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Abstract 10 

A regional atmospheric inversion method has been developed to determine the spatial and 11 

temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This 12 

approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-13 

trajectory simulations from the Numerical Atmospheric dispersion Modeling Environment 14 

(NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand 15 

Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ 16 

measurements from two fixed sites, Baring Head on the southern tip of New Zealand’s North 17 

Island (41.408°S, 174.871°E) and Lauder from the central South Island (45.038°S, 18 

169.684°E), and ship board data from monthly cruises between Japan, New Zealand and 19 

Australia. A range of scenarios is used to assess the sensitivity of the inversion method to 20 

underlying assumptions, and to ensure robustness of the results. The results indicate a strong 21 

seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in 22 

western regions covered by indigenous forest, suggesting higher photosynthetic and 23 

respiratory activity than is evident in the current a priori land process model. On the annual 24 

scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 25 

(±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much 26 

larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. 27 

The difference can be partially reconciled when factors related to forest and agricultural 28 

management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon 29 

change are considered, but some differences are likely to remain. Baseline uncertainty, model 30 
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transport uncertainty and limited sensitivity to the northern half of the North Island are the 1 

main contributors to flux uncertainty.   2 

1 Introduction 3 

The exchange of carbon between the atmosphere and the Earth’s oceans and terrestrial 4 

biospheres plays a crucial role in climate projections (IPCC, 2013; Friedlingstein et al., 2014). 5 

Predicting the future trajectories of atmospheric CO2, temperature and precipitation requires a 6 

solid understanding of the magnitude of fluxes, their regional distribution, and how and why 7 

they vary on seasonal to decadal timescales. National greenhouse gas budgets are especially 8 

important in light of current policies regarding climate change, such as the annual reporting 9 

requirements under the United Nations Framework Convention on Climate Change 10 

(UNFCCC). 11 

New Zealand’s National Inventory Report (NIR) is compiled by the Ministry for the 12 

Environment (MfE), and published annually. For 2013, the NIR puts New Zealand’s total 13 

CO2 emissions at about 35 Tg CO2 yr-1, and it is estimated that the land-use and forestry 14 

sector acted as a sink for carbon by removing three quarters of that (27 Tg CO2 yr-1) from the 15 

atmosphere (MfE, 2015). These estimates are based on measurements from a network of 16 

forest plots throughout New Zealand, regularly updated land use maps, and models. Inventory 17 

methods give precise estimates of carbon uptake and release of the locally present vegetation 18 

type, but are often difficult to scale up to regional or country scales due to heterogeneous 19 

biome composition (Ciais et al., 2010). Independent methods are needed to verify the reported 20 

carbon sink.    21 

On very large, i.e., continental or global scales, both prognostic land models and inverse 22 

atmospheric models have been used (Gurney et al., 2004; Mikaloff Fletcher et al., 2007; 23 

Gruber et al., 2009; Le Quéré et al., 2013; Steinkamp and Gruber, 2013; Friedlingstein et al., 24 

2014). Global inversions are a valuable, top-down, tool to estimate large-scale sinks and 25 

sources by combining observations from a global network with atmospheric circulation 26 

models. An inverse model interprets the observations to yield an optimized carbon flux 27 

distribution that is most consistent with the atmospheric data. In this approach, atmospheric 28 

model simulations relate fluxes at the surface to concentration changes at the observation 29 

sites. However, the number of available observation sites and the model resolution are usually 30 
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insufficient to constrain the exchange of trace gases like CO2 on smaller, i.e., regional to 1 

country scales. 2 

To address those scales, regional atmospheric greenhouse gas inversions (Lin et al., 2003; 3 

Stohl et al., 2009; Bergamaschi et al., 2010; Manning et al., 2011), including CO2 inversions 4 

(Gerbig et al., 2003; Matross et al., 2006; Lauvaux at al., 2008), have been developed and 5 

used to estimate the carbon budgets of regions like Europe and the USA as well as individual 6 

nations. They are complementary to bottom-up inventories and provide a means to verify 7 

national inventories. Like their global counterparts, regional inversion methods combine CO2 8 

observations from surface sites with modeled atmospheric circulation to derive the 9 

distribution of sinks and sources over an area of Earth’s surface (the inversion domain). In a 10 

regional inversion, however, the sites are not distributed globally and the domain is typically 11 

the size of a country or continent, which poses some additional challenges (Manning, 2011). 12 

An accurate model of background concentrations or sinks and sources from outside the 13 

inversion domain is required, i.e., a baseline. There is also a need for adequate spatial and 14 

temporal resolution for both the estimated fluxes and the circulation model, to account for 15 

topographic effects and local emission gradients and hotspots. Many regional inversions use 16 

continuous in situ observations from one to a few measurement stations to sample the whole 17 

domain over the course of days to a few weeks. They use air from a background-sector to 18 

construct a baseline time series (Manning et al., 2011; Uglietti et al., 2011). Due to chemical 19 

inertness of CO2, atmospheric loss processes can be neglected once the gas has entered the 20 

domain, making this approach viable as long as the measurement station is positioned so that 21 

background air can be observed for significant fractions of time. It is generally of advantage 22 

to use multiple stations, which are sensitive to a larger surface area and allow for a better 23 

interpretation of spatial gradients in atmospheric CO2.   24 

In their inversion study, Stohl et al. (2009) estimate emissions for three HFC and HCFC 25 

greenhouse gases on national to global scales for 2005-2007. Their approach uses the 26 

