biofuel burning and cement production). Those emission inventories are based on 

available statistical information regarding economic activities and corresponding technologies. However, it is known that 

such information can be subject to errors and biases leading to considerable uncertainties in emission estimates, especially in 

the case of rapidly growing developing economies (e.g., Akimoto et al., 2006; Guan et al., 2012, Korsbakken et al., 2016). 

For example, the uncertainty of available estimates of the total FF CO2 emissions in China is assessed to be about 15-20% 

(Gregg et al., 2008). Much larger uncertainties may be associated with the sub-national spatial distributions and temporal 

evolution of FF CO2 emissions within a year (Ciais et al., 2010b). The uncertainties in anthropogenic CO2 emission 

inventory data are mostly due to inaccuracies of available data regarding fuel consumption and fuel chemical composition. 

Note that the estimation of uncertainty in emission inventory data is itself a challenging task: in particular, as different 

inventories are usually based (at least partly) on common sources of information, their inter-comparison does not necessarily 

result in revealing all the uncertainties. 

A promising alternative approach to constrain СO2 emissions and to assess the uncertainty in available emission estimates is 

inverse modeling (Enting, 2002); the key idea of this approach is to derive emission estimates from atmospheric 

measurement data by optimizing emissions (or emission parameters) coupled to a transport model. Such estimates are 

frequently referred to as "top-down", by in contrast withto "bottom-up" ones based on emission inventories alone. Numerous 

studies have successfully used in situ CO2 measurements in the framework of this approach to constrain surface CO2 fluxes 

associated mostly with biospheric and oceanic sources and sinks of CO2 in different regions of the world (e.g., Gurney et al., 

2002, Baker et al., 2006, Schulze et al., 2009, Chevallier et al., 2010; Broquet et al., 2013). More recently, it was 

demonstrated that uncertainties in CO2 flux estimates can be potentially reduced by using satellite CO2 measurements (e.g., 

Chevallier et al., 2007; Houweling et al., 2004; Hungershoefer et al., 2010; Kadygrov et al., 2009; Nassar et al., 2011; 

Maksyutov et al. 2013; Reuter et al. 2014a). However, less progress has been made in isolating FF CO2 emissions from other 

sources and sinks. Major limitations are due to the facts that the atmospheric variability of CO2 is strongly affected by 

biogenic sources and sinks, such as plant respiration and photosynthesis, and that the signatures of regional FF CO2 

emissions in CO2 observations are typically weak relative to regional background CO2 concentration, except near hot spots. 

Promising approaches suggest separation of FF CO2 emissions from biospheric fluxes by using available measurements of 

radiocarbon content (14C) of CO2 (e.g., Turnbull et al., 2009; Miller et al., 2012; Lehman et al., 2013; Basu et al., 2016), 

ground based CO2 measurements in vicinity of strong anthropogenic emission sources like megacities (Bréon et al., 2015), or 

satellite CO2 retrievals with sampling near hot-spots (Bovensmann et al., 2010; Silva et al., 2013; Reuter et al., 2014b). 

However, neither of these approaches has already been sufficiently generalized to provide reliable estimates of the budget of 

anthropogenic CO2 emissions in an arbitrary industrialized region of the world. 



 
 

It has also been suggested that anthropogenic CO2 emissions can be constrained to a certain extent by measurements of 

"proxy" species, whose sources are mostly collocated in time and space with CO2 sources (Rivier et al., 2006; 

Suntharalingam, 2004). The measurements of proxy species can be either combined with CO2 measurements (Palmer et al., 

2006; Rivier et al., 2006; Suntharalingam, 2004; Brioude et al., 2012) or used alone but with information on a relationship 

between emissions of CO2 and of the proxy species from bottom-up emission inventories. In the second approach, Berezin et 

al. (2013) estimated multiannual relative changes of FF CO2 emissions from China by using satellite measurements of 

nitrogen dioxide (NO2) and emission inventory data on the ratio of FF emissions of CO2 and nitrogen oxides 

(NOx=NO+NO2). A similar approach was employed by Konovalov et al. (2014) to obtain estimates of CO2 emissions from 

biomass burning in Siberia by using satellite measurements of carbon monoxide (CO) and of aerosol optical depth. 

The goal of this study is to examine the feasibility of inferring estimates of annual budgets of CO2 emissions from fossil fuel 

burning in a given industrialized region with a typical size of the order of 1000 km by using satellite measurements of NO2 

and CO. In doing so, we develop a special method by building upon the ideas that were exploited in Berezin et al. (2013) and 

Konovalov et al. (2014). The method includes several major steps, namely: (1) inferring "top-down" estimates of total 

anthropogenic emissions of NOx and CO the proxy species from satellite measurements of the corresponding proxy species 

by using simulations performed with a mesoscale chemistry transport model (CTM), (2) applying NOx-to-CO2 (or CO-to-

CO2) emission conversion factors given by "bottom-up" emission inventories to relate FF CO2 emissions to the NOx and CO 

anthropogenic emissions of the proxy species from the previous step, (3) cross-validation and optimal combination of 

estimates of the FF CO2 emission budgets derived from measurements of different proxy species. As a result, we obtain a 

"hybrid" FF CO2 emission estimate integrating information coming from measurements and bottom up inventories. The use 

of NOx NO2 and CO as proxy species in the context of our approach is justified because their satellite measurements are 

known to contain a strong signal associated with human activities in industrial regions and have abundantly been used earlier 

to constrain emissions of, respectively, nitrogen oxidesNOx (e.g., Martin et al., 2003; Konovalov et al., 2006; Napelenok et 

al., 2008; Miyazaki et al., 2012; Gu et al., 2014) and CO (e.g., Arellano, 2004; Pétron, 2004; Kopacz et al., 2010; 

Hooghiemstra et al., 2012; Krol et al., 2013; Jiang et al., 2015) from various sources, including anthropogenic ones. Note 

that although NOx and CO emissions from FF burning are more sensitive to technological factors than CO2 emissions, 

different aspects of the combustion technology are expected to affect NOx and CO emissions in different ways: e.g., while 

NOx emissions are strongly dependent on the temperature of combustion (more NOx is released at higher temperatures), CO 

emissions can be regarded as a measure of the incompleteness of combustion processes. So, the combination of hybrid FF 

CO2 emission estimates derived from both NO2 and CO measurements can enable a compensation of a part of the 

uncertainties associated with inaccurate knowledge of technology and conditions of combustion affecting separately NO2- 

and CO measurement based FF CO2 emission estimates. 

Particular efforts in this study were made to provide adequate confidence intervals for the hybrid FF CO2 emission estimates. 

To this end, we had to ensure that potential errors in our top-down estimates of NOx and CO emissions are statistically 

independent from those of the conversion factors. We also had to ensure that the evaluation of confidence intervals does not 

involve any subjective quantitative assumptions regarding the level of uncertainties in measured and simulated data. Such 

requirements would be difficult to satisfy if the top-down estimates of the emission annual budgets were partly constrained 

(in the Bayesian sense) with a priori knowledge on these budgets from a bottom-up emission inventory (as it is usual in 

inverse modeling studies). Furthermore, the use of a priori constraints would make the cross-validation of the estimates of FF 

CO2 emission budgets based on NOx NO2 and CO measurements infeasible, as both priors and cross validation estimates 

could then be biased in a similar way due to possible systematic uncertainties in activity data employed in the emission 

inventory. Accordingly, a distinctive feature of our method is that it does not involve any formal a priori constraints to the 

top-down estimates of the emission budgets, nor any quantitative settings specifying the level of uncertainties in measured 



 
 

and simulated data. This feature is expected to reinforce the potential of the method to elucidate possible uncertainties and/or 

inconsistencies in CO2, NOx and CO emission data provided by different bottom-up emission inventories. 

In this study, our method is applied for estimation of annual FF CO2 emissions from a group of 12 western European 

countries, including a selection of 11 member states of the European Union (EU) that provide the predominant part (>70%) 

of EU total FF carbon emissions (Ciais et al., 2010b) and Switzerland. Taking into account availability of bottom-up 

emission inventory data necessary for our analysis, the annual emission estimates were obtained specifically for the year 

2008. We believe that estimation of FF CO2 emissions from the European region could be considered as a good testing case 

for our method, taking into account that uncertainties in corresponding emission inventory data for the EU countries with 

well-developed statistics are relatively low (compared to potential uncertainties in FF CO2 emission data for countries with 

less developed statistical infrastructure), although not quite negligible. For example, by comparing data of several 

international emission inventories, Ciais et al. (2010b) estimated the full uncertainty of the "bottom-up" estimates of the 

anthropogenic CO2 emissions in the EU countries to be about 19 % but less (~7 %) if possible inconsistencies between types 

of CO2 sources taken into account in different emission inventories are resolved. Note that the uncertainty in bottom-up FF 

CO2 emission estimates is expected to be lower than in corresponding NOx and CO emission estimates, because of an 

important role played for emissions of those proxy species by the technology and end-of-pipe measures; at the same time, the 

ratio of emissions of CO2 and of the proxy species can be less uncertain than the emission themselves if the emission data are 

subject to a strong common bias caused by uncertainties in fuel consumption statistics. 

In the following, Sect. 2 describes data and modeling tools used in our study. Description of our inverse modeling method 

and its validation with synthetic "observations" are presented in Sect. 3. The results of its application to the real-world 

situation are presented and discussed in Sect. 4. Finally, major findings are summarized in Sect. 5. 

2 Data and model description 

2.1 Retrievals from satellite measurements 

We used the tropospheric NO2 column retrievals from measurements of the Earth's back scattered radiation in visible and 

ultraviolet spectral regions by the OMI satellite instrument (Levelt et al., 2006) onboard the NASA EOS Aura spacecraft. 

The Aura satellite (Schoeberl et al., 2006) is in a sun-synchronous ascending polar orbit with an equator crossing time of 

13:30 local solar time (LST) and an orbital period of 99 min. The OMI instrument has a swath width of ∼2600 km divided 

into 60 pixels with a size of 13-26 km. 

The retrievals used in this study are provided by the Royal Netherlands Meteorological Institute (KNMI) as the DOMINO 

version 2 data product (Boersma et al., 2011) through the TEMIS portal (http://www.temis.nl/). The product contains Level 2 

data, that is, NO2 columns and relevant geophysical information for each ground pixel observed by the instrument. In this 

study, only cloud and surface albedo screened data (retrieved for the scenes with the cloud fraction less than 30 % and with 

the surface albedo less than 0.3) were used. The main steps of the OMI NO2 retrieval algorithm (see Boersma et al., 

2011Bucsela et al., 2013 for details) include (1) spectral fitting and the slant column density (SCD) estimation by using the 

Differential Optical Absorption Spectroscopy (DOAS) method, (3) separation of the tropospheric and stratospheric parts of 

the slant columns, (23) calculation of the tropospheric vertical column by applying the air mass factor (AMF) to the 

tropospheric slant columndefined as the ratio of the measured slant column to the vertical column, and (3) separation of the 

tropospheric and stratospheric parts of the vertical columns. Each step involves different uncertainties that may contribute, to 

various extents, to the uncertainty of the tropospheric NO2 columns; in particular, the SCD uncertainty is likely to 

predominate over other uncertainties in remote areas and is of about 0.75×1015 molec. cm−2, while  the retrievals for urban 

areas are mostly affected by the AMF uncertainty, that is of about 20 25 % for clear skycloud-free conditions (Boersma et 

al., 2007; 2011)Bucsela et al., 2013). Several studies (e.g., Zhao et al., 2009, Miyazaki et al., 2012, Vinken et al., 2014) 



 
 

found that in spite of the considerable uncertainties, the tropospheric NO2 columns retrieved from the OMI measurements 

provide useful constraints to anthropogenic NOx emissions in different regions of the world, including Europe. 

We also used the Level-2 retrievals of total CO column amounts from the measurements performed by the Infrared 

Atmospheric Sounding Interferometer (IASI) on board the METOP-A satellite (Clerbaux et al., 2009). METOP-A has the 

sun synchronous polar orbit with equator crossing at 21:30 LST for the ascending node. The IASI instrument provides global 

coverage twice a day (around 9:30 and 21:30 LST) with a swath of about 2×1100 km and a nominal pixel diameter footprint 

on the ground of 12 km. 

The CO column amounts are retrieved from the cloud screened measurements of the spectrum at the 1-0 rotation vibration 

band centered at 4.7 μm (2128 cm−1) by using the Fast Optimal Retrievals on Layers for IASI (FORLI) algorithm (Hurtmans 

et al., 2012). The FORLI algorithm provides CO partial column amounts (for at most 19 layers) fitting the spectral 

observations with a priori constraints; the partial columns are combined to yield the total column amounts. The uncertainty 

of the IASI CO retrievals strongly depends on the geographical location and conditions of the observations (Clerbaux et al., 

2009; George et al., 2009; Turquety et al., 2009); it is estimated to be about 10 % under typical conditions (Clerbaux et al., 

2009). It should be noted, however, that the capability of the IASI measurements to inform about CO sources depends not 

only on the accuracy of the CO retrievals, but also on the sensitivity of the spectral observations to the CO concentration in 

the boundary layer. A convenient way to characterize this sensitivity (which is related to the vertical resolution of the 

retrieval and depends, in particular, on the difference between the temperatures of the surface and of the atmospheric 

boundary layer) is to consider the trace of the averaging kernel matrix (Clerbaux et al., 2009); this parameter is called the 

Degree of Freedom of the Signal (DOFS). Distinguishing between the upper and lower troposphere requires this parameter 

to be about 2 (George et al., 2009). Taking these considerations into account, we used only those retrievals that were 

characterized by relatively large DOFS values: similar to Konovalov et al. (2014), the DOFS threshold was set to be 1.7. The 

available CO retrievals for individual pixels were projected to the 0.5º×0.5º grid of a CTM (see Sect. 2.2) and averaged over 

each day. 

We would like to note that instead of (or together with) the IASI measurements, we had an option of using alternative data 

from other infrared sounders, such as MOPITT and AIRS. Our decision to choose the IASI measurements was made by 

taking into account their relatively high sensitivity in the boundary layer (George et al., 2009), as well as previous studies in 

which the IASI data were successfully employed for constraining CO emissions from different sources (Fortems-Cheiney et 

al., 2009; Krol et al., 2013; Konovalov et al., 2014). We considered the relatively high sensitivity of the IASI measurements 

in the lower troposphere as an important advantage especially in the context of the given study involving a mesoscale CTM. 

