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Abstract

The exact mechanisms for new particle formationRNéhder different boundary layer conditions are
not known yet. One important question is if amiaesl sulfuric acid lead to efficient NPF in the
atmosphere. Furthermore, it is not clear to whaerehighly oxidized organic molecules (HOM) are
involved in NPF. We conducted field measurementsratral site in central Germany in the proximity
of three larger dairy farms to investigate if thisra connection between NPF and the presenceinéam
and/or ammonia due to the local emissions fronfidtres. Comprehensive measurements using a nitrate
Chemical lonization-Atmospheric Pressure interfasae Of Flight (CI-APi-TOF) mass spectrometer,
a Proton Transfer Reaction-Mass Spectrometer (PHR-larticle counters and Differential Mobility
Analyzers (DMAs) as well as measurements of traaseg and meteorological parameters were
performed. It is shown that the nitrate CI-APi-T@Fsuitable for sensitive measurements of sulfuric
acid, amines, a nitrosamine, ammonia, iodic aciild®M. NPF was found to correlate with sulfuric
acid, while an anti-correlation with RH, amines @mimonia is observed. The anti-correlation between
NPF and amines could be due to the efficient uptdkinese compounds by nucleating clusters and
small particles. Much higher HOM dimer (C19/C20 @aunds) concentrations during the night than
during the day indicate that these HOM do not &ffitly self-nucleate as no night-time NPF is obsdrv
Observed iodic acid probably originates from anrieecontaining reservoir substance but the iodine

signals are very likely too low to have a signifitaffect on NPF.

1. Introduction
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The formation of new particles from gaseous comgsufmucleation) produces a larger fraction of
atmospheric aerosol particles (Zhang et al., 200#)ile the newly formed particles have diameters
between 1 and 2 nm they can grow and reach laiges,swhich enables them to act as cloud
condensation nuclei (CCN, ~50 nm in diameter ogdax Removal processes such as coagulation
scavenging due to larger pre-existing particlestmimportant if the growth rate&R) for the newly
formed particles are slow and/or if the coagulasork (CS) is high. The climatic effect of nucleation
depends strongly on the survival probability of tiesvly formed particles, i.e. if they reach CCNesiz
or not. Model calculations indicate that nucleat@@n account for ca. 50% of the CCN population
globally (Merikanto et al., 2009). In addition thefr climatic effect secondary particles can also
influence the human health (Nel, 2005), or redusibility, e.g. in megacities (Chang et al., 2009).

New particle formation (NPF) is a global phenomeramd has been observed in many different
environments (Kulmala et al., 2004). In most casesositive correlation with the concentration of
gaseous sulfuric acid has been observed (Sihtb, &086; Kuang et al., 2008). However, other trace
gases, beside 8O, and HO, need to be involved in the formation of clustertherwise the high
particle formation rates measured in the boundargricannot be explained (Weber et al., 1997; Kirkb
et al., 2011). One ternary compound, which enhatie@binary nucleation of sulfuric acid and water
significantly, is ammonia. However, at the relalyvevarm temperatures of the boundary layer the
presence of ammonia is probably not sufficientéaching the observed NPF rates when acting togethe
with sulfuric acid and water (Kirkby et al., 20Kliirten et al., 2016). The same applies for ion-oetl
nucleation (lIN); the observed IIN rates for thedry and ternary system including ammonia are not
high enough to explain the observations (Kirkbglet2011). Therefore, recent nucleation experisient
focused on organic compounds acting as a ternanpcond (beside ¥$0, and HO). Many studies
indicate that amines have a very strong enhandfagten nucleation (Kurtén et al., 2008; Chenlgt a
2012; Glasoe et al., 2015). Indeed, a chamber emprt could show that the nucleation of sulfuritlac
water and dimethylamine (DMA) at 5°C and 38% RHduwed particles at a rate, which is compatible
with atmospheric observations in the boundary layesr a relatively wide range of sulfuric acid
concentrations (Almeida et al., 2013). For sulfried concentrations <1@nolecule cri, which are
typical for the boundary layer, and dimethylaminging ratios of > ~10 pptv, nucleation was found to
proceed at or close to the kinetic limit. This meamery collision between sulfuric acid molecubey]
clusters associated with DMA, leads to a largestely which does not evaporate significantly (Kirte
etal., 2014).

In principle, mass spectrometry using nitrate disahionization could be used to detect neutral
clusters consisting of sulfuric acid and basesénatmosphere. However, only few studies indidzeé t
neutral nucleating atmospheric clusters consistutfiiric acid and ammonia or amines (Zhao et al.,
2011; Jiang et al., 2011), while other studies @it identify such clusters (Jokinen et al., 2012;
Sarnela et al., 2015). A further outstanding igsuke question about the magnitude of the atmag&phe

amine mixing ratios at different locations. In thest several years the experimental tools for Beasi
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online measurement of amines in the pptv-rangerbecvailable (Hanson et al., 2011; Yu and Lee
2012). The reported amine levels reach from upets bf pptv (Hanson et al., 2011; Freshour et al.,
2014; You et al., 2014; Hellén et al., 2014) to.X fptv (Sipila et al., 2015). It is therefore expbrtant
guestion if some of the reported mixing ratios ddag biased high or low due to instrumental issoes,

if the natural variability in the amine mixing rasi due to different source strengths can explan th
differences.

Other possible contributors to particle formatéwa highly oxidized organic compounds originating
e.g. from the reaction of monoterpenes with atmesploxidants (Zhao et al., 2013; Ehn et al., 2014;
Riccobono et al., 2014; Jokinen et al., 2015; Kyrkb al., 2016). From this perspective it seemslyik
that different nucleation pathways are possible magt dominate at different sites depending, e.g. on
the concentration of sulfuric acid, amines, oxidizzrganic compounds and other parameters like
temperature and relative humidity. Synergistic @feare also possible, e.g. it has been demorttrate
that the combined effect of ammonia and amineslead to more efficient particle formation with
sulfuric acid and water than for a case where anmniemot present (Glasoe et al., 2015). Due to the
manifold possibilities for nucleation and the loancentrations of the growing clusters it is chajieg
to identify the dominating particle formation patinfrom field measurements in an environment where
many possible ingredients for nucleation are presethe same time. However, such measurements are
necessary and previous measurements from Hyykélgnd, underscored the importance of sulfuric
acid, organic compounds and amines regarding NRk(#a et al., 2013).

In this study, we have chosen to conduct measuresméth an emphasis on the observation of NPF
at a rural site in central Germany. The goal of fléld campaign was to measure NPF in an amite ric
environment in the vicinity of dairy farms, as coare known to emit a variety of different amines as
well as ammonia (Schade and Crutzen, 1995; Ge aexew 2011; Sintermann et al., 2014). The
measurements were performed using different partiolinters and particle size analyzers as well as
trace gas monitors @SQ and NQ). A Proton Transfer Reaction-Mass SpectrometeRARTS) is
used to determine the gas-phase concentration abteigenes and isoprene, whereas a chemical
ionization time of flight mass spectrometer usititgate primary ions (Jokinen et al., 2012; Kurtén e

al., 2014) is used for the measurement of sulfarid, amines, ammonia and highly oxidized organics.

2. Methods and M easurement Site Description

2.1 Measurement Site Description

The measurement site is located right next to @aonetogical weather station operated by the German

Weather Service (DWD measurement station Micheistéelbrunn/Odenwald, 49°43'04.4" N and
09°05'58.9" E, 452 m a.s.l.). The village Vielbrumas a total of ~1300 inhabitants and is surrounded
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by fields and forests. The next larger cities asenistadt (~35 km towards WNW) and Frankfurt/Main
(~50 km towards NNW). The site was chosen for seveasons: (i) three larger dairy farms are close
by, which should possibly enable us to study tliecef amines on new particle formation, (i) &c

be regarded as typical for a rural or agricultargla in central Europe, (iii) the site is not tao dway
from the University of Frankfurt, which allows tgsit the station for instrument maintenance onilyda
basis and (iv) since we could measure right nexa tmeteorological station infrastructure and
meteorological data from the DWD could be used.