FLEXPART Lagrangian model to describe the recent air history arriving at nine observation 27 

stations distributed globally. They use a priori emission maps and estimate both the baseline 28 

and the regional emissions as part of the inverse modeling. Manning et al. (2011) use 20 years 29 

of in situ CH4 and N2O observations from a single station, Mace Head, on the west coast of 30 

Ireland. Mace Head regularly receives air from the midlatitude North Atlantic as well as from 31 

the UK and continental Europe, which allows them to estimate both the baseline and 32 
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terrestrial emissions. Their emission estimates for the UK have been used to complement 1 

those reported to the UNFCCC for the period 1990-2007. Matross et al. (2006) derive 2 

regional-scale CO2 flux estimates for summer 2004 in the northeast United States and 3 

southern Quebec using the STILT Lagrangian model in conjunction with aircraft and tower 4 

observations. 5 

Here, we present the first regional inversion for New Zealand, which leverages the country’s 6 

unique characteristics. New Zealand is an isolated country surrounded by approximately 2000 7 

km of ocean on all sides. This simplifies the construction of an accurate baseline model, as 8 

CO2 signals from other land masses, especially from Australia and the Northern Hemisphere 9 

will be significantly diluted and become part of the baseline before reaching the country. The 10 

expected national carbon sink, which is estimated by the inversion, is a large fraction of the 11 

fossil fuel emissions (about three quarters according to the NIR) which are prescribed. In 12 

addition, New Zealand has multiple atmospheric CO2 measurement sites across a relatively 13 

small country.   14 

Our inverse model utilises in situ observations from two observing stations in New Zealand 15 

for 2011-2013 and ship board measurements from a regular transect between Australia, New 16 

Zealand and Japan (conducted by Japan’s National Institute for Environmental Studies, 17 

NIES). The Numerical Atmospheric dispersion Modelling Environment (NAME III) 18 

Lagrangian model (Jones et al., 2007) was combined with meteorological output from the 19 

New Zealand Limited Area Model (Davies et al., 2005) at ~12 km resolution (NZLAM-12), 20 

to model the pathway of air arriving at the stations. Land model simulations from Biome-21 

BGC (Thornton et al., 2005) are used as a priori estimates. We compare our results to New 22 

Zealand’s NIR (MfE, 2015), point out differences and implications, and discuss the regional 23 

distribution and seasonal cycle of CO2 sinks and sources across the country. 24 

2 Observations 25 

We use in situ measurements of CO2 from two inter-calibrated stations in New Zealand 26 

(Figure 1). Baring Head (BHD) is located on the south coast of the North Island, while Lauder 27 

(LAU) is located in the central South Island (Figure 2). Both stations are sensitive to different 28 

source regions of CO2 and complement each other to allow for a comprehensive regional 29 

coverage spanning the Southern Ocean, Tasman Sea, the South Island, and – to a lesser 30 

degree – the North Island and the subtropical South Pacific. 31 
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The instruments used at LAU and BHD are operated with reference gases traceable to the 1 

World Meteorological Organisations mole fraction scale as maintained by the Central 2 

Calibration Laboratory (CCL) at the U.S. National Oceanic and Atmospheric Administration 3 

(NOAA). Both instruments share common data processing code, improving data inter-4 

comparability between the sites (Brailsford et al., 2012). In addition, fine scale instrumental 5 

biases were assessed by using a suite of four transfer standard tanks with trace gas 6 

concentrations defined by the CCL. These instrument specific, multiplicative scalings were 7 

applied to the processed hourly data before the inversion. For typical ambient mole fractions 8 

of CO2 (i.e. 380-410 ppm) these adjustments were generally less than 0.07 ppm and 0.1 ppm 9 

for BHD and LAU, respectively. 10 

Some of the elements of this study are prepared to include data from a third station, Maunga 11 

Kākaramea/Rainbow Mountain, located in the northern half of the North Island (Figure 2). For 12 

example, the region definitions in section 5.2 include a local Maunga Kākaramea/Rainbow 13 

Mountain region. Because the calibration and quality control processes are equivalent to BHD 14 

and LAU, the station can be integrated seamlessly into the network. It is ideally located to 15 

extend the sensitivity of the inverse model into the north. However, it is not incorporated in 16 

this study, because continuous CO2 measurements from Maunga Kākaramea/Rainbow 17 

Mountain were not yet available for the full 2011-2013 period. 18 

For this study the hourly mean CO2 records from BHD and LAU covering 1 January 2011 to 19 