Indeed, the upper troposphere CO content simulated with such a CTM is likely to be strongly affected by boundary 

conditions which are specified by using global CTM simulations and therefore are not dependent on CO emissions used in 

the regional CTM (see, e.g., a respective discussion in Konovalov et al., 2011). Exploring the potential of the alternative CO 

data products goes beyond the scope of the given study. 

2.2 CTM simulations and initial processing of the model output data 

In this study, the relationships between NOx and CO emissions and, respectively, NO2 and CO column amounts are 

simulated by the CHIMERE CTM. CHIMERE is a three-dimensional Eulerian model designed to simulate air pollution on 

urban, regional and continental scales; it allows to takinge into account the most important atmospheric processes (such as 

anthropogenic, biogenic and fire emissions, gas-phase and heterogeneous chemistry, advection, turbulent diffusion, and deep 

convection, dry and wet deposition) affecting the atmospheric fate of a number of reactive gaseous and aerosol species (see 

Menut et al., 2013 and references therein). The model was earlier successfully used in combination with satellite NO2 and 

CO retrievals in several inverse modeling studies of NOx and CO emissions (e.g. Konovalov et al., 2006; 2008; 2010; 

Beresin et al., 2013; Konovalov et al., 2014; Mijling et al., 2012; Ding et al., 2015). 



 
 

In this study, the CHIMERE model was run with one of the standard domains (called the CONT5 domain) covering a 

western part of Europe (-13.75 – 25.25º E; 34.75 – 58.25º N) with the horizontal resolution of 0.5º×0.5º. The simulations 

were performed with 12 non-equidistant layers in the vertical (up to the 200 hPa pressure level); the layers were specified in 

the hybrid sigma-p coordinates such that the distance between the layers increased with the altitude from ~50 m near the 

surface until ~2 km in the upper part of the modeled atmosphere. Gas-phase chemical processes were simulated with the 

simplified MELCHIOR2 chemical mechanism (Schmidt et al., 2001), and several heterogeneous reactions on the surfaces of 

aerosol particles were taken into account as described in Menut et al. (2013). Initial and boundary conditions for several key 

gasesous species responsible for the oxidation capacity of the lower atmosphere (e.g., CO, NO, NO2 O3, H2O2, HCHO) and 

aerosols were specified using monthly climatological data from LMDz-INCA global model (Folberth et al., 2006). A full list 

of these species is provided in the CHIMERE documentation available on the web site www.lmd.polytechnique.fr/chimere. 

An influx of other species, most of which are very reactive and short-lived (such as, e.g., OH and HO2), into a model domain 

is not specified in CHIMERE. Meteorological data were obtained from the WRF-ARW (v.3.6) model (Skamarock et al., 

2005), which was run with a horizontal resolution of 50km×50km and with 30 levels extending in the vertical up to the 50 

hPa pressure level for a region covering the CHIMERE domain and was driven with the NCEP Reanalysis-2 data (National 

Centers for Environmental Prediction, 2000). The anthropogenic, biogenic and fire emissions of major gaseous and aerosol 

species were taken into account in our simulations as described in the next section (Sect. 2.3). The model was run with 

different scenarios (specified below in Sect. 3.2) for the period from 22 December 2007 to December 29, 2008. The spin-up 

period included the first 10 days of any run, which therefore were withheld from the following analysis. 

To enable consistency of our simulations with the satellite data employed in this study, the CHIMERE outputs were 

processed by taking into account measurement properties. The All the simulated NO2 and CO vertical profiles corresponding 

(in time and space) to each any pixel that containinged, respectively, the OMI and IASI measurements (satisfying to the 

criteria specified in Sect. 2.1) were projected into the measurement vertical grids and transformed into tropospheric NO2 

columns and total CO columns, ܥ௠௡௢ଶ and ܥ௠௖௢, by applying the respective averaging kernels, ࢕࢔࡭૛ and ࢕ࢉ࡭.  

Specifically, the simulated NO2 profiles wereas transformed as follows (Eskes and Boersma, 2003): 

௠௡௢ଶܥ ൌ ሺ࢕࢔࡭૛ሻ்	࡯௠ሺ௢ሻ
௡௢ଶ ,           (1)  

where ࡯௠ሺ௢ሻ
௡௢ଶ  are the original model outputs (partial columns) interpolated to the pressure grid of the averaging 

columnskernels up to the tropopause pressure level (specified in the measurement database). Note that in relatively rare cases 

(constituting less than 20 % of the total number of valid observations available for the study region and period) where the 

tropopause pressure was smaller than the pressure at the top of the model grid  (200 hPa), the lack of the simulated data at 

altitudes exceeding the height of the upper model layer could result in some underestimation of the modeled tropospheric 

columns, but such a minor inconsistency between the modeled and simulated NO2 columns is not expected to result in 

underestimation of NOx emissions in our analysis, owing to application of a debiasing technique described in Sect. 3.2 and 

validated in Sect. 3.5.  

A slightly different procedure was used to process the modeled CO partial columns:   

௠௖௢ܥ ൌ ሺ࢕ࢉ࡭ሻ்൫࡯௠ሺ௢ሻ
௖௢ െ ௔௖௢൯࡯ ൅  ௔௖௢,         (2)࡯ࢀࡵ

where ࡯௔௖௢  is the a priori CO vertical profile used in the retrieval procedure, and I is the identity vector. The missing 

components of ࡯௠ሺ௢ሻ
௖௢  for altitudes above the upper layer of the CHIMERE CTM were taken to be equal to the respective 

values from ࡯௔௖௢. Note that the transformation providing the total CO columns in accordance to Eq. (2) is a special case of the 

more general transformation procedure providing partial CO columns (see Fortems-Cheiney et al., 2009).  

The model outputs transformed with different averaging kernels but corresponding to the same model grid cell and hour as 

the observations were averaged. The modeled profiles which had not been matched with the corresponding observational 

data were not used in our analysis. With the satellite data used in this study, each grid cell is provided with observed or 



 
 

modeled data for at most two different hours of each day. In addition to the selection criterion based on the DOFS values 

(see Sect. 2.1), in order to minimize the impact of model errors that are not associated with uncertainties in emission data on 

inverse modeling results, only those days and grid cells were taken into account when and where the modeled contribution of 

anthropogenic NOx or CO emissions in the study region (specified in the next section) to ࡯௠௡௢ଶ and  ࡯௠௖௢ was larger than one 

percent of the corresponding "background" values of the columns (here “background” is defined according to a simulation 

made without anthropogenic emissions, i.e. with the biogenic and open biomass burning emissions specified in the next 

section, and with the transport model boundary conditions described above). 

2.3 Emission inventory data 

We used annual anthropogenic emission data for the year 2008 from several sources: the European Monitoring and 

Evaluation Programme (EMEP) regional emission inventory (EMEP/CEIP, 2014; Mareckova et al., 2014e.g., Bieser et al., 

2011), the Emission Database for Global Atmospheric Research, version 4.2 (EDGAR v4.2) (EC-JRC/PBL, 2011), the 

Carbon Dioxide Information Analysis Center (CDIAC) (Boden et al., 2011). The EMEP inventory data were used in our 

simulations described in Sect. 2.2, and the EDGAR v.4.2 data were used to relate the emission estimates for the proxy 

species with CO2 emissions (see Sect. 3.3). The CDIAC data were involved  in the analysis of uncertainties in our emission 

estimates (see Sect. 3.4) along with the EMEP and EDGAR v4.2  data. 

The EMEP/CEIP inventory is based on emission data reported under the Convention on Long-range Transboundary Air 

Pollution by individual countries in Europe and in the Middle East, which are expected to use a unified approach 

(EMEP/EEA, 2013) applicable on the national level. In this study, we used Specifically, tthe EMEP anthropogenic annual 

emission data distributed among 11 Selected Nomenclature for Air Pollutants (SNAP) sectors and provided for several 

pollutants, such as NOx, CO, non-methane hydrocarbons (NMHC), SOx, and particulate matter, on a grid with the resolution 

of 0.5°×0.5°. cover NOx and CO as well as non-methane hydrocarbons (NMHC), SOx, and particulate matter for the year 

2008 on a grid with the resolution of 0.5°×0.5°. Note that the EMEP inventory does not provide data for CO2 emissions and 

that the emissions for the 11th sector (comprising biogenic sources and fires associated with human activities) were replaced 

in our simulations with data of dedicated inventories (as described in this section below).  

The EDGAR v4.2 inventory is created by using the energy activity data provided by the International energy agency (IEA) 

(IEA, 2010) and by following the methodology and fuel-specific emission factors based on the 2006 IPCC guidelines (IPCC, 

2006). The IEA data were compiled following harmonized definitions of fuels and activities and applying the same  

methodologies across most countries (and some groups of countries outside of the study region). We used the EDGAR v4.2 

data for the national totals of anthropogenic NOx, CO, and CO2 emissions distributed between several emission sectors (not 

necessarily coinciding with the SNAP sectors) were used in our inversion procedure (see Sect. 3.2) as the source of 

information on the relationships between CO, NOx, and CO2 emissions. Note that we used the EDGAR v4.2 FF CO2 

emission data excluding CO2 emissions from biofuel burning (that is, the data used were calculated after "excluding short-

cycle organic carbon from biomass burning"), while the corresponding CO and NOx data included emissions from both fossil 

fuel and biofuel burning.  

The FF CO2 emission data provided by CDIAC are based on the energy statistics that were compiled primarily from the 

annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national 

statistical publications (UN, 2012). The quantity of fuel was converted into the quantity of CO2 emissions by using the 

methodology based on Marland and Rotty (1984). The CDIAC database used in this study reports only national totals of FF 

CO2 emissions without sectorial breakdowns and was used in this study for evaluation of uncertainties in our results.  

Note that CO2 emissions from cement production have been reported in CDIAC (as well as in EDGAR v4.2) separately from 

FF CO2 emissions and were not considered in our study.  and are not considered in this study.Excluding this emission source 

from our estimates seems to be reasonable taking into account that cement production, unlike FF burning, is not associated 



 
 

with considerable emissions of either NOx or CO, and so satellite measurements of the corresponding proxy species cannot 

provide strong constraints on CO2 emissions from cement production. 

To facilitate our analysis, tThe anthropogenic emissions were aggregated into two categories. Splitting the total emissions 

among the two categories was deemed to reduce the generation of aggregation errors (Kaminski et al., 2001) in our top-down 

estimate of the total NOx and CO emissions. To this end, we tried to ensure that the emissions corresponding to the different 

categories had distinct spatial distributions (such as, e.g., the emissions from power plants and from transport), and, on the 

other hand, that the amounts of annual emissions from each category were of the same order of magnitude. Specifically, Tthe 

first category ("EHI") included the emissions associated mostly with energy and heat production and heavy industries. The 

second category ("TCO") comprised transport, chemical industry, and all other anthropogenic sources. In the EMEP 

inventory, the EHI category was defined by aggregating the sources corresponding to the first, second and third sectors of 

SNAP (combustion in energy and transformation industries, non-industrial combustion plants and combustion in 

manufacturing industry, respectively). The sectors "1A1a-c" (public electricity and heat production; other energy industries), 

"1A2" (manufacturing industries and construction) and "1A4" (fuel combustion in residential and other sectors) were 

allocated into the same category in the case of the EDGAR inventory. The TCO category aggregated all other anthropogenic 

sources considered in the EMEP or EDGAR v4.2 inventories. We expected that, apart from limiting the aggregation error, 

consideration of these two categories would allow us to get more specific information on emission sources. Note that 

splitting emission sources between the two categories specified above is, at large, rather arbitrary: in this study, we did not 

attempt analyzing the impact of the source categories definitions on the uncertainty of our emission estimates.  

While specifying these categories, we tried to ensure that, on the one hand, the emissions corresponding to the different 

categories had distinct spatial distributions (such as, e.g., the emissions from power plants and from transport), and, on the 

other hand, that the amounts of annual emissions from each category were of the same order of magnitude. By doing so, we 

attempt to limit the generation of aggregation errors (Kaminski et al., 2001) in our top-down NOx and CO emission 

estimates. However, splitting emission sources between the two categories specified above is rather arbitrary: in this study, 

we did no attempt analyzing the impact of the source categories definitions on the uncertainty of our emission estimates. 

Figure 1 shows the CONT5 domain (employed in this study) of the CHIMERE CTM along with the spatial distributions of 

total annual anthropogenic NOx and CO emissions from the selection of 12 western European countries considered in our 

analysis according to the EMEP inventory for 2008; it also shows the fractions of the two source categories introduced 

above. Note that emissions outside of the selected countries (including ship emissions) are not indicated (the corresponding 

territories are left blank), such emissions constitute minor parts of the total NOx and CO emissions in the whole model 

domain shown in Fig. 1 (41% and 30%, respectively, according to the EMEP inventory for 2008). The territory of the United 

Kingdom is not fully represented in the model domain; however, the emissions from the missing northern part of this country 

are rather negligible (~ 0.53% of the total emissions in UK). 

It is noteworthy that not only the total emissions (see Fig. 1a, b) but also the fractions of the different emission source 

categories (see Fig. 1c-f) exhibit considerable spatial variations. The spatial variability of the source category fractions 

indicates that, given sufficiently accurate observations, an appropriate inverse modeling procedure together with the dense 

spatial sampling of the atmosphere by satellites may have a potential to distinguish between emissions coming from the 

different sources. It can also be noted that the fractions of the same source categories of the NOx and CO emissions 

considerably differ (cf. Fig. 1c, d and Fig. 1e, f). In particular, while the NOx emissions mostly come from the TCO sources, 

the CO emissions are distributed between the TCO and EHI sources much more evenly. This observation indicates that the 

measurements of these two proxy species might provide complementary (to a certain extent) information on human activities 

associated with CO2 emissions, even if atmospheric fates the CO and NOx emissions were identical. 