In terms of studying the effect of amines on neutiple formation we were expecting to see a direct
effect due to the local emissions from the dairyn& Each of these farms is keeping a couple afifath
cows in shelters, which are essentially consistimly of a roof and a fence such that the wind cegily
carry away the emissions. As mentioned in the éhtetion livestock is known to emit a variety of
amines as well as ammonia (Schade and Crutzen; 8&®&rmann et al. 2014) both of which should
have an influence on new particle formation andwjino/Almeida et al., 2013; Lehtipalo et al., 2016).
The farms are located in the West (~ 450 m distaSemith-South-West (~ 1100 m distance) and South-
East (~ 750 m distance) of the station, respegtivel

One further aspect that should be consideredeidéatt that the site is also surrounded by forests
(mixed type of coniferous and deciduous treeseastl 1 km away). Consequently, emissions of, e.g.
monoterpenes (f8His compounds), can also potentially influence newtigar formation as recent
studies indicate that their oxidation products cantribute to NPF and particle growth (Schobeslrerge
et al., 2013; Riccobono et al., 2014; Ehn et 8114 Kirkby et al., 2016).

2.2 CI-APi-TOF

The key instrument for the data discussed in tiidysis the Chemical lonization-Atmospheric Pressur
interface-Time Of Flight mass spectrometer (CI-ARIF). The instrument was first introduced by
Jokinen et al. (2012) and the one used in the ptasady is described by Kirten et al. (2014). The
APi-TOF draws a sample flow of 8.5 slm (standatdré per minute), which interacts with nitrate
primary ions ((HNG)o-2 NOsY) within an ion reaction zone at ambient pressurgd ms reaction time).
The primary ions are generated from the interaatibfINOs in a sheath gas and a negative corona
discharge (Kurten et al., 2011). The ion sourdeased on the design by Eisele and Tanner (1993) for
the measurement of sulfuric acid. The primary anodipct ions are drawn into the first stage of anme
chamber through a pinhole (~350 pm diameter). Qumaes in the first and a second stage of the
chamber, operated in rf-only mode, are used toegthid ions. A lens stack in a third stage focusés a
prepares the ions energetically before they erftertime of flight mass spectrometer (Aerodyne
Research Inc., USA and Tofwerk AG, Switzerland)sThass spectrometer has a mass resolving power
of ~4000 Th/Th and a mass accuracy of better t@appIn. These characteristics allow the elemental

identification of unknown ions, i.e. different spexhaving the same nominal (integery ratio can be
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separated due to their mass defect. Using isofigiterns for an expected ion composition suppbes t
ion identification. For the data analysis the saftetofTools (Junninen et al., 2010) is used withia
Matlab environment.

Previous work has shown that the CI-APi-TOF carused for highly sensitive measurements of
sulfuric acid (Jokinen et al., 2012), clusters wifigic acid and dimethylamine (Kurten et al., 2p14
organic compounds with very low volatility (Ehnadt, 2014) and dimethylamine (Simon et al., 2016).
Sulfuric acid and its clusters can be detected dfbe@ating a proton to the primary ions, whereas th
low volatility organic compounds are detected affestering with N@~. The measurement of amines
is possible because they can be associated withtenitluster ions (Section 3.6). Generally, the
quantification of a substance is derived with thiéofving equation:

Y. product ion count rates) (l)

concentration = C - In (1 + - -
Y primary ion count rates

Equation (1) relates the sum of the product iomteates to the sum of the primary ion count rates.
Using a calibration constaf the concentration of a neutral substance can teerdimed. In the case
of the sulfuric acid concentration ({8lQy]) the product ion count rates are due to HSénd
(HNO3)HSQy, while the primary ion count rates include NQHNO;)NOs~ and (HNQ).NOs~. The
calibration constant has been determinedd€®molecule cni (Kirten et al., 2012).

The same calibration constant has also been wsdld quantification of HOM. However, in this
case the mass dependent transmission of the CIFAFi-was taken into account by the method of
Heinritzi et al. (2016). This requires an additiboarrection factor in equation (1) which is arouhd
for them/z range 300 to 400 Th and 0.22 for the range 5@5MTh; these factors take into account
only the transmission as function of timéz value, while assuming the same ionization efficieas for
sulfuric acid, which has been argued to be a \ad&lmption (Ehn et al., 2014). The quantificatibn o
amines will be detailed in Section 3.6. Table legian overview of the identified ion signals used i
the further analysis evaluating sulfuric acid moeorand dimer concentrations as well as amine,
nitrosamine, ammonia and iodic acid signals (furtbeplanations will be given in the following
sections).

Regarding the loss of sample molecules withinitifet line of the CI-APi-TOF we expect only a
minor effect. As the sample line has a total lerggttund 1 m, a very high flow rate was applied over
most of the inlet length (Berresheim et al., 20@Mly for the last ~15 cm the flow of 8.5 sIm was
applied taking the sample from the center parheffirst inlet stage where the inlet has a sigaifity
larger diameter (5 cm instead of 1 cm for the jfest) to avoid wall contact of the relevant portiafn

the sampled air.

23PTR-MS



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-294, 2016 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Published: 6 June 2016 and Physics

(© Author(s) 2016. CC-BY 3.0 License.

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Discussions

Volatile Organic Compounds (VOCs) were measured witalibrated Proton Transfer Reaction-Mass
Spectrometer (PTR-MS using a quadrupole mass speeter, IONICON GmbH, Innsbruck, Austria).
The instrument inlet was heated to 60°C and theesamperature was applied to the ion drift tube Th
drift tube was operated at &iN of 126 Td in order to minimize the formation obpynated water
clusters while maintaining a high sensitivig/N is the ratio between the electric field strengtim V
cnt! and the number densityof gas molecules in cinsee Blake et al., 2009).

A calibration of the instrument was performed ptmthe campaign with a gas mixture containing
several VOCs at a known volume mixing ratio (loniméOC-Standard, Innsbruck, Austria), including
isoprenegp-pinene, and acetors@nongst others. The calibration was performed f@lative humidity
range of 0 to 100 % (steps of 20 %) at room tentpezaHowever, especially ferpinene (measured
at 81 and 137 Th), the sensitivity of the PTR-M®maging at the rather higilN was not depending on
relative humidity. For isoprene (measured at 41 &&dh), a higher RH led to lower fragmentation
inside the instrument, but this did not affect twerall sensitivity much (<5 % decrease from 20 to
100%).

The PTR-MS cannot readily distinguish betweeneddht monoterpenes as all have the same
molecular weight, so only the sum of monoterpermgdcbe measured. However, sinc@inene is
often the most abundant monoterpene in continenillatitudes (Geron et al., 2000; Janson and de
Serves, 2001) and the reaction rate constantsfferaht monoterpenes are rather similar (Tanilet a
2003; Cappellin et al., 2012) our estimation oékahonoterpene concentration should not be affected

by large errors.

2.4 Other instrumentation

Trace gas monitors were used to measure the miaigs of sulfur dioxide (Model 43i TLE Trace
Level SQ Analyzer, Thermo Scientific), ozone (Model 400,08e Monitor, Teledyne API) and
nitrogen oxides (NQ Ambient NQ-Monitor APNA-360, Horiba). These instruments weadibrated
once before the campaign with known amounts oktgases and dry zero air was applied on a daily
basis for a duration of at least half an hour iheoito take instrument drifts into account.

Further instruments used include condensatioricfartounters (CPCs) and differential mobility
analyzers (DMAs). The CPCs 3025A and 3010 (TSI,)Imere used to determine the total particle
concentration above their cut-off sizes of 2.5 a6dnm, respectively. A Scanning Mobility Particle
Sizer (SMPS) from TSI (Model 3081 long DMA with &PC 3776) determined the particle size
distribution between 16 and 600 nm. The smallex ginge was covered by a nDMA (Grimm Aerosol
Technik, Germany) and a TSI CPC 3776 for diamebetsveen 3 and 40 nm. The combined size
distribution can be used to calculate the cond@rgabagulation sink towards certain trace gasgs (e

sulfuric acid) or particle diameters.
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Meteorological parameters were both obtained foamown measurements with a Vaisala sonde
(Model WXT 520), which yielded the temperature, Rkhd speed and direction as well as the amount
of precipitation. The same parameters are alsdadlaifor the Vielbrunn meteorological station from

the DWD; additionally, values for the global raibatwere provided from the DWD.

3. Results

3.1 Meteorological conditions and overview

The intensive phase of the campaign was from MajolBine 7, 2014 (21 campaign days). Figure 1
shows an overview of the meteorological conditides temperature, relative humidity, global raidiat
and precipitation. The size distribution of smadlticles (Fig. 1, bottom panel) was measured by the
nDMA. In addition, the condensation sink calculatedthe loss of sulfuric acid on aerosol partigkes
also shown taking into account the full size disttion (up to 600 nm).

The first part of the campaign (including May 2&)s characterized by warm temperatures and sunny
weather without precipitation. Between May 22/28 &fay 31 the weather conditions were less stable
with colder temperatures and some precipitationnesveEspecially on May 29 a strong drop in
temperature and the condensation sink was obsedwed{o a cold front followed by the passage of
relatively clean air. From May 31 on temperaturesenincreasing again and it was mostly sunny with
only two rain events on June 3 and June 4.

