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Abstract. The summertime Arctic lower troposphere is a relatively pristine, background aerosol en-

vironment dominated by nucleation and Aitken mode particles. Understanding the mechanisms that

control the formation and growth of aerosol is crucial for our ability to predict cloud properties, and

therefore radiative balance and climate. We present an analysis of an aerosol growth event observed

in the Canadian Arctic Archipelago during summer as part of the NETCARE project. Under stable5

and clean atmospheric conditions, with low inversion heights, carbon monoxide less than 80 ppbv

and black carbon less than 5 ngm−3, we observe growth of small particles, <20 nm in diame-

ter, into sizes above 50 nm. Aerosol growth was correlated with the presence of organic species,

trimethylamine and methanesulfonic acid (MSA) in particles ∼80 nm and larger, where the organ-

ics are similar to those previously observed in marine settings. MSA-to-sulfate ratios as high as 0.1510

were observed during aerosol growth, suggesting an important marine influence. The organic-rich

aerosol contributes significantly to particles active as cloud condensation nuclei (CCN, supersatura-

tion = 0.6%), which are elevated in concentration during aerosol growth above background levels of

∼100 cm−3 to ∼220 cm−3 . Results from this case study highlight the potential importance of sec-

ondary organic aerosol formation and its role in growing nucleation mode aerosol into CCN-active15

sizes in this remote marine environment.

1 Introduction

In the warming Arctic (Jeffries and Richter-Menge, 2012), decreasing sea ice extent (Lindsay et al.,

2009) is likely to increase the oceanic influence on atmospheric composition. This change in exposed
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ocean area will have implications on aerosol concentrations and composition, and therefore on cloud20

properties (Browse et al., 2014) and precipitation (Kopec et al., 2016). Aerosol-cloud-climate inter-

actions are unique in Arctic regions due to the high surface albedo, the seasonal cycle in aerosol

loading and properties, the strong static stability in the lower troposphere (Aliabadi et al., 2016b)

and the dependence of cloud infrared emissivity on droplet size and aerosol characteristics (Curry,

1995).25

Pristine, background aerosol conditions prevail in the summertime Arctic boundary layer. A pro-

nounced seasonal cycle characterizes Arctic aerosol (Engvall et al., 2008; Sharma et al., 2013;

Tunved et al., 2013; Croft et al., 2015; Nguyen et al., 2016), with strong anthropogenic contributions

to “Arctic Haze” in winter and spring (Law and Stohl, 2007; Quinn et al., 2007), and more regional

influences in the cleaner summer months, especially in the lower troposphere (Leaitch et al., 2013;30

Heintzenberg et al., 2015). Beginning in late spring, efficient wet removal of aerosol and less effi-

cient transport from lower latitudes come together to suppress the condensation sink (Stohl, 2006;

Engvall et al., 2008) and allow nucleation and Aitken mode particles to dominate the size distribution

(Engvall et al., 2008; Heintzenberg and Leck, 2012; Croft et al., 2015). Under these clean conditions

cloud condensation nuclei (CCN) and cloud droplet number concentrations can be exceptionally low35

(Mauritsen et al., 2011; Leaitch et al., 2016), making summertime liquid clouds very sensitive to the

formation of new particles and their growth into CCN sizes. Since Arctic clouds are an important de-

terminant of the local surface energy balance (e.g., Intrieri et al., 2002; Lubin and Vogelmann, 2006)

and have the ability to influence the thickness, freezing and melting of sea ice (Kay and Gettelman,

2009; Tjernström et al., 2015), a predictive understanding of the sources and processes controlling40

CCN-active aerosol is a crucial aspect of understanding the Arctic climate.

While transport of pollutants from lower latitudes does occur in Arctic summer, especially in the

middle and upper troposphere, efficient scavenging during transport and within Arctic regions results

in an important contribution from regional sources near the surface at this time of year (e.g., Stohl,

2006; Garrett et al., 2011; Croft et al., 2015). In the absence of significant transported aerosol, several45

different processes can contribute to aerosol formation, including the emission of primary particles

from the ocean surface, along with formation of new particles by nucleation and their subsequent

growth by condensation and coagulation.

The formation of new particles can be an important aerosol source in the summertime Arctic

(Leaitch et al., 2013; Croft et al., 2015). Through its oxidation to sulfuric acid and other prod-50

ucts, dimethyl sulfide (DMS) plays an important role in the formation, and growth, of new particles

(Leaitch et al., 2013). In the Arctic and at mid-latitudes, uncertainties in the rates and mechanisms

of nucleation and growth are such that some studies are able to explain ambient observations with

standard parametrizations developed from measurements at more southerly locations (e.g., Chang

et al., 2011b), while others must invoke alternative mechanisms (e.g., Karl et al., 2012). The role of55

ammonia and amines in particle nucleation at mid-latitudes has become well established (Almeida
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et al., 2013), and recent measurements suggest that local ammonia sources in the summer Arctic are

sufficient to promote particle formation (Wentworth et al., 2015; Giamarelou et al., 2016). Iodine

oxides can make a significant contribution to new particle formation in marine and coastal envi-

ronments at mid-latitudes (e.g., O’Dowd and de Leeuw, 2007); these species may contribute to the60

formation and growth of small particles in Arctic regions, although their biotic and abiotic sources

in ice-covered regions remain unclear (Mahajan et al., 2010; Allan et al., 2015). Organic conden-

sible species also play a role in nucleation, and growth, of particles at mid-latitudes (e.g., Kulmala

and Kerminen, 2008; Metzger et al., 2010; Ehn et al., 2014; Tröstl et al., 2016); however, no direct

evidence for the role of organic species in Arctic nucleation events exists to date.65

The ejection of primary aerosol from the sea surface, through wave-breaking and bubble-bursting,

is another source of aerosol across the size distribution (Ovadnevaite et al., 2014; Clarke et al., 2006;

Nilsson et al., 2001). At mid-latitudes a large organic fraction, which originates from the enrichment

of biologically-derived organic material at the sea surface, is frequently observed in marine aerosol

(Facchini et al., 2008b; Gantt and Meskhidze, 2013; Frossard et al., 2014; Quinn et al., 2015a;70

O’Dowd et al., 2015; Quinn et al., 2015b). This primary marine organic aerosol (OA) tends to be

water-insoluble with chemical similarity to lipids (e.g., Rinaldi et al., 2010; Decesari et al., 2011),

and has been demonstrated to have a source near the ocean surface (Ceburnis et al., 2008). Some

similar observations have been made in Arctic regions (e.g., Narukawa et al., 2008; Orellana et al.,

2011; Fu et al., 2013; Karl et al., 2013; Fu et al., 2015). For example, Fu et al. (2013, 2015) have75

shown a dominance of primary saccharides and evidence for protein and humic-like substances in

Arctic aerosol suggesting an important local or regional source of primary marine OA. The release

of marine micro-gels via bubble-bursting in open leads has been proposed to contribute significantly

to particles over the Arctic Ocean (e.g., Bigg and Leck, 2001; Orellana et al., 2011).