The annual anthropogenic emission data were distributed at shorter time scales by applying monthly, daily and hourly factors 

from the standard emission interface of the CHIMERE CTM (Menut et al., 2013); the factors were provided for specific 



 
 

pollutants, the SNAP sectors and countries by IER, University of Stuttgart (GENEMIS, 1994). The seasonal variations 

specified in this way for the two categories of anthropogenic emissions are shown in Fig. 2. In addition, emissions were 

vertically distributed within 1 km by using the profiles (specific for each SNAP sector) provided in the emission interface of 

CHIMERE. Note that the vertical profiles did not explicitly account for aircraft emissions, which are also included in the 

EMEP inventory, but are likely to provide a very small contribution (less than 2 %) to anthropogenic NOx and CO emission 

in Europe (Tarassόn et al., 2004). 

Along with the anthropogenic emissions, our model included biogenic emissions (in particular, NOx emissions from soils 

and emissions of isoprene and some other hydrocarbons from vegetation) and emissions of gaseous species (NOx, CO and 

non-methane hydrocarbons) from open biomass burning (fires). Biogenic emissions were calculated for each grid cell, day 

and hour within the CHIMERE model by using the European inventory of soil NO emissions (Stohl et al., 1996) and the 

emission factors and parameterizations from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) model 

(Guenther et al., 2006). The fire emissions were specified using the daily data provided by the Global Fire Assimilation 

System, version 1.0 (GFAS v1.0) fire emission inventory (Kaiser et al., 2012). The fire emissions were distributed in the 

vertical uniformly up to the altitude of 1 km (similar to Konovalov et al., 2011). Note that according to the data of the GFAS 

v1.0 and EMEP emission inventories, the total emissions of both NOx and CO from fires in the countries considered (mainly, 

in Portugal) in 2008 were rather small (~0.5 % and ~5 % relative to the corresponding FF emission estimates given by the 

EMEP inventory). 

2.4 Preliminary comparative analysis of the measurement and simulation data 

In this section, we compare the measurement and simulated data and assess to what extent the variability of the NO2 and CO 

columns over the study region is affected by direct anthropogenic emissions in the same region. Figure 3 shows time series 

of the daily values of NO2 and CO columns averaged over the study region (see Fig. 1). The model was run both with and 

without anthropogenic emissions in the study region, and the model results are presented in Fig. 3 after compensating for a 

systematic difference with the measurements. Note that the modeled NO2 and CO columns shown in Fig. 3 were processed 

using averaging kernels (see Eq. 2); a very small difference between the CO columns calculated with and without 

anthropogenic emissions in the study region partly reflects the relatively low sensitivity of the CO retrievals in the boundary 

layer (compared to the upper troposphere). The systematic difference (the bias) was evaluated as the average difference 

between the model data (obtained by running CHIMERE with full emissions) and the corresponding measurements. The 

averaging was carried out either directly for the whole annual period considered (see Fig. 3a, b), or for each month 

independently (see Fig 3c, d). Note that the modeled NO2 and CO columns shown in Fig. 3 were sampled consistently (both 

in time and space) with the respective available satellite data and processed using averaging kernels (see Sect. 2.2 and  Eqs. 1 

and 2); a very small difference between the CO columns calculated with and without anthropogenic emissions in the study 

region partly reflects the relatively low sensitivity of the CO retrievals in the boundary layer (compared to the upper 

troposphere). 

It can be seen that both the NO2 and CO measurements exhibit strong day-to-day variability. A part of the observed 

variability is captured by the model, but the amplitude of the variations is typically smaller in the simulations than in the 

measurements. Exact reasons for the stronger day-to-day variations in the measurements are not known: one possible reason 

is that the variations in the measurements may reflect random errors in the retrieval procedures (see Sect. 2.1), while another 

possible reason is that a part of the variations in the measurements may be due to factors which are not taken into account in 

our model (such as, e.g., daily variability in the boundary conditions). Apart from the day-to-day variations, both the NO2 

and CO columns manifest slower variations. Such variations have a seasonal component in both the measured and simulated 

NO2 columns, with larger values observed in winter than in summer. A regular seasonal variability is visible also in the 

simulated CO data; however, similar variability in the corresponding measurement data appears to be offset by slower 



 
 

(probably, inter-annual) variability, which is not reflected in the boundary conditions of CHIMERE. The differences between 

the measurements and simulations vary from month to month, thus indicating the importance of evaluating the biases on 

shorter than annual time scales; this observation is taken into account in our inversion procedure described in Sect. 3.2. It 

should be noted that a part of the seasonal changes in the monthly biases may partly be due to errors in the seasonal cycles of 

the emissions specified in CHIMERE and in the global models that were used to obtain the a priori NO2 and CO profiles for 

the respective retrieval procedures (see Boersma et al., 2011, and George et al., 2009 for details); such changes may also be 

indicative of some errors in the assumed seasonal variations of other parameters of the retrieval procedures, such as, e.g., 

surface reflectance or atmospheric scattering by clouds and aerosol in the case of the NO2 retrievals and surface temperature, 

local emissivity, vertical distributions of atmospheric temperature and humidity in the case of the CO retrievals. Figure 3 

also shows that while the anthropogenic emissions in the study region provide the predominant contribution to the NO2 

columns over the same region, the respective signal in the CO columns is very small. 

Figure 4 presents the spatial distributions of the annually averaged NO2 and CO columns derived from OMI and IASI 

measurements and simulated with the CHIMERE CTM. Note that only the data taken into account in our analysis are shown. 

NO2 columns from both the measurements and simulations show very strong spatial variability correlating with the spatial 

distribution of NOx emissions (cf. Fig. 4a, c and Fig. 1a); this observation is coherent with findings of earlier studies (e.g. 

Konovalov et al., 2006; Napelenok et al., 2008; Mijling et al., 2012) demonstrating that satellite retrievals of NO2 columns 

combined with CTM outputs can provide useful information on the spatial distribution of NOx emissions on a regional and 

even local (e.g. cities) scale. However, the simulations do not reproduce the spatial variability of NO2 columns perfectly. In 

particular, the NO2 column amounts over the hot spots located in the heavily industrialized Po Valley in Northern Italy, as 

well as over an industrialized region in the North-Western Germany and Madrid are considerably smaller in the simulations 

than in the measurements; on the other hand, the simulated NO2 column amounts tend to be larger than the satellite retrievals 

over Great Britain. These differences may be due to uncertainties in the spatial distribution of NOx emissions, as well as due 

to measurement and simulation errors. 

Consistent with the results shown in Fig. 3, the signal from anthropogenic emissions appears to be rather weak and 

"smeared" in the spatial distribution of the CO columns. There are also big differences between the retrievals and simulations 

in some locations. Both the retrieved and simulated CO column amounts tend to be elevated over areas where the 

anthropogenic emissions are particularly large (such as those in Belgium, Germany, England or the Po valley in Italy). 

However, Fig. 4f showing the CO columns simulated without anthropogenic CO emissions in the study region and 

transformed using averaging kernels (see Eq. 2) bears evidence that an "anthropogenic signal" in the spatial variations of the 

measured CO columns may come mostly from the a priori CO columns employed in the retrieval procedure. Therefore, the 

preliminary analysis presented in this section indicates that the NO2 measurements can potentially provide much stronger 

constraints for anthropogenic emissions on a regional scale, compared to the CO measurements. 

3. Method  

3.1 Preliminary remarks 

Our method is first described below for a rather general case (with arbitrary numbers of proxy species and emission source 

categories and for an arbitrary region); some settings specific for this study are either explained later or have been discussed 

in Sect. 2. The main steps of the method were briefly outlined in Introduction. The key step of the method – namely, the 

estimation of annual emissions of a proxy species from different categories of sources (emission sectors) in a region of 

interest – is described in Sect. 3.2.  This step involves optimization of the emissions for a given sector by fitting simulations 

performed with a chemistry transport model (CTM) to satellite observations of a corresponding species. An important 

element of the first step is the estimation and elimination of a possible systematic discrepancy between the simulations and 

observations, which is not related to uncertainties in a priori emission data. Further steps leading to the estimation of the 



 
 

budgets of FF CO2 emissions are described in Sect. 3.3. An important part of the method is dedicated to the estimation of the 

confidence intervals for all our emission estimates (see Sect. 3.4). 

3.2 Optimization of emissions of proxy species 

We estimate annual totals of total annual anthropogenic emissions, ܧ௖௦,  of a given proxy species, s, from different categories 

of sources categories, c (c[1,Nc], where Nc is the total number of categories) for a given proxy species, s, in a study region. 

To do that, we combine observations, ࡯௢௦ , of the species atmospheric column amounts with respective modeled data, ࡯௠௦ , by 

assuming (similar to e.g. Berezin et al., 2013) that ࡯௠௦  depends on the emissions of a corresponding species linearly: 

௠௦࡯   ≅ ௠௕࡯	
௦ ൅	∑ ௖௦ܧ௖௦ሺࢇ௖௦܁ െ ࢉ	෨௖௦ሻܧ ,         (3) 

where ܧ෨௖௦  are the available (a priori) bottom-up annual anthropogenic emission estimates for a species s and a source 

category c, ࢇ௖௦ is the vector specifying allocation of the annual anthropogenic emissions to each cell of model's grid and each 

day of the simulations,	܁௖௦ is the Jacobean matrix containing sensitivities of the model outputs to the emissions, ࡯௠௕
௦  are the 

species amounts calculated in a "base" model run using the bottom-up emission inventory data. Note that in this study, 

Eq. (3) was used specifically to express the modeled relationships between NO2 measurements and NOx emissions, as well 

as between CO measurements and CO emissions.  

The annual emission estimates for individual source categories, ܧ௖௦, constitute the control vector of our inverse problem, Es. 

The optimum estimate of Es can be obtained by minimizing the sum of the squared differences between the observations and 

simulations as follows: 

෡௦ࡱ ൌ ࢙࢕࡯ሼሺ݊݅݉݃ݎ݃ܽ െ	࢙࢓࡯ ൅ ܛሻ்ሺ࢙࢕࡯ െ	࢙࢓࡯ ൅ ܛሻሽ ,         (4) 

where 	ࡱ෡௦ is the optimal estimate of the control vector, s denotes the systematic discrepancies between the simulations and 

observations of a given proxy species s. Note that different components of the vectors ࡯௢௦ ௠௦࡯ , , and ࡯௠௕
௦  are assumed to 

represent available values of the respective columns amounts of the species s in different grid cells and / or different 

moments of time in the region and period considered. 

The estimation given by Eq. (4) formally implies that the errors are homoscedastic, normally distributed and uncorrelated in 

space and time; deviations of real data from these ideal assumptions can result in errors in ࡱ෡௦, but we attempt taking such 

errors into account in respective confidence intervals for ࡱ෡௦  (see Sect. 3.4). The systematic discrepancies s, that are 

assumed to be independent of emission uncertainties and are estimated as explained below, can, in principle, be due to 

systematic errors both in the simulations and observations. For definiteness, s is assumed in this study to be due to biases in 

the simulations; the vector s is referred to below as simply "the bias". Formally, it can be defined as follows: 

ઢ௦ ൌ 	 ࢙࢓࡯〉 െ  (5)                  , 〈࢙࢕࡯

where the brackets denote the averaging over the assumed statistical ensemble of probable values of ࢙࢓࡯ 	and ࢙࢕࡯   in a 

situation when the anthropogenic emissions in the study regions are known exactly. 

Note that Eq. (4) does not include any formal a priori constraints on the magnitude of the optimal emission estimates (unlike 

many other inverse modeling studies) or any other regularization terms, and, accordingly, our procedure does not involve 

any explicit quantitative settings for the a priori error covariance matrices. In this way, we avoid possible uncertainties in 

optimal emission estimates that could be associated with such settings. Not using a priori constraints on the magnitude of the 

optimal emission estimates also enhances the value of the CO2 emission estimates derived from completely independent 

measurements of different proxy species for cross-validation purposes, because otherwise the top-down estimates of 

emissions of the proxy species (and, accordingly, hybrid estimates of CO2 emissions) could be more strongly dependent on 

the data of bottom-up inventories providing a priori estimates. Avoiding formal a priori constraints (or any other 

regularization) does not necessary result in ill- conditioning of an inverse problem, is feasible as long as the dimension of the 

control vector does not exceed is much smaller than that of the measurement vector (Enting, 2001), and it is definitely so in 



 
 

our case. Although satisfying this criterion alone cannot guarantee that the problem is well-conditioned, the numerical 

experiments presented below in Sect. 3.5 indicate that errors in our emission estimates due to probable errors in input data 

remain limited and thus the problem considered in this study is not ill-conditioned. The dimension of the control vector (one 

or two) is much smaller, in our case, than that of the measurement vector (including tens of thousands of observations) It is 

so in our case because we do not attempt improving the allocation of the emissions in space and time: the vectors ࢇ௖௦ are 

assumed to be known (in practice,	ࢇ௖௦ are provided implicitly by an emission interface in a CTM). Similar assumptions are 

not unusual in inverse modeling studies involving chemistry transport models (e.g., Pétron et al., 2004; Müller and 

Stavrakou, 2005; Huneus et al., 2012), when the emissions are corrected for big regions rather than for each model grid cell 

individually: indeed, optimization of emissions of chemically reactive species (like NOx) is, in a general case, a time 

consuming task, even when an adjoint code is available. A drawback of fixing the spatial and temporal distributions of the 

emissions in inversion is a probable aggregation error (Kaminski et al., 2001),. Similarly, errors in our total annual emission 

estimates can also result from fixing the temporal distribution of the emissions. For example, if the assumed seasonal cycle 

of the emissions overestimates them in summer and underestimates in winter, then, taking into account that more satellite 

observations are available in summer than in winter (because of seasonal differences in the atmospheric conditions), our 

annual estimates can be biased negatively. We attempted to take into account possible errors in our estimates due to errors in 

spatial and temporal allocation of the emissions in the uncertainty analysis as explained in (see Sect. 3.4).    

We assess the bias for a given data point i as the average difference between the monthly mean values of the simulationsed  

and observationsed columns of a species s for the month m in which the data point i lies:  

௜߂
௦ ≅ ൣ∑ ௝ߠ

௦
௝ ሺ݉ሻ൧

ିଵ
∑ ௝ߠൣ	

௦ሺ݉ሻ൫࢐࢓ܥ
࢙ െ ࢐࢕ܥ

࢙ ൯൧,௝         (6) 

ቊ
௝ߠ
௦ ൌ 1, ݆Њ ௠

௝ߠ
௦ ൌ 0, ݆ ∉ Њ ௠

, 

where m denotes the subset of the available data for a given month m, and i m is the index of a component (a point in 

time and space) of the vector s. It should be noted that values of ࢙࢓࡯  in Eq. (6), like those in Eq. (4), depend on the control 

vector, Es. When combined with Eqs. (3) and (6), Eq. (4) specifies a linear optimization problem that can be easily resolved 

numerically. Effectively, information about optimal values of the emission vector is obtained from spatial and temporal 

variations of the observations and simulations within each month. 

