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Abstract. From a series of zonal mean global stratospheric
tracer measurements sampled in altitude versus latitude, cir-
culation and mixing patterns are inferred by the inverse so-
lution of the continuity equation. As a first step, the continu-
ity equation is written as a tendency equation, which is nu-
merically integrated over time to predict a later atmospheric
state, i.e. mixing ratio and air density. The integration is for-
mally performed by multiplication of the initially measured
atmospheric state vector by a linear prediction operator. Fur-
ther, the derivative of the predicted atmospheric state with
respect to the wind vector components and mixing coeffi-
cients is used to find the most likely wind vector components
and mixing coefficients which minimize the residual between
the predicted atmospheric state and the later measurement of
the atmospheric state. Unless multiple tracers are used, this
inversion problem is under-determined, and dispersive be-
haviour of the prediction further destabilizes the inversion.
Both these problems are fought by regularization. For this
purpose, a first order smoothness constraint has been chosen.
The usefulness of this method is demonstrated by application
to various tracer measurements recorded with the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS).
This method aims at a diagnosis of the Brewer-Dobson cir-
culation without involving the concept of the mean age of
stratospheric air, and related problems like the stratospheric
tape recorder, or intrusions of mesospheric air into the strato-
sphere.

1 Introduction

In the context of climate change, possible changes of the in-
tensity of the Brewer-Dobson circulation have become an
important research topic. Climate models predict an inten-
sification of the Brewer-Dobson circulation (Butchart et al.,
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2006). Engel et al.| (2009), however, found a weakly signifi-
cant slow increase of the mean age of stratospheric air. The
latter is defined as the mean time lag between the date of
the transition of tropospheric air into the stratosphere and the
date when the mixing ratio of a monotonically growing tracer
was measured in the air volume under investigation, and its
increase hints at a deceleration of the Brewer-Dobson cir-
culation. These measurements have been challenged as not
representative (Garcia et al. [2011)), and global mean age of
air measurements by |Stiller et al.|(2012) suggest that the true
picture is not that one-dimensional. Instead, stratospheric age
trends vary with altitude and with latitude. Determination of
the age of air and its use as diagnostic of the intensity of the
Brewer-Dobson circulation, however, has its own limitations:
First, due to mixing processes, the age of a stratospheric air
volume is not unique but characterized by an age spectrum,
which has to be considered since the tropospheric growth of
SF¢ mixing ratios is not strictly linear, and on which some ad
hoc assumptions have to be made (Waugh and Hall| 2002).
These include the adequacy of the Wald (inverse Gaussian)
function for the representation of the age spectrum and the
choice of its width parameter. Second, the most suited age
tracer, SFg, which has significant and monotonic growth rates
in the troposphere, is not fully inert: It has a mesospheric sink
(Hall and Waugh| (1998 |Reddmann et al.| [2001) and intro-
duces some age uncertainty when mesospheric air subsides
into the stratosphere in the polar winter vortex (Stiller et al.,
2008)). Third, the determination of the mean age relies upon a
reference airmass where the age, by definition, is zero. When
the age of air concept was introduced, the reference was sim-
ply the troposphere, which is well mixed and thus avoids any
related complication (Solomonl [1990; Schmidt and Khediml
1991). Since the age of air has become a model diagnostic,
parts of the community have established the stratospheric en-
try point as a reference (Hall and Plumb),|1994), which makes
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a difference due to the slow ascent of air through the tropical
tropopause layer (Fueglistaler et al., [2009). For model vali-
dation, however, this redefined age of air is of limited use,
because no long measured time series of tracer mixing ratios
are available there.

Facing these difficulties, it is desirable to infer the atmo-
spheric circulation directly from tracer measurements, with-
out going back to the age of air concept. Multiple approaches
have been developed to infer windfields from measured at-
mospheric state variables. Sequential data assimilation, and
in its optimal form, the extended Kalman filter approach (e.g.
Ghil and Malanotte-Rizzolil, 19915 |Ghill|{1997), calculates the
optimal average of the forecasted meteorological variables
for the time of the observation and the observed meteoro-
logical variables themselves and uses this average to initial-
ize the next forecast step. The wind field is calculated by
a dynamical model. This method involves the generalized
inversion of the observation operator where the forecast is
used as a constraint. In contrast, so-callecﬂ variational data
assimilation minimizes the residual between the forecasted
and the measured atmospheric state variables by optimally
adjusting the initialization of the forecast via inversion of
an adjoint forecast model, constrained by some background
state (Thompson, |1969). Both approaches rely on dynami-
cal model{] and are suited to infer the most probable atmo-
spheric state variables rather than the windfield, which is a
by-product of the assimilation. The windfield or atmospheric
circulation can also be inferred directly by kinematic meth-
ods from tracer measurements. Such methods rely solely on
the continuity equation, do not involve a dynamic model, and
thus do not depend on any ad hoc parametrisation of effects
which are either not resolved by the discrete model, compu-
tationally too expensive for explicit modeling, or simply not
well understood. While this work is targeted primarily at an
assessment of the Brewer-Dobson circulation, its applicabil-
ity is much wider and includes stratospheric-tropospheric ex-
change, the mesospheric overturning circulation and others.
Early approaches to infer the circulation from tracer mea-
surements include Holton and Choil (1988) as well as [Salby
and Juckes| (1994) who used approaches which share several
ideas with ours. Direct inversion of wind speeds from tracer
measurements in a volcano plume has, e.g., been suggested
by [Krueger et al.| (2013), however without consideration of
mixing. The continuity equation including diffusion terms
has been exploited by |Wofsy et al.| (1994) for assessment of
diffusion of stratospheric aircraft exhaust.

In this paper we present a method to infer two-dimensional
(latitude/altitude) circulation and mixing coefficients from
subsequent measurements of inert tracers. The application of

!'The term ‘so-called’ is used here, because it is challenged that
this method is really variational in the context of discrete variables
(Wunsch} [T996)[p368].

“This statement refers to meteorological data assimilation.
Chemical data assimilation uses chemistry transport models.
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this method, i.e., the inference of the Brewer-Dobson circula-
tion from global SFq distributions (Stiller et al., [2008, 2012)
measured with the Michelson Interferometer for Passive At-
mospheric Sounding (MIPAS), is presented in a companion
paper. In order to avoid that the reader does not see the for-
est for the trees, we give a short overview of our method in
Section 2] The prediction of pressure and tracer mixing ratio
fields on the basis of the continuity equation and related er-
ror estimation is described in Section [l The estimation of
circulation and mixing coefficients by inversion of the con-
tinuity equation is presented in Section {] In Section [5] the
applicability of the method and the need of further refine-
ments is critically discussed. The benefits of the method are
discussed in Section[6] The paper concludes with recommen-
dations how these results should be used and with an outlook
on future work (Section [7). Changes of the Brewer-Dobson
circulation during 2002-2012, i.e. the MIPAS mission, are
currently investigated by means of this method and will be
published in a subsequent paper.

2 General concept

Knowing the initial state of the atmosphere in terms of mix-
ing ratio and air density distributions, wind speed and mix-
ing coefficients at each gridpoint, a future atmospheric state
can be predicted with respect to the distribution of any in-
ert tracer. This procedure we call the forward problem. If no
ideal tracers are available, source and sink terms of related
species have to be included in the forward model. The goal
of this work is to invert the forward model in order to infer
the circulation and mixing coefficients from tracer measure-
ments by minimization of the residual between the predicted
and measured atmospheric state. This approach is comple-
mentary to free running climate models because it makes no
assumptions about atmospheric dynamics except the valid-
ity of the continuity equation. It is further considered more
robust than age-of-air analysis (Stiller et al., 2012)) because
it does not depend on a reference point where the age is as-
sumed zero, nor does it require knowledge on the history of
an air parcel.