Elevated concentrations of small particles cowddobserved on almost every day. However, new
particle formation from the smallest sizes (aro8nun) followed by clear growth were seen only on 6
days out of 21 (i.e. 29%). These events, which vedse used for the calculation of new particle
formation rates (Section 3.9), are highlightechie bottom panel of Fig. 1 by the dark gray arroie
presence of small particles was also observed weraeother days, however, the events were either
relatively weak, or no clear particle growth wasetvable.

3.2 Trace gas measur ements

The trace gas measurements are shown in Fig. Zalypaximum day-time ozone mixing ratios ranged
from ~40 to 75 ppbv (Fig. 2, upper panel). Thewgutfioxide levels were between 0.05 and a maximum
of 2 ppbv with average values around 0.3 ppbv (Eigipper panel). Especially during the passage of
clean air on May 29 and May 30 the Sévels were quite low. NOmixing ratios showed a distinct
diurnal pattern with a minimum in the late afternand an average mixing ratio around 3 ppbv (Fig.
2, middle panel, see also Fig. 8). The NO mixirtgpsawere about a factor of 5 lower compared taNO

on average (Fig. 2, middle panel, see also FigsiB)ilar values were reported for another rura Bit
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Germany (Mutzel et al., 2015). The maximum sulfadéd concentrations were reached around noon
and ranged between x10° and %10" molecule cn? (Fig. 2, lower panel, see also Fig. 3), which is
comparable to other sites (Fiedler et al., 200%jRet al., 2009). The total monoterpene and &wopr
mixing ratios measured by the PTR-MS were simitaeach other with values between ~0.03 and 1
ppbv (Fig. 2, lower panel). Mixing ratios in thengarange have also been reported for the boresdtfor
(Rantala et al., 2014).

3.3 H2S0, measurement and calculation from proxies

Figure 3 shows the average diurnal sulfuric acidceatration along with other data, which will be
discussed in later sections. The maximum averag@Qil around noon was ~a0° molecule cr; the
error bars represent one standard deviation.

Recently, Mikkonen et al. (2011) introduced appr@ations to calculate sulfuric acid as a function
of different proxies. Since the relevant paramefguffur dioxide mixing ratio, global radiation |a&ve
humidity and condensation sink) are available, eeehused the following formula to approximate the

sulfuric acid concentration (Mikkonen et al., 2011)
[H2S04proxy = a - k(T,p) - [SO,] - Rad® - RH® - CS®. @

The [HSQy] (expressed in molecule cinis calculated as a function of the S@ixing ratio (in ppbv),
the global radiatioRad (in W n12), the relative humidity?H (in %), the condensation sii@S (in s?),

a rate constarit, which depends on ambient pressprand temperatur@ (see definition fokk by
Mikkonen et al., 2011) and a scaling facoA least square fit made with the software IGO&ds the
coefficientsa=1.32x10'°, b=0.913¢=0.990d = -0.217 an& = -0.526 (linear correlation coefficient,
Pearson’s, is 0.87). Following the recommendations giveriMilgkonen et al. (2011) we restricted the
data used in the derivation of the parametersnditions where the global radiation was equal ayda
than 50 W 3. In addition, a simpler formulation was also tdstehich neglects the dependenceRbh
andCs

[H2S04]proxy = @'+ k(T,p) - [SO,]” - Rad® . 3)

Here, the coefficients = 1.343x10', b' = 0.786 andt = 0.941 yield good agreement (linear correlation
coefficient, Pearson’s, is 0.85) between calculated and measuregSQ4. Figure 4 shows a
comparison between the two approximation methods the measured sulfuric acid for the full
campaign (wheRad > 50 W m?). In almost all cases the predicted 5 minute aesare within a factor
of 3 of the measured values for both methods. ifidisates that even the simpler method (equatipn (3

yields relatively accurate results for the condisiof this study. This can probably be
8
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explained by the fact th&®H and CS show only relatively small variations over the ation of the
campaign and it is therefore not absolutely necgssainclude these factors in the sulfuric acid
calculation; for longer periods with larger variats it might, however, be beneficial to inclugd and
CS The parameters found are in good agreement hélonhes reported by Mikkonen et al. (2011) for

different sites.

3.4 Calculated OH

For further data evaluation knowledge of the OHaemtrations is useful. Since there was no direct
measurement of the hydroxyl radical available, @myestimation based on other measured parameters
can be made. This estimation is based on the assumtipat most of the sulfuric acid is producedro

the reaction between S@nd OH. Using the condensation si@ the balance equation between

production and loss at steady-state can be usgetitee the OH:

CS:[HaSOyl—kx 450, [XI'[SQ]  €5-[HpS04]
kor+s0, [SO2] kon+s0, [SQ2]"

[OH]day = (4)

Recently it was discovered that there are alsa afecies capable of oxidizing $0 SQ (which lead

to subsequent production ob$y due to further reactions with.@nd HO) (Mauldin et al., 2012).
Those species X, e.g. stabilized Criegee Interntesli@Cl) can be formed via the ozonolysis of atisen
(e.g. isoprenay-pinene, limonene) (Mauldin et al., 2012; Berndilet2014). Therefore, if some$O,

is generated from sCI reactions with S@®en the calculated OH is an upper estimate.rgutie day
this effect should be relatively small, i.e. < 5(Boy et al., 2013; Sarwar et al., 2013), althoughrigit

et al. (2014) state that no final answer can bergiegarding the effect of the sCl on the sulfadi
formation because it depends strongly on the sGtstre and competitive reactions between sCl and
water vapor. The derived diurnal pattern of [OH$l®wn in Fig. 3 with a maximum concentration of
1x10° molecule cnf around noon, which is in good agreement with otliedies (Berresheim et al.,
2000; Rohrer and Berresheim, 2006; Petdja et @9 The calculated OH concentrations were used
in Sections 3.5 and 3.8.

3.5lodic acid (HIO3) and OO

The high resolution CI-APi-TOF mass spectra reveetiie presence of iodine containing substances. It
can be ruled out that these signals result frommingent contamination as our CI-APi-TOF had never
been in contact with iodine (i.e. no nucleationexipents with iodine have yet been performed and no
iodide primary ions have been used). The obserigethls could be assigned tostQ(H.0)IOsand

(HNO3)IOz™ (Table 1). To our knowledge the identification iofline related peaks have not been
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reported from measurements with a nitrate CIMS. &\mv, Berresheim et al. (2000) reported the
presence of a peak Atz 175 in the spectrum for the marine environmenticlvlwas not identified
previously but in the light of this study, can akhoertainly be attributed to O

The diurnal pattern of 19 and the related iodine peaks show a distinct pattéth a maximum
around noon following almost perfectly the diurpalttern of sulfuric acid (Fig. 3). This may not be
surprising since the formation of H§@& due to reaction between OIO and OH (Saiz-Lapeit., 2012);
therefore the iodic acid concentration is connetidgtie OH chemistry. After normalization of thelio
acid signals with the nitrate primary ion counegta concentration of the neutral compoundsHtidh
be obtained by tentatively adopting the same aaiitin constant for iodic acid than for sulfuric dci
Thereby a maximum average day-time concentration3g10® molecule cnf can be found. Further
using the derived OH concentrations from th&®&, andCS measurements (Section 3.4) the derived
[HIO3] can be used to further estimate the concentrafidO (Saiz-Lopez et al, 2012):

_ CS[HIOg]
[o10] = kon+oio [OH] ©)

Equation (5) assumes that the only production cbleofrHIO; is the reaction between OH and OIO and
the only loss mechanism of HiG the uptake on aerosol. The reaction kKateoio can be taken from
the literature (Plane et al., 2006). In this wag toncentration of OlO can be estimated to a typica
value of 10 molecule cni, which is much lower than the values reportedtiermarine environment
(3 to 27 pptv, i.e. 75810 to 6.8<10° molecule crd, see Saiz-Lopez et al., 2012).