Eq. (6) provides a simple approximation for Eq. (5) by implying that the systematic differences between different pairs of 

simulations and observations corresponding to a given month are about the same; that is, we assume that the bias is uniform 

in space and time during a given month. In reality, however, systematic errors of satellite retrievals and model results can be 

different for different grid cells and days. Therefore, this approximation (that reflects the lack of any "a priori" information 

about the bias) may introduce some extra errors in our emission estimates, which would not appear if the structure of the bias 

was known exactly. Although we cannot avoid such errors, we try, at least, to take them into account in the confidence 

intervals for our estimates. Note that as long as there is only one realization of ࢙࢓࡯ 	and ࢙࢕࡯  for the region and period 

considered, an unambiguous separation between their random uncertainties and systematic errors is hardly feasible anyway. 

Summing up the optimal emission estimates for the different source categories provides the estimate of total emissions, 

෠௦௨௠௦ܧ , of the species s in the study region. Alternatively, the estimate of the total emissions can be obtained by applying the 

estimation procedure described above to the special case where all emission sources are aggregated together and Nc
 = 1. The 

corresponding optimal emission estimates are denoted below as ܧ෠௧௢௧
௦ . Considering the difference between ܧ෠௦௨௠௦ and ܧ෠௧௢௧

௦  

provides a useful test for self-consistency of the inversion procedure: the difference should not exceed the combined 

confidence intervals (that are expected to include an aggregation error among other uncertainties) for ܧ෠௦௨௠௦  and ܧ෠௧௢௧
௦ . 

The estimation method described above requires the knowledge of the product of the Jacobean matrix, ܁௖௦, and of the vector 

 ௖௦ (see Eq. 3), while the knowledge of the Jacobean matrix itself is not needed. In this study, theis product of the Jacobeanࢇ

matrix, ܁௖௦ , and of the vector ࢇ௖௦ (see Eq. 3) was evaluated as the difference between the results of a model "base" run 



 
 

performed with the standard emission settings as described in Sect. 2.3 and the results of the special runs ("EHI" or "TCO") 

performed after decreasing the annual EMEP emission values for the respective (EHI  or TCO) source categories by 10%. 

The product of ܁௖௦  and ࢇ௖௦  in the case where all emission sources were aggregated together (that is, with Nc = 1) was 

evaluated as the sum of the products of ܁௖௦ and ࢇ௖௦ for the two individual (EHI and TCO) emission categories.  

Note that we analyzed only the measurements over land in the study region, and so the measurements outside of the study 

region (e.g., over ocean) were not used. Such a limitation affected the amount of data used in the analysis, but we do not see 

any reason to expect that it could result in any biases in our emission estimates, which would not be covered by their 

uncertainty intervals (evaluated as explained in Sect. 3.4). Likewise, we do not expect that any biases in our emission 

estimates can be caused by NOx and CO emissions outside of the study region. Indeed, on the scales considered, it seems 

reasonable to regard temporal and spatial variations of NO2 and CO originating from any sources (including ship emissions) 

outside of the study region as model errors on top of the modeled variations of NO2 and CO originating from inside of the 

study region. Accordingly, we do not distinguish such variations from other errors and treat their systematic and random 

parts as explained in this section (see Eq. 6) and in Sect. 3.4, respectively. 

 

3.3 Estimation of FF CO2 emissions 

Following Berezin et al. (2013), we introduce the conversion factors, ܨ௖௦, describing the relationships between the annual 

emissions ofor a given proxy species s and those of the CO2 emissions: 

௖௦ܨ ൌ
ா෨೎
಴ೀమ

ா෨೎
ೞ ,             (7) 

where ܧ෨௖஼ைଶ	and ܧ෨௖௦ are the annual estimates of anthropogenic CO2 emissions of CO2 and of anthropogenic emissions for a 

species s for a given emission source category (sector) c. Here (as above), the tildes indicate that the emission estimates are 

obtained from a bottom-up emission inventory (as opposed to the optimal emission estimates, ܧ෠௖௦ , inferred from the 

measurements according to Eq. (4). by using the modeled relationships between the column amounts of a given proxy 

species and corresponding emissions). 

Application of the conversion factors to the corresponding optimal emission estimates allows us to obtain the "hybrid" CO2 

emission estimates, ܧ௦௖஼ைଶ, that are partly constrained by the measurements but also depend on data of the emission inventory: 

෠௦௖௖௢ଶܧ  ൌ  ෠௖௦.            (8)ܧ௖௦ܨ

Similarly, we can estimate the total CO2 emissions: 

෠௦,௦௨௠௖௢ଶܧ ൌ ∑ ௖	෠௖௦ܧ௖௦ܨ .           (9) 

The alternative total CO2 emission estimate, ܧ෠௖,௧௢௧
௖௢ଶ , can be inferred directly from an estimate of the total emissions ofor a 

proxy species: 

෠௦,௧௢௧ܧ
௖௢ଶ ൌ ௧௢௧ܨ

௦ ෠௧௢௧ܧ
௦ ,            (10) 

where ܨ௧௢௧
௦  is the conversion factor evaluated similar to Eq. (7) but by using total annual emission estimates based on 

emission inventory data and ܧ෠௧௢௧
௦  are the corresponding estimates inferred from satellite measurements for the total emissions 

of CO2 and the proxy species. Note that the conversion factors that were used to obtain our hybrid FF CO2 emission 

estimates reported below in Sect. 4.2 were calculated with the EDGAR v4.2 emission inventory data. 

The hybrid CO2 emission estimates derived from measurements of different species can be used for the cross-validation 

purposes (specifically, the different estimates are expected to agree within the range of their confidence intervals if all 

uncertainties including aggregation errors are adequately accounted for in the inversion procedure). They can also be 

combined by taking into account the uncertainty of the individual estimates. Specifically, given Ns individual emission 

estimates, ܧ෠௦௖௖௢ଶ, the combined (maximum likelihood) estimate of the CO2 emissions, ܧ௖௢௠௕,௖
஼ைଶ , and its uncertainty range can 

be expressed as follows: 

෠௖௢௠௕,௖ܧ
஼ைଶ ൌ ሺ∑ ሺߪ௦௖஼ைଶሻିଶே௦

௦ୀଵ ሻିଵ ∑ ௦௖஼ைଶሻିଶே௦ߪ෠௦௖஼ைଶሺܧ
௦ୀଵ ; 



 
 

௖௢௠௕,௖ߪ
஼ைଶ ൌ 1/ሺ∑ ሺߪ௦௖஼ைଶሻିଶሻே௦

௦ୀଵ
ିଵ/ଶ

 ,          (11) 

where ߪ௦௖஼ைଶ are the uncertainties (the standard deviations) of ܧ෠௦௖௖௢ଶ. 

A combined estimate for the total CO2 emissions, ܧ෠௖௢௠௕,௧௢௧
஼ைଶ , can be obtained in a similar way by using values of ܧ෠௦,௧௢௧

௖௢ଶ . An 

alternative combined estimate for the total emissions, ܧ෠௖௢௠௕,௦௨௠
஼ைଶ , can be obtained by summing up values of ܧ෠௖௢௠௕,௖

஼ைଶ  for 

different source categories c. The standard deviations ߪ௦௖஼ைଶcan be evaluated as described in the next section (Sect. 3.4). 

Importantly, according to Eq. (11), the probable uncertainty of the combined estimate ܧ෠ܧ௖௢௠௕,௖
஼ைଶ 	 is smaller than the 

uncertainty of any of the individual estimates. It should be noted, however, that Eq. (11) provides the maximum likelihood 

estimate only if the "input" emission estimates derived from measurements of individual proxy species are statistically 

independent from each other; otherwise it would be necessary to take into account their error covariances. Applicability of 

Eq. (11) to the situation addressed in this study is discussed in Sect. 4.2. 

3.4 Uncertainties in the emission estimates 

Evaluation of credible confidence intervals for our optimal emission estimates by using a typical error propagation technique 

requires proper knowledge of the statistical characteristics of model and measurement errors. However, in case of 

simulations and satellite measurements of minor atmospheric species, such knowledge is usually lacking due to complexity 

and multiplicity of factors that may lead to retrieval and model errors. Taking such considerations into account, instead of 

using the error propagation technique, we follow the so-called subsampling approach (Politis et al., 1999). Subsampling 

suggests estimating the confidence interval of a sample statistic (e.g., the variance) by considering variability of that statistic 

among subsamples drawn from the original sample without replacement. 

To adopt the subsampling approach in this study, the original set (sample) of input data for a given proxy species s is divided 

into nd subsets (subsamples). From each subset, a "partial" independent emission estimate, ܧ෠௖,௜
௦  (i[1,nd]) is inferred. The 

partial estimates can be used to evaluate the standard error, ߪ௖௦, of ܧ෠௖௦	ሺthat is, the standard error of the sample estimate) as 

follows: 

௖௦ߪ ≅ ට
ଵ

௡೏ሺ೙೏షభሻ
∑ ൫ܧ෠௖,௜

௦ െ	ܧ෠௖ሺሻ
௦ ൯

ଶ௡ௗ
௜ୀଵ ,         (12) 

where ሺሻ denotes the mean over all the partial estimates. Importantly, the estimation given by Eq. (12) requires the partial 

estimates to be statistically independent. If this condition is satisfied, the partial estimates, ܧ෠௖,௜
௦ , that are involved in Eq. (12), 

can be regarded as independent "observations" of the same characteristic: deviations between ܧ෠௖,௜
௦  and ܧ෠௖ሺሻ

௦ 	can only be due 

to errors in the simulated and measured data. In this sense, Eq. (12) essentially evaluates the standard deviation of the mean 

of individual "observations" (individual top-down emission estimates in our case) affected by random errors. Note that a 

simple and robust estimation technique involving Eq. (12) is basically the same as one of the oldest and popular techniques 

within the subsampling approach, known as replicated sampling (Deming, 1960; Lee and Forthofer, 2006). The standard 

errors in our estimates, ܧ෠௦௨௠௦  and ܧ෠௧௢௧
௦ , for the total emissions of proxy species can be evaluated in the same way (that is, by 

substituting ܧ෠௦௨௠௦  and ܧ෠௦௨௠ሺሻ
௦  or ܧ෠௧௢௧

௦  and ܧ෠௧௢௧ሺሻ
௦  into Eq. (12) instead of ܧ෠௖,௜

௦  and ܧ෠௖ሺሻ
௦ ). 

The statistical independence of the partial estimates could not be ensured in our case if different subsets were selected in a 

quite arbitrary way. The reason is that the model and observation errors tend to covariate both in space and time (as 

confirmed by our analysis discussed below in Sect. 3.5). So, on the one hand, the data included in different subsets should be 

sufficiently separated in time and / or space to avoid co-variation of errors of different partial estimates. On the other hand, 

the number of the subsets should not be too small to ensure that the standard error estimate is sufficiently reliable (note that 

statistical inference defined by Eq. (12) is based on nd − 1 degrees of freedom). It was also necessary to take into account 

that the error structure in temporal and spatial domains can be different. 



 
 

In view of these considerations, we opted to divide the original dataset into 4 subsets in the temporal domain and 4 subsets in 

the spatial domain. Each of the subsets in the temporal domain included data for only one season but for the full spatial 

domain. The gridded data subsets for winter, spring, summer and autumn months included 3.9104, 4.1104, 5.4104 and 4.1 

104 values in the case of NO2 measurements and 2.6103, 1.4104, 2.5104 and 1.2104 values in the case of CO 

measurements. The spatial subsets were defined as shown in Fig. 4(e, f) and each included about 4.3104 and 1.3104 values 

for the whole year in the cases of NO2 and CO measurements, respectively. ; each of the subsets included the data for the 

whole year. The standard error was estimated in accordance to Eq. (12) independently for both "temporal" and "spatial" 

subsets (that is, nd was equal 4 in the both cases), and the maximum of the two estimates of ߪ௖௦ was selected as the final 

estimate of the standard error. Note that such a division allowed us to retain most of the actual error covariances within a 

given subsample, as the areas and time periods covered by each subset were significantly larger than expected error 

covariance scales (see Sect. 3.5 for further details). On the other hand, selection of the maximum of the two different 

 estimates may result in overestimation of the confidence intervals that can be robustly evaluated by applying t-values	௖௦ߪ

(from the Student's distribution with three degrees of freedom in our case) to the standard error estimate. 

We expect that apart from random errors in the input data, the error estimate obtained as described above also includes (at 

least to some extent) the aggregation error (Kaminsky et al., 2001). In this study, that kind of error may be due to 

aggregation of similar sources in all the countries considered into a single component of the control vector. As contributions 

of various sources to the CO and (especially) NO2 columns in the different countries are different, the aggregation error is 

likely to be manifested as deviations between the different partial estimates. For example, if, in a hypothetical situation, an 

emission estimate inferred from the full dataset were mostly affected by strong emission sources from only one country, a 

partial estimate obtained after leaving the measurements over that country out would likely be much less affected by the 

same sources, at least in the case of emission estimates of such a short lived species as NOx. 

The confidence intervals estimated using Eq. (12) are also likely to account for a partmost of estimation errors associated 

with uncertainties in the diurnal and weekly variations of anthropogenic emissions, as well as with uncertainties due to 

shortcomings in the model representation of chemical processes (including effects of subgrid-scale chemical interactions). 