Our concept involves the following operations. First, a
general solution of the forward problem is formulated (Sec-
tion [3). The forward problem is the solution of the predic-
tion equation as a function of the initial atmospheric state for
given winds and mixing coefficients. For our chosen solver,
which involves the [MacCormack! (1969) integration scheme
for the solution of the transport problem (Eqs. [5| -{I0), the
relevant dependencies of the final state on the initial state
are reported in Section [3.2] (Eqs. [[5H26). The formulation
in matrix notation (Eqs. 27H28) allows the easy handling of
multiple successive timesteps (Eq29) and an easy estima-
tion of the prediction error via generalized Gaussian error
estimation (Eq. [30). As a next step, the dependence of the
predicted state on winds and mixing coefficients is estimated
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for a given initial state. This is achieved by differentiation of
the solution of the prediction equation with respect to winds
and mixing coefficients (Eqs. [34H76). These partial deriva- z0s
tives form the Jacobian matrix of the problem, with which the
estimation of winds and mixing coefficients can be reduced
to a constrained least square optimization problem where the
inversely variance-weighted residual between the predicted
atmospheric state and the respective measured atmospheric
state is minimized. The latter step involves the generalized
inverse of the Jacobian matrix (Egs. [78H90).

3 The forward problem

210

The forward model reads the measured atmospheric state at
time ¢ and predicts the atmospheric state (number density of
air, ¢, and volume mixing ratios, vmr) at time ¢+ At for given
wind vectors and mixing coefficients representing the time
interval [t;t + At] by solving the continuity equation. The
continuity equation allows to calculate the local tendencies of s
the number densities and volume mixing ratios. These local
tendencies % and a’g’“” are then integrated over time to give

t
the new number densities and mixing ratios.

3.1 The continuity equation 220

The local change of number density p of air is in spherical
coordinates (for all auxiliary calculations, see supplement):

9p —1%—1—@‘5 n(gb)_(’?p;w_Qpiw_ 1 dpu
ot r 0¢ 0z r rcos(¢) OA
where

t = time

A = longitude

¢ = latitude

z = altitude above surface

r = rg+z

rg = radius of Earth 230

u = (rg+z)cos¢pdMde

v = (rg+z)de/dt

w = dz/dt
Here the shallowness approximation (Hinkelmann| (1951);

Phillips|(1966), quoted after Kasahara|(1977)), which simpli-
fies the equations using the assumption that z is much smaller
than g and which is, often implicitly, used in the usual text-
books on atmospheric sciences (e.g. [Brasseur and Solomon),
2005, their Eq. 3.46a), is intentionally not used for reasons
which will become clear in Section[3.21 235
The local change of the volume mixing ratio of gas g can
be calculated from known velocities and mixing coefficients

as well as source/sink terms as

ovmry, S, u  Oumrg v Ovmrg @)
ot  p  rcosd O r  0¢
dumry 1 0 [ Ky Odumrg
0z 72O\ [cos?¢p O\
1 0 dvmr
- "~ |K -9
+r2cos¢ 0¢ [ 90089 0¢ ]
10|45, Ovmr
—— |r°K, 9
r2 0z [7 0z ]
where
vmry volume mixing ratio of species g
Ky = zonal diffusion coefficient
Ky = meridional diffusion coefficient
K, = vertical diffusion coefficient
Sy = the production/loss rate of species g in

terms of number density over time
(Brasseur and Solomoni(e.g.2005, Eq. 3.46b) and Jones et al.
2007)).

Since we are only interested in a two-dimensional rep-
resentation of the atmosphere in altitude and latitude coor-
dinates, zonal advection and mixing terms are ignored in
Egs. . In this two-dimensional representation, all at-
mospheric state variables represent zonal mean values. The
kinematic variables, viz. the velocities and mixing coeffi-
cients, have to be re-interpreted because they do not repre-
sent merely the zonally averaged velocities and mixing co-
efficients. Instead, they include also eddy transport and dif-
fusion terms, and their interpretation is less unique than one
might hope because it depends on the definition of the kine-
matic variables and the approximations used (see Appendix
A for details of the interpretation of the kinematic quanti-
ties). The local change of number density p of air in a two-
dimensional atmosphere thus is

ap 190pv  pv opw  2pw
ot _r8¢+rtn(¢)_ 0z ®)
and the local change of vmr, is calculated as
dvmr, Sq v ovmry dvmr,
= _—— = — 4
ot p r 09¢ Yoz @
1 0 Jvmr,
+7r2cos¢37¢ [K¢COS¢8¢ ]
10 1],, Ovmrg
2 0s [ K=, }

3.2 Integration of tendencies

Integration of Eqgs is performed numerically for
timesteps of At,. For practical reasons, processes (advec-
tion, diffusion, sinks) are splitted, i.e. the tendencies due to
these three classes of processes are integrated independently.
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The timesteps At,, used for the integration are chosen smaller
than the time difference At between two measurements, in
order not to clash with the Courant limit (Courant et al.,
1952). In the following we call At, ‘micro time increment’
and the latter ‘macro time increment’. The atmospheric state
after a macro time increment is predicted by successive pre-
diction over the micro time increment. In the following, in-
dex ¢ designates time ¢, i + 1 designates the time ¢+ At,,
etc, and I designates the time after the final micro time in-
crement, i.e. the next macro time increment.

For the discrete integration of the advection part of the ten-
dencies the MacCormack](1969) method is used in a general-
ized multidimensional version similar to the one described by
(Perrin and Hul 2006)). This is a predictor-corrector method.
For a general state variable c(t,z,y) = ¢;(x,y) at location
(z,y), and time ¢ with e(c) and f(c) being functions of ¢, an
equation of the form
dc  Oe(c) If(c)
ot Ox dy

is solved by preliminary predictions of the state variable as a
first step: x is

285

=0

&)

290

a(,) = i(a,y) — ©
At, A
An (ei(x+ Ax,y) —ei(z,y))
A

_TZ) (fi(z,y+Ay) — fi(z,y)).

These are then used in a subsequent correction step which
gives the final prediction:

295

ciyi(z,y) = @)
1
5 lei(zy) +ei(,y) —
At
A;( ( 7,+17 Y ) ( r—&-lax*AIvly)) -
At

A—; (f(ciprrmy) = (i, 2,y — Ay)) ]

Application to the continuity equation in spherical coordi-
nates requires reformulation of Eq. (c.f., e.g.,|Chang and|3®
St.-Maurice, [1991)):

or?pcos(p) _Orpucos(¢) Ir?pw cos(¢) @)
ot B 0¢ 0z
The predictor of 72pcos(¢) is then calculated as
[ pi1(9,2)) cos(¢)]" = ©)

2 pi(p,2) cos(¢)

AL+ A0.)cos(d+ AdJu(6+ A,
—1pi(¢,2) cos(P)v(¢, z))

((7" + AZ) Pi (¢, z+ AZ) Wep,z+Az COS(¢)

— i) wy, c0s(6))

305

Aty
Az

and the corrected prediction for p then gives

piv1(¢,2) = 22 cos(@) x (10)

[ i(,2)r? cos(¢)
[,07.+1(¢7 )7" COS(¢)]*

—i—ig (P11 (6 2)rv(@, 2) cos(B)]"
— [pis1(d — A, 2)rv(¢p — Ag, z) cos(¢p — Ag)]"]
At

~ AL [P (0. 2)w(6.2) cos(6)]”
- [Pi+1(¢’ 2= Az)(r — Az)*w(¢, z — Az) COS(¢)] *} ]

For the local change of mixing ratio, operator splitting is
performed. The horizontal and vertical advective parts of
the continuity equation for mixing ratios in two dimensions
are transformed into the following Mac-Cormack-integrable
forms:

{8’"”:"} _ Oumry (11
ot adv.horiz a¢
and
3% _ Oumry (12)
ot adv.vert B 0z ’
respectively.