31 December 2013 are used. Both stations measure in situ with near-continuous observations 20 

throughout the day. The observations are strongly influenced by local signals at night and 21 

under certain meteorological conditions, e.g., a shallow planetary boundary layer (PBL) or 22 

low wind speed (Stephens et al., 2013). Measurements at times with deep, well-mixed PBL 23 

are better suited for inversion modeling as they are sensitive to sinks and sources from a wider 24 

region and not subject to localized processes or complex atmospheric structure. Similarly, 25 

because the vertical resolution of the meteorological model NZLAM (section 3) is not fine 26 

enough to resolve the exact height of a station inlet, conditions with a well-mixed PBL are 27 

preferable (see also section 7.4). Afternoon observations are, on average, well-suited. 28 

Analysis of the diurnal cycle of CO2 concentrations at the various inlet heights of both BHD 29 

and LAU shows least variability with altitude in the 13:00-16:00 afternoon hours. For the 30 

inversion, two hourly average data points per day are selected in the afternoon, 13:00-14:00 31 

local time (LT) and 15:00-16:00 LT. Local time represents NZST (NZST = UTC + 12 hours) 32 



 6 

in winter and NZDT (NZDT = UTC + 13 hours)  in summer. One potential risk of using only 1 

afternoon data is the potential for misrepresentation of fluxes with strong diurnal variations. 2 

Potential biases introduced by our sampling strategy are investigated and quantified in section 3 

7.4.     4 

For both stations, one standard deviation of a 5-minute measurement interval is taken as 5 

random data uncertainty for the hourly mean. This uncertainty is generally much greater than 6 

the measurement precision, as it reflects real atmospheric variability, and is instead intended 7 

to capture representativeness errors such as different temporal resolutions of model and data 8 

or the model failing to represent the specific conditions at an individual location. 9 

2.1 Baring Head 10 

BHD station (Lowe et al., 1979) is located at 41.408°S, 174.871°E, 85m AMSL, 11 

approximately 10 km southeast of the Wellington urban area (Figure 2), close to the edge of a 12 

south facing coastal cliff. The surrounding land is sparsely populated and has primarily been 13 

used for low density livestock farming. Wind speeds at the site regularly exceed 10 ms-1, 14 

reducing the influence of local sources. The wind directions are primarily bi-modal with the 15 

dominant wind from the north and the secondary direction from the south (Stephens et al., 16 

2013). Southerly air arriving at the site has often been traveling over the Southern Ocean for 17 

at least 4 days, sometimes weeks, without any contact to terrestrial sinks or sources of CO2. 18 

The station is ideally situated to determine baseline levels of atmospheric CO2 at latitudes up 19 

to 70°S during these conditions. At other times, BHD measures air that has recently travelled 20 

over Australia or New Zealand, carrying a terrestrial signal of CO2 sinks and sources.  21 

We use hourly averaged CO2 data from the non-dispersive infrared (NDIR) analyser 22 

(Ultramat 3, Siemens) in situ observations during the 13:00-14:00 and 15:00-16:00 time 23 

windows (Figure 1) from a 10 m air inlet height. For more details on measurements, 24 

calibration and data processing, we refer to Brailsford et al. (2012); Stephens et al. (2013).  25 

2.2 Lauder 26 

LAU station is located at 45.038°S, 169.684°E, 370m AMSL, in a broad river valley on the 27 

South Island, approximately 35 km north of the township of Alexandra (population 5000). 28 

The surrounding land is sparsely populated and largely used for low density livestock farming 29 

and seasonal cropping. The local wind direction is predominantly ranging from north-westerly 30 

to south-westerly. To the west lies a valley system in mountainous terrain, behind which the 31 
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north-south running mountain range of the Southern Alps divides the island into a western 1 

coastal strip with a humid maritime climate and the eastern part with a more continental 2 

climate and relatively clear unclouded skies.  3 

At LAU, CO2 has been measured in situ using a dual cell NDIR analyser (LI-7000, LI-COR 4 

Inc) since 2008 from a 10 m air inlet height. Unlike the BHD measurements, where detailed 5 

descriptions and analyses are given by Brailsford et al. (2012) and Stephens et al. (2013), the 6 

LAU measurements have not been published before. Therefore, we provide an extended 7 

description of the LAU in situ CO2 measurement system in the appendix (Appendix A). 8 

3 Model Simulations 9 

We use NAME III (Jones et al., 2007), a Lagrangian dispersion model developed by the UK 10 

Met Office driven by three-dimensional meteorological fields precomputed by a numerical 11 

weather prediction (NWP) model. While initially developed more than two decades ago as an 12 

emergency response particle tool for nuclear outfall, NAME has since evolved into a general 13 

purpose dispersion model that is being used from local scales (a few hundred metres) to 14 

mesoscales and global scales. Atmospheric turbulence is simulated using a random walk 15 

technique (Morrison and Webster, 2005). CO2 is modelled as an inert gas due to its long 16 

lifetime in the atmosphere (>300 years, ), far exceeding the 4 day periods used for the back-17 

trajectories. 18 

In this work, meteorology from the NZLAM-12 NWP model was used to drive NAME. 19 

NZLAM-12 is a local configuration of the UK Met Office Unified Model (Davies et al., 20 