Indeed, it seems reasonable to expect that different errors of the emission temporal cycles for different emission sectors, and 

countries and seasons can be manifested as quasi-random deviations between the simulations and measurements in different 

grid cells and days. Uncertainties in the diurnal variations of emissions are likely to be manifested additionally in the 

differences between the hybrid CO2 emissions estimates inferred separately from the CO and NOx NO2 measurements, as 

those measurements are taken in different times of a day (see Sect. 2.1). Uncertainties in simulations of chemical processes 

and subgrid-scale chemical interactions are likely to have a different impact on the observed modeled NO2 or CO columns in 

different types of environments (e.g. rural or urban) and in different seasons; therefore, the respective model errors are likely 

to differ in different grid cells (and days of an year) and to have a different impact on the NOx or CO emission estimates for 

different sub-regions and seasons,. Accordingly, it indeed seems reasonable to assume that  and thus such errors are mostly 

taken into account in expected to contribute to the emission estimate uncertainties evaluated with addressed in Eq. (12). In 

addition, as the NO2 and CO behaviors are governed by essentially different chemical processes, uncertainties due to a 

"chemical" part of model errors are likely to contribute to differences between the CO2 emission estimates based on the NO2 

and CO measurements.  

Note that it is nonetheless not quite infeasible that some model errors associated with the representation of chemical 

interactions can result in similar (positive or negative) biases across the NOx or CO emission estimates inferred from the 

different data subsets. For example, systematic underestimations of the NOx emissions may be due to persistent positive 

biases in the ozone formation rate and in boundary conditions for tropospheric ozone concentration (as ozone concentration 

accounts for partitioning of NOx between NO and NO2) as well as due to other numerous factors (such as e.g. 

underestimation of the hydrocarbon emissions or of the ozone photolysis rate) that may result in underestimation of 



 
 

concentration of hydroxyl radical providing a major sink for NOx and determining its atmospheric lifetime (Seinfeld and 

Pandis, 2006). Depending on atmospheric conditions, effects of different model errors on the emission estimates may or may 

not compensate each other. Even though different model errors are likely to combine and affect the emission estimates in 

different ways in the different sub-regions and seasons, we cannot completely ensure that the confidence intervals for our 

CO and (especially) NOx emission estimates actually account for all possible model errors. More accurate evaluation of 

effects of possible errors in the model representation of chemical processes on NOx and CO emission estimates that can be 

derived from satellite measurements by using our inverse modeling method requires further research (involving, e.g., multi-

model inversions) that goes beyond the scope of this study.   

Uncertainties in the seasonal cycles of anthropogenic emissions are likely to be manifested (in the absence of any other 

model and measurement errors) as the differences between the annual emission estimates obtained with the four data subsets 

including data for the different seasons. Therefore, we expect that such uncertainties are also addressed in the confidence 

intervals evaluated as explained above. However, Ccompared to the diurnal and weekly variations, uncertainties in the 

seasonal variations of anthropogenic emissions are more probabley to result in common systematic biases of NOx and CO 

emission estimates. To get an idea about the magnitude of such biases, we compared the emission estimates for the two cases 

involving simulations with different seasonal cycles. The first case (referred to below as the "cycle" case) corresponds to the 

standard seasonal cycles assumed in our model (see Fig. 2). The second ("flat") case corresponds to simulations performed 

with constant emissions in any month of a year (but yet with the same diurnal and weekly emission temporal profiles as in 

the "cycle" case). Note that Dthe differences between the emissions estimates obtained for these two cases are likely to 

strongly exceed the respective uncertainty (because the "flat" case is evidently unrealistic). and, for this reason, are not 

formally included in the confidence intervals for our emission estimates. 

It should be noted that the qualitative considerations discussed above are by no means intended to strictly prove that the 

estimations based on Eq. (12) actually account for all possible errors. Nonetheless, taking the above arguments into account 

and given the fact that both the origins and the statistical characteristics of errors in the measurement, simulation and 

inventory data involved in our analysis are very poorly known, we believe that the simple and robust subsampling technique 

described above provides sufficiently reliable and robust uncertainty estimates and has no serious alternative in the situation 

considered. Some further arguments supporting reliability of this technique are discussed in Sect. 3.5. 

To obtain the confidence intervals for our CO2 emission estimates, we need to combine the uncertainty of our estimates of 

emissions of proxy species with the uncertainty of the corresponding conversion factors. Ideally, the uncertainty of the 

conversion factors for source categories that group different sectors (like EHI and TCO) could be obtained e.g. by varying 

parameters of a bottom-up inventory (Wang et al., 2013) and provided along with emission data. However, in our 

knowledge, such information has unfortunately not yet been made available within any inventory except those by Wang et 

al. (2013) for China. As an alternative approachway, we suggest that the uncertainty of the conversion factors can be roughly 

estimated by comparing their values based on data of different emission inventories. Ideally, it would be best to consider an 

ensemble of several independent inventories providing the data on emissions of all the species (NOx, CO and CO2) involved 

in our analysis. However, in this study, in view of the limited practical availability of the necessary data, we realized only a 

highly simplified version of such an approach. In this studySpecifically, along with the conversion factors based on the 

EDGAR v4.2 emission inventory (those values were used to obtain our "bestmain" CO2 emission estimates as described in 

Sect. 3.3 and are denoted in this section simply as ܨ௖௦), we considered "alternative" conversion factor values based on the 

data of other inventories, such as EMEP and CDIAC. The "alternative" conversion factor values are denoted below as ܨ௖௦′. 

Specifically, we used the EMEP inventory data for NOx and CO emissions and the CDIAC data for FF CO2 emissions (see 

Sect. 2.3). Taking into account considerable differences in the data sources and methodologies used across the three 

inventories (see Sect. 2.3 and the corresponding references for details), we assume that the main and alternative conversion 

factor estimates are sufficiently independent. As the CDIAC emission data had not been originally distributed among 



 
 

individual emission sectors, the fractions of the two categories of the CO2 sources were taken to be the same as in the 

EDGAR v.4.2 inventory. However, only the original CDIAC and EMEP data were used to estimate the conversion factors 

applied to the total emissions (ܨ௧௢௧
௦ ′). 

Using again the subsampling technique, we roughly estimated the standard error for the conversion factors, ߪ௦௖ி , as follows: 

௦௖ிߪ ൌ ට
ଵ

ሺேೖିଵሻேೖ
∑ ൫ܨ௖,௞

௦ െ ௖,௞ܨ
௦ ᇱ െ ௖ሺሻܨ

௦ ൅ ௖ሺሻܨ
௦ ᇱ൯

ଶ
൅ ሺሾܨ௖௦ െ ௖௦ܨ

ᇱሿሻଶ	ேೖ
௞ୀଵ  ,      (13)  

where ܨ௦,௞
௣  and  ܨ௦,௞

௣ ′ are the conversion factors evaluated individually for each of the 12 countries considered, c is the country 

index, Nk is the total number of the countries considered (Nk = 12 in this study), and ሺሻ denotes the means over the 

countries. The country scale is used in Eq. (13), because the CDIAC data had not been provided on a spatial grid, and thus 

we could not consider the same spatial subsamples as those with the data for NO2 and CO columns. The estimations given by 

Eq. (12) and (13) are based on the same idea, except that unlike Eq. (12), Eq. (13) does not involve the assumption that the 

error of a "sample" estimate is completely random in origin; rather, it takes into account that the error may contain both 

random and systematic components. The latter is evaluated in Eq. (13) as the difference between the estimates ܨ௖௦ and ܨ௖௦′ 

representing the full study region. Actually, that difference may include a part of the random error, so Eq. (13) is likely to 

overestimate ߪ௖௦ி . Further overestimation may be due to the fact that the differences in Eq. (13) comprise cumulative errors in 

the both conversion factor estimates: if the errors were distributed equally between the "main" and alternative estimates, a 

proper value of ߪ௖௦ி  would be at least the factor of 21/2 smaller than the one given by Eq. (13). In contrast, using the same 

(EDGAR v.4.2) data to evaluate both	ܨ௖,௞
௦  and ܨ௖,௞

௦ ′ may compensate such an enhancement or even entail a tendency for 

underestimation in ߪ௦௖ி  (except for the case where the conversion factors and their uncertainties are estimated directly for 

total emissions, that is, without sectorial breakdowns). Nonetheless, on the whole, taking the above qualitative considerations 

into account, we expect that values of ߪ௦௖ி  calculated as described above are more likely to be overestimated than 

underestimated, thus being conservative in our approach to provide optimal CO2 emission estimates. 

Values of the conversion factors,	ܨ௧௢௧
௦  and ܨ௧௢௧

௦ ′, calculated using different inventories for each country considered are shown 

in Fig. 5. The differences between the different estimates of the conversion factors are, in general, considerable and vary 

across different countries in the study region. Specifically, the differences for the NOx-to-CO2 emission and CO-to-CO2 

conversion factors range from 1.4 to 24.9 % and from 3.8 to 52.6 % (relative the values based on the EDGAR v.4.2 data), 

respectively. The differences are smallest for Austria and Germany. 

The standard error, ߪ௦௖஼ைଶ, representing the uncertainty in our hybrid estimates of anthropogenic CO2 emissions was estimated 

by assuming that uncertainties in the estimates of a proxy species emissions and in the estimates of the conversion factors are 

independent: 

௦௖஼ைଶߪ ൌ ඨቀ	෠௦௖௖௢ଶܧ
ఙ೎
ೞ

ா෠೎
ೞቁ
ଶ
൅ ቀ

ఙೞ೎
ಷ

ி೎
ೞ 	ቁ

ଶ
.          (14) 

The standard error, ߪ௦,௧௢௧
஼ைଶ , for a corresponding total CO2 emission estimate, ܧ෠௦,௧௢௧

௖௢ଶ  (see Eq. 10), was evaluated in the same 

way. Taking into account that the uncertainties in the top-down estimates of emissions of proxy species for different source 

categories are likely not independent, the standard error, ߪ௦,௦௨௠஼ைଶ , of ܧ෠௦,௦௨௠௖௢ଶ  (see Eq. 9) was given by a similar (althoughbut a 

slightly more complicated) equation: 

௦,௦௨௠஼ைଶߪ     ൌ 	ට∑ ൫ܧ෠௖௦ߪ௦௖ி ൯
ଶ
	௖ ൅ ൫ߪ௦,௦௨௠

஼ைଶ|ி൯
ଶ
 ,         (15) 

where  ߪ௦,௦௨௠
஼ைଶ|ி represents the standard error of ܧ෠௦,௦௨௠஼ைଶ  under the condition that the conversion factors are known exactly (that 

is, the errors included in ߪ௦,௦௨௠
஼ைଶ|ி are associated with only uncertainties of our top-down emission estimates for the proxy 

species);  ߪ௦,௦௨௠
஼ைଶ|ி was evaluated by using the same subsampling technique as described above for the case of estimation of 



 
 

uncertainties in ܧ෠௖௦ . The standard errors given by Eq. (14) or (15) allowed us to combine the estimates based on the 

measurement of NO2 and CO columns by using Eq. (11). 

3.5 Observation system simulation experiments (tests with synthetic data) 

In this section, we examine the capabilities of our method for estimation of emissions of the proxy species by means of 

observation system simulation experiments (OSSEs). Specifically, we apply our method to synthetic "observational" data 

featuring known uncertainties that are evaluated by considering the misfits between real observation and corresponding 

simulated data. Specifically, to generate the synthetic data, we assumed that the covariances of cumulated errors in the real 

measurement and simulation data can be described by the three-dimensional covariance function, ܿݒ݋௦൫ߩ௫, ,௬ߩ  ௧൯, that canߩ

be approximated as follows: 

,௫ߩ௦൫ݒ݋ܿ  ,௬ߩ ௧൯ߩ ≅ ௧ݒ݋௬൯ܿߩ௬௦൫ݒ݋௫ሻܿߩ௫௦ሺݒ݋ܿ
௦ሺߩ௧ሻ,        (16) 

where x and y denote the distances between a pair of "observations" in west-to-east and south-to-north directions, 

respectively, t is the period (the lag) between different "observations", ܿݒ݋௫௦ ௬௦ݒ݋ܿ , , and ܿݒ݋௧
௦  are the respective one-

dimensional covariance functions. We further approximated the covariance functions by using misfits between the 

observations and simulations as follows:  

∑~ሻ∗ߩ௦ሺ∗ݒ݋ܿ ∑ ࣢௜௝
௦ ሾߩ∗ሿሺܥ௢௜

௦ െ ௠௜ܥ
௦ ൅ ∆௜

௦ሻ൫ܥ௢௝
௦ െ ௠௝ܥ

௦ ൅ ∆௝
௦൯	௝௜ ,       (17)  

where the subscript "*" denotes either x, or y, or t, ࣢௜௝
௦ ሾߩ∗ሿ is the selection operator which is non-zero (unity) only for those 

pairs of data points that correspond to a given value of *,  ܥ௢௜
௦ 	 and ܥ௠௜

௦  are the vectors of the observational and simulated 

data, and ௦ is the bias. The distances and the lag were expressed in the numbers of grid cell and days, respectively. The 

vector ࢙࢕࡯  involved in Eq. (17) represents the actual observational data described in Sect. 2.1. The simulated data, ࢙࢓࡯ ,	were 

obtained from the model "base" run results presented in Sect. 2.4, and the bias was evaluated on the monthly basis as the 

"zero-order" estimate obtained by applying Eq. (6) to the same data (that is, without using top-down emission estimates). 

The covariance functions, ܿݒ݋௫௦ ௬௦ݒ݋ܿ , , and ܿݒ݋௧
௦ , evaluated according to Eq. (17) were found to have the following 

characteristic scales (corresponding to a two-fold decrease of the covariance functions): 3 (5) and 2 (3) grid cells and 1 (1) 

days in the case of NO2 (CO) columns, respectively, although these scales do not necessarily reflect the presence of rather 

long "tails" in the covariance functions. 

Our OSSEs are not expected to disregard any of possible errors in observational and model data that determine variability of 

the misfits between the observations and simulations within one month, although it should be noted that Eq. (16) provides a 

rather simplified temporal and special structure of such errors. In particular, our error model does not allow us to take into 

account probable error "clusters" that can be associated with the aggregation error in our optimal emission estimates, as well 

as less probable model errors (see Sect. 3.4) that affect the modeled relationship between the NOx emissions and the NO2 

columns but do not contribute to the variability of the differences between the observations and simulations. Nonetheless, 

inversion of the synthetic data generated even with the simplified error model is useful, as it allows us to assess the adequacy 

of our uncertainty estimates obtained with the subsampling technique in the presence of probable covariances of errors in the 

input data, as well as to examine the self-consistency of our procedure (that is, to see whether or not any systematic 

deviations of our optimal emission estimates from the "true" emission values are covered by the corresponding confidence 

intervals). 