Particle growth through condensation of gas-phase species can also play a role in driving marine80

aerosol characteristics, making ambient marine OA a complex result of primary and secondary pro-

cesses (e.g., Ceburnis et al., 2008; Facchini et al., 2008b; Rinaldi et al., 2010; Frossard et al., 2014).

In contrast to primary marine OA, secondary marine OA is generally more water-soluble and is

composed of more oxygenated compounds (Rinaldi et al., 2010; Decesari et al., 2011). Precursors of

secondary marine OA include DMS and other biological volatile organic compounds (BVOCs), such85

as isoprene, monoterpenes and amines, which are produced by a variety of marine micro-organisms

(Shaw et al., 2010; Gantt et al., 2009; Facchini et al., 2008a). However, in the absence of specific

molecular tracers it can be very challenging to discern the relative contribution of primary and sec-

ondary processes to ambient marine organic aerosol (e.g., O’Dowd et al., 2015). At mid-latitudes,

direct and indirect measurements of Aitken mode particle composition have demonstrated the role90

of secondary organic species in the growth of small particles (Vaattovaara et al., 2006; Bzdek et al.,

2014; Lawler et al., 2014). Significant fractions of alkylamines, dicarboxylic acids, methansulfonic

acid, oxalic acid, alcohols and other organic acids have been observed in marine aerosol, suggest-
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ing contributions from secondary processes (e.g., Facchini et al., 2008a; Claeys et al., 2010; Rinaldi

et al., 2010; Dall’Osto et al., 2012; Frossard et al., 2014). In Arctic regions, the detection of specific95

molecular tracers for isoprene, terpene and fatty acid oxidation have indicated a contribution of sec-

ondary processes to summertime organic aerosol (Fu et al., 2009; Kawamura et al., 2012; Fu et al.,

2013; Hansen et al., 2014).

Our understanding of summertime Arctic aerosol remains incomplete, in part due to a scarcity

of observations focusing on the influence of local and regional sources on aerosol chemical and100

physical properties. In this case study we focus on observations of a new particle formation and

growth event made during the NETCARE summer aircraft campaign in July 2014, near Resolute

Bay, Nunavut, Canada, in a general time period and location that was shown to have high biological

activity in the surface ocean (Gosselin et al., 2015; Mungall et al., 2015). We use these observations

to explore the composition and formation processes of particles contributing to cloud condensation105

nuclei in the Canadian Arctic Archipelago during summer.

2 Methods

2.1 Measurement platform and inlets

As part of the NETCARE project (Network on Climate and Aerosols: Addressing Key Uncertainties

in Remote Canadian Environments, http://www.netcare-project.ca), measurements of aerosol physi-110

cal and chemical properties, trace gases and meteorological parameters were made aboard the Alfred

Wegener Institute (AWI) Polar 6 aircraft; a DC-3 aircraft converted to a Basler BT-67 (Herber et al.,

2008). Measurements aboard Polar 6 took place from July 4 – 21, 2014, based in Resolute Bay,

Nunavut (74◦ 41’ N, 94◦ 52’ W). The survey speed was maintained at approximately ∼ 75 ms−1 for

measurement flights, with ascent and descent rates of 150 mmin−1 for vertical profiles.115

The main aerosol inlet was located on the starboard side of the fuselage ahead of the engines.

Based upon a total flow drawn to instruments of 35 Lmin−1 and a measured flow at the exhaust of

the sampling line of 20 Lmin−1, the total flow through the shrouded inlet diffuser was nearly isoki-

netic at 55 Lmin−1. Aerosol flowed into the cabin through a stainless steel manifold (outer diameter

= 2.5 cm, inner diameter = 2.3 cm) and was directed to the various particle instruments through120

stainless steel lines that branched from the main inlet at angles less than 90 degrees. Aerosol was

not dried prior to sampling; however, the temperature in the inlet line was approximately 10 – 15 ◦C

warmer than the ambient temperature so that the relative humidity (RH) decreased significantly as

the aerosol entered the sampling line. Exhaust from the main aerosol inlet flowed freely into the back

of the cabin to keep the inlet from being over-pressured. Therefore, the total flow through the main125

aerosol inlet was dictated by the true airspeed (TAS). With the survey air speed noted above, trans-

mission efficiency of aerosol through the main inlet was near unity for particles 20 nm to ∼1 µm in

diameter.
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Trace gases (CO, CO2 and H2O) were sampled through a second inlet consisting of a 0.40 cm

(outer diameter) Teflon line, with a continuously measured sample of flow of ∼ 12 Lmin−1. The130

trace gas inlet used the forward motion of the aircraft to push ambient air into the line in combination

with a rear-facing 0.95 cm Teflon exhaust line that lowered the pressure in the sampling line.

2.2 State parameters and winds

State parameters and meteorological conditions were measured with an AIMMS-20, manufactured

by Aventech Research Inc. (Barrie, Ontario, Canada http://aventech.com/products/aimms20.html).135

The AIMMS-20 consists of three modules: (1) an Air Data Probe, which measures temperature

and the three-dimensional aircraft-relative flow vector (TAS, angle-of-attack and side-slip) with a

three-dimensional accelerometer for measurement of turbulence; (2) an Inertial Measurement Unit,

which provides the aircraft angular rate and acceleration; (3) a Global Positioning System for aircraft

three-dimensional position and inertial velocity. Vertical and horizontal wind speeds are measured140

with accuracies of 0.75 and 0.50 ms−1, respectively. Accuracy and precision of the temperature

measurement are 0.30 and 0.10 ◦C, respectively.