2005) with a horizontal resolution of ~12 km and 70 vertical levels up to a ceiling height of 21 

80 km. The meteorology is a sequence of short, 6 hour forecasts with hourly output that are 22 

produced from successive NZLAM simulations and cover the period 2011-2013. At the 23 

beginning of each simulation the available meteorological observations are assimilated into 24 

the model to match the state of the NZLAM atmosphere to the measured atmosphere. NAME 25 

uses the boundary layer depth (BLD) from NZLAM and applies a minimum and maximum 26 

BLD of 50 m and 4000 m, respectively. The maximum height in NAME is 30 km, 27 

corresponding to the first 59 levels of NZLAM. Both NZLAM and NAME cover a domain 28 

ranging from 146.8 E to 185.8 E in longitude and from 53.4 S to 26.0 S in latitude (inversion 29 

domain is shown in Figure 3). 30 
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3.1 Air history and station footprints 1 

The NAME model is run in backward mode to analyse the history of the air traveling towards 2 

BHD and LAU over the preceding 4 days. Model particles are released from both stations 3 

during a period of 1 hour, twice per day in 2011-2013, at 13:00-14:00 and 15:00-16:00 LT. A 4 

simulation period of 4 days was found sufficiently long to allow all particles to leave the 5 

domain during most meteorological conditions, except during extended periods of very low 6 

windspeed. An air history map has been calculated for each release (Figure 2). We use model 7 

output that represents the 4-day integrated air concentration (also called dosage, unit g s m-3) 8 

inside each grid box on a regular 0.1°x 0.1° grid, designed to be very similar to the ~12 km 9 

grid of NZLAM-12. During each release, the dispersion of 10,000 particles is modelled and 10 

every particle registered within the boundary layer at a given time contributes to the dosage of 11 

the respective grid cell. Particles are simulated in 3 dimensions and do not disappear when 12 

leaving the boundary layer as long as they remain below the maximum model height of 30 13 

km. Particles can leave the boundary layer temporarily and descend back into it at a later time, 14 

in which case they would again contribute to the dosage. An example of this can be seen in 15 

Figure 2, where many particles leave the boundary layer just south of the South Island and 16 

later (from the point of view of the backward simulation) descend again, visible as a weaker 17 

dosage (less strong colours) for some stretch of the map.  18 

Average footprints for the BHD and LAU stations were computed by summing the dosage 19 

maps for each day and release period in 2011-2013 and normalising them such that the 20 

domain integral equals one (Figure 4). These footprints represent the average sensitivity of a 21 

station to surface fluxes (sinks and sources) of CO2 at a specific location. They have also been 22 

used to inform the partitioning of the inversion domain into a set of regions for which weekly 23 

surface fluxes are calculated (Section 5.2).  24 

3.2 Transport matrix 25 
For particle transport, the mass flux during each 1 h release period is 1 g CO2 s-1, amounting 26 

to a total emission of 3600 g CO2 over the period (0.36 g CO2 is assigned to each particle). 27 

The flux strength is an arbitrary choice and does not affect the transport results due to the 28 

implied linearity of transport. A transport matrix Tg (unit s m-1) is formed by dividing the 29 

dosage by the total emitted mass and multiplying by the area (m2) of each surface grid cell. 30 

Thus, each element of Tg describes the atmospheric transport of a continuous emission of 1 g 31 

CO2 m-2 s-1 from a given grid cell over the previous 4 days and subsequent contribution to the 32 
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air concentration at the receptor (BHD or LAU) during each 1 h period. With xg being a 1 

vector containing all grid cells and c a vector containing the concentration (unit g CO2 m-3) 2 

for all 1 h periods, this is written as 𝑇!𝒙𝒈 = 𝒄. Given Tg and the measured concentrations c, 3 

the aim is to solve for the CO2 fluxes xg using a Bayesian inversion, i.e., a statistical model 4 

that balances information from measurements with a priori knowledge about the fluxes 5 

(section 6).  6 

Instead of solving on the grid scale, the fluxes in xg are pre-aggregated into a set of regional 7 

fluxes (section 5.2), x, and a transport matrix T created by aggregating grid cells in Tg to 8 

reflect the regions in x,   9 

𝑇𝒙 = 𝒄                                                                      (1) 10 

The Bayesian inversion developed here solves for x. In addition, a priori flux maps are taken 11 

into account for the terrestrial and oceanic portions of the domain (section 4). 12 