The relatively low values of [HI¢§) and [OIO] probably indicate that iodine chemisigynot very
important in terms of new particle formation astkite. This is supported by the fact that we cowold
observe any clusters containing e.g. sulfuric arid iodic acid or clusters containing more than one
iodine molecule. However, it is surprising thatifelcan be detected more than 400 km away from the
nearest coast line. On the other hand, HYSPLIT lxagj&ctory calculations (Stein et al., 2015) révea
that in most cases the air was arriving from wéstirections and therefore had contact with theaoc
within the last 48 hours before arriving at thetista During the measurement period there was
unfortunately never a day where the air was cleaviying from easterly directions and had not been i
contact with the Atlantic Ocean or Mediterranean ®éhin the previous days. Therefore, it could not
be checked if this would result in lower iodinersts. Despite the marine origin of the air masses
observed it is not clear how the iodine is transggbpver relatively large distances without beiost |
on aerosol particles. If iodic acid is irreversilibst on aerosol (similar to sulfuric acid) itseliime
should only be on the order of several minutesypical boundary layer conditions. Therefore, the
presence of iodine indicates either a local iodioerce, or its transport from marine environments i
the form of a reservoir substance, e.g.stthe lifetime of CHI is in the order of Week, see Saiz-
Lopez et al., 2015), and subsequent release duleotolysis.

10
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Regarding the sensitivity of the CI-APi-TOF it daa said that iodic acid (and, if present, probably
also its clusters) can be detected with high seitgitlue to the high negative mass defect of tiérie
atom Am= -0.1 Th). This allows the identification and qufication of iodine containing substances
because generally there will not be any overla aitother substance having the same integer mass
(mass resolving power of the instrument is ~4000 fhi.e. at/z 175 the peak width at half maximum
is ~0.04 Th). The method introduced here shouldefbee allow high-sensitivity measurement of
[HIOs] and also the estimation of [OIO] with the helpexfuation (5) in future studies. The lowest
detectable concentrations should be arour@i0®B molecule cri#, or better, for [HIG] and 51¢°
molecule cri¥ for [OIO] when assuming the same calibration camisfor HIG than for HSQ: and

considering the lowest iodine signal from Fig. 3.

3.6 Amine, nitrosamine and ammonia measur ements

The detection of dimethylamine (DMA, (G}ANH) by means of nitrate chemical ionization wit€k
APi-TOF has been described previously (Simon et28116). The clustering between diethylamine
(DEA) and nitrate ion clusters has also been repdoy Luts et al. (2011). The amines detecteden th
present study include GN (monomethylamine), £1;N (dimethylamine, DMA or ethylamine, EA),
CsHoN (trimethylamine, TMA or propylamine, PA), 81N (diethylamine, DEA) and 15N
(triethylamine, TEA). All these amines are idemifias clusters in the CI-APi-TOF spectra where the
amines are associated both with the nitrate dim@mi6e)(HNQ)NOs) and the trimer
((@amine)(HNQ@)2NO3).

The high mass resolving power of the CI-APi-TOBwEd the identification of five different amines
(C1-, C2-, C3-, C4- and C6-amines, see above).eSihe amines are all identified at two different
masses each (either with the nitrate dimer or itrate trimer) plotting the time series of eachr i
signals allows further verification of the amingrgils since a different time trend would reveat tha
another ion would interfer with the amine signahisTwas sometimes the case when the relative
humidity was high and clusters of water and nitegipeared with high water numbers. The cluster of
NOs and 6 water molecules has a mass of 170.0518 d tharC2-amine cluster §8;N)(HNO3)NOs™
(170.0419 Th) cannot be separated from this prin@mcluster. Therefore, if large nitrate plus wate
clusters were observed in the spectra, no C2-asigmal could be evaluated.

The same ion cluster chemistry applies for ammantdch can also bind with the nitrate cluster
ions. Consequently, ammonia is detected ass[(MOz)NOz~ and (NH)(HNO3).NOs™ (Table 1). To
our knowledge the existence of these cluster iassniot been reported previously.

In accordance with Simon et al. (2016) the clustersignals have been normalized by the following
relationship:

(6)
11

+ {(amine)(HNO3)NO§}+{(amine)(HNO3)2NO§})

aming,c,s = In (1 {(HNO,),NOZ)
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where the curly brackets denote the count ratéseodiifferent ion clusters and the same formulalEan
used when “amine” is replaced by Nk obtain the normalized ammonia signal. The ndgaigon
with the nitrate trimer has been chosen becaugéinlethat this is the dominant nitrate ion clustes
amines (and ammonia) can bind to within the CI-ABIF ion reaction zone (Simon et al., 2016). Partial
evaporation of one HNOfrom the resulting amine nitrate cluster withire t&I-APi-TOF vacuum
chamber leads to the spread of the signal ovarethted masses separated by 62.9956 Th (HINO

In addition, to the five amines mentioned before, were able to identify dimethylnitrosamine
(NDMA, (CHs3)2NNO) from its clusters ((CE.NNO)(HNO3;)NOs~ and ((CH).NNO)(HNG;),NOs~
(Table 1). The signals from NDMA show a clear dalnpattern on some days, which can be up to about
two orders of magnitude higher during the night paned to the day. This is in agreement with the
formation mechanism of NDMA via the reaction betw&MA and HONO (Pitts et al., 1978; Glasson,
1979; Grosjean, 1991). The lower concentrationgnduhe day can be explained by the photolysis of
HONO and NDMA. Since only C2-amines are capablhing nitrosamines no further nitrosamine
could be identified from the mass spectra. Onlgugh estimation of the mixing ratio can be provided
by using the calibration constant from Simon et(2016) which was derived for DMA. Using this
calibration constant the maximum mixing ratio of MB would be ~100 pptv (or 2.5x20nolecule
cnt®). However, this value has a high uncertainty bseamo direct calibration with NDMA was
performed.

The average diurnal patterns of the four aminesaanmonia are shown in Fig. 5. The data are an
average over 21 measurement days and the errordpresent one standard deviation. The temperature
profile is shown along with the CI-APi-TOF signal$ie C4-, C6-amines and ammonia show a distinct
diurnal profile, which follows the temperature pl®fclosely. The temperature-dependent signal
intensity could be due to partial re-evaporatioamfnes from the particulate phase. No correlatiitn
temperature is seen for the C1-, C2- and C3-aminaish could indicate efficient stabilization ofte
amines in the particulate phase due to acid-bassioas (Kirkby et al., 2011; Almeida et al., 2013)

No direct calibration for amines, NDMA and ammonias performed during the campaign.
Therefore, only a rough estimation of the mixinamcan be made. Using the calibration curve for
DMA by Simon et al. (2016),X10* ncps (normalized counts per second) correspond. tpptv of
DMA. With this conversion the average mixing rateoe between about 1 and 5 pptv for the amines.
The mixing ratios from this study are in a simitange as those reported from measurements in a
southeastern US forest (You et al., 2014) but gdlydower as those from three different siteshia t
US (Freshour et al., 2014).

The ncps for ammonia are lower than for the amiwdich should not be the case if the sensitivity
towards ammonia and amines would be the same hed¢hasammonia mixing ratios are almost
certainly higher than the ones for the amines is ¢émvironment. The ammonia mixing ratio can be

above several ppbv in rural areas (von Bobrutzlkile2010). Therefore, the sensitivity of the atiér
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CI-APi-TOF towards ammonia seems to be signifigalotiver than for amines. This is reasonable, since
other studies found that acid-base clusters betweéuric acid (including the bisulfate ion) andiass
are much more stable compared to sulfuric acid amendusters (Kirkby et al., 2011; Almeida et al.,
2013). Therefore, the acid base clustering betwdeie acid (including the nitrate ion) and ammonia
or amines could follow a similar rule, which wouthd to faster evaporation of the ammonia nitrate
clusters. For this reason only the relative sigfiaisammonia can be used at the moment without
providing estimated mixing ratios.

Recently it has been suggested that diamines @baychn important role in ambient NPF (Jen et al.,
2016); however, we could not identify diamines frtima high-resolution mass spectra.