For the diffusive component we use simple Eulerian inte-
gration:

- vmry;i(¢az)]diﬁ = (13)
At,
2r2(Ag¢)? cos(¢) .
A¢
(Ko(¢,2) + Ko(¢+Ag))cos(é+ —7)

(vmrg;i(¢ + A¢7 Z) - vmr9§i(¢7 Z))
Ag¢

— (Kol6,2) + Ky(6— Ad)) cos(— 50)-

[vmrg.iy1(d,2)

(vmrg,i(¢,2) —vmrg(¢ — A, z))

At
o |t
(vmrgi(d, 2+ Az) —vmrg,(¢,2)) —

(T_ %)2 : (KZ(¢VZ) +KZ(¢7Z_ AZ)) ’

(r+

(vmrg.i(,2) —Az))

—umrg,(¢,z




310

315

320

325

330

335

340

345

350

355

T. von Clarmann et al.: Circulation and Mixing from Tracer Measurements 5

Sinks of the species considered here are treated as unimolec- s
ular processes (c.f., e.g. Brasseur and Solomon), 2005/ their
Eq. 2.27d) and integrated as

Psit1 = pgzie "B (14)

365

where £, is the sink strength of the gas g.

The abundance of gas g after time-step At,, is then sim-
ply the sum of the increments due to horizontal and vertical
advection, diffusion, and chemical losses.

Admittedly, there exist more elaborate advection schemes
than the one used here. However, the need to provide the
Jacobians needed in Sections [3.3H4] justifies a reasonable
amount of simplicity. Further, numerical errors cannot eas-
ily accumulate, because after each timestep At, the system is
re-initialized with measured data.

Since we do not have a closed system but have mass ex- 37
change and mixing with the atmosphere below the lowermost
model altitude and above the uppermost altitude, the atmo-
spheric state is not predicted for the lowermost and upper-
most altitudes. Prediction is only possible from the second
to one below the uppermost altitude. This restricted altitude
range we henceforth call ‘nominal altitude range’. Instead,
the atmospheric state of the uppermost and lowermost alti-
tude is estimated by linear interpolation of measured values
at times t and t+ At and used as boundary condition for
prediction within the nominal altitude range. Alternatively,
derivatives at the border can be approximated by asymmetric
difference quotients.

We use the following convention: Atmospheric state vari-
ables are sampled on a regular latitude-altitude grid. For
some gridpoints, no valid measurements may be available but
we assume that, for each state variable, we have a contigu-
ous subset of this grid with valid measurements. For state _
variable g, we have a total of J, valid measurements within
the ‘nominal altitude range’, each denoted by index j. A
state variable in this context is either air density p (¢ =0)
or the mixing ratio of one species vmr,. The nominal alti-
tude range at latitude ¢ is the altitude range where, for each
gridpoint, a valid measurement is available at the gridpoint it-
self, and for its northern, southern, upper, lower and diagonal
neighbours. The use of asymmetric difference quotients can
be emulated by extrapolation, generating artificial border val-
ues by, which guarantee that each gridpoint within the nom-
inal altitude and latitude range has all required neighbours.
The availability of neighbour-values is necessary to allow the
calculation of numerical derivatives of the state variable with
respect to latitude and altitude. We therefore have K, border
elements of each quantity g, each denoted by index k. This
implies, for each state variable g, a total of L, = J, + K|
gridpoints with indices [.

375

3.3 Integration in operator notation 390

For further steps (error propagation and the solution of the
inverse problem) it is convenient to rewrite the prediction of

air density and mixing ratios in matrix notation. For this pur-
pose, we differentiate the predicted air densities (Eq.[T0) and
mixing ratios (Egs. [[IHI3) with respect to air density and
mixing ratios of the gases under assessment at all relevant
locations. The sensitivities of the densities of the first pre-
dictive step with respect to the initial densities at the same
latitude and altitude are

Ipit1(d,2)
api(fb,Z) -
1 Atp[v(‘b )(Atp v(¢:2) | >
2 A r A r
Atp v(¢ — A¢,
e }
At At v(d),z)
ar[ven (52257 + Srute.n)
+ijuwaz—Aauw@al

We further differentiate predicted air densities with respect
to air densities at the adjacent southern latitude but the same
altitude.

api“rl((rb?z) % ,U(Cb AQS’ ) COS(¢7A¢) (16)
Opi(p — Ao, z ) A¢ r cos()
At, v(¢—Ag, )
<1+A£~ ——w(¢p—Ad,z )>]

The derivative of the predicted air densities with respect to
air densities at the adjacent northern latitude but the same
altitude is

8pi+1(¢7 Z) 1
Opi(p+Ad,z) 2

At v(¢z)
(- as

Aty o(6+A00,2) cos(d+Ag)
A r cos (o)

S, ))]

As a next step we differentiate predicted air densities with
respect to the initial air densities at the next higher altitude
but the same latitude.

A7)

0pit1(9,2) Aty (r+Az)?
mi A, 2wzt Az (18)
Aty v(¢2) |
(” v (2 ))]

The derivative of the predicted air densities with respect to
the initial air densities at the next lower altitude but the same
latitude is

Ipi+1(9,2) At (r—Az)?
(6 2—A2) 2 w(,z = Az)—3——- (19
Aty v(g,z Az) At,
(“+A¢TAZ + R, >)}
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Finally we differentiate the predicted air densities with re- 415
spect to the initial air densities at the adjacent southern lati-
tude and higher altitude

Ipi+1(¢,2) _
Api(¢—Dp,z+Az) 20

2 r Ao Az 2
L veve
and vice versa
Ipi+1(¢:2)

= @D

1 At, At, (r—Az)? .
400 —5 w(gf),Z—AZ)Ai; Tg . T .
cos(é+A¢) v(¢+ A,z —Az)
cos(¢) r—Az

where i is the index of the time increment, and where ¢+ A¢
and z + Az refer to the adjacent model gridpoints in latitude
and altitude, respectively.

405 For mixing ratios, the respective derivatives are: 430

ovmri11(,2)

dumri(6,2) =
2
1= (52) 157 00 4 oto- 200
2
_<AAt,:> -w(¢,z)'%[w(¢7z)+w(¢7z_Az)] 435
At,
3 Bg) @) [(K¢(¢,z) +K¢(¢+A¢az)>
410 - COS <¢+ A;b) 440

+(K¢(¢7 2)+ Koo - AW)) “ (¢_ Af)

<r+ A2’2>2<Kz(¢,2) +Kz<¢,z+Az>}*s

__ Bt
2r2(Az)?

+(rA;>2<Kz<¢,z>+f<z<¢,zm>>]

—Loss(month, $, z) At,; 450

ovmry1(¢, z)

ovmri(p+A¢,z) @3)
At u(6,2) (1_ At v(@z))
A¢ 2r A r
At,,
+ 2r2(Ag)? cos(o) '
Ao
(Kolo2)+ Ko+ 86,2 ) osts+ 52
dvmrit1 (o, 2)
dvmr; (¢ — Ag, 2) B 4
v(6,2) Atp<1 Aty v(as—ms,z))
2r A¢ A¢p r
At,
+ 22(Ag)2 cos(¢)
Ad
(Kot Kot 8362 ) osts - 22
ovmrit1(d, 2) _ (25)

ovmr; (¢, z + Az)
1 A A

Az
At A
TS 2 (KZ(¢’Z) +Kz(¢’Z+AZ)>;

ovmrit1(d, 2)

ovmri(p,z — Az) - (26)
At, 1 At,
A 3 “w(9,2) (1 +w(g,z— AZ)Az)

Aty _Az

tman ) (Kz("“) + K. (9,2 - AZ)>7

where Loss(month, ¢, z) is the relative loss rate in the re-
spective month at latitude ¢ and altitude z. These derivatives
are simplifications in a sense that they do not consider the
full chemical Jacobian but assume instead that the source
strength depends on no other concentration than the actual
concentration of the same species. For the typical long-lived
so-called tropospheric source gases considered here, like SFg
or CFCs, this assumption is appropriate. Pretabulated loss
rates are used which have been calculated by locally integrat-
ing loss rates over an entire month at a time resolution ade-
quate to resolve the diurnal cycle. From the monthly losses,
the Loss(month, ¢, z) values, which are the contribution of
losses to the partial derivatives of the local mixing ratios with
respect to the initial local mixing ratios, are calculated as the
secant of the local decay curve.