4 A Priori CO2 Flux Maps 13 

The Bayesian approach in this study uses spatially distributed information about CO2 sinks 14 

and sources as first-guess, or a priori, fluxes for terrestrial and oceanic regions. These fluxes 15 

are optimized by the inversion using the constraints imposed by the CO2 measurements at the 16 

stations (section 6). Fossil fuel and cement emissions are accounted for as well, though unlike 17 

the natural fluxes they are prescribed and not optimized by the inversion. Here we describe 18 

the data sets and flux maps used, while their incorporation in the inversion is described in 19 

section 5.   20 

4.1 Terrestrial 21 

First-guess land-to-air CO2 fluxes from the biosphere for every month in 2011-2013 are 22 

obtained from the Biome-BGC model (Thornton et al., 2005). Biome-BGC (v4.2 final 23 

release) is an ecosystem process model that estimates the storage and flux of carbon, nitrogen 24 

and water (Thornton et al., 2002). The model has been extensively tested and validated for 25 

North American and European ecosystems, and in addition was recently extended and applied 26 

to New Zealand managed pasture systems (Keller et al., 2014). The adaptation of the Biome-27 

BGC model to New Zealand by Keller et al. (2014) is used in this study to estimate net 28 

ecosystem production (NEP) for 5 biomes across New Zealand: dairy pasture, sheep and beef 29 

pasture, shrub, evergreen broadleaf forest (EBF), and evergreen needleleaf forest (ENF). The 30 
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model is driven by daily weather data from the NIWA virtual climate station network 1 

(VCSN). VCSN data include numerous meteorological parameters on a regular (~5 km) grid 2 

covering the whole of New Zealand (Tait et al., 2006). The data are based on the spatial 3 

interpolation of actual data observations made at climate stations located around the country. 4 

Soil attributes are incorporated from the Fundamental Soil Layers database (Landcare, 2015). 5 

Biome-BGC produces NEP maps for each biome covering the whole country, i.e., it does not 6 

make assumptions about the actual distribution of biomes. In order to partition the country 7 

into biomes approximating the five categories available in Biome-BGC and then mask and 8 

sum the NEP contributions from each biome, we produced a land-cover/land-use (LCLU) 9 

map. The LCLU map uses 10 categories based on a combination of the land cover database 10 

(LCDB) for New Zealand (Shepherd and Newsome, 2009; Dymond et al., 2012) and the 11 

Land-Use in Rural New Zealand (LURNZ) model (Hendy et al., 2007; Timar, 2011; Kerr et 12 

al., 2012). 13 

The New Zealand LCDB is a thematic classification of land-cover and land-use categories, 14 

created using satellite imagery and covering all of mainland New Zealand. The dataset is 15 

polygon-based and designed to be compatible in scale and accuracy with Land Information 16 

New Zealand’s 1:50,000 topographic database. For the purpose of this study, the distribution 17 

of 33 land-cover types from LCDB Version 3 for 2008/09 was used and rasterised on a 5 km 18 

x 5 km grid. 19 

LURNZ is a dynamic partial equilibrium model that simulates changes in private rural land 20 

use over time and space. It focuses on four key land uses – dairy, sheep and beef, forestry 21 

(plantations), and scrub/shrubland. While the model’s primary focus is on simulating future 22 

changes in land-use under scenario projections of commodity prices in one of the four sectors, 23 

it also provides a baseline of actual land-use in 2008. This 2008 basemap is used in this study 24 

to match the Biome-BGC dairy and sheep/beef pasture biomes; however, LURNZ does not 25 

include native forests.  26 

To account for all biomes in Biome-BGC, the LURNZ 2008 basemap and the LCDB 2008/9 27 

land-cover map are combined as follows. First the 33 LCDB categories are aggregated into 7 28 

– forest, scrub and shrubland, grassland, cropland, water bodies, bare or lightly-vegetated 29 

surfaces, and artificial surfaces. The forest and grassland categories are then sub-divided into 30 

plantations, “other forests”, dairy pasture, sheep and beef pasture, and “other grasslands” 31 

using LURNZ, which results in the LCLU map in Figure 5a.  32 
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The ENF biome is assumed to be well represented by the plantation forest category, with 1 

plantations consisting primarily of pine trees, and the EBF biome is assumed to be better 2 

represented by the “other forests” category. The categories of artificial surfaces, bare/lightly-3 

vegetated surfaces, and water bodies are assigned a zero flux, i.e., no exchange of CO2 with 4 

the atmosphere. No flux estimates are made for cropland and “other grasslands”; this does not 5 

affect results significantly, because these categories represent only a small portion of the total 6 

land area. Figure 5b shows the 2011-2013 mean a priori land-to-air CO2 flux as estimated by 7 

matching the LCLU and Biome-BGC biomes in this manner and summing their contributions 8 

to the overall NEP. The monthly and annual contributions are shown in Figure 5c. Weekly 9 

first-guess CO2 flux maps are obtained by simple interpolation of the monthly estimates 10 

throughout 2011-2013.    11 

An uncertainty estimate is computed for the a priori CO2 flux from each grid cell. Based on 12 