3.7 Sulfuric acid dimer

Occasionally, the CI-APi-TOF sulfuric acid dimegisal was above background levels. The dimer
((H2SQy)HSQOr) was identified from the high resolution spectranine campaign days. The measured
sulfuric acid dimer concentrations are shown asatfon of the sulfuric acid monomer concentrations
in Fig. 6. For comparison, CLOUD chamber data framsleation experiments in the ternary sulfuric
acid-water-dimethylamine system are included (liedes in Fig. 6, Kirten et al., 2014). In addition
the lower dashed line shows the expected dimerdtiom due to ion-induced clustering (11C) of suiéur
acid monomers in the CI-APi-TOF ion reaction zoHar{son and Eisele, 2002; Zhao et al., 2010).
The data indicate that the measured dimer coratéris are clearly above the background level set
by ion-induced clustering. On the other hand theceatrations are lower than what has been measured
in CLOUD for kinetic nucleation in the sulfuric dewater-dimethylamine system at 5°C and 38% RH
(Almeida et al., 2013; Kirten et al., 2014). Clgathe neutral sulfuric acid dimers were stabilibgda
ternary compound, otherwise their concentrationsldvaot have been measurable at these relatively
warm conditions because the dimer (without a tgraampound) evaporation rate is quite high (2 10
st at 290 K, Hanson and Lovejoy, 2006; Kirten et2015). On the other hand the ternary stabilizing
agent evaporates after charging of the sulfurid dohers because no cluster between the sulfuidc ac
dimer and another compound (besides HIfGm the ion source) could be identified. This methat
although the dimers contained at least one additiolecule in the neutral state, the ionized dimer
will be detected as ($Qy)HSO; (Ortega et al., 2014; Jen et al., 2014), whichesakimpossible to
identify the stabilizing agent. Only when largeusters of sulfuric acid are present (trimer anddar
stabilizing agents like ammonia or amines canistélye cluster after charging with the nitrate ({@ghao
etal.,, 2011; Kirkby et al., 2011; Ortega et ab12; Kurten et al., 2014). Unfortunately, no lasgéfuric
acid clusters (trimer and larger) were measurahlend the campaign, probably because their
concentrations were too low. Therefore, only spestéahs about the stabilizing agent responsibléifer
high dimer concentrations can be made. It is quilikely that ammonia would be the only stabilizing

compound for the dimers since previous studies Bawern that the relatively high dimer concentration
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measured at rather low sulfuric acid monomer cotmatians (< 210" molecule cr¥) cannot be
explained by sulfuric acid-ammonia-water nucleaijplanson and Eisele, 2002; Jen et al., 2014). In
addition, efficient clustering between sulfuricceind iodic acid can probably be ruled out (prodide
that these compounds would be capable of produmictuster with a low evaporation rate) as the
concentrations of iodic acid are quite low (<18° molecule cni? at maximum, see Section 3.5). This
means that the arrival rate of iodic acid on awidfacid dimer is on the order of 4&* (using a
collision rate of %10'° cm® molecule! s?). Due to the high evaporation rate of the puréusial acid
dimer no significant dimer stabilization by iodicié.can be expected.

Whether amines are responsible for the dimer fooman the present study cannot be concluded. If
they were, the lower dimer concentrations compaoethe CLOUD chamber results (Kirten et al.,
2014) could be attributed to the higher temperaturethe present study, which result in faster
evaporation rates. Another explanation would bddher amine mixing ratios. In the CLOUD study
dimethylamine was present at 10 pptv, or higheraddition, it cannot be concluded that e.g. the
measured C2-amines are all dimethylamine, if aifsigmt fraction of them were, e.g., ethylamins, it
stabilizing effect could be significantly lower. iSlremains somewhat speculative as no data regardin
NPF from ethylamine and sulfuric acid was foundwaeer, triethylamine was reported to have a
relatively weak effect on nucleation compared to®M TMA (Glasoe et al., 2015). Other compounds
which are present and have been shown to form raeticies are HOM (Schobesberger et al., 2013;
Ehn et al., 2014; Riccobono et al., 2014;) althotlngtir stabilizing effect on neutral sulfuric aciitners
remains to be elucidated.

Regarding the observations shown in Fig. 6, itihbe noted that no ion filter (high voltage etict
field in the CI-APi-TOF inlet to remove ambient &nwas used in the present study. This could in
principle lead to the detection of ambient ions ahgters, which did not undergo charging in the ClI
API-TOF ion reaction zone. If this were the caserepresentative concentrations of the correspgndin
neutral sulfuric acid dimer would be derived. CLOURudies reported that charged sulfuric acid
monomers (HS®) and dimers ((kEBQ:)HSQOy) could be observed with a different nitrate chehic
ionization mass spectrometer (CIMS) under someitiond (Rondo et al., 2014; Kiirten et al., 2015).
However, for ambient measurements, no significiatecould be observed for sulfuric acid monomers
(Rondo et al., 2014). In principle, the sulfuriddadimer could be more strongly affected by the
detection of ambient ions since the neutral dinwrcentration is much lower than the sulfuric acid
monomer, while the negative ambient ion spectrumbeadominated by the charged sulfuric acid dimer
(Eisele et al., 2006). Therefore, we cannot entinglle out that ambient ions had some effect ordtia
shown in Fig. 6. However, the ambient ions woulddht overcome an electric field before they could
enter the ion reaction zone (Kurten et al., 201dnd® et al., 2014). In the CIMS and the CI-APi-TOF
a negative voltage is used to focus the primarg torthe center of the reaction zone, while theptam
line is electrically grounded. This means nega#iwgbient ions would need to overcome a repulsing

electric field which acts as a barrier. Light iom#l be efficiently deflected due to their high nility
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but heavier ions can in principle penetrate morglyeaConsequently, CIMS measurements at the
CLOUD chamber showed that the apparent dimer sigealsured by the CIMS correlated with large
ion clusters (pentamer, i.e. {60)sHSQ;~ and larger, which underwent subsequent fragmemtatiut

not with the (HSQy)HSQ;™ signal; the charged clusters were measured sinadtasly with an APi-
TOF (Junninen et al., 2010; Kirten et al., 201%) TI-APi-TOF used in this study utilized a higher
voltage for the ion focusing compared to the CIMS. (-500 V instead of -220 V in the CIMS) and
should therefore prevent smaller masses even nfiiceetly from entering the ion source than in the
study by Kirten et al. (2015). In addition, the et of any trimer signal (§8Q,).HSQy) in the
spectra argues against ambient ion detection.dredous study by Eisele et al. (2006) ambient ion
measurements showed, besides signals 8QIHSQ,, also signals for (£5Qy).HSQ:") which were

on average ~50% of the dimer signals. Since th&RHT OF design, with its repulsing voltages towards
ambient ions in the ion reaction zone, should beensensitive towards the trimer than towards the
dimer, the absence of sulfuric acid trimer sigraatgues against a significant bias in the data due t

charged ambient clusters.

3.8 Highly oxidized or ganic molecules (HOM)

Recently, the rapid autooxidation of atmosphencedlevant organic molecules, such as isoprene and
monoterpenes, was described (Crounse et al., HditBet al., 2014). There is evidence that these HOM
are involved in the formation of secondary aer@sal can even promote the formation of new aerosol
particles (Jokinen et al., 2015; Kirkby et al., 8DINitrate chemical ionization mass spectromedry i
capable of detecting a suite of HOM when the O#®&ria high (e.g. > ~0.6 for C10 and > ~0.35 for
C19/C20 compounds) through association of arny"N®imary ion (Ehn et al., 2014), while other
ionization techniques are more selective towards texidized compounds (Aljawhary et al., 2013).
Many recent publications report peak lists foreliéit compounds identified from chamber or ambient
measurements with nitrate chemical ionization (Ebal., 2012; Kulmala et al., 2013; Ehn et al.,£01
Mutzel et al., 2015; Praplan et al., 2015; Jokiekal., 2015; Kirkby et al., 2016). The speciesrfiihe
previous studies are mainly C10 (containing 10@adtoms) or C20 (containing 19 or 20 carbon atoms)
compounds originating from reactions between mapetges (in most cases fragpinene) and ozone
and/or OH.

The C10 compounds can be further segregated in Headitals (RQ, i.e. GoHisOiz6), HOM
monomers (@H140i>7 and GoH160i=) and HOM involving reactions with nitrate {f1sNO;>7 and
Ci0H16N20isg) (Jokinen et al., 2014). Dimers (C19/C20 compolrmgyinate from reactions among
HOM RG; radicals (Ehn et al., 2014).

The spectra were evaluated according to the ptaghlown in Table 2 regarding HOM. It should be
noted that the listed compounds represent somédnacf the observed signal in the monomer and

dimer region although not all of the peaks thajaesent are identified yet. Figure 7 shows a coispa
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between the average day-time and the average timighspectra for the mass to charge range between
m/z 300 and 650. According to Fig. 7 the main diffeeietween day and night are the significantly
higher signals in the dimer region during the night

Fig. 8 shows the diurnal variation of the HOM (@egted into HOM radicals, HOM monomers, HOM
nitrates and HOM dimers according to Table 2) thgetvith other parameters (NO, W@ and global
radiation). One striking feature is the pronounoekimum concentration of HOM dimers during the
night. During the day when the global radiationsbe@alues above zero the dimer signals drop bytabou
one order of magnitude and reach levels, whiclchrge to the detection limit of the instrument. The
low day-time dimer concentrations are probably thuenhanced NO, HOand R’'Q concentrations
during the day. These compounds can react with HGJ radicals and thereby inhibit the formation
of dimers; which are a result of the reaction betwivo RQ radicals. As can be seen from Fig. 8 the
NO concentration peaks in the morning. H@as not measured but typically peaks around noan o
the later afternoon (Monks, 2005). Direct photaysf HOM dimers has to our knowledge not been
reported in the literature but could in principlscaexplain the dimer pattern seen in Fig. 8.