With these expressions, the prediction of air density and
volume mixing ratio can be rewritten in matrix notation for
a single micro time increment. This notation simplifies the
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estimation of the uncertainties of the predicted atmospheric
state and the inversion of the prediction equation. In matrix
notation, the prediction reads

Pit1 =

where
pst

Ix

o

p,nom

Prk=1,K,

Pik=1,K,

Pisj=Ko+1,Lo

465

PI;k=1,K,

Pit1:k=1,Ko =D,;p;, = 27
Pi+1;5=Ko+1,Lo

I 0 O PLk=1,K,

W; 0 Pisk=1,Ko

0 Djnom Pisj=Ko+1,Lo

470

is the (Lo + Ko) x (Lo + K{) Jacobian ma-
trix of air density for time increment ¢, i.e.
the sensitivities of the prediction with re-,,
spect to the initial state, ‘%8’:'712’", here m
and n run over the model gridf)oints

is Ky x K identity matrix;

are zero submatrices of the required di-
mensions; 480
is a Ky x 2Ky-dimensional interpolation
matrix;

is an Jy x Lo Jacobian containing the par-
tial derivatives Op;41,;/0psy, applied to
the nominal altitude range;

is the Ky-dimensional vector of air den-*®
sities in the border region after the final
timestep, i.e. for the time of the next mea-
surement;

is the Ky-dimensional vector of air den-
sities in the border region at the current,
timestep as resulting from interpolation in
time;

is the Jp-dimensional vector of air densi-
ties in the nominal region at the current
timestep as resulting from integration ac-
cording to the MacCormack scheme as de-
scribed above.

0

5

The operation of these sub-matrices is illustrated in the up-
permost three (violet, green, blue) blocks of Figure

Since the source term depends on air density, the integra-
tion in matrix notation for vmr requires simultaneous treat- soo
ment of vmr and air density, and we get, using notation ac-

cordant with air density:

PI;k=1,K,
Pi+1;k=1,K,
( Pi+1 ): Pi+1;j=Ko+1,Lo _ (28)
vMri41 Ung;l;k:l,K_q
UMT gii+1;k=1,K,
UMTgit1;j=Ky+1,L4

:Di< pi ):
vmrg,;

PI.k=1,K,
00 Pisk=1,Ko
0 Ix 0 O Pisj=Ko+1,Lo
0 WZ‘ 0 UMTg;1,k=1,K,
Dg,nom Umrg;i,k:l,Kg
Umrg;i,j=K9+1,Lg

Dp;i 0

where D, is the total Jacobian with respect to air densities
and all involved gas mixing ratios, and where g runs over all
gases. Note that

1. The Jacobian D; is time-dependent because it includes
submatrices controlling the interpolation between the
initial time and the end time. In the case of vmr, a further
time dependence is introduced by the time-dependent
source function.

2. the first ‘row’ of the Jacobian matrix includes identity
I because the prediction is not supposed to change the
measured p; and vmr; at the end of the macro time
increment. This value is used to construct the bound-
ary condition. Row is here written in quotes because the
elements of this ‘row’ are matrices in themselves. In-
troduction of unity Jacobian elements is necessary be-
cause Egs. (27H28) are autonomized, originally non-
autonomous systems of differential equations.

3. W is used to interpolate the boundary state between the
initial time of the micro time interval, t4(i—1)At,, and
the time at the end of the time interval ¢ + At to give the
atmospheric state at the border region at time ¢ + i A¢,,.

4. The Jacobian submatrices D, om and Dy nom are used
to predict the atmospheric state in the nominal range
after one further micro time increment from the atmo-
spheric state at the current time and the boundary con-
dition. Its elements are described in Egs. and
(22H26). The part of Dy ,,om Which refers to the border
mixing ratios (vmrg,r g=1, K,) is zero. The dimension
of Dp,nom is Zg Jg X (L() + K() + Zg(LQ + Kg))

5. No simple mapping mechanism between the field of at-
mospheric state variables sampled at latitudes and alti-
tudes and the vectors p and vmr is provided because
the fields are irregular in a sense that the number of rel-
evant altitudes is latitude-dependent. Pointer variables
have to be used instead.
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Figure 1. : Matrix structure of the right-hand part of Eq.[28] Colours indicate which matrix blocks operate on which part of the input vector.

An example with two gases is shown.

The matrix structure is exemplified in Fig. [I] For the macro
time increment At we get

1
Pr _ ) Po
< vmry > HDl ( vmrg )

3.4 Prediction errors

(29) 520

Let Sy be the L x L covariance matrix describing the un-
certainties of all involved measurements p, and vmrg, with
diagonal elements 59, = 03, ; and L =>0"""" L,. We as-
sume that these measurement errors in the state variables
used for the prediction are the only relevant error sources.
With Sy and Hi: ; D; available, generalized Gaussian error
propagation for p; and vmr; can be easily formulated as:

1 1
S; = HD,» So HDi
=1 i=1

Even if Sy is diagonal, i.e. the initial errors are assumed to be
uncorrelated, error propagation through the forward model s
will generate non-zero error covariances in Sy representing

T 530
(30)

the atmospheric state at time ¢ + At. S; will be needed in the
inversion of circulation and mixing coefficients described in
Section[d]

3.5 A note on finite resolution measurements

The measurements used are not a perfect image of the true
atmospheric state but contain some prior information. In the
case of the IMK data, a priori profiles are usually set zero,
and the constraint is built with a Tikhonov-type first order
finite differences smoothing constraint (c.f. [von Clarmann
et al.| (2009). That means that, besides the mapping of mea-
surement and parameter errors, the only distortion of the truth
via the retrieval is reduced altitude resolution; no other ef-
fect of the prior information is to be considered. Usually, any
comparison between modelled and measured fields requires
application of the averaging kernels of the retrieval to the
model data in order to account for the smoothing by the con-
straint of the retrieval (assuming that the model grid is much
finer than the resolution of the retrieval).

In our case, the situation is different: The model is initial-
ized with measurements of reduced altitude resolution, and
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the fields predicted by the model are then compared to mea- sss
surements of the same altitude resolution. It is fair to assume
that the model does not dramatically change the altitude res-
olution of the profiles, and thus comparable quantities are
compared when the residuals between predicted and mea-
sured atmospheric state are evaluated.

3.6 A note on numerical mixing 59

Let the initial mixing ratio field be homogeneous except one
point with delta-type excess mixing ratio. Assume further a
homogeneous velocity field and zero mixing coefficients. If
the velocity is such that the position of the excess mixing ra- 5
tio is displaced during At by a distance which is not equal to
an integer multiple of the gridwidth, then the resulting dis-
tribution will no longer be a delta-type distribution but will
be smoothed. The widening of the delta peak we refer to as
numerical mixing. The MacCormack transport scheme is de-
signed to fight this diffusivity but some higher order effects
may still survive. One might think that, during the inversion,
the widening is misinterpreted as mixing, leading to too large
mixing coefficients. 600

Again, in our case, the situation is different: The widen-
ing does not accumulate over the At,, timesteps, because we
first calculate the operator Hllz 7 Dy, which is applied only
once to the initial field, which avoids accumulation of nu-
merical mixing over timesteps. Still one widening process as
described above can occur, when the forward model leads to
a position of the new peak which cannot be represented in
the grid chosen. However, since the gas distributions vmr; es
at the end of timestep At are sampled on the same grid,
the maximum in the real atmosphere would be widened in
the same way, and there would be no residual the inversion
would try to get rid of by increasing the mixing coefficients.
And the next time step At is initialized again with measured
data, which also excludes accumulation of numerical mixing
effects.

