Supplementary

Primary and secondary aerosols in Beijing in winter: sources, variations and processes

Y. L. Sun^{1,2*}, W. Du¹, P. Q. Fu¹, Q. Q. Wang¹, J. Li¹, X. Ge³, Q. Zhang⁴, C. M. Zhu^{5,6}, L. J. Ren¹, W. Q. Xu¹, J. Zhao¹, T. T. Han¹, D. R. Worsnop⁷, and Z. F. Wang¹

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric

Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing

100029, China

²Center for Excellence in Urban Atmospheric Environment, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen 361021, China

³School of Environmental Science and Engineering, Nanjing University of Information

Science & Technology, Nanjing 210044, China

⁴Department of Environmental Toxicology, University of California, 1 Shields Ave.,

Davis, CA 95616, USA

⁵Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819,

Japan

⁶CMA Key Laborotary of Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing 210044, China
⁷Aerodyne Research, Inc., Billerica, MA 01821, USA

*Correspondence to: Y. L. Sun (sunyele@mail.iap.ac.cn)

Site	¹ CAMS	² PEK	³ PEK	⁴ PEK	⁵IAP	⁶ IAP	⁶ IAP	⁷ IAP	⁸ IAP	⁹ IAP	¹⁰ IAP
AMS	Q-AMS	HR-AMS	HR-AMS	ACSM	ACSM	HR-AMS	HR-AMS	HR-AMS	HR-AMS	HR-AMS	HR-AMS
Season	Summer	Summer/Autumn	Winter	Summer	Winter	Summer	Fall	Winter	Winter	Winter	Fall
	9 - 21 Jul,	24 Jul - 20 Sep,	22 Nov - 22	26 Jun - 28	21 Nov - 20	1 - 31 Aug,	1- 31 Oct,	1 - 31 Jan,	16 Dec,	1 Jan - 3	14 Oct -
Date	2006	2008	Dec, 2010	Aug, 2011	Jan, 2012	2012	2012	2013	2013- 17	Feb, 2014	12 Nov,
									Jan, 2014		2014
Index	S, 2006	S-F, 2008	W, 2010	S, 2011	W, 2011-	S, 2012	F, 2012	W, 2013	W, 2013-	W, 2014	F, 2014
					2012				2014		
Organics	28.1	23.9	34.5	20.0	34.4			49.1	38.1	27.3	29.4
Sulfate	20.3	16.8	8.7	9.0	9.3			19.6	9.4	8.6	9.1
Nitrate	17.3	10.0	6.8	12.4	10.9			12.5	7.2	8.1	17.8
Ammonium	13.1	10.0	7.7	8.0	8.6			8.9	5.4	4.5	7.8
Chloride	1.1	0.6	5.8	0.5	3.5			3.6	4.0	2.0	2.9
$NR-PM_1$	80	61	64	50	67			94	64	51	67
HOA	11.5	4.3	4.7	7.1	5.8	2.9	3.0	5.4	3.9	4.4	3.4
COA		5.8	6.7		6.6	3.0	7.8	9.8	6.7	3.8	7.5
CCOA			8.2		11.3			9.3	7.6	4.6	
BBOA			4.1						3.3		4.1
00A				12.7	10.7	7.2					
SV-OOA	4.3	5.7	4.3				6.3	12.8	12.1	9.8	7.0
LV-OOA	12.3	8.1	6.2				10.2	13.8	4.4	4.1	7.9
OA	28	24	35	20	34	13	27	51	38	27	30

Table S1. A summary of non-refractory submicron aerosol composition and OA factors from AMS measurements in Beijing China.

Sampling sites: Chinese Academy of Meteorological Sciences (CAMS); Peking University (PEK); Institute of Atmospheric Physics (IAP).

References: ¹(Sun et al., 2010); ²(Huang et al., 2010); ³(Hu et al., 2016); ⁴(Sun et al., 2012); ⁵(Sun et al., 2013); ⁶(Zhang et al., 2015a); ⁷(Zhang et al., 2014); ⁸This study; ⁹(Zhang et al., 2015b); ¹⁰(Xu et al., 2015).

Figure S1. Comparison of the elemental ratios calculated from the A-A method (Aiken et al., 2008) with those from the recently updated I-A method (Canagaratna et al., 2015).

Figure S2. A summary of PMF diagnostic plot: (a) Q/Q_{exp} as a function of number of factors, (b) mass fractions of OA factors as a function of fpeak, (c) scaled residual for each fragment ion, (d) a comparison of measured and PMF reconstructed mass, (e) time series of residual, and (f) time series of Q/Q_{exp} .

Figure S3. Correlations of six OA factors with other tracers.

Figure S4. Comparisons of time series of six OA factors from PMF analysis of V-mode and W-mode.

Figure 5. Mass spectra comparisons between UMR-PMF and HMR-PMF.

Figure S6. Correlations of organics at different sizes with six OA factors, sulfate and nitrate.

Figure S7. Variations of (a) mass concentrations and (b) mass fractions of OA factors as a function of RH.

Figure S8. Correlations of six OA factors with each unit m/z.

Figure S9. Contributions of six OA factors to each m/z.

Figure S10. Average diurnal cycles of OA/CO for six OA factors.

Figure S11. Variations of SO₂⁺/SO₃⁺ and SO⁺/SO₂⁺ ratios as a function of RH.

References:

- Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich,
 I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M.,
 Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen,
 J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios
 of primary, secondary, and ambient organic aerosols with High-Resolution Time-of-Flight
 Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478-4485, 2008.
- Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015.
- Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang,
 Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition, sources and aging process of sub-micron aerosols in Beijing: contrast between summer and winter, Journal of Geophysical Research: Atmospheres, 121, n/a-n/a, 10.1002/2015JD024020, 2016.
- Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008
 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945, 10.5194/acp-10-8933-2010, 2010.
- Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X., Zhang, X., and Worsnop, D. R.: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44, 131-140, 2010.

- Sun, Y. L., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne, J. T.: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250-259, 10.1016/j.atmosenv.2012.01.013, 2012.
- Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577-4592, 10.5194/acp-13-4577-2013, 2013.
- Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681-13698, 10.5194/acp-15-13681-2015, 2015.
- Zhang, J., Wang, Y., Huang, X., Liu, Z., Ji, D., and Sun, Y.: Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer, Advances in Atmospheric Sciences, 32, 877-888, 10.1007/s00376-014-4153-9, 2015a.
- Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903, 10.5194/acp-14-2887-2014, 2014.
- Zhang, J. K., Ji, D. S., Liu, Z. R., Hu, B., Wang, L. L., Huang, X. J., and Wang, Y. S.: New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing, Atmos. Chem. Phys. Discuss., 15, 18537-18576, 10.5194/acpd-15-18537-2015, 2015b.