The HOM monomer signal (Fig. 8) does not show @gpunced diurnal cycle, only in the early
morning the signals are reduced by about 50% coedptar the daily average. Slightly higher values
around noon could be explained by the highea@ OH concentrations during mid-day, which lead t
enhanced formation of HOM through reactions betwteese compounds and monoterpenes (Jokinen
et al., 2015; Kirkby et al., 2016). The HOM nitrstali-nitrates and radicals show almost the same
profile as the HOM monomers. This might be expeftedhe HOM radicals as these can be regarded
as the precursors for the HOM monomers but thetfettthe HOM nitrates follow an almost identical
pattern is somewhat surprising as the NO mixing retows a different profile and is thought to be
involved in the formation of the HOM nitrates. Howee, further involvement of e.g. OH, H@nd R'Q
in the HOM formation should also play a role anéréfore influence their diurnal pattern. The
elucidation of the HOM formation mechanisms is bra/the scope of this article and will therefore not
be discussed further. More field and chamber erpents are needed to identify the influence of
different trace gases and radicals on the formatiahconcentration of HOM.

3.9 Particleformation rates

The presence of small particles (< ~20 nm) was rebsleon almost every day during the campaign.
However, often nanometer-sized particles appearddenly without clear growth from the smallest
size the nDMA covered (slightly above 3 nm). Iratdhere were seven events where clear growth was
detectable and these events were the only oneghich a new particle formation raté) (vas derived.

In accordance with other previous studies (Metageal., 2010; Kirkby et al., 2011) we have first
derived a new particle formation rate at a largebitity diameterd,> (2.5 nm in the present study),

which was corrected to a smaller diametedaf= 1.7 nm in a second step. The formation dateis
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obtained from the time derivative of the small jdgtconcentration, which follows from the diffeen
in particle concentrations\gs.19 measured by the TSI 3776 (cut-off diameter of ritny and a TSI
3010 (cut-off diameter of 10 nm):

ANy s
Ja,, = =57+ CSa,, " Nas-10. (7)

The second term on the right-hand side in equéfipaccounts for the loss of small particles oripias
larger than 2.5 nm. The coagulation stk is calculated from the particle size distributropasured
by the nDMA and the SMPS. The second step invadwesxponential correction to obtain the particle
formation rate at the smaller sizk,;, by taking into account the coagulation sink &mel growth rate
(GR) of particles (Lehtinen et al., 2007):

CS,
Jap, =Jay, exp( Gd,fl ~dpy 'V)- 8

The factory is defined as follows (Lehtinen et al., 2007):

(@) -) ©

wheres is the slope of the coagulation sink as a functibsize for the size range betwesy andd,

(s = 10g(CSupACSipr)/log(dp2/dp1)). The value ofs can be derived from the measured particle size
distribution and was found to be around -1.6 fer phesent study, which is in good agreement wigh th
values reported by Lehtinen et al. (2007). The dgnaate was derived from the nDMA measurements
in the size range between 3 and 10 nm by fitti@aassian function to the particle size distribution
determine the mode diameter for all measured seteilnlitions. Applying a linear fit to the mode
diameter as a function of time yields t8& used in equation (8) (Hirsikko et al., 2005). Esrare
calculated by taking into account the statistiaiation of the particle formation ratds. as well as
systematic errors oBR (factor of 2),dy. (factor 1.3) andCS (factor 1.5).

Figure 9 shows a comparison betwégnfrom this study, data from other field studies &rthation
rates from CLOUD chamber studies for the systesutfiiric acid, dimethylamine and water at 278 K
(Almeida et al., 2013) as well as for oxidized arngacompounds with sulfuric acid and water
(Riccobono et al., 2014).

4. Discussion
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By comparing time periods where significant newtiplr formation (NPF) occurred to time periods
where no NPF was observed, some conclusions cdrala about the relevance of certain parameters
regarding NPF. Figure 10 shows a comparison fariety of parameters by comparing nucleation days
to no nucleation days (red bars) and periods vith sulfuric acid dimer concentrations to no nutitea
days when there are also no high dimer concentratiolue bars).

It is evident from Fig. 10 that sulfuric acid is average a factor of 2 to 2.5 higher on days with
nucleation; although the variability is rather highror bars take into account the standard dewisti
of a parameter both for the nucleation days anchthaucleation days). The enhanced sulfuric acid
concentrations confirm the importance of this comqbregarding NPF, which has also been shown in
numerous other studies (e.g. Weber et al., 199iim#la et al., 2004; Fiedler et al., 2005; Kuanglet
2008). The OH concentration and the global radiagie@ also enhanced during nucleation, which is not
surprising given the fact that the parametesS®, OH and global radiation are connected. The radati
humidity is generally lower during nucleation pelspwhich has also been reported in previous sgtudie
(Hamed et al., 2011; Nieminen et al., 2015).

Regarding amines and ammonia Fig. 10 reveals tuwec@melation between their concentration and
the occurrence of NPF or sulfuric acid dimer forioa{factor 2 to 5 lower during nucleation). Howgve
this does not necessarily mean that these companinithét the formation of particles. On the conyrar
it could mean that amines and ammonia are effigieaken up by small clusters and therefore are als
involved in the formation of new particles. Unligelfuric acid, amines and ammonia are not produced
in the gas phase and therefore their concentratibrdecrease with increasing distance from their
sources depending on the condensation sink. Durirgdeation the condensation sink is slightly
enhanced (Fig. 10), probably because of the nesviydd particles. However, ti@gSis only calculated
for particles larger than 3 nm. Also smaller pdescand sulfuric acid clusters can contain amines
(Kdrten et al., 2014) and even the sulfuric acichoroer can be bound to dimethylamine (Ortega et al.,
2012; Kirten et al., 2014). Therefore, continuowgglpction of sulfuric acid and its clusters wilatkto
a depletion of amines away from their sourcespalgh no mixed clusters of sulfuric acid and amines
could be observed:; this is probably the case becduesr concentrations were too low to be measured
with the CI-APi-TOF. As sulfuric acid concentrat®are high during nucleation this could explain the
low amine values. Efficient uptake of amines in plagticle phase has also been reported in a previou
field study (You et al., 2014). In addition, thmited pool of amines can also be the explanatiothi®
relatively low slope from Fig. 6 (sulfuric acid di&mvs. monomer) for some of the periods with eledat
sulfuric acid dimer concentrations. If the sulfudcid concentration increases, the ratio of the fre
(unbound) amine to sulfuric acid concentration dr@gmd there are fewer amines available to stabiliz
the sulfuric acid dimers. This is a different sttaa compared to the CLOUD experiment where the
amine to sulfuric acid concentration was maintaiaed ratio of ~100 over the entire duration of the
experiments. However, from these observations weataunambiguously conclude if the amines are

involved in the very first steps of nucleation,ifothey are depleted due to clusters, which donseatd
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the help of amines in order to nucleate. One atspect that could explain the low amine ratiohés t
somewhat enhanced OH concentration during the atiotedays, as amines react with OH. However,
the life-time of amines regarding their reactionthwDH is on the order of hours (Ge et al., 2011),
whereas the uptake on particles is significantsyeia(if CSis on the order of 19to 102 s?).

Regarding the possibility that sulfuric acid amdirzes can explain the observed nucleation it has to
be noted that no clusters involving more than twifusic acid molecules could be observed. In the
following we will calculate the maximum expectedfgric acid trimer concentration and discuss what
parameters can lower this concentration. The maxirmeasured sulfuric acid dimer concentration is
around 1x18 molecule cni for a sulfuric acid monomer concentration of 1xh@blecule cri. A
sulfuric acid trimer will be formed through the ligsibn between a monomer and a dimer (collisioa rat
K12), whereas the loss rate of the trimer is defingdhle sum of the condensation si&S{ and its
evaporation ratekfs. At steady-state this would yield the followingjuation for the trimer
concentratiorNs as function of the monomer and dimer concentratibnandN. (for simplicity this

neglects a potential contribution from tetramerperation):

_ Ki2'Ni'N;
Ny = CS+kes 10)

Using a value of 5x1 molecule' cn? s? for Ky, and a condensation sin€%) of 5x10° s? for the
above mentioned monomer and dimer concentrationsdayield a trimer concentration of 1>°10
molecule crit if the trimer evaporation rate would be zero. Tduacentration should be detectable with
our CI-APi-TOF. The fact that we do not see theét could indicate that the trimer evaporation rate
is non-zero. For a high amine to sulfuric acidaatucleation proceeds at or close to the kinetit li
(Jen et al., 2014; Kirten et al., 2014). HoweVethé amine concentration is not very high, notrgve
trimer that is formed would be stable (as it is thse for a favored acid-base ratio, see Ortegh, et
2012) and therefore could evaporate rapidly. Thasild result in lower trimer concentrations, which
could be below the detection limit of the CI-APi-FOFrom this perspective the absence of larger
sulfuric acid amine clusters is not necessarilynalication that this system is not responsiblerfew
particle formation. In other regions where the stidf acid and amine mixing ratios are even higher (
very close to amine sources) such clusters cam&ereable (Zhao et al., 2011).