Keller et al. (2014) and personal communication with the authors, we assign 10% of the flux 13 

as uncertainty for pasture land. For forests, we assign 10% everywhere except in the 14 

Canterbury and Otago regions in the South Island, where 56% and 36% are used, 15 

respectively. These are conservative estimates based on a comparison of the Biome-BGC 16 

ENF modelled live stem carbon with the national exotic forest regional yield tables (MPI, 17 

2012). The Canterbury and Otago regions were assigned larger uncertainties to reflect the 18 

larger discrepancy between the Biome-BGC model and the MPI yields in these regions. The 19 

uncertainty is taken into account by the Bayesian optimization (Section 5). We note that the 20 

EBF biome has not been calibrated or tested under New Zealand conditions and might contain 21 

additional uncertainty. 22 

4.2 Oceanic 23 
First-guess air-sea CO2 fluxes are calculated based on a global dataset of surface ocean pCO2 24 

(Takahashi et al., 2009a). The dataset contains approximately 4.5 million measurements of 25 

surface water partial pressure of CO2 (pCO2) obtained over the global oceans during 1968-26 

2008, approximately 90,000 of which were taken inside the model domain of this study. A 27 

monthly climatology on a global 4x5 grid was derived by Takahashi et al. (2009b), which also 28 

includes an estimate of air-sea CO2 flux derived from the difference of surface ocean and 29 

atmospheric CO2 and a gas exchange rate following Wanninkhof (1992).  30 

An uncertainty estimate for the a priori ocean fluxes is computed as the root mean square of 31 

two components reflecting the uncertain gas exchange rate and the spatiotemporal coverage of 32 
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measurements inside grid cells. For the first component, we recalculated the CO2 flux using 1 

each of 7 additional gas transfer models (Ho et al., 2006; Sweeney et al., 2007) and used one 2 

standard deviation from the 8-model mean as uncertainty. The second component applies an 3 

uncertainty to grid scale fluxes inversely proportional to the number of measurements taken 4 

inside them for a given month of the climatology (Steinkamp and Gruber, 2013). As with the 5 

terrestrial CO2 flux prior, the uncertainty is accounted for in the Bayesian inversion.  6 

4.3 Fossil emissions 7 
A gridded map of CO2 emissions is derived from the Emission Database for Global 8 

Atmospheric Research (EDGAR) version 4.2 (JRC, 2011). EDGAR contains global emission 9 

inventories for greenhouse gases and air pollutants from sectors including energy, industrial 10 

processes, solvents and other product use, agriculture, land-use change and forestry, and 11 

waste. Annual emissions are available on a 0.1°x0.1° grid over the globe up to the year 2010. 12 

Emissions for the 2011-2013 time period were approximated by extrapolation using the trend 13 

in global total emissions over 2000-2010. The spatial distribution was assumed unchanged 14 

from 2010 (Figure 6). Total emissions for the New Zealand mainland are 47.8 Tg CO2 yr-1 in 15 

2011-2013. 16 

Fossil CO2 emissions are not optimized by the inversion; instead, their contribution to the 17 

CO2 signal at both stations (Figure 7) is subtracted from the actual measurements beforehand. 18 

That contribution is calculated using the transport matrix from NAME, i.e., applying Equation 19 

(1) with x containing the emissions from every grid cell and week in 2011-13. The vector c 20 

then contains CO2 concentrations for the twice-daily release periods at both stations that are 21 

caused by the emissions. To convert concentrations into mole fractions (ppm) the atmospheric 22 

pressure and temperature from the NAME model are used, which were interpolated to the 23 

BHD and LAU site coordinates from the NZLAM-12 temperature and pressure fields. 24 

5 Regional Flux Estimation 25 

5.1 Baseline analysis 26 
Any regional CO2 inversion can only estimate sinks and sources within the boundaries of the 27 

model domain. Sink and source processes from outside the domain become part of the CO2 28 

background concentrations (i.e., baseline) seen by the regional inversion at the boundary. 29 

Therefore, an accurate description of this baseline is needed. A common approach is the 30 
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background-sector method (Manning et al., 2011; Uglietti et al., 2011), where air is classified 1 

as baseline if it originates from a certain wind sector and fulfils site specific meteorological 2 

criteria. A continuous baseline is constructed using a gap-filling technique, which is 3 

subtracted from all other measurements before the inversion. The inverse model then 4 

interprets the remaining variability in the data, or anomalies, to find the optimal distribution 5 

of sinks and sources within the model domain. 6 

The background-sector method has been applied to the BHD CO2 record by Brailsford et al. 7 

(2012) and Stephens et al. (2013). They use steady background CO2 mole fractions during 8 

southerly wind conditions at BHD and apply a multi-step filter to the BHD record to obtain a 9 

CO2 baseline representative of a large region over the Southern Ocean. In short, the filter 10 

selects measurements during extended periods of southerly winds at the site, during which a 11 

maximum standard deviation of 0.1 ppm is achieved. Additional meteorological conditions 12 

must be fulfilled to preclude the influence of local sources and to ensure the air has not passed 13 

over the South Island before arriving at BHD. After filtering the data for baseline conditions, 14 

a continuous baseline is constructed using the seasonal time series decomposition by Loess 15 