These considerations aside, there are other numerical arte- st
facts. These are related to the numerical evaluation of par-
tial derivatives of the state variables in our transport scheme
chosen. Particularly in the case of delta functions in the state
variable field, these cause side-wiggles behind and smearing
in front of the transported structure. To keep these artefacts
small, it is necessary to set the spatial grid fine enough that

every structure is represented by multiple gridpoints.
615

4 The inverse problem
For convenience, we combine the variables of the initial at-

mospheric state and the predicted state at the end of the
macro time interval, respectively, into the vectors

&o = Po
vmrg

620

> = (%01 Fo.)7, 31

and

Ty = < m[r)zlrl ) = @1;1~~~5%I;L)T»

The related subsets of &y and x; which contain only
state variables in the nominal altitude range but not those
in the border region are xo= (zo.1...z0.s)7 and x; =
(x1.1...21.5)7, respectively. The reason why the distinction
between  and x is made is that, contrary to the prediction
step, for the inversion vector elements related to the interpo-
lation of values in the border region are no longer needed.
Further, we combine the fields of meridional and vertical
wind components and mixing coefficients into the vector

(32)

v
w
K, |’
KZ

q= (33)

and assume constant velocities and mixing coefficients dur-
ing the macro timestep. To infer circulation patterns and mix-
ing coefficients from the measurements of air densities and
mixing ratios, the Jacobian matrix F,
ox I
561N> 7

3$17j - (9:13[
~Fred) =)= (G52 ) = (G
(34)

qn
is needed, where N =4J where J =3 §"""J,, because
there are four unknown quantities, v;, w;, Kg.;, and K.;
at each gridpoint of the nominal region where these vari-
ables shall be inferred. The elements of F' are calculated from
Eq. (28) by application of the product rule:

res (o) () (1L 2)a]- e

where the tilde symbol in } indicates that the vectors re-
sulting from Eq. (35) still include the border elements which
have to be discarded to obtain f,. The quantity f is more
efficiently computed using the following recursive scheme,
where f 1,; 1s the respective column of the Jacobian after mi-
cro timestep #:

fnZ_Dfnz 1+ (HDk>$O (36)
With the argument of D specifying the column of the D-
matrix such that D, ,(¢,z) relates p;+1(¢,2) to pi(¢,2),
D, i(¢p+Agp,z) relates pit1(¢,2) to pi(¢£Agp,z), and
D, i(¢,z £ Az) relates p;11(¢,2) to p;(¢,z £+ Az), and for
vmr accordingly, the entries of D, relevant to v are:

33P1+1(¢7 z)

8Pz(¢ Z) Atp
du(o,2) | 286 &7
(Bt 2062 40(0-202) )ALy w(6.)
A¢ r2 Az r
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650

839i+1(¢>+A¢7Z)

Ovmri1(¢,z)
Copieraes 1 Aty ’ V(o +Ad,2) (38) M — (48)
ov(¢p,z) 2 \Ag r2 0v(o, z)
1 At < At, v(p— Ad),z))
Opit1(p+A,2) 2 ' '
o5 M _ 1 Aty cos(9) (39) r A¢ A "
Ov(ep,z) 2r A¢ cos(¢+ Ag) ) (6 A
vmri4+1(o+ \Z
A r Az ’ (o, 2) 2r \ Ao
Apit1(p,2) dvmri1(¢,z)
68Pi((;r+A¢»z) _ (40) w - _% . 1 1 _ % . v(¢,2) 50)
(e, z) ov(p,z) Ap r\2 A r
1 ) % ? ) v(p+ Ad,2) ) cos(¢ + Ag) Entries not mentioned here are zero. Entries relevant to w
2 \Ag r? cos(9) are:
630 9pit+1(d,2)
§20is1(6—A6.2) m _ Aty Aty v(9,2) (51)
O on@n 1 Aty cos(d) 1) dw(g,z) — Aé Az v
(e, z) 2r A¢ cos(¢d— Ag) 2 2
(Ca B w9=B0s) Bty o, () w5 (3 ) w9
A r Az e Az 2\ Az
aapigl(tﬁ,ZJrAZ) Opit1(P,2+Az) 1/ At 2
Z Opildz) ~ 9pi(¢ztAz) 1 Alp A 2
Boldn) (42 o= a(ar) wesra 6
1.%.%. r? w(¢’z) )
o 2 Az A¢ (r+Az)?2 r 8#%
Tou(on) ©Y
Opi+1(¢,z) BN
aap,(%qt,z-&-,Az) _ (43) ocs 1 % ) Atp ] U(¢+A¢a Z) . COS(¢+A¢)>
ov(0, 2) 2 A¢p Az T cos(¢)
1 At, At, (r+Az)?
. =2 P T w(g, 2+ Az Opit1(p+Ag,z
2 A Ao 8 ) O oA eaay
= (54)
ow(¢,z)
Opit1(d+Ag,z
. M:_l.%.%. (44) L2k By v(dz) cosd)
0v(¢p,z) 2 Ay Az 2 Ay Az T cos(¢p+ Ad)
(r+Az)? cos(¢)
. . , -|-A i+1 (9,2 z
" aos(o+Ag) PP I G i O - SR (55)
ow(o, z) 2 Az (r+Az)?
Opit1(p—Ap,z+Az)
9Lt o) :_1.%.%' “5) .(1+Atp.v(¢7z)+2Atp.w(¢ Z>>
ov(¢,2) 2 A¢p Az A T Az ’
T cos(¢)
. . cw(dp—A ,Z 0pit+1(9,2
A wos(a—hg) V0T A Ogpisiiny
645 T (56)
, " ow (¢, z)
VMT 41 Y4 2
dvmri(.2)  _ 1 (At (r+Az)?
Z Ovmn(ds) (46) L (A" (rtaz)” A
ov(¢,z) 2 ( Az ) r2 w(¢2 4 A2)
Aty 2 v(p— Ao, z) o
_(M> '72'(”@)’2” 2 ) 0N 1 Ay (57)
ow(g,z) 2 Az (r—Az)?
§ovmrit1(p+Ad,z) 2
umr(64862) __(Atp)\" v+ Ad2) (148l 2@z 82) Al A
(g, z) A 2r2 A¢p r—Az Az ’
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9 Opi+1(p+Ag,z—Az)

AGE) _1 At Aty
Ow(9,72) 2 A¢ Az
r? cos(¢)  v(p,z—Az)
(r—Az)? cos(¢+Ap) r—Az
Opit1(d,2+Az
OGtitRe _ 1 Aty At
. r2 . cos(¢+ Ag) . v(p+ Ag,2)
(r+Az)2  cos(¢) r
dvmriy1(é,z)
_ Oumri(¢2)
ow(9,2)

(52) (vt 205729

9 dvmriy1(d,z+Az)
Ovmr;(p,z+Az)

Ow(e,z)

Az 2

Pl dvmri1(p,z)
ovmr; (p,z—Az) o

ow(o,z)
1 At,

2 A, (1—|—w(¢,z—Az)-

A,
Az

9 Ovmriy1(p,z+Az)
dvmr;(p,z)

Ow(e,z)

Az

a avm’l‘i+1 ((25,2)
ovmr; (¢, z+Az) _

:_<At)w<¢+A>

(58)

(39)

(60)

(61)

(62)

64
9u(5.7) “
1 At, (At,)
.2 (129 .
2 Az < (Az) w(9,2)
Entries relevant to K 4 are:
ovmr;y1(p,z
aWM:_ At, 1 ©5)
OKs(0.2) (Do) 207
cos (¢+ %) + cos (gbf %)
' cos(¢)
dvmriy1 (pFAP,2) Ag
O Gomriothos) _ At _L_COS(M 2 b6)
K (¢, 2) (Ag)? 212 cos(oF A9)
Ovmr;1(¢,z)
vari(;ﬁr—A@z) _ i . Atp . COS<¢ - %) (67)
0K y(9,2) 2r2 (A¢)? cos()