The C10 and C20 signals for NPF and no nucleatays are not significantly different (Fig. 10).
This can be interpreted in different ways: (1) @M are not important in terms of NPF, (2) HOM are
generally high enough and it needs just enouglusalécid to initiate nucleation involving HOM, or
(3) ,HOM" is too broadly defined and only a subgpoaf HOM is involved in the nucleation but
currently we cannot distinguish this group. Neitbéthe possibilities can be proven right or wrong.
However, what can be said is that it is unlikelgttthe identified HOM alone are capable of prodgcin
new particles to a significant extent at the cdodg& of the present study. The HOM dimer

concentrations (Fig. 8) are significantly higheridg the night than during the day. Nevertheless, n
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night-time nucleation is observed. This could benpreted as an indication that if HOM are involved
in NPF it requires additional compounds such asusal acid to initiate nucleation. Alternative
explanations for the absence of night-time nuadeatould be the suppression of the formation of HOM
that can nucleate by N@uring the night, or low [OH], which is requireatfthe formation of nucleating
HOM.

Kulmala et al. (2013) proposed thatldisNOs (detected as a cluster with MGt 339.0681 Th)
could be important because NPF correlated eveerbsith this compound compared to sulfuric acid.
During nucleation days this compound is only sligltevated (Fig. 10) and this could be due to the
generally higher OH levels although the exact faromamechanism of gH1sNOg has to our knowledge
not been reported yet. During nucleation, no migkedters between sulfuric acid and HOM could be
identified. However, this also does not rule oditlexistence as the concentrations could be b#iew
CI-APi-TOF detection limit, or a low charging efféncy with the nitrate primary ion could prevent
their detection. Furthermore, not all signals demtified yet.

The observed particle formation rates (Fig. 9) @msistent with the rates observed at other sites,
although being at the upper end of the typical earthat have been previously measured. The present
data seem to agree a bit better to CLOUD chambier fda the system of sulfuric acid, water and
dimethylamine (Almeida et al., 2013) compared ttadar the system of sulfuric acid, water and
oxidized organics from pinanediol (Riccobono et 2014). However, a direct comparison is difficult
as the conditions between this ambient study aeadCthtOUD chamber experiments are not identical

(with respect tdl, RH, CS, amine mixing ratios, HOM concentrations, etc.).

5. Summary

In spring 2014 (May 18 to June 7) a field campaigrs conducted at a rural site in central Germany
(Vielbrunn/Odenwald). The measurement site wasorimity (within 450 to 1100 m distance) of three
larger dairy farms. The perspective of this campaigs to evaluate if there is a connection between
new particle formation and the concentration ofremiand/or ammonia. Furthermore, the impact of
highly oxidized organic molecules (HOM) from surngiing forests was investigated. A nitrate
Chemical lonization-Atmospheric Pressure interfagee Of Flight mass spectrometer (CI-APi-TOF)
was used to identify gas-phase compounds and udarticle counters and differential mobility
analyzers were used to characterize the aerosoldribution and number density. The following
conclusions can be drawn from our measurements:

* Nitrate CI-APi-TOF can be used to measure sulfadi, iodic acid, amines, a nitrosamine,
ammonia and HOM; the measurement of iodic acid, anianand the nitrosamine has not been
described before; the method is therefore even wensatile than previously thought and well
suited to study all of the above-mentioned compsuhding field measurements.
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The sulfuric acid concentration can be well desatiby proxies (S global radiation, RH and
CSor just by S@ and global radiation) for this site with a simikaccuracy as reported in a
previous study (Mikkonen et al., 2011).

« Significant sulfuric acid dimer concentrations weneasured; it is, however, not clear what
compound stabilizes the neutral dimers; largeusigliacid clusters (trimer and beyond) were not
observed.

¢ Amines (C1-, C2-, C3-, C4- and C6-amines) are preat estimated mixing ratios between
approximately 1 and 5 pptv, which is consistenhwither studies; the C4- and C6-amines as well
as ammonia show a diurnal variation, which folldtes temperature profile.

¢ lodine has been observed (probably iodic acid) werye day, somewhat surprising for a
continental site located more than 400 km away ftbenocean; the nitrate CI-APi-TOF has a
high sensitivity towards iodic acid and its presemadicates long-range transport of iodine
containing substances (although a local source ataentirely be ruled out); using OH
concentrations also OIO concentrations can be attn however, both [HI (~=3x1CP
molecule crf) and [OIO] (~5%1C° molecule cnf) are probably too low to affect new particle
formation significantly at this site.

e The diurnal pattern of HOM dimers shows maximumogotrations during the night but no night-
time nucleation is observed; the day-time concéptraould be low due to the presence of NO
and/or HQ which suppress the HOM dimer formation.

« Relatively high particle formation rates are foumdhich are rather at the upper end of the
atmospheric observations for other rural sites;réttes are compatible with CLOUD chamber
data both for the systems of sulfuric acid, watet dimethylamine (Almeida et al., 2013), as well
as for a system involving sulfuric acid, water axélized organics (Riccobono et al., 2014); no
definitive answer can be given which system is metevant.

* Nucleation seems to be favored on days with redgtilow RH and high sulfuric acid; an anti-
correlation with the amine and ammonia signaldieoved, this could be due to efficient uptake
of these compounds on clusters and particles dUR§ as amines and ammonia are not
produced in the gas-phase.

The above bullet points seem to support recenirfgedabout the relevance of amines in terms of NPF
and early growth (Chen et al., 2012; Almeida et2013; Kulmala et al., 2013; Lehtipalo et al., D1
However, it cannot be unambiguously concluded &ngihes are more relevant for NPF than HOM at
this site because no nucleating clusters couldreetty observed. More studies like the presentanee
necessary in the future to obtain better statistixsit the parameters relevant for NPF (Fig. H&ally,
such measurements should include further instruatientincluding a PSM (Vanhanen et al., 2011) for
the measurement of clusters and small particl&sr{g), an APi-TOF (Junninen et al., 2010) for brette
identification of charged nucleating clusters, mstiument for HGRO, measurements (Mauldin et al.,
2016) and an instrument for sensitive amine measemés capable of speciating the amines.
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1230 Table 1. List of ions used in the identification of sulfuracid (monomer and dimer), iodic acid,
1231  ammonia, amines (C1, C2, C3, C4 and C6) and dirtréttgsamine. Cattle farms in the vicinity of the

1232 measurement site are expected to be a sourcesftisthd amines (Ge et al., 2011).

1233

lon Exact mass  Neutral compound

HSOy, (HNO3)HSO 96.9601, sulfuric acid monomer
159.9557

(H2SQ)HSQr, 194.9275,  sulfuric acid dimer

(HNO3)(H2SQ))HSOr 257.9231

1057, (H20)1057, (HNG3)I05 174.8898, iodic acid
192.9003,
237.8854

(NH3)(HNG3)1,,NOs~ 142.0106, ammonia
205.0062

(CHsN)(HNQO3)1,:NOs 156.0262, C1l-amines (e.g. methylamine)
219.0219

(CoH7N)(HNOs)1,2NO3~ 170.0419, C2-amines (e.g. ethylamine, dimethylamine)
233.0375

(CsHoN)(HNO3)1,,NO3z~ 184.0575, C3-amines (e.g. trimethylamine, propylamine)
247.0532

(C4H11N)(HNO3)1 NO3~ 198.0732, C4-amines (e.g. diethylamine, butylamine)
261.0688