2.3 Aerosol physical properties

Measurements of particle number concentrations, and size, were made aboard Polar 6 at a frequency

of 1 Hz, unless otherwise indicated. Number concentrations of particles greater than 5 nm in di-145

ameter (N>5) were measured with a TSI 3787 water-based ultra-fine condensation particle counter

(UCPC), sampling at a flow rate of 0.6 Lmin−1. Aerosol number size distributions from 20 nm to

1 µm were acquired with two instruments: a Brechtel Manufacturing Incorporated (BMI) Scanning

Mobility System (SMS) coupled to a TSI 3010 Condensation Particle Counter (CPC) measured from

20 to 100 nm (N20−100) with a 60-second time resolution, while a Droplet Measurement Technology150

(DMT) Ultra High Sensitivity Aerosol Spectrometer (UHSAS) measured number size distributions

from 70 nm to 1 µm (N>70) with a time resolution of 1 Hz. The SMS sampled at a flow rate of

1 Lmin−1, with a dried (∼20% RH) sheath flow of 6 Lmin−1. The UHSAS uses light scattering

signals from a 1054 nm laser for particle detection and sizing on a single-particle basis (e.g., Cai

et al., 2008), with a sample flow rate of 55 cm3 min−1 from a bypass flow off the main aerosol inlet.155

Characterization and calibration of the UCPC, SMS, and UHSAS are described in detail in Leaitch

et al. (2016). Particle number concentrations from the SMS and UHSAS generally agreed within a

factor of two over their overlapping size range (70 to 100 nm).

Particle number concentrations from all instruments are reported at ambient pressure and temper-

ature. A characteristic size distribution is shown in Figure 1. Values of N>80, N>100 and N>200 were160

derived from UHSAS measurements. Number concentrations from 5 to 20 nm (N5−20) were esti-

mated by subtracting the sum of the SMS total number concentration (N20−100) and UHSAS N>100

from the total UCPC concentration (i.e., N>5). The number of particles greater than 50 nm (N>50)
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was determined by the sum of the SMS number from 50 to 100 nm (N50−100) and the UHSAS

N>100. Here, we refer to N5−20 as the nucleation mode, N20−100 as the Aitken mode and N>100 and165

larger as the accumulation mode.

2.4 Cloud condensation nuclei concentrations

Cloud Condensation Nuclei (CCN) concentrations were measured using a DMT CCN counter (CCNC,

Model 100), sampling behind a DMT pressure controlled inlet at a reduced pressure of ∼6.5x104 Pa.

The effective supersaturation (for a nominal water supersaturation of 1%, at 6.5x104 Pa) was found170

to be 0.6% (Leaitch et al., 2016), and was held constant throughout the study to allow more measure-

ment stability and the highest time resolution possible, and to examine the hygroscopicity of small

particles. Calibration and characterization of the CCNC is described in (Leaitch et al., 2016).

The effective aerosol hygroscopicity parameter (κ) was estimated according to Petters and Krei-

denweis (2007), using the average aerosol composition from the aerosol mass spectrometer (see175

below) with ammonium sulfate and organic aerosol densities of 1770 kgm−3 and 1550 kgm−3,

respectively (e.g., Chang et al., 2010). Assuming a temperature of 298 K and the surface tension of

pure water the dry diameter for activation was calculated at the supersaturation of our CCN measure-

ments. The measured size distribution could then be integrated down to this dry diameter to produce

predicted CCN concentrations for comparison with measured values.180

2.5 Trace gases

Carbon monoxide (CO) concentrations were measured with an Aerolaser ultra-fast carbon monoxide

monitor (model AL 5002), based on VUV-fluorimetry using excitation of CO at 150 nm. The instru-

ment was modified such that in-situ calibrations could be conducted in flight. CO concentrations are

used here as a relative indicator of aerosol influenced by pollution sources, such as anthropogenic or185

biomass burning emissions.

Water vapour (H2O) measurements were based on infrared absorption using a LI-7200 enclosed

CO2/H2O Analyzer from LI-COR Biosciences GmbH. In-situ calibrations were performed during

flight at regular intervals (15 – 30 min) using a NIST traceable CO2 standard with zero water va-

por concentration. The measurement uncertainty is ± 40 ppmv. H2O mixing ratios were used to190

calculate relative humidity with pressure and temperature measured by the AIMMS-20.

2.6 Sub-micron aerosol composition

2.6.1 Single particle soot photometer

Concentrations of refractory black carbon (rBC) containing particles were measured with a DMT

single particle soot photometer (SP2) (described in Schwarz et al. (2006) and Gao et al. (2007)),195

and are used as an indicator of pollution influences. The SP2 uses a continuous intra-cavity Nd:YAG
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laser (1064 nm) to classify particles as either incandescent (rBC) or scattering (non-rBC), based on

the individual particle’s interaction with the laser beam. The peak incandescence signal is linearly

related to the rBC mass. The SP2 was calibrated with an Aquadag standard by selecting a narrow

size distribution of particles with a differential mobility analyzer upstream of the SP2 (Schwarz200

et al., 2006; Laborde et al., 2012). The detection efficiency of this SP2 (version D) drops off for

particles smaller than 70 nm. A log-normal fit through the mass-size distribution indicates that the

SP2 measured 92% of the total ambient rBC mass. Reported rBC values were thus scaled up by

a factor of 1.08 to account for the fraction of rBC particles that were outside of the SP2 detection

range. The SP2 sampled at 120 cm3 min−1, sharing a bypass line from the main aerosol inlet with205

the UHSAS.

2.6.2 Aerosol mass spectrometer

Sub-micron aerosol composition was measured with an Aerodyne high-resolution time-of-flight

aerosol mass spectrometer (HR-ToF-AMS), described in detail by DeCarlo et al. (2006). The HR-

ToF-AMS deployed here was equipped with an infrared laser vaporization module similar to that of210

the SP2 (DMT); however, measurements of refractory black carbon (rBC) are not relevant for the

data presented here owing to extremely low rBC concentrations. The HR-ToF-AMS was operated

in “V-mode” with a mass range of m/z 3 – 250, alternating between ensemble mass spectrum (MS)

mode for 20 s (two cycles of 5 (s) MS open and 5 (s) MS closed) and efficient particle time-of-flight

(epToF) mode for 10 s. Filtered ambient air was sampled with the HR-ToF-AMS approximately215

three times per flight, for a duration of at least five minutes, to account for contributions from air

signals. Data were analysed using the Igor Pro-based analysis tool PIKA (v.1.16) and SQUIRREL

(v.1.57) (Seuper, 2010).

The HR-ToF-AMS sampled behind a pressure-controlled inlet (PCI) system, similar to that de-

scribed by Hayden et al. (2011), in order to remove variations in particle sizing, transmission and220

air-beam signals (used to correct particle signals for variations in instrument sensitivity (Allan et al.,

2003)) as a function of pressure in the aerodynamic lens (Bahreini et al., 2008; DeCarlo et al., 2008).