705

710

715

2
= % (Atp> ~w(o,z+ Az) (63)™

725

730

735

11
dvmr; (¢7z)
Opomrorang | L Aty cosl6+ ) (o
0K 4(¢,2) 212 (Ag)? cos(¢)
dvmr; A¢,z
T 1 At cos(9+ ) (69)
0Ky4(d,2) 22 (A9)? cos(p+Ag)
dvmr 1 (p—A¢,z)
O ovmnn 1 At cos(¢—5P) (70)
0Ky(6,2) 22 (89)? cos(d— AJ)
And finally, entries relevant to K, are:
dumrity (6,2) z)? z)?
0 &mw,té@z) _ At,, . (T’Jr%) + (T* %)/71)
OK.(¢,2) (Az)? 2 \
dvmrii1(p,z2FAz) z)2
“oumnezan _ Aty (rF5) (72)
oK. (6,2) (A2)2 2(rFAz)?
dvmrit1(p,z+Az) z)?
O Fumnon — _1 At (r+5F) (73)
OK.($,2) 2 (Az)?2 (r+Az)?
dvmr;1(¢,z) z)2
Gomriean _ 1 At (r—5F) (74)
OK.(p,2) 2 (D22 o2
ovmrit1(9,z) Z
Ogumrizian _ 1 At (r+ %) (75)
OK.(6.2) 2 (A2 o2
dvmrit1(p,z—Az) )2
O vmnto — _ 1 A, (1=5) (76)
8K2(¢7Z) 2 (Az)Q (T—Az)2

With these derivatives we linearize the prediction with re-
spect to wind and mixing coefficients, i.e., we linearly pre-
dict the new atmospheric state for a given initial state gg as a
function of wind and mixing ratios.
zr=z0+F(g—qo) 77
This formulation gives access to the winds and mixing ratios
via inversion of F.

Assuming linearity and Gaussian statistics, the most likely
set g of winds and mixing ratios during the macro time inter-
val minimizes the following cost function:

2

X1 (78)

(®m;1 — wl)T Sr_1 (Tm;1 — 1)
(wm;l — Lo — F(q - qO))T Sr_1

(mm;I — &y — F(q - qO))

Q

where x.,.; is the measured state at the end of the macro
time step and S, is the error covariance matrix of the resid-
ual, which is, under the assumption that prediction error and
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measurement errors are uncorrelated, the sum of the predic-
tion covariance matrix and the measurement covariance ma- 7so
trix, both after the macro time step:

S =Su.1 +Sp, (79)

where S;, is an J x J-matrix containing those elements of
St which are relevant to «;. Sy, 5 is the measurement error
covariance matrix of the atmospheric state after the macro
time step. The minimization of the cost function gives the
following estimate g of winds and mixing coefficients:

785

G4=qo+ (F"S;'F) F7S; (@ —@)) (80)
The matrix FTS!F can be singular either because the re-
lated system of equations is under-determined or ill-posed
due to nearly linearly dependent equations. Singularity is
fought by adding the following constraint term to the cost 7%
function of Eq. (78):

T
(g—q,) R(g—aq,)
X? +X201’17

81)
(82)

2
XCOH
2
X =
where g, is some prior assumption on velocities and mix- "
ing coefficients. R is a J x J regularization matrix of which
the choice is discussed below. From this, the constrained es-
timate of velocities and mixing coefficients can be inferred:

800
G=q,+(F'ST'F+R) F'S M @n i —z)  (83)
An equivalent formulation, which is more efficient if the di-
mension of q is larger than that of  (underdetermined prob-
lem), but which requires a non-singular regularization matrix gs
and does not give easy access to diagnostics (see below), is
(Rodgers), 2000):

q=q, +RFT (FRFT 48, ;) (Tt — 1), (84)

The covariance matrix characterizing the uncertainty of es-
timated winds and mixing coefficients is

S,= (F'S;'F+R)” F’S;'F(F'S;'F+R) ',
(85)

and the estimated winds and mixing coefficients are related
to the true ones as
96 _
A= c’)fq = (FTS;'F+R) F'S;'F,
q

815

(86)

which is unity in the case of unconstrained estimation of q.
In the case of Newtonian iteration, Egs. (85}[86)) are evaluated exo
using the Jacobian F valid at the solution.

Due to the concentration-dependence of the source func-
tion and the g-depecdence of F, Eq. (29) is valid only in lin-
ear approximation. This is helped by putting the inversion

in the context of a Newtonian iteration (see, e.g., Rodgers
(2000! p. 85). Eq. (80) becomes

~ _ —1 _
Qi1 =i+ (FLST'Fiy)  FLST (@mr —@1i), (87)

where it is the iteration index. Equation (83]) becomes

. _ 1

Qi 4; + (F5S; 'Fi + R) (88)
(F3S: H(@m —zr4t) — R(qi; — 4,))

or alternatively

. _ —1

dipyr1 = Qg+t (FZ’Z;Sr 'Fo+ R) (89)
FiS; ! (@mr — i+ Fir(g — 4,)),

and Eq. (84) becomes

. _ _ 1

Gy = Qo +RTF (FyRTF) +S0) (90)

(wm;I — 1+ Fi (qzt - qa)) :

With g, = 0 and diagonal R = I we get the smallest pos-
sible velocities and mixing coefficients still consistent with
the measurement, where tuning parameter v will be set de-
pending on how large fit residuals the user still considers
to be ‘consistent’. With R being diagonally blockwise com-
posed of squared and scaled first order finite differences op-
erators and g, = 0, smooth fields of wind vectors and mix-
ing coefficients can be enforced. Setting g, the result of the
previous macro time step corresponds to sequential data as-
similation. In this application R is set to the reciprocal uncer-
tainty of q, plus some margin for allowance of variability of
velocity and mixing coefficients in time. And finally, if prior
knowledge is formed by independent measurements and their
reciprocal uncertainties as constraint matrix, or within the de-
batable framework of Bayesian statistics, estimates ¢ would
even be the most probable estimate of velocities and mixing
ratios.

5 Proof of concept
5.1 Prediction of the atmospheric state

In a first step we test the predictive power of the formalism
defined by Eqs. (3H29). Since the formalism itself is deduc-
tive and starts from a well established theoretical concept, the
purpose of the test is solely to verify that the implementation
of the formalism is correct and that involved numerical ap-
proximations are adequate. As a consequence of the Bonini
paradox (c.f. Bonini| (1963) and [Starbuck! (1975)), a model is
the harder to understand the more complex it is. While the
predictive power of a model usually increases with complex-
ity, this does not necessarily hold for its explanatory power.
Thus we have decided to test our model on the basis of very
simple test cases, where major failure of the model is imme-
diately obvious. Four test cases have been chosen, each dedi-
cated to one kinematic variable (v, w, K4 and K), while the
other three were set to zero.
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In the first case, v was set to a tenth of the Courant
limit (Courant et al., |1928) (about 0.17/cos(¢) ms~!) ev-
erywhere. As one would expect from the continuity equa-

tion applied to a spherical atmosphere, no changes in air sso

density except boundary effects at the poles were observed,
and structures near the equator were transported by about 4°
within a month, as expected from the equation of motion. A
Gaussian-shaped perturbation of a halfwidth of one latitudi-
nal gridwidth (4°) causes an upwind wiggle of less than 0.7%
of the amplitude of the perturbation at a meridional velocity

of one gridpoint per month. There is no discernable change *

in the width of the transported structure. Similarly, for the
second case a constant field of w of 1.1 x 1072 ms~! lifts a
structure upwards by about 3 km per month. Mixing coeffi-
cients were verified to smear out structures in the respective
direction while leaving air density and structures in the or-
thogonal direction unchanged.

5.2 Inversion of simulated measurements

Case studies based on real measurement data are inadequate
as the sole proof of concept because the truth is unknown
and the result thus is unverifiable. Instead we first test our

5

890

scheme on the basis of simulated atmospheric states and con- g5

sider the scheme as verified if the velocities and mixing co-
efficients used to simulate the atmospheric states are suffi-
ciently well reproduced. In the noise-free well conditioned
case one might even expect, within the numerical precision
of the system, the exact reproduction of the reference data;
due to the — weak but non-zero — dispersivity of the numer- .
ical transport scheme the wiggles discussed in the previous
subsection cause, at some gridpoints, D-matrix entries of the
wrong sign. In order to fight resulting convergence problems
of the inversion, at least some small regularization is ade-
quate, even if the system of equations to be solved is well or
over-determined. Since the system in reality is, in tendency,
ill-conditioned and the constraint applied to the inversion
prevents reproduction of the reference data, we use a vari-
ety of idealized tracers instead. After this initial test of func-
tionality, more and more realistic test cases are constructed
in order to study the competing influence of constraint and
measurement data on the solution.