(CeH1sN)(HNOs)1, 2NO3~ 226.1045, Cé6-amines (e.qg. triethylamine)
289.1001

(C2HsN20)(HNO3)1,2NO3 199.0320, dimethylnitrosamine
262.0277

1234
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1235  Table 2. Peak list of the highly oxidized organic moleculg#©M) used in this study.
1236
lon sum Cluster ion Exact mass  Compound
formula
CioH1sNOg™ (C10H1506)NO3_ 293.0752 HOM R@radical
Ci1o0H1sNO1g (C10H1507)NO3_ 309.0701 HOM R@radical
CioH1sNO11~ (C10H1508)NO37 325.0651 HOM R@radical
Ci10H15sNOq5 (CloHlsog)NO{ 341.0600 HOM R@radical
CioH1sNO1s (C10H15019)NO5~ 357.0549 HOM Re@radical
CioH1sNOs1s (C10H15012)NO3_ 389.0447 HOM R@radical
CgH12NO11™ (CsH1208)NO3s~ 298.0416 HOM monomer
C9H14N0127 (C9H1409)N037 328.0521 HOM monomer
Ci10H14NO15 (C1oH1407)NO35~ 308.0623 HOM monomer
CioH14NO11~ (C10H1403)NO3_ 324.0572 HOM monomer
CioH1aNO15- (C10H1409)NO37 340.0521 HOM monomer
CioH1aNO15 (C10H14019)NO5~ 356.0471 HOM monomer
Ci10H14aNO14 (CloH14011)N037 372.0420 HOM monomer
Ci1o0H16NOg™ (C1oH1606)NO3~ 294.0831 HOM monomer
CioH16NO1g (C10H1607)NO3_ 310.0780 HOM monomer
CioH16NO11~ (CloHleog)No.?f 326.0729 HOM monomer
CioH16NO1z (C10H1609)NO35™ 342.0678 HOM monomer
Ci10H16NO13 (C10H16019)NO5™ 358.0627 HOM monomer
Ci1oH16NO14 (C10H16011)NO5~ 374.0576 HOM monomer
CioH15sN2010 (C10H15NO7)N037 323.0732 HOM nitrate
Ci10H15N2011~ (CloHlsNOS)NO{ 339.0681 HOM nitrate
CioH15N2015 (C1oH1sNOg)NO3z~ 355.0630 HOM nitrate
CioH1sN2013 (C10H15N010)N037 371.0580 HOM nitrate
CioH15N2014 (C1oH1sNO11)NOs~ 387.0529 HOM nitrate
CioH15sN2015 (C10H15N012)NO37 403.0478 HOM nitrate
Ci10H15N2016 (C10H1sNO13)NOs~ 419.0427 HOM nitrate
CioH16N3011" (C10H16N203)N03_ 354.0790 HOM di-nitrate
CioH17N4O14 (C10H16N208)(HN03)N037 417.0747 HOM di-nitrate
CioH16N3015 (C1oH16N20g)N O3~ 370.0739 HOM di-nitrate
CioH17N4O1s (CloHleNzog)(HN03)N037 433.0696 HOM di-nitrate
Ci1oH16N3013 (CroH16N2019)NO3~ 386.0689 HOM di-nitrate
CioH17N4O16 (C10H16N2010)(HNO3)N037 449.0645 HOM di-nitrate
C1oH30NO16 (C19H30013)NOs™ 528.1570 HOM dimer
CigH30NO17 (C19H30014)N03_ 544.1519 HOM dimer
CaoH2eNO16 (CaoH26013)NOs~ 538.1414 HOM dimer
CooH2sNO17 (Ca0H28019)NO5~ 554.1363 HOM dimer
C20H28NO18 (CaoH26015)NOs~ 570.1312 HOM dimer
CaooH2eNO1g” (CaoH26016)NO3~ 586.1261 HOM dimer
CooH28NO25 (C20H23017)NO3_ 602.1210 HOM dimer
CaooH2eNO21 (Ca0H2601)NO3~ 618.1159 HOM dimer
CooH2sNO25~ (CaoH28019)NO5~ 634.1108 HOM dimer
C20H28NO23 (CooH28020)NO5~ 650.1058 HOM dimer
CaoH3oNOs7- (CaoH30014)NO5™ 556.1519 HOM dimer
1237
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1239  Fig. 1. Overview of the different parameters measured detwMay 18 and June 8, 2014. Temperature
1240  (T) and relative humidity (RH) are shown in the eppanel, the center panel shows the global radiati
1241  and precipitation, while the bottom panel showsnbmber size distribution measured by the nano-
1242  DMA together with the condensation sink (black Jine
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1244  Fig. 2. Overview of the trace gas measurements betweenl@and June 8, 2014. The S&hd Q
1245  mixing ratios are shown in the upper panel, thea@ NQ mixing ratio are shown in the center panel
1246  and the bottom panel shows the sulfuric acid momocoacentration ([k5Qy]) together with the
1247  isoprene and monoterpene mixing ratios.
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1248
1249  Fig. 3. Diurnal averages for the sulfuric acid §§04]) and the calculated hydroxyl radical ([OH])

1250 concentrations (axis on the left). The iodine sigaanot converted into a concentration, insteas th
1251  normalized count rates per second (ncps) are skaxismon the right). A value of 5x2Mcps for iodine

1252  would correspond to a concentration of 3xfflecule cn? applying the same conversion factor for
1253  iodic acid than for sulfuric acid. The global rawa indicates that all signals are related to phot

1254  chemistry. Error bars indicate one standard devndtr the 30-minute averaged values.
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1256  Fig. 4. Calculated [HSQy] as a function of the measured concentrationsy @ata points where the
1257  global radiation exceeded 50 WPwere considered in deriving the fit parametersfjuations (2) and
1258  (3). The red circles take into account S@lobal radiationRad), condensation sinkOS) and relative
1259  humidity (RH) to calculate the PB$Qy], whereas only S©and global radiation are used for the blue
1260 triangles.
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1262  Fig. 5. Diurnal averages for different amines (C1, C2, C8,and C6) and ammonia. The temperature
1263  profile is shown in addition. Error bars represeme¢ standard deviation of the 30-minute averages. T
1264  lower detection limits for the different compourate not well-defined, however, the lowest measured
1265  signals during some periods werex1.8* ncps for C1, ~0.%10* ncps for C2, C3, C4 and C6 and
1266  0.1x10* ncps for ammonia. For most of the time (and fomaéraged values shown) the signals were
1267  clearly above these “background” levels.
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1269  Fig. 6. Sulfuric acid dimer concentrations as a functiéithe sulfuric acid monomer concentrations.
1270  The legend on the left lists the periods when higher signals were observed. In addition, data from
1271  CLOUD chamber experiments with at least 10 pptdiafethylamine are shown; under these conditions
1272 dimer formation proceeds at or close to the kinlatiit (Kurten et al., 2014). The dashed-dottealin
1273  indicates the lower detection limit for neutral @ire set by ion induced clustering (IIC) within Bk
1274  API-TOF ion reaction zone.
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1276  Fig. 7. Comparison between average day time and nightrtiags spectra measured with the nitrate Cl-

1277  API-TOF. The day time spectrum was averaged faogsrwhen no nucleation was observed.
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1279  Fig. 8. Diurnal profiles of the NO, N©and Q mixing ratios. The signals for highly oxidized argc

1280  molecules (HOM) are shown for some C10 (HOM monaneIOM nitrates and HOM radicals) and
1281  C19/C20 compounds (HOM dimers), which show a distimaximum during the night. The HOM di-
1282  nitrates show a similar pattern as the other Ch@wounds and are not included in the figure. Theajlo

1283  radiation is shown in addition. Error bars indicate standard deviation for the 30-minute averages.
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1285  Fig. 9. Particle formation rates form this study at a rtighdiameter of 1.7 nmJ - red circles) and 2.5
1286 nm (25 green stars). Data from CLOUD chamber measurenient diameter of 1.7 nm are shown in
1287  addition for the system of sulfuric acid, water alihethylamine (light blue symbols, see Almeida et
1288  al., 2013) and sulfuric acid, water and oxidizedamics from pinanediol (dark blue symbols, see
1289  Riccobono et al., 2014). The light grey circles facen other field measurements (Kuang et al., 2008;
1290 Paasonen et al., 2010; Kulmala et al., 2013).
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Fig. 10. Comparison of various parameters for differenetimeriods (SA = sulfuric acid monomer, C1,
C2, C3, C4 and C6 = amines, iod. = iodic acid aut + global radiation intensity). The subset fegur
on the upper right shows the signals for the higiidized organic compounds with 10 or 20 carbon
atoms (339 = organic compoundod:sNOs clustered with N@ having a mass of 339.0681 Th, the
definition of other HOM, i.e. monomers, radicalgrates, di-nitrates and dimers can be found indab
2). The red bars relate nucleation days to daykowit nucleation and the blue bars show the ratio
between periods where high sulfuric acid dimer eomi@tions were observed (see Fig. 6) to no
nucleation days. Similar times of the day (earlyrmmg) were used as reference periods when no

nucleation was observed as nucleation and dimerdtion was also mainly observed in the morning.
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