The PCI system maintained a pressure of 6.19x104 Pa upstream of a 130 µm orifice in the HR-ToF-

AMS inlet and downstream from a 200 µm orifice, such that the pressure in the aerodynamic lens

was maintained at 173 Pa (∼1.3 Torr) by variable pumping. In this configuration, the lens pressure225

was adequately maintained up to an altitude of ∼3500 m. Characterization of particle transmission

efficiency with and without the PCI was carried out before and after the study (Section 1.1 in the

Supplement). Results demonstrated near 100% transmission of ammonium nitrate particles from

∼70 – 700 nm (mobility diameter) through the PCI, by comparison to transmission through the

aerodynamic lens alone (Figure S1 in the Supplement). Note that the size range over which AMS230

lens transmission is optimal can be very instrument dependent. HR-ToF-AMS particulate mass load-
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ings are corrected to reflect ambient pressure, based on the AIMMS measured pressure and the PCI

internal pressure.

Species comprising non-refractory particulate matter are measured with the HR-ToF-AMS, in-

cluding sulfate, nitrate, ammonium and the sum of organic species, with an uncertainty of ±30%235

(Bahreini et al., 2009). The HR-ToF-AMS is capable of detecting other species, including methane-

sulfonic acid (Phinney et al., 2006; Zorn et al., 2008) and sea salt (Ovadnevaite et al., 2012).

The detection efficiency of sea salt containing particles is dependent on not only the ambient

relative humidity, but also the temperature of the tungsten vaporizer (Ovadnevaite et al., 2012). The

vaporizer temperature was calibrated with sodium nitrate particles, such that particle-time-of-flight240

signals indicated efficient vaporization, and was operated at a temperature of ∼650 ◦C. HR-ToF-

AMS signals for sea salt, in particular NaCl+ (m/z 57.96), can be used to quantify sea salt mass

loadings (e.g., Ovadnevaite et al., 2012); however, here we use the NaCl+ signal only as a qualitative

indication for the presence of sea salt.

After the method of Zorn et al. (2008), we determined the fragmentation pattern for methanesul-245

fonic acid (MSA) under the operating conditions of our HR-ToF-AMS by utilizing the unique MSA

fragment CH3SO
+
2 (m/z 78.99), which was well resolved from organic fragments at the same nom-

inal mass (i.e., C6H
+
7 at m/z 79.05, Figure S2 in the Supplement). The default HR-ToF-AMS frag-

mentation table was modified to include MSA, such that contributions from MSA to peaks usually

associated with organic species and sulfate were accounted for. The sensitivity of our HR-ToF-AMS250

to MSA relative to nitrate (RIEMSA) was determined to be 1.33 ± 0.05, which is similar to estimated

values used in other studies (e.g., Zorn et al., 2008). The MSA calibration and fragmentation pattern

are described in more detail in Section 1.1 of the Supplement.

Ammonium nitrate calibrations (with 300 nm particles) were carried out four times during the

campaign (Jimenez et al., 2003), and air-beam corrections were referenced to the appropriate cal-255

ibration in order to account for differences in instrument sensitivity between flights. The relative

ionization efficiencies for sulfate and ammonium (RIESO4
and RIENH4

) were 1.4±0.1 and 3.7±0.3.

The default relative ionization efficiency for organic species (i.e., RIEOrg = 1.4) was used (Jimenez

et al., 2003), which may lead to some larger uncertainty in the quantification of organic aerosol

mass (Murphy, 2015). Elemental composition was calculated using the method presented in Cana-260

garatna et al. (2015). Detection limits for sulfate, nitrate, ammonium, MSA and organics based on

three-times the signal-to-noise of filter measurements in flight were 0.009, 0.008, 0.004, 0.005 and

0.08 µgm−3, respectively. A composition dependent collection efficiency (CDCE) was applied to

correct HR-ToF-AMS mass loadings for non-unity particle detection due to particle bounce on the

tungsten vaporizer (Middlebrook et al., 2012). After the CDCE correction HR-ToF-AMS total mass265

loadings agreed with estimated mass concentrations from the UHSAS within a factor of two.
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2.6.3 Aircraft-based Laser Ablation Aerosol Mass Spectrometer

Single particle analysis was conducted using the Aircraft-based Laser Ablation Aerosol Mass Spec-

trometer (ALABAMA). A detailed description of the instrument can be found in Brands et al. (2011).

Briefly, the ALABAMA samples particles through a pressure-controlled inlet and an aerodynamic270

lens. The particles are detected and sized by light scattering when passing two continuous laser

beams separated along the path of the sampled aerosol. Particles are ablated and ionized by a single

266 nm laser pulse, and the resulting ions are detected in a bipolar time-of-flight mass spectrometer.

Optical detection of aerosol limits the minimum detectable particle size to approximately 150 nm

with particles at approximately 400 nm detected at the highest efficiency. The transmission effi-275

ciency in the aerodynamic lens limits the maximum detectable size to approximately 1000 nm. Par-

ticle mass spectra collected by the ALABAMA are analysed using a software package that includes

m/z calibration, peak area integration and automated clustering using fuzzy c-means clustering (Hinz

et al., 1999; Roth et al., 2016). As is done in this case study, subsets of particles can also be analysed

manually by searching for selected marker peaks known from reference laboratory and field data.280

A subset of 68 particles detected over the period relevant to this case study was analysed manually

using marker peaks as follows. Organic carbon (OC) was characterized by peaks at m/z 27, 37

and 43 (C2H
+
3 , C3H

+ and CH3CO
+ or C3H

+
7 ). Pronounced peaks at m/z multiples of 12 (e.g.,

12, 24, ..., 108) (C+/−
n ) identify elemental carbon (EC). Mass spectra containing peaks at m/z

multiples of 12, but not higher than 36 can be either fragments of elemental or organic carbon and285

are therefore designated here as EC/OC. Methanesulfonic acid (MSA) was identified by a peak at

m/z 95 (CH3SO
−
3 ). Interference from Na37Cl−2 is unlikely if no m/z 93 (Na35Cl+2 ) is present.

Further marker peaks include m/z 97 (HSO−
4 ) for sulfate (S), m/z 26 and 42 for CN− and CNO−

(CN), m/z 39 and 41 (K+) for potassium (K), and m/z 40, 56 and 57 (Ca+, CaO+, CaOH+) for

calcium (Ca). The presence of sodium chloride (NaCl) was determined by peaks at m/z 23, 35, 37,290

81 and 83 (Na+, Cl− and Na2Cl
+). Due to chemical aging processes, Cl− can be replaced by nitrate

resulting in the presence of peaks at m/z 46 and 62 (NO−
2 and NO−

3 ) in addition to sodium chloride.