During code development, a series of basic tests of in-
creasing complexity were performed, including a variety of
mixing ratio distributions transported with various velocity o
fields. The main lesson learned was that, even when the
rows of Equation (80) were independent and no formal ill-
posedness could be diagnosed, the unphysical upwind wig-
gles in the vicinity of the mixing ratio peak as discussed
in the previous subsection could trigger errors which are

905

910

5

boosted during the iteration. This problem, which is associ- 4,

ated with sharp structures and large velocities (of the order of
one gridwidth per macro timestep) can be solved by the use
of a smoothing regularization matrix R as discussed in the

13

last paragraph of Section [f] however at the cost of degraded
spatial resolution of the result.

As an example we show the following test. An altitude-
independent meridional velocity field (in degrees per month)

_ 23.6562 .
)

was chosen while the vertical velocity was set to zero
(Fig. ). This particular choice of the meridional velocity
field keeps boundary problems at the poles due to divergence
in a circulation which is not closed reasonably small. Initial
mixing ratio distributions (in ppmv) of four idealized gases
were constructed such that gas (a) was sugar-loaf shaped
while those of the gases (b) to (d) were monotonical slopes.

v

0S ¢ (29)

vmry = (e—(%gﬁf/m + 5.0 10_4) e_(s(%& /12 92)

(30 +0.022% — 0.2¢)3

— 93
vy 1000 ©3)
vmre = 20 % 0022 10-03¢ (94)
and

vmry = 30 x ¢~ 0:03270.002¢ 95)

where z is altitude above surface in km and ¢ is latitude in
degrees. The distribution of gas (a) is shown in Fig. [2b. The
transport problem was solved in the forward mode using the
velocity field as defined in Eq. (91) for integrating the ten-
dency equation (Eq. over one month. The resulting dis-
tribution of gas a after this macro-timestep is shown Fig. [2k.
The “sugarloaf™ is transported to the North by the expected
distance. Due to the latitudinal gradients with lower veloci-
ties in the luff of the sugar-loaf and larger velocities in the
lee, the shape of the “sugar-loaf” is slightly distorted, lead-
ing to a steeper slope in the luff and a flatter slope in the lee.
No indication of problems with diffusity or dispersivity of the
transport scheme is seen. At the poles boundary problems are
visible which are inavoidable when such an unrealistic (but
instructive) velocity field is used. The inversion nicely re-
produces the initial velocity field (not shown because hardly
discernable from Fig. [2h). Due to the smoothing constraint
the peak velocity is decreased by 18%. This smoothing is the
price to pay for the stabilization of the retrieval in the pres-
ence of the boundary problems discussed above. The residual
between the simulated measurement of the distribution of gas
(a) at to+ At and the distribution predicted with the resulting
velocity field is shown in (Fig. [2d).

5.3 Case Study with MIPAS measurements

The risk of case studies based on simulated data typically is
that not all difficulties encountered with real data are fore-
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Figure 2. : Test case. (a) velocity field; (b) initial distribution of gas
a; (c) distribution of gas a after one month; (d) residual between
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seen during theoretical studies. In order to demonstrate ap-
plicability to real data, global monthly latitude/altitude dis-
tributions of CFC-12, CHy4, N2O and SFg
2012} [Plieninger et al., 2015} [Haenel et all, 2015) measured
with the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) (Fischer et al.}[2008) were used. The pur-
pose of these tests is demonstration of the feasibility of the
method presented. An investigation of the atmospheric circu-
lation on the basis of this method applied to MIPAS data is
left for a companion paper. For this proof of concept, sinks
of these long-lived tracers have been ignored but these will
certainly be considered in scientific applications.

For this case study, zonal monthly mean distributions of
air densities and mixing ratios of these four species from
September and October 2010 were used. Figure [3| shows the
measured distributions of these quantities in September (left
column) and October (middle column), and the residuals be-
tween the measured and predicted contributions for October
(right column). The residuals are reasonably small and show,
except for methane in the polar upper stratosphere, no pat-
terns which would hint at peculiarities with the inferred kine-
matic quantities.

The resulting circulation vectors which best explain the
change of the mixing ratio distributions from September to
October 2010 are shown in the upper left panel of Figure f]
Winter polar subsidence, summer polar upwelling, the meso-
spheric overturning circulation, the upper and lower branches
of the Brewer-Dobson circulation and the tropical pipe are
clearly visible. Details of the tropical pipe are visible in the
right upper panel. As expected, the Brewer-Dobson circula-
tion is much more pronounced in the northern (early) win-
ter hemisphere. Velocities are roughly consistent with mean

ages of stratospheric air as determined by [Stiller et al.| (2008))
and [Haenel et al] (2013) in a sense that the quotient of the

typical circulation velocity and the distance between equator
to pole gives an age estimate of the correct order of magni-
tude. While the inferred field of circulation vectors shows
many detail features demanding scientific investigation in
their own right (e.g., the latitude offset between the intertrop-
ical convergence zone and the stratospheric tropical pipe, or
the interfacing between the stratospheric two-cell circulation
and the overturning mesospheric circulation and the transi-
tion altitude between them), the reproduction of the expected
features justifies confidence in the method proposed. Result-
ing mixing coefficients K4 and K, are shown in the left and
right lower panels, respectively. Negative mixing coefficients
indicate counter-gradient mixing, which seems to be most
pronounced in the tropical upper stratosphere.

Jacobian elements with respect to v values and K values
seem to form a null space. Thus the K-values were con-
strained to zero using diagonal components only in the R
matrix diagonal blocks associated with the K values. The
strength of this constraint was adjusted such that the K val-
ues were as small as possible as long as this did not boost
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Figure 3. : Measured distributions in September (left column), October (middle column) and residual distributions between October mea-
surements and predictions for October (right column) for air density and mixing ratios of CFC-12, CH4, N2O, and SFg¢ (top to bottom). Grey

gridboxes indicate non-availability of valid data.
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the residual. Resulting K4 and K, distributions are shown in

Figure 4 1030

The errors in the estimated transport velocities and mix-
ing coefficients have been estimated according to Eq.
and are shown in Figure 5] The uncertainties in the transport
velocities caused by the propagation of measurement errors
are in the one percent range, indicating that the information
contained in the measurements is adequate for the purpose
of retrieving circulation parameters. It seems even possible
to improve the time resolution of the circulation analysis and
aim at weekly instead of monthly temporal sampling.

Larger errors above 65 km altitude and at the bins clos-
est to the pole are border effects, resulting from the fact that
no symmetric derivatives can be calculated there. The un-

certainties in K show the same patterns as the K values ™’

themselves.