Estimations given by Eq. (16), (17) were used to set up a Monte Carlo experiment in which the vector ࢙࢓࡯ 	ሺeither obtained 

from the model base run or from a model run with the emissions perturbed as explained below) represented the "true" 

content of a given species, while the synthetic "observations" were generated by adding random errors (and, in some cases, 

biases) to ࢙࢓࡯ .	 Samples of the errors with the covariance structure given by Eq. (16) were generated from a Gaussian 

distribution by using thea standard  Cholesky decomposition method (Press et al., 1992). involving the Cholesky 



 
 

decomposition of the correlation matrices that were specified, in our case, using the covariance functions given by Eqs. (16) 

and (17). The Cholesky decomposition of a correlation matrix gives a lower-triangular matrix, L; applying this matrix to a 

vector of uncorrelated samples of Gaussian noise, u, gives a vector, Lu, with the components satisfying the original 

correlation matrix. Using the synthetic data, we obtained "uncertain" emission estimates which were compared with "true" 

emission data specified in the model. Each Monte Carlo experiment included 100 iterations performed with the same 

covariance matrix and with the same bias, ∆࢙, but with different samples of random errors. The bias added to ࢙࢓࡯ 	in each 

experiment for any given day was specified by linearly interpolating (in time) the monthly biases shown in Fig. 3(c, d), with 

the magnitude of the monthly bias values scaled (in different experiments) with a factor () ranging from 0 to 1. 

The uncertainties (expressed as the standard error) in the emission estimates were evaluated both in the "direct" way (as the 

root mean square difference between the "uncertain" and "true" emission estimates) and by averaging squares of ߪ௖௦ 

calculated by using the subsamping technique described above. The magnitude of errors in the synthetic data was changed in 

different experiments by applying a scaling factor () ranging from 0 to 1 to the covariance matrix given by Eq. (16). An 

additional factor () was introduced to scale the non-diagonal components of the covariance matrix:  equals zero in an 

"ideal" case where errors in each grid cells and days are statistically independent from errors in any other grid cells and days. 

Along with the experiments where the "true" emissions were set to be exactly the same as the bottom-up emissions used in 

the base run of our model (see Fig. 6, 7), we performed the experiments where the base case emissions for both NOx and CO 

were either uniformly increased by 20 percent (see Fig. 8), or increased by 20 percent only for the EHI categories but 

reduced by 20 percent for the TCO category (see Fig. 9). Note that not only anthropogenic NOx and CO emissions were 

perturbed in the corresponding model runs, but also respective anthropogenic emissions of all other model species, including 

those of NMHCs. 

The results of the OSSEs indicate, in particular (see Fig. 6, 7), that if errors in the input data for different grid cells and days 

were statistically independent ( = 0), the uncertainties (evaluated in the "direct" way with both  and  equal unity) of our 

top-down estimates of both NOx and CO emissions would be very small, specifically 0.9 % and 0.6 % for the NOx emission 

estimates in the EHI and TCO sectors and somewhat larger (13 % and 5 %) for the CO emission estimates for the same 

sectors. The fact that the uncertainties in our emission estimates remain rather small in spite of the large uncertainties in the 

input data (see Sect. 2.4) clearly indicates that the inverse problem considered is not ill-conditioned. Expectedly, taking the 

error covariances into account increases the emission estimate uncertainties considerably. The uncertainties in the estimates 

of NOx (CO) emissions from the EHI and TCO sectors are found to be 4 (28) % and 5 (17) %, respectively. Larger 

uncertainty levels in the CO emission estimates compared to those in the NOx emission estimates are an expected result 

reflecting the fact that the constraints to CO emissions provided by the CO observations are much weaker than the 

corresponding constraints provided by the NO2 observations to the NOx emissions. Indeed, an "emission signal" in the CO 

data considered (see Figs. 3&4) is, on average, much weaker than that in the NO2 data; moreover, taking into account that 

the atmospheric lifetime of CO is much longer compared to that of NOx, an emission signal from a given grid cell is 

effectively spread between a much larger number of grid cells (and days) in CO- than in NO2 observations, resulting in large 

non- diagonal elements of the Jacobian matrix and potentially leading to a stronger sensitivity of the CO emission estimates 

to errors in the input data. Interpretation of changes in the uncertainty estimates with respect to the "ideal" case is difficult: it 

can only be speculated that the increase in the uncertainties is larger in the NOx- than in CO emission estimates, probably 

because introduction of the error covariance is effectively equivalent to aggregation of available observations into a few 

"super-observations", leading to suppression of the effect of large non-diagonal elements in the Jacobian matrix describing 

the relationship between the CO emissions and observations. 

Importantly, it is found that introduction of a bias into the synthetic data does not have a strong impact on the accuracy of the 

retrieved emission estimates (see Fig. 7) affected by random errors in the input data. This result confirms that our inverse 



 
 

modeling scheme is indeed capable of efficiently filtering out the bias, even if it is not constant during one month (as 

assumed in Eq. 6).  

The results of our OSSEs also indicate that the subsampling technique employed in this study provides reasonable 

uncertainty estimates, although tends to overestimate the actual uncertainties in the experiments representing the most 

realistic case (where all the scaling factors equal unity). We consider a probable overestimation of uncertainties in our 

emission estimates as a rather positive feature of our procedure, making conclusions of this study more reliable. 

The results shown in Figs. 8 and 9 demonstrate that the optimal emission estimates obtained with our inversion procedure are 

likely not significantly biased even if the true emissions are considerably different from the bottom-up emission inventory 

data. These results also confirm that our inversion procedure enables efficient separation of the uncertainties in the model 

data due to emission errors from other systematic uncertainties in the model and observation data. Importantly, the fact that 

the emissions perturbations are retrieved almost perfectly, indicate that the effects of chemical interactions (nonlinearities) 

and changes in NMHC emissions on the relationships between NOx and CO emissions and the NO2 and CO columns, 

respectively, are likely rather small in the situation considered, although it should be noted that such effects can be stronger 

if the differences between the bottom-up and true emissions were much larger than in our experiments ( 20 %). 

4 Results 

 4.1 NOx and CO emission estimates 

The estimates of anthropogenic NOx and CO emissions from the “EHI” and "TCO" categories (ܧ෠௖௦) as well as from all 

sources aggregated together (ࡱ෡௧௢௧
௦ ) based on actual observations are presented in Fig. 10. The corresponding numbers are 

listed in Table 1 that also shows "alternative" estimates (ࡱ෡௦௨௠௦ ) of the total emissions. The results are reported for the two 

estimation cases ("cycle" and "flat", see Sect. 3.4) that involve different seasonal variations of anthropogenic emissions in 

the model (specifically, the seasonal cycles specified in the standard version of the CHIMERE CTM were used for the 

"cycle" case estimations, while constant monthly anthropogenic emissions but with diurnal and weekly variations were 

employed for the "flat" case). Note that the "flat" case is obviously unrealistic and is considered here only for testing 

purposes; accordingly, if not stated otherwise, below we discuss estimates obtained for the main ("cycle") case. The 

uncertainties are reported in terms of the 68.3 % (1-sigma) confidence intervals:. It should be noted that the confidence 

intervals were evaluated under the assumption (see Sect. 3.4) that the NOx and CO emission estimates are not significantly 

affected by any systematic errors that cannot be manifested in the differences between the emission estimates for different 

sub-regions and seasons. If this assumption holds,  a probable overestimation of uncertainties by our subsampling technique 

(see Sects. 3.4 and 3.5) suggests that the uncertainty intervals evaluated with our subsampling technique may actually 

correspond to a higher confidence level, as discussed in Sect. 3.4 and 3.5. 

All of our optimal (top-down)  estimates of both the total NOx and CO emissions are slightly (less than 10 percent) smaller 

than the bottom-up estimates based on the EMEP inventory data; the differences between the top-down and bottom-up 

estimates are not statistically significant. The relative uncertainties in our estimates of the total emissions range from 10 % 

(in case of the ࡱ෡௧௢௧
௦  estimate for the NOx emissions) to 30 % (in case of the ࡱ෡௦௨௠௦  estimate for the CO emissions). A lower 

uncertainty in our estimate of the total NOx emissions is not quite surprising, as random uncertainties of a very huge large 

number amount of individual retrievals used in our inverse modeling analysis tend to compensate each other, while 

systematic errors were taken into account in the framework of our inversion procedure explicitly. Nonetheless, these this low 

uncertainty estimates should be considered with a certain degree of caution as they it may not fully account for some 

unknown errors depending on emissions themselves (e.g. due to uncertainties in a model chemical scheme, see also 

Sect. 3.4nonlinearities), even though the results of the OSSEs presented in Sect. 3.5 indicate that such errors are hardly 

significant in the situation considered. Taking into account our preliminary analysis (see Sect. 2.4) indicating that the 



 
 

contribution of the anthropogenic CO emissions in the study region into the corresponding CO columns is relatively small 

and the results of the OSSEs (see Sect. 3.5), it is also not surprising that the uncertainties in our CO emission estimates are 

much larger than those in the NOx emission estimates. 

The differences between our alternative estimates of the total emissions, ࡱ෡௦௨௠௦  and ࡱ෡௧௢௧
௦ , are also small compared to the 

uncertainties of those estimates, while the uncertainties in ࡱ෡௦௨௠௦  are larger than the uncertainties in ࡱ෡௧௢௧
௦ . The difference 

between the uncertainties in ࡱ෡௦௨௠௦  and ࡱ෡௧௢௧
௦  would be difficult to predict a priori, particularly because the cost function (see 

Eq. 4) employed in this study includes the bias whose estimation may increase uncertainties in the emission estimates to a 

various extent, depending on the number of variables to be optimized. Our emission estimates for the individual source 

categories are much more uncertain than the estimates of the total emissions: the uncertainties range from 15 % in the case of 

the NOx emission estimate for the TCO sector up to 54 % in the case of the CO emission estimate for the EHI sector. The 

absolute differences of our estimates of both CO and NOx emissions with the EMEP data are smaller than the respective 

uncertainty range. It may be noteworthy that our estimates for both the CO and NOx emissions from the TCO sector are 

~12 % lower than the corresponding EMEP estimates. This observation indicates that there may be a common bias in the 

EMEP data for both NOx and CO emissions in this sector; however, available information does not allow us to make a firmer 

conclusion in this regard. 

Unlike the EMEP data, the EDGAR v4.2 data strongly disagree with our estimate for the NOx emissions from the EHI 

sector. The differences of our estimates with the EDGAR v4.2 data are also larger than with the EMEP data in particular in 

the cases of the ࡱ෡௧௢௧
௦ 	estimates of both NOx and CO emissions and in the case of CO emission estimate for the EHI sector, 

although smaller in the cases of the NOx and CO emission estimates in the TCO sectors. It is noteworthy that the differences 

between all our NOx emission estimates with the corresponding EDGAR data are statistically significant. In general, our 

analysis indicates that the NOx and CO emission data provided by the EMEP inventory are more consistent with the NO2 and 

CO satellite measurements than those given by the EDGAR v4.2 inventory. This is an expected result because the 

methodology used in the EMEP inventory is specific to national statistical data available from European countries, while the 

EDGAR v4.2 inventory uses another  a more robust approach which is deemed to be robust applicable at the global scale. 

The differences between the estimates obtained with different types of seasonal variations of anthropogenic emissions are 

small compared to the uncertainty in the estimates for the "cycle" case, although not entirely negligible. Evidently, these 

differences cannot explain the significant disagreement of our NOx emission estimates with the EDGAR v4.2 data. 

Nonetheless, our test results indicate that the effect of possible inaccuracies in the seasonal variations of emissions may not 

be negligible and should not be disregarded "a priori" when examining the significance of the differences between the top-

down estimates of annual emissions and respective bottom-up inventory data. Note that the uncertainties in the NOx and CO 

emission estimates for the individual source categories tend to be larger for the "flat" case than for the "cycle" case, while, on 

the contrary, the uncertainties in the total NOx emission estimates are larger for the "cycle" case. Such non-symmetrical 

differences indicate that none of the cases considered represent the seasonal cycles in NOx and CO emissions quite perfectly. 

The lower uncertainty of the total NOx emission estimates in the "flat" case does not necessary means that those estimates 

are more reliable than the ones obtained in the "cycle" case, particularly because, as it in noted in Sect. 3.4, our confidence 

intervals cannot fully account for probable biasesassociated with errors in the seasonal cycles of emissions. 

The uncertainty levels in our estimates of both NOx and CO emissions using actual data are considerably larger than those 

obtained above in our OSSEs (see Sect. 3.5) in which synthetic data were generated using a simplified error model. (Note 

that to be compared with the confidence intervals discussed in this section, the standard errors presented in Sect. 3.5 should 

be multiplied with the t-score of about 1.2). This result indicates that, as expected, the uncertainties in our emission estimates 

are caused not only by random uncertainties in the input (measurement and simulation) data, but also by other factors – such 

as, e.g., the aggregation error and spatial variability of the bias – which could not be taken into account in our tests 

adequately. Besides, the actual temporal and spatial structure of both the model and measurement errors is likely much more 



 
 

complex and irregular than that assumed in Eq. (16). Anyway, unless the data subsamples defined in Sect. 3.5 are strongly 

affected by temporal and spatial covariances of errors in the input data (as evidenced by our OSSEs, that is unlikely the case 

in this study), the confidence intervals provided by the subsampling technique are expected to be sufficiently reliable even in 

such a complex real situation as that considered in this study. 

Note that the uncertainties of our top-down estimates of NOx emissions in the region considered turned out to be comparable 

with the differences between similar estimates provided by different emissions inventories, or even smaller than them. 

Therefore, our "top-down" NOx emission estimates can be considered as an independent alternative to "bottom-up" estimates 

based on emission inventory data alone. Both our NOx and CO emission estimates could formally be combined (in the 

Bayesian way) with the "bottom-up" (a priori) estimates; the uncertainties in the combined (a posteriori) estimates would 

probably be lower than the uncertainties in either the top-down or a priori estimates taken alone. 