Trimethylamine (TMA) was identified by peaks at m/z 58 and 59 (C3H8N
+ and C3H9N

+) based

on laboratory reference measurements of TMA particles and previously published field data (e.g.,

Rehbein et al., 2011; Healy et al., 2015).295

2.7 Identifying airmass history using FLEXPART-WRF

The Lagrangian particle dispersion model FLEXible PARTicle dispersion model driven by meteorol-

ogy from the Weather Research and Forecasting model (FLEXPART-WRF) (Brioude et al., 2013)

(website: flexpart.eu/wiki/FpLimitedareaWrf) was used to study the history air masses prior to sam-

pling during the flight. FLEXPART-WRF is based on FLEXPART (Stohl et al., 2005), but uses the300

limited area meteorological forecast from WRF (Skamarock et al., 2001), with the specific WRF
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forecast details for the NETCARE campaign provided in Wentworth et al. (2015). Here, we use

FLEXPART-WRF run in backward mode to study the origin of air influencing aircraft-based aerosol

measurements. Further details of the FLEXPART-WRF simulations performed for NETCARE 2014

summer campaign are also found in Wentworth et al. (2015).305

3 Results and Discussion

3.1 Flight overview and meteorological situation

In this case study we focus on the flight conducted on 12 July 2014 where Polar 6 travelled at

∼3 km altitude from Resolute Bay, past the marginal ice zone and out over open water to the eastern

end of Lancaster Sound (Figure 2a) as far as was permitted by our aircraft range, at which point it310

descended and returned west. The relevant portion of this flight, over open water in Lancaster Sound,

is highlighted in Figure 2a (79.7◦ W to 86.5◦ W, 20:00 – 21:20 UTC). During this time the aircraft

flew to the west below 100 m a.g.l. and covered a distance of approximately 175 km at a survey

speed of 75 ms−1 under clear sky conditions. Profiles were carried out at three different locations

to characterize the vertical structure of the troposphere (Figure 2a, triangles): one profile from 60 m315

to 3000 m near Resolute Bay (∼95◦ W, denoted as “west” in Figure 2b and c); a second, shallower

profile to ∼900 m near the marginal ice zone (∼88◦ W, “central”); and a third profile down from

3000 m to 60 m in eastern Lancaster Sound (∼80◦ W,“east”).

Meteorological observations and measurements of trace gases and black carbon indicate a stable

and clean atmosphere. Temperature profiles in all three locations indicated a shallow surface-based320

temperature inversion of 2 – 4 ◦C, reaching up to ∼800 m over the ice near Resolute Bay, and

to only ∼100 m in the eastern profile (Figure 2b). Applying the method of bulk Richardson num-

ber (Aliabadi et al., 2016a) with Polar 6 meteorological observations, and radiosondes conducted

concurrently at Resolute Bay and aboard the CCGS Amundsen, Aliabadi et al. (2016b) estimated

boundary layer heights of 275 ± 164 m during the NETCARE summer campaign. Here, we will325

refer to the portion of the boundary layer with a positive vertical gradient in the temperature profile

as the “lower boundary layer.” Both within and above the lower boundary layer winds were pre-

dominantly from the west, with measured wind speeds near the surface averaging 6.5±1.8 ms−1.

Similarly, surface winds from WRF indicate predominately west-north-west winds at this time, with

wind speeds of 4 – 8 ms−1 (Figure S4 in the Supplement). CO profiles in all three locations demon-330

strated very clean background conditions with concentrations ranging from 73 to 78 ppbv, and little

variation with altitude (Figure 2c). Relative humidity was generally high near the surface, with an

average of 80% in the lower boundary layer (Figure S5 in the Supplement). Refractory black carbon

(rBC) concentrations also indicate a very clean atmosphere, well below the threshold for a clean

marine boundary layer discussed by Gantt and Meskhidze (2013). Average (± standard deviation)335
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rBC mass loadings during the period of interest and over the entire flight were 1.6 ± 0.9 ngm−3 and

2.5 ± 1.5 ngm−3, respectively, with slightly higher concentrations found aloft.

Air mass history from FLEXPART-WRF indicates a strong local Arctic influence on the sampled

air mass. FLEXPART-WRF air mass origin is shown as the column integrated air mass residence time

prior to sampling, also referred to as the column integrated potential emission sensitivity (PES), for340

the release time and location of this case study (Figure 3a). The column integrated PES supports that

the locally-influenced air mass originated from generally clean conditions with no pollution sources.

The air mass encountered by the aircraft at 82.2◦ W and ∼85 m a.g.l. resided over a snow and ice-

covered island (Devon Island, (Friedl et al., 2010)) for approximately one week before descending

into Lancaster Sound within one day of sampling (Figure 3). The model also indicates that the345

sampled air mass had a residence time within the lowest 300 m of four to five hours prior to sampling,

providing at least four hours of transport and chemistry within the boundary layer (Figure 3b and c).

Overall, FLEXPART-WRF air mass history suggests that the sampled air mass had little exposure to

fresh sea emissions until four to five hours prior to sampling, when it moved from above the snow

and ice covered land and was exposed to the ocean surface within the lower boundary layer.350

3.2 Observations of particle growth

Our observations of particle number concentration, over the size range from 5 nm to 1 µm, indicated

the simultaneous presence of nucleation mode and Aitken mode particles near the ocean surface. At

low altitude near 85◦ W we observed an enhancement in N5−20 above background levels, indicating

the presence of nucleation mode particles (Figure 1,4a). Upon entering the lower boundary layer355

further downwind (Figure 2d) and to the east (82.5 – 81◦ W), we observed a sharp increase in N5−20

concurrently with an increase in N20−100 (Figure 4a). We do not directly observe the formation of

the smallest particles; however, we hypothesize that they were formed through nucleation in a very

clean atmosphere.