(STL) algorithm (Cleveland et al., 1990), which can be sampled hourly, i.e., during the 13:00-16 

14:00 and 15:00-16:00 LT release periods. The baseline derived from the BHD record is 17 

shown in red in Figure 1 and will be called the southern baseline. 18 

One disadvantage of a background-sector approach based on a single site is that it may not 19 

capture variability in background concentrations from different wind conditions, in particular 20 

along the latitudinal axis with its gradient in atmospheric CO2, which could lead to errors in 21 

the flux estimates within the domain. In our case, BHD’s background sector is ideally situated 22 

to obtain a CO2 baseline representative of a large region over the Southern Ocean. However, 23 

observations made during northerly events are not always well described using this baseline, 24 

as the air often originates from the northern Tasman Sea or the subtropical South Pacific and 25 

carries a contribution from Northern Hemisphere CO2 (Section 6, Figure 4).  26 

To alleviate this we augment the southern baseline with a second baseline from ship data 27 

representative of the northern sector. This northern baseline is based on in situ CO2 28 

observations using a NDIR analyser on board the Trans Future 5 (TF5), a ship of opportunity 29 

that cruised the triangle Japan/Australia/New Zealand about once a month during the period 30 

2011-2013 (Chierici et al., 2006). We filter the ship track data (Figure 3) to select open ocean 31 

measurements and mask out observations taken close to the land, especially near the 32 
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Australian east coast as it is located upwind during average south-westerly conditions and 1 

hosts large urban centres with significant CO2 emissions. These selected data are then 2 

latitudinally averaged between 26-27°S to produce a baseline representative of the northern 3 

edge (26°S) of the inversion domain. A continuous baseline is constructed using the same 4 

STL routine as for the southern baseline. 5 

For both baselines, uncertainty estimates are formed based on the monthly standard deviations 6 

of the in situ data as well as differences between measurements and the STL smoothed curve. 7 

A more detailed description of the construction of both baselines is provided in the appendix 8 

(Appendix B). A caveat of this concept of baseline is that synoptic patterns of CO2 can travel 9 

over large distances and cause variations in the background concentrations at the regional 10 

boundary, which are not accounted for by the baseline derived here. Given New Zealand’s 11 

geographic isolation and location in the Southern Hemisphere, the strength of synoptic 12 

variations is limited compared to regions where inflow is characterized by strong variability 13 

due to terrestrial signals from other areas. While an explicit treatment of synoptic variability 14 

is beyond the scope of this study, a sensitivity experiment is described in section 5.4 to 15 

address potential biases in the baseline.  16 

A combined CO2 baseline is constructed that takes into account where the modelled 17 

trajectories originated for any given data point. The daily NAME station footprints for the 18 

13:00-14:00 and 15:00-16:00 LT windows are integrated along the southern and northern 19 

edges of the domain to determine the relative fraction of back-trajectories leaving the domain 20 

to the south and north. These fractions are then used to weight the two baselines and create a 21 

baseline associated with each of the twice-daily data points. Uncertainties are weighted in the 22 

same way. The combined baseline is shown in green in Figure 1. For the plot the 13:00-14:00 23 

and 15:00-16:00 LT weighted baselines were averaged, as they are visually almost 24 

indistinguishable, but the individual baselines are used in the inversion. 25 

5.2 Regional partitioning 26 

CO2 fluxes are estimated for every week in 2011-2013 and for 25 geographic regions 27 

distributed across the inversion domain (Figure 8). The within-region pattern of the fluxes is 28 

prescribed using the a priori flux maps for New Zealand and the surrounding oceans, while 29 

the inversion estimates regional totals. The definition of the regional boundaries was guided 30 

by several factors, including the distance from the measurement stations, the gradient of the 31 

station footprint, local orography, and fossil emission hotspots. For land regions in New 32 
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Zealand, additional factors include land-cover and land-use types as well as the expected 1 

(first-guess) CO2 flux distribution. 2 

Due to its large distance from the stations, the portion of Australian land inside the inversion 3 

domain is represented by a single region (#16). No a priori information about natural CO2 4 

fluxes from Australia is assumed, i.e., they are set to zero with a very large uncertainty of 5 