In general, our results confirm the findings of previous studies (see the corresponding references in Introduction) showing 

that NO2 and CO retrievals from satellite measurements can provide useful information on NOx and CO emissions over high 

emission regions. In this regard, it can be noted that while previous inverse modeling studies utilized satellite CO 

measurements to estimate CO emissions from regions with predominantly anthropogenic sources involved global CTMs 

(e.g., Pétron, 2004; Fortems-Cheiney et al., 2009; Kopacz et al., 2010;  Jiang et al., 2015), we obtained reasonable top-down 

CO emission estimates by using a regional model. We regard this fact as a promising development, because the use of 

regional models (usually featuring a higher spatial resolution than global CTMs and employing high resolution regional 

emission inventories that are likely more accurate and detailed compared to global ones) in inverse modeling procedures can, 

potentially, provide more detailed and accurate constraints to CO emissions from various sources. A major difficulty that 

needs to be overcome in applications of a regional CTM for estimating anthropogenic CO emissions by inverse modeling is 

associated with probable biases in boundary conditions, especially for CO which has a long chemical lifetime compared to 

the transit time across the European domain; here we tackled this difficulty by means of a special procedure aimed at 

eliminating systematic differences between the measured and simulated data. The results of the OSSEs presented in Sect. 3.5 

(see Figs. 8, 9) indicate that our estimation procedure successfully relies on the spatial gradients of CO (and NO2) columns 

within the European domain to constrain the CO (and NOx) emissions rather than on the average abundance (which is 

strongly driven by the boundary conditions) in the measurements. 

4.2 Fossil fuel CO2 emission estimates 

Our hybrid FF CO2 emission estimates presented in this section were obtained by applying the conversion factor values 

listed in Table 2 to our "top-down" estimates of NOx and CO emissions discussed above. The FF CO2 emission estimates 

derived from NO2 and CO measurements (ܧ෠௦௖௖௢ଶ and ܧ෠௦,௧௢௧
௖௢ଶ 	) as well as the combined FF CO2 emission estimates (ܧ෠௖௢௠௕,௖

௖௢ଶ  and 

෠௖௢௠௕,௧௢௧ܧ
௖௢ଶ ) are shown in Fig. 11 in comparison with the corresponding data of emission inventories. The same estimates are 

listed in Table 3, which, in addition, presents another version of the hybrid estimates of total FF CO2 emissions,  ܧ෠௦,௦௨௠௖௢ଶ 		and 

෠௖௢௠௕,௦௨௠ܧ
௖௢ଶ (see Sect. 3.3). Note again (see also Sect. 2.3) that CO2 emissions from the cement production are not included in 

our estimates. Two types of the confidence intervals are provided along with the CO2 emission estimates based on 

measurements of one proxy species. The "full" confidence intervals include the uncertainty in the top-down estimates of the 

proxy species as well as the uncertainty in the conversion factors. The "partial" confidence intervals were estimated by 

taking into account only the uncertainty in the top-down estimates of the NOx and CO emissions. 

The relative differences of NO2- or CO-measurement-based FF CO2 emission estimates with the EDGAR v4.2 CO2 data 

replicate correspond to the corresponding differences of our top-down NOx- or CO emission estimates with the EDGAR v4.2 

data for the respective species. This is not surprising, as the conversion factors relating CO2 emissions with the respective 

proxy species were based on the EDGAR v4.2 inventory. The "full" relative uncertainties in our CO2 emission estimates are 

larger than the uncertainties in our estimates of emissions of proxy species, due to uncertainties in the conversion factors. 



 
 

Among the uncertainties in the conversion factors, ߪ௦௖ி , they are largest for the NOx-to-CO2 and CO-to-CO2 emission 

conversion factors for the EHI source category (58 % and 38 %, respectively). 

These uncertainties strongly contribute to the confidence intervals of the respective CO2 emission estimates. In contrast, the 

uncertainties are relatively small in the NOx-to-CO2 and CO-to-CO2 emission conversion factors for the total emissions (4% 

and 22%, respectively); those uncertainties contribute considerably to the "full" confidence intervals only for the total CO2 

emission estimates based on the CO measurements, while the uncertainty of in the respective NO2-measurement-based 

estimate is mostly due to the uncertainty in the top-down NOx emission estimates. Note that as discussed in Sect. 3.4 and 3.5 

our method is likely to overestimate uncertainties in both the top-down estimates and in the conversion factors. 

Taking into account the full confidence intervals (which are, in some cases, very wide), all our estimates are in agreement 

with the EDGAR v4.2 data, except for the estimates of the total CO2 emissions (ܧ෠௦,௧௢௧
௖௢ଶ ) based on NO2 measurements and on 

both NO2 and CO measurements. Our hybrid NO2-measurement-based and combined estimates of the total CO2 emissions 

(2.67 and 2.71 Pg CO2 with the relative uncertainties of about 10 %) are 12 % and 11 % lower than the EDGAR v4.2 

estimate (3.03 Pg CO2), respectively. These differences are statistically significant but at the edge of significance with the 

given confidence level. Note that while discussing statistical significance of the differences between the hybrid and bottom-

up emission estimates, we do not take into account the uncertainty in the bottom-up inventory data, which has not been 

reported. The differences between the same hybrid estimates and the corresponding estimate (2.86 Pg CO2) provided by the 

CDIAC inventory (7% and 5%) are slightly smaller than the differences with the EDGAR v4.2 data and are not statistically 

significant. Therefore, our analysis suggests that the CO2 emissions in the region considered are likely estimated more 

accurately by CDIAC than by EDGAR v4.2: however, the difference between the data of the two inventories in the case 

considered is small (~6 percent). 

Note that if the conversion factor uncertainties were not taken into account, which is not recommended, the difference 

between our NO2-measurement-based CO2 emission estimate for the EHI sector and the respective EDGAR v4.2 estimate 

would be statistically significant. However, it is not significant with respect to the full confidence interval. Considering the 

emission estimates for the EHI sector along with the total CO2 emission estimates illustrates a possible way of using our 

method for evaluation of bottom-up FF CO2 emission inventory data. That is, assuming that the confidence intervals for our 

estimates are sufficiently reliable, we can argue that a difference between hybrid and bottom-up estimates that exceeds 

uncertainties associated with measurement and model errors may, in a general case, be due to the two following reasons: (1) 

there are inconsistencies between bottom-up estimates of emissions of CO2 and of a corresponding proxy species or/and (2) a 

bottom-up CO2 emission estimate is inaccurate. Taking uncertainties in the conversion factors into account allows examining 

the first reason: evidently, it cannot be ruled out in the case of the emission estimates for the EHI sector. However, the first 

reason alone is not sufficient to fully explain the differences between the hybrid and bottom-up estimates of the total CO2 

emissions. 

Comparing NO2- and CO-measurement-based CO2 emission estimates (which, ideally, should be the same) enables their 

cross-validation. All kinds of NO2-measurement-based CO2 emission estimates are found to be consistent with the respective 

CO-measurement-based estimates in the sense that their confidence intervals are intersecting. In principle, this is an 

important result confirming that uncertainties in our emission estimates are not underestimated, since NO2 and CO 

measurements are independent from each other. However, it should be noted that the uncertainties in CO-measurement-

based estimates are so large that such estimates can hardly be useful as independent a unique source of information on CO2 

emissions. Similar large uncertainties are associated with NO2-measurement-based CO2 emission estimates for the EHI and 

TCO sectors, as well as with the total CO2 emission estimates obtained by summing the NO2-measurement-based estimates 

for the individual sectors together. While the uncertainties in the CO-measurement-based estimates are mostly caused by 

uncertainties in the top-down estimates of CO emissions, the uncertainties in the NO2-measurement-based estimates are 

mainly associated with uncertainties in the conversion factors. 



 
 

Importantly, the combined estimates (based on both NO2 and CO measurements) of the FF CO2 emissions from individual 

sectors feature considerably lower relative uncertainties (evaluated with Eq. 11) than the uncertainties in the estimates based 

on measurements of only one proxy species (for example, relative uncertainties of 39 % and 42 % for the NO2- and CO-

measurement-based estimates, respectively, are reduced to a relative uncertainty of 29 % in the combined estimate for the 

TCO sector). This fact illustrates the potential usefulness of combining hybrid estimates based on independent measurements 

of different proxy species such as NO2 and CO. The uncertainty of our combined estimate (ܧ෠௖௢௠௕,௧௢௧
௖௢ଶ ) of the total CO2 

emissions is very insignificantly smaller than then the uncertainty of the corresponding NO2-measurement-based estimate. 

As mentioned in Sect. 3.43, the uncertainty intervals for our combined estimates evaluated with Eq. (11) can be reliable only 

if the hybrid emission estimates derived from measurements of individual species are statistically independent. We believe 

that the CO2 emission estimates derived from NO2 and CO measurements are indeed sufficiently independent particularly 

because NO2 (as a part of the NOx chemical family) and CO experience very different atmospheric processing. Indeed, while 

the key role in spatial and temporal variations of CO is played by the transport processes (and boundary conditions in 

simulations), atmospheric evolution of NO2 is very strongly affected by local photochemistry. Furthermore, the results of our 

estimations for the "cycle" and "flat" cases (see Table 1) indicate that probable errors in the seasonal cycles of the NOx and 

CO emissions are also unlikely to result in considerable and common biases in the NOx and CO emission estimates. Thus it 

seems reasonable to believe that possible model errors for these species are, for the most part, different in origin and weakly 

correlated. Any significant covariance of errors in CO and NO2 measurement data is also hardly possible, as those 

measurements are performed with different satellite instruments and by using different methods (see Sect. 2.1). The 

covariance of errors in the conversion factors ܨ௖௦ for the different species is likely small, too (given the complexity of data 

involved in bottom-up estimates of different proxy species and the fact that NOx and CO emissions depend on different 

technological factors and end-of-pipe measures), although we could not evaluate it confidently with available information. 

Therefore, the uncertainties in our combined emission estimates are based on an (so far) inevitable assumption that errors in 

the conversion factors for the different proxy species are statistically independent.  

As in the case with the top-down estimates of NOx and CO emissions, our hybrid estimates of FF CO2 emissions are rather 

insensitive to the changes in simulations associated with using different seasonal cycles (cf. the estimates for the "cycle" and 

"flat" cases). That is, we can conclude that the impact of uncertainties in the assumed seasonal cycles of anthropogenic 

emissions on our hybrid estimates is small. In particular, such uncertainties can hardy explain the rather considerable 

difference between our "combined" estimate of the total CO2 emissions and the corresponding estimate based on the 

EDGAR v4.2 inventory. 

5 Summary and conclusions 

We examined feasibility of estimation of fossil-fuel (FF) CO2 emissions by using NO2 and CO column retrievals from 

satellite measurements. FF CO2 emissions are an important component of the global carbon balance and are believed to be a 

major contributor to global warming. Although such emissions are usually known with better certainty than CO2 fluxes 

associated with the biosphere, there still exist considerable divergences between data of different "bottom-up" FF CO2 

emission inventories; typically, such data cannot be evaluated by using atmospheric CO2 measurements and rarely come with 

a reported uncertainty structure.  

We followed the concept of "proxy" species that suggests constraining FF CO2 emissions by using atmospheric 

measurements of minor species co-emitted with CO2. We developed a general inverse modeling method aimed at estimation 

of the budgets of FF CO2 emissions from different sectors of economy in a given region by using satellite measurements of 

proxy species. The method involves (1) obtaining "top-down" estimates of anthropogenic emissions of a proxy species  from 

the satellite measurements and simulations performed with a mesoscale chemistry transport model (CTM), (2) using 

"bottom-up" emission inventories to relate CO2 emissions with emissions of the proxy species, and (3) combining CO2 



 
 

emission estimates derived from measurements of different proxy species. Important parts of our method are robust 

techniques to estimate systematic differences between the measured and simulated data, as well as uncertainties in "top-

down" estimates of the proxy species. 

Considering NO2 and CO as the proxy species, The the method was applied to a western European region including 12 

countries by using the NO2 and CO column amounts retrieved from, respectively, the OMI and IASI satellite measurements 

along with the simulated data from the CHIMERE CTM. The study region was selected by taking into account that 

uncertainties in available bottom-up emission inventory data for the EU countries with well-developed statistics are likely 

rather low, compared to potential uncertainties in FF CO2 emission data for countries with less developed statistical 

infrastructure, although such uncertainties are likely not quite negligible even in the study region. The relationship between 

FF CO2 emission and the NOx and CO emissions of the proxy species was represented by the NOx-to-CO2 and CO-to-CO2 

emission conversion factors evaluated with the EDGAR v4.2 emission inventory. The estimates were obtained for the total 

FF CO2 emissions from the region considered as well as individually for FF CO2 emissions aggregated into two different 

source categories (sectors), such that the first category ("EHI") included the emissions associated mostly with energy and 

heat production and heavy industries, and the second category ("TCO") comprised transport, chemical industry, and all other 

anthropogenic sources. Our FF CO2 emission estimates were compared with the corresponding data of the EDGAR v.4.2 

global emission inventory; in addition, our total FF CO2 emission estimates for the study region were compared with the data 

of the CDIAC FF CO2 emission inventory. The top-down estimates of NOx and CO emissions were compared with the 

respective data from the European EMEP and global EDGAR v.4.2 emission inventories.  

As expected (taking into account findings of several previous studies), the NO2 column retrievals from OMI measurements 

provide rather strong constraints to NOx emissions. Our most reliable "top-down" estimate of the total NOx emissions is 

found to be only insignificantly (by about 6%) lower than the respective "bottom-up" estimate based on the EMEP emission 

inventory,; while our estimates for the emissions from the "EHI" and "TCO" having much larger uncertainties (of about 

18 % and 15 %, respectively) are also found to agree be in agreement with the corresponding estimates based on the EMEP 

emission inventory within the uncertainty range. Larger and statistically significant differences are found between our NOx 

emission estimates and the respective data of the EDGAR v4.2 global emission inventory. In particular, our results suggest 

that the total NOx emissions from the study region may be overestimated in the EDGAR v4.2 inventory by ~13 %, while the 

EDGAR emissions for the EHI sector are likely overestimated by more than 60% (relative to our estimates). 