Particle number size distributions from 20 to 1000 nm illustrate that particles below 20 nm (Figure360

4a,c) grow to form a mode centred at 30 – 40 nm (Figure 4d–f). Beyond 86◦ W we observe N20−100

at background levels of ∼100 cm−3. These observations suggest that the aerosol size distribution

develops as the airmass moves downwind to the east. The advection time scale from 85.8 to 81.1◦ W

is 6.7 hr, given an average wind speed of 6.5 ms−1, and the sampling time of the aircraft over this

distance is 35 min. Given the substantial changes in aerosol size and number concentration observed365

over this relatively short time period, our observations suggest that a source of condensible material

contributing to aerosol growth is present to the west of the sampling region and it is unlikely that

a wider source region contributed. An estimate of the growth rate in this case is associated with

a large uncertainty since it is complicated by a number of factors, including the one-minute time

resolution of the SMS that corresponds to a sampling distance of ∼4 km, and uncertainties in the370

advection time. Therefore, it is difficult to quantitatively follow the evolution of the size distribution.
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Compounded by our lack of knowledge of the spatial uniformity of the condensible material, we do

not present an estimate of the growth rate here.

The boundary layer was characterized by a low pre-existing aerosol surface area (i.e., a small con-

densation sink). A small number of particles above 200 nm in diameter (∼10 – 15 cm−3) were375

present within the lower boundary layer, and show a time variation distinct from that of N>50

and N>100 (Figure 4b). These larger particles are present during both sampling periods within the

lower boundary layer (i.e., near 85◦ W and 82.5◦ W), where winds speeds were relatively constant

(6.5±1.8 ms−1), and could be from ejection of primary sea-spray aerosol (see below). The small

N>200 provides a low pre-existing aerosol surface area (average ± standard deviation: 3.8±2.0 µm2 cm−3),380

which assists particle nucleation.

N>50 and N>100 show a time variation distinct from that of the nucleation mode (N5−20) and

larger accumulation mode particles (N>200) (Figure 4b). In our eastern-most observations within the

lower boundary layer (82.5 – 81◦ W) N>50, which is accounted for largely by N50−150, is enhanced

above background levels of ∼200 cm−3 to ∼400 cm−3 (Figure 4b). At the same time, CCN con-385

centrations are elevated to >200 cm−3, above background levels of ∼100 cm−3 (Figure 4b). N>50,

N>100 and CCN concentrations remain somewhat elevated up to ∼900 m (Figure 4b, near 80.5◦ W

), suggesting that some mixing above the lower boundary layer occurred during some time prior to

our observations, possibly due to katabatic winds off Devon Island suggested from the FLEXPART-

WRF analyses (Figure 3c). Profiles of aerosol number and composition are presented in Figure S5390

in the Supplement.

The variation in the size distribution from west to east in Lancaster Sound suggests that particles

between ∼30 nm to greater than ∼50 nm are forming through secondary processes. In our western-

most observations in the lower boundary layer (85.6 – 84.4◦ W) the size distribution is dominated

by particles below 20 nm (Figure 4a,c). Further to the east in the lower boundary layer (82.5 –395

81◦ W) N5−20 is high and subsequently decreases moving east (Figure 4a), while N>50 and N>100

do not increase until 81.9◦ W (Figure 4b). The aircraft covered a distance of 19 km between entering

the lower boundary layer (82.5◦ W) and observing this increase in N>50 and N>100. With a wind

speed of 6.5 ms−1 near the surface, the advection time over this distance is approximately 50 min.

If the aerosol size distribution was dominated by primary sea-spray aerosol, given constant wind400

speed, there would be no reason for such a delay in our observations of N>50 and N>100. Indeed,

given the decreasing abundance of N>300, the evidence suggests that the sea spray source, which

is associated with larger particles (see below), is becoming less important as N>50 is increasing.

These observations are suggestive of a secondary process growing particles from less than 20 nm

into larger sizes, above 50 nm.405
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3.3 Aerosol composition

3.3.1 Carbonaceous aerosol

Our observations of particle growth are correlated with an increase in organic aerosol (OA) and

methanesulfonic acid (MSA) in sub-micron particles (Figure 5a), corresponding to increased organic-

to-sulfate and MSA-to-sulfate ratios (Figure 5b). The presence of MSA, an intermediate-volatility410

oxidation product of dimethylsulphide (DMS), indicates a marine-biogenic influence on the aerosol

sulfur (Bates et al., 1992). MSA cannot be viewed as a conservative tracer of DMS oxidation (e.g.,

Bates et al., 1992); however, it is notable that the MSA-to-sulfate ratio reached a peak value of 0.15

during the growth event (corresponding to a peak mass of 60 ngm−3), which is significantly higher

than at all other times during this flight (Figure 5b). The absolute MSA concentration measured by415

the HR-ToF-AMS should be viewed as a lower limit since a portion of the MSA mass could reside

on particles smaller than the lower size-limit of the instrument. Particle-size-resolved mass spectra

(pToF, Figure S6 in the Supplement) during particle growth indicate that total organic aerosol was

present in relatively small particle sizes, from less than 80 nm to approximately 200 nm (vacuum

aerodynamic diameter, dva). Unfortunately, signal-to-noise ratios for MSA were such that little use-420

ful information could be drawn from the corresponding pToF data. The correlation of OA and MSA

with particle growth suggests that the growth of particles into the size range of the HR-ToF-AMS

was mediated by the condensation of MSA and condensible organic species. The source and iden-

tity of these species, aside from MSA, is not known, but we hypothesize a role for marine-derived

biogenic volatile organic compounds (VOCs).425

While non-marine sources of condensible organic species, such as emissions of isoprene and

terpenes from high Arctic terrestrial vegetation (Schollert et al., 2014) and photochemical production

of VOCs in the snowpack (Grannas et al., 2007) (e.g., over the snow and ice-covered Devon Island),

could also contribute to particle growth, single particle observations of aerosol composition further

suggest a marine influence on particles greater than ∼150 nm (dva). Fifty-four percent of particles430

detected by the ALABAMA over the region highlighted in Figure 2a contained detectable signal for

trimethylamine (TMA, Figure 6), in support of aerosol growth through the condensation of marine-

derived biogenic VOCs (e.g., Facchini et al., 2008a; Dall’Osto et al., 2012). Consistent with HR-ToF-

AMS observations of MSA during the growth event, ∼30% of particles detected by the ALABAMA

contained observable MSA signal. TMA was mainly present as an internal mixture with potassium,435

sulfate, other organic species and to a lesser degree with MSA (Figure 6).