6 Discussion

1045

The analysis of the age of stratospheric air can be under-
stood as an integrated view at the equations of motion of
stratospheric air, because the total travel time of the air par-
cel through the stratosphere is represented. The refinement

of this method which analyzes the mean age just consid-""

ers a weighted mean of the above, but it is still an integral
method. Contrary to these integral methods, our direct in-
version scheme supports a — in approximation, due to dis-
crete sampling in the time domain — differential view of the

same problem. The related advantages are: (a) independence1055

of assumptions on the age spectrum, because during each
time step mixing is explicitly considered; (b) insensitivity
to SF¢ depletion in the mesosphere (c.f., e.g., Reddmann
et al., [2001; [Stiller et al.l 2012), because the scheme uses

the actual entry values of subsiding air as a reference; )™

applicability to non-ideal tracers in the stratosphere; since
the atmospheric state is updated for each time step by mea-
sured value, depletion does not accumulate, even if no sink

functions are considered; and (d) the logical circle that the
65

lifetimes of non-ideal tracers depend on their trajectories10
(and thus atmospheric circulation), while the determination
of the circulation requires knowledge of the lifetimes, can be
solved. Our scheme requires knowledge only on the local, not
the global, lifetimes; (e) the method is an empirical method
which does not involve any dynamical model, i.e. the forces
which cause the circulation are not required. The method

only finds that kinematic state of the atmosphere which, ac-17

cording to the continuity equation, fits best to the measure-
ments. These kinematic state values are provided as model
diagnostics to assess the performance of dynamical models.
Due to these advantages, the major problems in the empirical

analysis of the Brewer-Dobson circulation as mentioned byiozs

Butchart| (2014)) are solved. Problems related to our method
are (a) sensitivity of the inferred kinematic quantities to lo-
cally varying biases, (b) a tendency towards ill-posedness of

1035

the inversion if distributions of too few tracers with too sim-
ilar morphology are used, and (c) the usual artefacts arising
if the numerical discretization is chosen too coarse. Results
of the case study presented in Section [5.3]suggest that these
problems are under control in the current application of the
proposed scheme.

7 Conclusions and outlook

We have presented a method which infers mixing coefficients
and effective velocities of a 2-D atmosphere by inversion of
the continuity equation. The main steps of this procedure are
(a) integration of the continuity equation over time to pre-
dict pressure and mixing ratios for given initial pressures and
mixing ratios and initially guessed velocities and mixing co-
efficients; (b) propagation of errors of initial pressures and
mixing ratios onto the predicted pressures and mixing ratios,
by differentiation of the predicted state with respect to the
initial state and generalized Gaussian error propagation; (c)
estimation of the sensitivities of the predicted state with re-
spect to the velocities and mixing coefficients; and (d) min-
imization of a quadratic cost function involving the residual
between measured and predicted state at the end of the fore-
casting interval by inversion of the continuity euqation. The
inferred velocities are suggested to be used as a model di-
agnostic in order to avoid problems encountered with other
model diagnostics like mean age of stratospheric air. It is im-
portant to note that the diagnostics inferred here are effec-
tive transport velocities and effective mixing coefficients in
a sense that they include eddy transport and diffusion terms.
Thus, they cannot simply be compared to zonal mean ve-
locities and mixing coefficients of a 3D model but the eddy
terms have to be considered when these diagnostics quanities
are calculated. The application of this method on SFg distri-
butions measured by MIPAS (Stiller et al.,2012) to diagnose
the Brewer-Dobson circulation are discussed in a compan-
ion paper. Obvious future activities are the extension of this
method to three dimensions and inclusion of sink functions
of non-inert species to explore a larger number of tracers in
order to better constrain the related inverse problem.

Appendix A: From 3D to 2D

The reduction of the transport problem from three to two
dimensions involves Reynolds decomposition of the three-
dimensional continuity equation and subsequent zonal av-
eraging and gives rise to eddy mixing and transport terms.
The inference of effective two-dimensional transport veloc-
ities and effective mixing coefficients from measurements
discussed in the main paper relies on the fact that, within
certain assumptions and approximations, all these eddy ef-
fects can be understood as additional pseudo-advection and
pseudo-mixing terms according to the advection equation
and the Fickian law, with gas-independent pseudo-velocities
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and pseudo-mixing coefficients. The exact interpretation of
the two-dimensional velocities and mixing coefficients in-
ferred from the measurements depends on the approxima-

tions made. We apply our scheme to zonally averaged mixingiioo

ratios (no mass-weighted averaging!). Contrary to the main
text, where the symbols v, w, Ky, and K, are used in the
2-dimensional system, here zonal averages are indicated by
a bar.

Assuming

— that the deviations from the zonal mean are small com-

pared to the zonal mean itself such that linearization is
justifiable,

— that meridional advection is negligibly small compared

to zonal advection, 1105

— that the time variation of the zonal mean quantities is
assumed to be much slower than the time variation of
the deviations from the zonal mean, which corresponds
to the assumption of a quasi-steady state,

(1982) derives a two-dimensional approximation to the
continuity equation which, adjusted to our notation, written
for geometric altitudes instead of potential temperatures, and
using the shallowness approximation, reads

_o0____ (_ 0 10
pavmrg—}— (pv— ap 7]) 8¢vmrg+ (A1)
__ 0—=\ 0 1 0 10
(”“’_E @)f% "6 (”K“"ﬁ 8¢”W9)
1 0 0 o (_ 10
8¢ (pK¢Z vmrg) P (pKz¢ 6¢vmrg)
0

d
7. (pKzza vmrg> =
- 10

51 @) - 5- (@) - 5 (7).

where 7/, @ and ¢’ are defined by

o a o\,
<a+rcos¢>a>n - (A2)
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Assuming further that

(A3)

(A4)

(AS5)

(A6)

(A7)

(A8)
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our scheme is applied only to long-lived species, such
that chemical eddy terms can be ignored because chem-
ical lifetimes are long compared to transport lifetimes

(c.f.[Pyle and Rogers| (1980)),

wave disturbances are dominated by steady or periodic
terms, such that the terms with the mixed second deriva-

tive terms tend to disappear (Matsuno| (1980);|Clark and
Rogers| (1978); [Pyle and Rogers| (1980), quoted after
(1982). Here an even weaker approximation is

sufficient, namely

i
—n'®’ =~ 0. A
tn 0 (A9)

This is equivalent with the assumption that K4 ~
K.
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Eq.[AT]can be rewritten as a tendency equation of the type

0 v* 0
—Tmr, = ———Umly—w " —Umr, Al
5 g " 8¢vmr9 w azvmrg—F ( 0)1180
10 L 0
296 {K(ba(bvmrg} +
0] L 0
2 {Kz azvmrg]
where 1185
10— 10p
= - —— - — All
v T atP T T Gragt e (All)
0 10p
T Ky~ =LKy,
9: 0 poz
10 10p
= w———p ¥ —=-—K,, Al2
v Y L ) (A12)
10, 10
r O¢ 9= pr O¢ ¢z
K=Ky (A13)
and
K;=K.. (AT4);200

can be understood as virtual velocities and virtual mixing co-
efficients. All terms in Eq. (ATO0) have either the mathemati-
cal structure of an advection equation or a Fickian law. Thus,
Eqgs.(ATI] - [AT4) provide the interpretation of the velocitieszos
and mixing coefficients inferred in the main part of the pa-
per. These can be identified with the virtual velocities and
virtual mixing coefficients inferred above. Obviously, this in-
terpretation depends on the approximations made, and differ-
ent approximations would lead to a different interpretation. If*
mixing coefficients describing subscale effects in the original
3-D model (the last two terms in Eq. (3)) are to be consid-
ered, then the effective mixing coefficient is the sum of the
mixing coefficients describing these subscale effects plus thess
respective K* term accounting for the eddy mixing.

We like to emphasize that none of the approximations
and assumptions discussed above are used in our proposed
method to infer velocities from zonal mean mixing ratio mea-
surements. The discussion in this Appendix only tries to re-izeo
late the resulting velocities to the velocities in a 3-D world.
The ambiguities in the interpretation of the inferred ’effec-
tive’ 2-D velocities suggests that it might be promising to
switch from a theoretical to an empirist view and to con-
ceive no longer the zonal mean of the 3-D velocities as theizs
‘true’ 2-D velocities, but those which satisfy the 2-D continu-
ity equation. These can be — admittedly indirectly — observed
with our suggested method and can be used to validate 2-
D models, including their underlying concept of solving the
2-D transport problem. With this, also the adequacy of theizs
assumptions made to approximate away the headache terms

10

which can be expressed neither as advection nor as Fickian
law terms can be tested by means of comparison of the mea-
sured and 2-D modelled effective, i.e. transport relevant, ve-
locities. This empiristic turn in argumentation might not fully
solve all aspects of the problem of interpretation of the ob-
served 2-D velocities from a 3-D perspective, but at least it
moves the problem from the desk of the observation scientist
onto the desk of the 2-D modeller.
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