In contrast to the NOx emission estimates, our top-down estimates of the CO emissions are fully consistent with both the 

EMEP and EDGAR v4.2 emission data; however, this consistency is partly due to much larger uncertainties in our CO 

emission estimates (compared to uncertainties in the NOx emission estimates). The relatively large uncertainties in the top-

down CO emission estimates (~55 % and ~35 % in the estimates for the EHI and TCO sectors, respectively, and ~25 % in 

the total CO emission estimate) are not surprising in view of the much smaller lower sensitivity of the satellite CO 

measurements to anthropogenic CO emissions in the study region, compared to the sensitivity of the NO2 measurements to 

the anthropogenic NOx emissions. Nonetheless, in spite of the large uncertainties (which may be overestimated by our 

procedure), the differences between our top-down estimates of CO emissions and respective EMEP data are rather small 

(less than 7%). Similar to our NOx emission estimates, the top-down CO emission estimates differ more considerably from 

the EDGAR v4.2 data. 

The top-down estimates of the NOx and CO emissions were used to obtain different "hybrid" estimates (combining different 

information coming from measurements and bottom-up inventories) of CO2 emissions. The NO2-measurement-based hybrid 

estimate of total CO2 emissions is about 12 % smaller than the respective estimates based on the EDGAR v4.2; the 

difference exceeds the estimated uncertainty range (~ 11 %) of our estimate, although only marginally. In contrast, the 

difference between the same hybrid estimate and the corresponding estimate provided by the CDIAC inventory (~ 7 %) is 

not statistically significant. A large negative difference (more than 60 %) is found between our NO2-measurement-based CO2 



 
 

emission estimate for the EHI source category and the corresponding EDGAR v4.2 estimate. This difference is, however, not 

statistically significant and can be mostly attributed to uncertainties in the NOx-to-CO2 emission conversion factor for the 

given source category. Our CO-measurement-based hybrid estimates of the total FF CO2 emissions are larger than the 

respective bottom-up estimates based on both the EDGAR v4.2 and CDIAC data but the differences are not too big (less 

than 25 %) and can be well explained by uncertainties in our estimates. Similar to the case with the NO2-measurement-based 

hybrid estimate, the largest difference between our CO-measurement-based FF CO2 emission estimates and the EDGAR v4.2 

data is found for the EHI source category, with our best estimate being about 26 % larger.  

Taking into account the range of uncertainties, all our NO2-measurement-based CO2 emission estimates were found to be 

consistent with the respective CO-measurement-based estimates. This is an important result confirming the reliability of our 

approach. The combined emission estimates (based on both NO2 and CO measurements) for individual source categories 

feature considerably smaller uncertainties than the corresponding "partial" estimates. Our combined estimate of total FF CO2 

emissions is weighed toward the NO2-measurement-based estimate and is found to be ~11 % and ~5 %  lower than the 

respective estimates based on the EDGAR v4.2 and CDIAC data. The difference of our estimate with the EDGAR v4.2 data 

slightly exceeds the confidence interval of our combined estimate, while the difference with the CDIAC data is again not 

statistically significant. 

In general, our analysis demonstrated that NO2 and CO column retrievals from satellite measurements provide reasonable 

constraints to FF CO2 emissions at the scale of Western Europe. Differences between "hybrid" CO2 emission estimates 

derived from such data and respective estimates based on bottom-up emission inventory data can, in principle, be due to 

various kinds of uncertainties in the hybrid estimates (including uncertainties in top-down estimates of emissions of proxy 

species and uncertainties in the conversion factors). We argue that such uncertainties can be evaluated by using the robust 

techniques described in this paper. Although relative uncertainties in our top-down CO emission estimates were evaluated to 

be considerably larger than in the similar NOx emission estimates based on NO2 measurements, the CO column retrievals 

were found to be a useful source of independent information on FF CO2 emissions, particularly in the cases where probable 

uncertainties in the conversion factors for NOx emissions are larger than uncertainties in the conversion factors for CO 

emissions. Differences between "hybrid" CO2 emission estimates derived from the satellite data and respective estimates 

based on bottom-up emission inventory data can, in principle, be due to various kinds of uncertainties in the hybrid estimates 

(including uncertainties in the top-down estimates of NOx and CO emissions and uncertainties in the conversion factors). We 

argue that such uncertainties can be roughly evaluated using the robust techniques described in this paper. Nonetheless, 

further research (involving, e.g., multi-model inversions and ensembles of independent emission inventories) is needed to 

ensure that the confidence intervals for the emission estimates actually take into account all possible estimation errors, 

including those associated with uncertainties in the modeled representation of chemical processes, in the boundary 

conditions for reactive species, and in the NOx-to-CO2 and CO-to-CO2 emission conversion factors. Possible future 

developments of our approach can also , in particular, include (1) using NO2 and CO retrievals from measurements 

performed by other satellite instruments (such as GOME-2, MOPITT and AIRS) together with the retrievals from the OMI 

and IASI measurements (as in this study), and (2) using an ensemble of different bottom-up emission inventories (when 

available) to estimate the uncertainty in the conversion factors more accurately, and (3) implementing hybrid CO2 emission 

estimates into a global transport model simulating CO2 distribution in the atmosphere in order to validate them against 

ground-based and satellite CO2 measurements. Finally, it should be noted that as FF CO2 emission inventory data for the 

western European countries are likely much less uncertain than similar data for developing regions of the world, applications 

of our method to developing regions can be especially fruitful. In this regard, our method can become an integral part of a 

policy-relevant global carbon observing system (Ciais et al., 2014, 2015). 
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Figure 1: Spatial distributions of NOx (a) and CO (b) total annual emissions (g cm-2 yr-1) and the fractions (%) of the EHI (c, e) 
and TCO (d, f) emission source categories (see the definitions in Sect. 2.3) according to the EMEP inventory for 2008. The emission 
data are shown only for the study region comprising land territories of 12 European countries.  
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Figure 2: The seasonal variations of the spatially averaged (over the study region) NOx (a) and CO (b) emissions for the “EHI” and 
“TCO” categories of sources. The variations were calculated as explained in Sect. 2.3. The values shown (unitless) are the monthly 
emissions normalized to the total annual emissions divided by 12.  
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Figure 3: Time series of the spatially-averaged NO2 (a,c) and CO (b,d) columns retrieved from satellite measurements (see green 
curves) and simulated using the CHIMERE CTM both with and without anthropogenic emissions in the study region (see red and 
blue curves, respectively. The simulated data shown have been de-biased: the differences (see brown curves) between either the 
annual (a,b) or monthly (c,d) averages of the simulation and measurement data were subtracted from the original simulation data.  
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Figure 4: Spatial distributions of the annually averaged NO2 (a, c, e) and CO (b, d, f) columns obtained from satellite observations (a, b) 
and model runs performed with (c, d) and without (e, f) anthropogenic emissions in the study region. Red lines (e, f) depict four sub-
regions used in the uncertainty analysis described in Sect. 3.4; the sub-regions contain approximately the same amounts of daily data. Note 
that the simulation data have been de-biased (in the same way as the data shown in Fig. 3a,b). Note also that the data which not taken into 
account in our inverse modeling analysis are not shown.   
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Figure 5: NOx-to-CO2 (a, b) and CO-to-CO2 (c, d) emission conversion factors obtained using NOx, CO, and CO2 emission estimates from 
the EDGAR v4.2 emission inventory (a, c) and from the CDIAC and EMEP emission inventories (b, d) for the emission totals.  
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Figure 6: Results of the OSSEs for estimation of NOx (a,b) and CO (c,d) emissions: the dependencies of the normalized standard 
error of the NOx (CO) emission estimates for the EHI (a,c) and TCO (b,d) source categories on the level of noise (that is, on the 
value of the diagonal elements, , of the error covariance matrixes) in the input "synthetic" data. The noise level is normalized to 
its magnitude estimated with the real measurement and simulation data. Apart from the random noise, the synthetic data included 
the bias that was specified (for any given day) by linearly interpolating (in time) the monthly biases shown in Fig. 3(c,d). Different 
colors show the results obtained with the different levels of error co-variances ( is the scaling factor applied to non-diagonal 
elements of the covariance matrix). The standard errors estimated in the "direct" way (as the RMSE representing the differences 
between the emission estimates inferred from the synthetic data and the "true" NOx emission estimates) and by using the 
subsampling technique are shown by solid and dashed lines, respectively.  
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Figure 7: The same as in and Fig. 6 but for the dependencies of the normalized standard error on the scaling factor, , 
characterizing the bias applied to the synthetic data (see Sect. 3.5 for further details).  
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Figure 8: The total NOx (a) and CO (b) emission estimates (ࡱ෡࢚࢕࢚	
࢙ ) obtained in the OSSEs where the "true" emissions were specified 

by scaling the bottom-up emissions (employed in the base case model run) with the factor of 1.2. The emission estimates 
(normalized to the respective bottom-up emission estimates, ࡱ෩࢚࢕࢚

࢙ , based on the EMEP inventory data) represent the average over 
the ensemble of 100 Monte Carlo experiments, each with a different sample of noise in the synthetic data, and are shown as a 
function the noise level (). Both non-diagonal elements of the error co-variance matrix and the systematic uncertainties were 
taken into account in the OSSEs (specifically, both  and  were set to be equal to unity, see further details in Sect. 3.5). Note that 
the value of 1.2 on the axis of ordinates corresponds to a perfect emission estimate in the case considered. Note also that the 
confidence intervals shown were estimated by using the subsampling technique (see Eq. 12) that is expected to predict a non-zero 
uncertainty (associated with the bias estimation procedure) even when the synthetic input data are not affected by random 
uncertainties (that is, when =0, see also blue lines in Fig. 7).  
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Figure 9: The NOx (a) and CO (b) emission estimates obtained similar to the estimates shown in Fig. 8 but separately for the two 
source categories (EHI and TOC) in the OSSEs where the "true" emissions in the EHI and TCO were specified by scaling the 
corresponding bottom-up emissions (employed in the base case model run) with the factors of 1.2 and 0.8. Note that the estimates 
for the EHI and TCO categories are depicted by using the abscissa axes at the bottom and at the top of the plots, respectively.  
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Figure 10: Top-down estimates (ࡱ෡࢙ࢉand ࡱ෡࢚࢕࢚
࢙ 	) of the anthropogenic NOx (a) and CO (b) emissions in the study region in comparison 

with the corresponding estimates from the EMEP and EDGAR v4.2 inventories. Our estimates are shown for the two cases 
("cycle" and "flat") with different seasonal cycles of anthropogenic emissions.  
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Figure 11: Hybrid estimates of the fossil-fuel CO2 emissions measurements (ࡱ෡࢕ࢉࢉ࢙૛, ࡱ෡࢚࢕࢚,࢙
૛࢕ࢉ ࢉ,࢈࢓࢕ࢉ෡ࡱ  ,

૛࢕ࢉ , and ࡱ෡࢚࢕࢚,࢈࢓࢕ࢉ
૛࢕ࢉ ) from the study 

region in comparison with the data of the EDGAR v4.2 and CDIAC emission inventories. The estimates were obtained either from 
(a) only NOx and (b) only CO or (c) from both NOx and CO measurements. The "partial" and "full" 68.3% confidence intervals 
are also shown: the "partial" intervals (depicted by narrow brackets and not shown for the combined CO2 emission estimates) are 
determined only by uncertainties in the top-down estimates of NOx or CO emissions, while the "full" intervals take into account 
also probable uncertainties in the conversion factors. 

  



 
 

Table 1. The optimal estimates of the anthropogenic NOx and CO emissions (Tg NO2 and Tg CO, respectively) from the study region. The 
numbers in brackets represent the one-sided 68.3% confidence intervals (in percent relative to the respective optimal estimate). 

species 
estim. 

case 

EHI TCO Totals 

෠ଵܧ
௦ EMEP EDGAR ܧ෠ଶ

௦ EMEP EDGAR ܧ෠௦௨௠௦ ෠௧௢௧ܧ 
௦  EMEP EDGAR 

NOx 
cycle 2.59 (18) 

2.55 4.25 
4.17 (15) 

4.75 3.53 
6.76 (11) 6.86 (10) 

7.30 7.78 
flat 2.82 (23) 4.02 (17) 6.84 (7) 6.97 (7) 

CO 
cycle 6.99 (54) 

7.41 5.55 
9.59 (33) 

10.84 10.02 
16.57 (30) 17.03 (26) 

18.25 15.57 
flat 5.53 (75) 10.4 (50) 15.93 (25) 16.82 (28) 

 

  



 
 

Table 2. The NOx-to-CO2 (g CO2 [g NO2]
-1) and CO-to-CO2 (g CO2 [g CO]-1) emission conversion factors based on the 

EDGAR v4.2 emission inventory along with their relative uncertainties given in brackets as one-sided 68.3% confidence 
interval (in percent). 

Sectors NOx-to-CO2 CO-to-CO2 

EHI 494.97 (58) 378.63 (38) 

TCO 262.06 (30) 92.42 (22) 

TOT 389.22 (4) 194.50 (22) 

 
  



 
 

Table 3. The estimates of the fossil-fuel CO2 emissions (Pg CO2) from the study region in comparison with corresponding 
data (when available) of the EDGAR v4.2 and CDIAC emission inventories. The numbers in brackets represent the one-
sided 68.3% confidence intervals (in percent relative to the respective optimal estimate). Along with the "full" confidence 
intervals, the "partial" confidence intervals are shown after a slash (except for the combined estimates) that do not include 
uncertainties in the conversion factors. 

inversion 

settings 

estim. 

case 

EHI TCO Totals 

෠௦,ଵܧ
஼ைଶ EDGAR ܧ෠௦,ଶ

௖௢ଶ EDGAR ܧ෠௦,௦௨௠௖௢ଶ ෠௦,௧௢௧ܧ 
௖௢ଶ  CDIAC EDGAR 

NOx-based 
cycle 1.28 (72/18) 

2.10 

1.09 (39/15) 

0.93 

2.37 (43/12) 2.67 (11/10) 

2.86 3.03 

flat 1.40 (74/23) 1.05 (40/17) 2.45 (44/9) 2.71 (8/7) 

CO-based 
cycle 2.64 (71/55) 0.89 (42/33) 3.53 (49/35) 3.31 (37/26) 

flat 2.09 (88/75) 0.96 (57/50) 3.06 (54/42) 3.27 (38/28) 

NOx- and 

CO-based 

cycle 1.55 (54) 0.98 (29) 2.67 (33) 2.71 (11) 

flat 1.56 (57) 1.02 (33) 2.63 (34) 2.73 (8) 

 