Organic aerosol observed by the HR-ToF-AMS during particle growth appears chemically distinct

from the OA observed at other times during this flight, especially compared to that above the lower

boundary layer (OA mass spectra are presented in Figure S7 of the Supplement). Hydrocarbon frag-

ments (CxH
+
y , largely unsaturated) contribute 50% to growth event OA mass spectra, and only 30%440

to non-growth event OA. Oxygenated organic fragments (CxHyO
+
z ) contribute 50% to growth event
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OA mass spectra, and 70% to non-growth event OA. CxH
+
y and CxHyO

+
z fragments are correlated

during the growth event, suggesting that these less-oxygenated and more-oxygenated species are

arising from a similar source. Average elemental composition also shows notable differences with

oxygen-to-carbon (O:C) and hydrogen-to-carbon (H:C) ratios in the growth event OA of 0.5 and 1.6445

while non-growth event OA was significantly more oxygenated with O:C and H:C ratios of 0.78 and

1.2, suggesting less aged OA during the growth event compared to other times.

To gain further insight into the characteristics of the OA observed during the growth event, we

compared our mass spectrum with a number of OA mass spectra obtained with AMS instruments.

The growth event OA compares favourably with marine-like OA observed at Mace Head, Ireland (R2450

= 0.75) (Ovadnevaite et al., 2011) as well as with marine OA observed over the Arctic Ocean (R2 =

0.88) (Chang et al., 2011a). OA from the growth event also compares favourably with alpha-pinene

secondary organic aerosol (SOA) generated under low NOx conditions (R2 = 0.78) (Chhabra et al.,

2011) and with spectra associated with isoprene SOA from a forested site (R2 = 0.85) (Robinson

et al., 2011), but does not compare well with IEPOX SOA (R2 = 0.07) (Bougiatioti et al., 2013).455

In conjunction with the presence of MSA during the growth event, the comparisons with previously

observed marine-OA spectra support the hypothesis that we observe a marine-influenced aerosol.

The comparisons with terpene-related OA could also support a marine-influenced aerosol (e.g., Shaw

et al., 2010), but could also be consistent with other regional sources of these OA precursors (e.g.,

Grannas et al., 2007; Schollert et al., 2014).460

3.3.2 Other aerosol chemical species

Other aerosol components detected by the HR-ToF-AMS showed a time variation distinct from

organic aerosol species. Sulfate mass loading was relatively constant, within the lower boundary

layer (Figure 5a), suggesting that it did not contribute significantly to particle growth during this

event. Owing to the relatively slower oxidation of sulfur dioxide to sulfuric acid, it is feasible that465

MSA resulting from DMS oxidation could be contributing to particle growth while sulfate salts are

not. However, this would be inconsistent with the results of Giamarelou et al. (2016). Similarly to

the observed OA, sulfate was present in relatively small particles with a peak in the size distribution

slightly larger than that of OA (Figure S6 in the Supplement). Ammonium concentrations are low

and show some correlation with organic and inorganic aerosol species, suggesting that OA, MSA470

and sulfate could be partially neutralized by ammonium. The HR-ToF-AMS estimate of aerosol

neutralization (accounting for sulfate, nitrate and MSA) peaks at a value of ∼0.6 during particle

growth (Figure 5b).

Exclusively within the lower boundary layer we observe an increase in iodine signal as I+ (m/z

126.90), while no other iodine-containing peaks were observed above mass spectral noise (Figure475

5c). Our observations are potentially consistent with those of Allan et al. (2015), who used similar

measurements to highlight the possible role of iodine-oxide species in particle nucleation in Arctic
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regions. Here, I+ shows a modest correlation not only with N5−20 but also with N>200, since parti-

cles in both size ranges are confined to the lower boundary layer and their variability in time is largely

dictated by the aircraft’s position (Figure S8 in the Supplement). Without further information about480

the chemical form of the iodine we observe, it is difficult to discern whether the HR-ToF-AMS I+

arises from iodine-oxides present in small particles or from biological iodine-containing compounds

and iodine-containing salts potentially present in primary sea-spray aerosol (e.g., Murphy et al.,

1997).

Primary sea spray aerosol was confined to the lower boundary layer and contributed largely to485

N>200. The HR-ToF-AMS signal for NaCl+, qualitatively indicating the presence of sea salt aerosol,

is present in the lower boundary layer (Figure 5c and S5 in the Supplement) and correlates well with

N>200 and N>300 (Figure S8 in the Supplement). As mentioned above, the negative relationship be-

tween N>50 and both N>300 and NaCl+ near 82.5◦ W suggests a decreasing importance of primary

sea spray at the point where the secondary formation is maximum. Consistent with this observation,490

single particle measurements from the ALABAMA indicate that NaCl-containing particles were

present at larger sizes (i.e., peaking at 400 nm dva) and, notably, were externally mixed from other

particle types containing TMA (Figure 6).

3.4 Cloud condensation nuclei (CCN)

CCN concentrations are elevated above background levels during the growth event, and are well-495

correlated with the number of particles greater than 80 nm (N>80, Figure 7). If the particles con-

tributing to CCN concentrations at this time were only composed of ammonium sulfate, under our

experimental conditions (i.e., 0.6% supersaturation), we would expect the CCN-activation diame-

ter to be ∼40 nm (Petters and Kreidenweis, 2007). A CCN-activation diameter of approximately

80 nm therefore indicates that a species less hygroscopic than ammonium sulfate is contributing to500

the CCN we observe. This is consistent with the elevated OA mass loading we measure when CCN

concentrations are high (Figure 7, colour scale), while sulfate was relatively low compared to other

time periods (Figure 7, marker size).

Since the aerosol was not actively dried and the supersaturation was held constant in the CCNC,

in order to allow for rapid measurements, a calculation of the effective aerosol hygroscopicity pa-505

rameter (κ) in this case carries a large uncertainty (Petters and Kreidenweis, 2007). In particular,

measured particle diameters may be slightly larger than the corresponding dry diameter. The tem-

perature in the inlet line was 10 – 15 ◦C warmer than the ambient temperature so that the relative

humidity (RH) decreased significantly as the aerosol entered the sampling line (i.e., during the case

study period, the ambient RH was 80% at 8 – 10 ◦C, and the RH decreased within the inlet to ap-510

proximately < 30%). Using the measured aerosol composition, we estimate that measured particle

diameters are up to 10% larger than the corresponding dry diameter.
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Nonetheless, this calculation is still illustrative of the organic aerosol properties in this environ-

ment. If the kappa value of the organic aerosol (κOrg) is 0.1, and κ for the whole aerosol is calculated

based on the HR-ToF-AMS organic and sulfate loadings and the known κ for ammonium sulfate,515

then the resulting dry diameter for activation is ∼60 nm. From our measurements, the activation

diameter seems to be larger than 60 nm so that κOrg of 0.1 could be regarded as an upper limit. If we

overestimate aerosol size by 10%, due to incomplete drying in our sampling line, then our estimated

CCN-activation diameter and the calculated dry diameter for activation become more similar. Over-

all, this illustrates that the organic aerosol was relatively non-hygroscopic with κOrg ∼ 0.1. This520

estimate is within the range of κOrg recently measured in a coastal, marine influenced environment

by Yakobi-Hancock et al. (2014).

4 Conclusions

In this case study, we present evidence that growth of nucleation mode particles in the summertime

Arctic can be mediated by the condensation of methanesulfonic acid (MSA) and condensible organic525

species. Our observations of particle growth, informed by observations of particle composition, sug-

gest a combination of primary and secondary aerosol across the size distribution. We observe the

growth of small particles, less than 20 nm, into sizes above 50 nm, while our measurements sug-

gest that ejection of primary sea-spray aerosol contributes to externally mixed particles larger than

200 nm. The small N>200, that are likely from direct emissions of sea-spray, could contain a sub-530

stantial fraction of organic aerosol (OA). However, the majority of OA mass observed here is best

correlated with MSA, N>80 (dominated by N80−150), and the presence of trimethylamine (TMA)

suggesting that this OA is largely secondary in origin. As well, it occurs simultaneously with a pe-

riod of pronounced aerosol growth. Together, this indicates that the cloud condensation nuclei (CCN)

we observe are largely controlled by secondary processes.535

Very few studies have measured aerosol composition at high time resolution in the summertime

Arctic. Even fewer studies have provided evidence for secondary organic aerosol formation in Arctic

regions, in part owing to the infrequency of measurements in the remote marine boundary layer.

These results highlight the potential importance of secondary marine organic aerosol formation, and

its role in growing nucleation mode particles into CCN-active sizes in the clean summertime Arctic540

atmosphere. Future measurements of nucleation and Aitken mode particle composition coupled to

characterization of gas-phase organic species will greatly improve our understanding of particle

formation and growth in remote regions, aiding in our ability to understand resulting aerosol-cloud-

climate interactions.
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Figure 1. Characteristic size distribution showing the size range of the SMS and UHSAS (observed near

81.1◦ W in Lancaster sound, see Figure 2a) . Number concentrations from 5 to 20 nm (N5−20) were estimated

by subtracting the sum of the SMS total number concentration (N20−100) and UHSAS number concentration

greater than 100 nm (N>100) from the total UCPC concentration (i.e., N>5).
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Figure 2. (a) Map of the study area showing sea ice concentration for 12 July 2014 from the National Snow and

Ice Data Center (nsidc.org, (Cavalieri et al., 1996)) and the flight track originating at Resolute Bay, Nunavut

(74◦ 41’ N, 94◦ 52’ W) and extending to eastern Lancaster Sound. The case study area is highlighted in red

(20:00 – 21:20 UTC, 79.7◦ W to 86.5◦ W), at which time the aircraft travelled westward below ∼100 m a.g.l.

The prevailing wind direction is marked with an arrow. Triangles mark the location at which the aircraft reached

∼1 km a.g.l during each profile shown in (b) and (c). (b) and (c) Profiles of temperature and CO mixing ratio

near Resolute Bay (red), in central Lancaster Sound (green) and in eastern Lancaster Sound (blue). (d) Flight-

average wind rose, wind speeds at the surface averaged ∼ 6.5 ms−1.
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Figure 3. (a) Total column airmass residence time predicted by FLEXPART-WRF, indicating the origin of air

sampled along the flight track. The aircraft location at the time of the FLEXPART-WRF particle release is

indicated with a grey triangle (74.4◦ N, 82.2◦ W, ∼85 ma.g.l., 20:39:25 UTC). The color scale represents the

residence time of air, in seconds, at a particular location before arriving at the aircraft position. The plume

centroid location is shown with a grey dashed line. Numbers indicate the plume centroid location, in days prior

to release. (b) Partial column (below 300 m) PES predicted by FLEXPART-WRF shown as residence time in

seconds for particles released at the aircraft location in (a). The color scale shows the residence time particles

for five hours prior to the release time and below 300 m. Numbers indicate the plume centroid location, in hours

prior to release. (c) Plume centroid altitude eight days prior to release and five hours prior to release (inset).
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Figure 4. (a) Aircraft altitude (grey) and particle number concentrations from 5 – 20 nm (N5−20, red) and 20

– 100 nm (integrated SMS concentration, N20−100, dark blue), both shown at the time resolution of the SMS,

over the case study area highlighted in Figure 2a. (b) Particle number concentrations greater than 50 nm (N>50,

light green), greater than 100 nm (N>100, dark blue), greater than 200 nm (N>200, light blue, multiplied by

four), greater than 300 nm (N>300, black, multiplied by five) and CCN concentrations at 0.6% supersaturation

(pink) shown at the time resolution of the SMS. Particle-number size distributions from 20 to 1000 nm (from

the SMS and UHSAS) at (c) 85.1 ◦ W, (d) 82.3◦ W, (e) 81.8◦ W and (f) 81.1◦ W.
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Figure 5. (a) Organic species, sulfate, ammonium and methanesulfonic acid (MSA) measured by the HR-ToF-

AMS, over the case study area highlighted in Figure 2a. Altitude is shown in grey on the same scale as Figure

4. (b) Organic-to-sulfate ratio (green), MSA-to-sulfate ratio (purple) and extent of neutralization (grey). The

extent of neutralization is the ratio of measured to predicted ammonium, based on measured sulfate, nitrate and

MSA. (c) I+ (m/z 126.90) and NaCl+ signal from the HR-ToF-AMS.
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Figure 6. (a) Pie chart depicting particle types detected by the ALABAMA over the case study area highlighted

in Figure 2a. Particles were grouped based on the presence of marker peaks and the particle group name indi-

cates the relative abundance of the corresponding signals in particle spectra. A total of 68 particle spectra were

obtained during the approximately two-hour period. TMA-containing particles are mostly internally mixed with

K, S, OC and to a lesser degree with MSA and EC/OC. Not all TMA-containing particles included signal for

MSA; 13% of all detected particles contained both TMA and MSA signals. (b) Size distributions (in terms of

vacuum aerodynamic diameter, dva) of TMA-containing particles (red), NaCl-containing particles (blue), and

all other particles classes (transparent).
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Figure 7. Correlation between the number of particles greater than 80 nm (N>80, measured by the UHSAS)

and the cloud condensation nuclei concentration (CCN) at 0.6% supersaturation, below 1 km, during the case

study period. Data are coloured by organic aerosol loading and point size corresponds to sulfate loading.
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