1000 Tg CO2 yr-1, so that the inversion is free to adjust them. This is based on an analysis 6 

suggesting generally low sensitivity of CO2 measurements at our stations in New Zealand to 7 

fluxes from the Australian region (Section 6, Figure 7). The analysis uses fossil emissions from 8 

the Australian region (section 4.3) and investigates whether these emissions leave a 9 

significant imprint on measured CO2 at BHD and LAU. Except for a few days this imprint is 10 

negligible (section 6).  11 

The portions of the Southern Ocean, South Pacific and Tasman Sea that are inside the model 12 

domain were divided into 6 open ocean and 3 coastal regions (#17-25). Large open ocean 13 

regions are chosen to make their regionally integrated contribution to the CO2 signal become 14 

discernible at the stations, although these contributions remain much smaller than those from 15 

the land regions in New Zealand. Three northern and three southern open ocean regions allow 16 

for the difference in ocean biogeochemistry between Southern Ocean and subtropical Pacific 17 

waters, with guidance from patterns of surface ocean pCO2 from the a priori map. The coastal 18 

ocean regions were included to separate the open ocean from the land explicitly, and to 19 

account for their stronger influence on the measured CO2 due to their relative proximity to the 20 

stations compared to the open ocean. The coastal ocean was defined as the combination of a 21 

60 km coastal band around New Zealand and the portion of ocean with a mean 2011-2013 22 

BHD footprint value above a fixed threshold. The threshold was chosen such that the 23 

integrated CO2 signal at BHD from coastal regions is 25% of that from all ocean areas.     24 

It is generally important to separate regions that exhibit a strong variability in sensitivity, as 25 

otherwise these within-region gradients can skew the regional totals estimated by the 26 

inversion towards the most sensitive areas inside the region. For land regions in New Zealand, 27 

we used the spatial gradients of the 2011-2013 footprints as an estimate for this variability, 28 

similar to the coastal regions, except that for the land, we use the combined footprint of BHD 29 

and LAU (Figure 9) and also account for additional factors. 30 

New Zealand was divided into 15 land regions (#1-15) as follows. Three small regions around 31 

BHD, LAU and Maunga Kākaramea/Rainbow Mountain were defined, which have the largest 32 
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contributions to the CO2 signal at the respective stations. This separation of the highly 1 

influential local regions from the rest of the country follows the same rationale as the 2 

separation of the coastal from the open ocean, with the aim to prevent the inversion from 3 

allocating local signals to regions further upwind. A separate region around the urban areas of 4 

Auckland and Hamilton was defined to capture the strong fossil emissions there. The 5 

remaining regions were defined with the aim to minimize the footprint variability, the 6 

expected flux variability inside each region, and the number of land-cover/land-use types 7 

within each  region, while accounting for topographic features.  8 

The resulting regional partitioning is shown in Figure 8. A major feature is the role of the 9 

Southern Alps as a dividing range between the humid west coast of the South island 10 

containing large patches of native forest, and the dryer regions in the central and eastern parts, 11 

where pasture land is predominant. On the North Island, the axial mountain ranges divide the 12 

land into east and west as well, but the distribution of forests and pasture is more complex. 13 

BHD and LAU have relatively low sensitivity to the northern half of the North Island, which 14 

results in large uncertainties after the inversion for individual regions. However, regionally 15 

aggregated results are well constrained in that part of the country.  16 

5.3 Inversion methodology 17 

The aim of the inverse method is to estimate a net CO2 flux from every region and for every 18 

week between 2011 and 2013 using a Bayesian approach (Gurney et al., 2004; Tarantola, 19 

2005; Steinkamp and Gruber, 2013). The approach assimilates information from the twice-20 

daily observations from both stations (the “data”) and accounts for a priori fluxes (the 21 

“prior”) and contributions from fossil emissions. 22 

The data time series is constructed by subtracting the baseline from the station measurements. 23 

The modelled CO2 signal from fossil emissions is also subtracted. The resulting time series 24 

represents the part of the observed CO2 signal that cannot be explained by background 25 

concentrations or fossil emissions, and is therefore due to the net effect of sinks and sources 26 

of CO2 over the ocean and land portions inside the model domain. The data for each station 27 

and each 1 h period are written as a vector d. 28 

The uncertainty applied to each data point is calculated as the quadrature sum of the baseline 29 

uncertainty (Section 5.1) and the CO2 data uncertainty (Section 2). A minimum uncertainty of 30 

0.4 ppm is assumed to account for uncertainties in the transport model as well as possible 31 

errors in the fossil fuel emission estimates. The final uncertainty is multiplied by 2.9, a value 32 
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based on a goodness of fit analysis of the inverse model (reduced chi-squared statistic, as 1 

described below). The resulting uncertainty is taken as the root mean square (quadrature) of 2 

both components and has a minimum value of 1.16 ppm. The mean uncertainty is 1.91 ppm 3 

and 95% of the values are within the 1.16 to 4.56 ppm range. The square of the uncertainty 4 

populates the main diagonal of the data covariance matrix Cd. We assume no correlations 5 

between pairs of data points, so all off-diagonal elements of Cd are set to zero. 6 

The regional prior (denoted x0) is obtained by integrating the weekly a priori terrestrial and 7 

oceanic flux maps over each region except the Australian region. The prior uncertainty is 8 

similarly obtained by aggregating the grid-scale uncertainty estimates. Since the within-region 9 

flux patterns remain fixed, we assume full spatial correlation when propagating grid-scale 10 

uncertainties to the regional scale. For land regions we added (via root mean square) an 11 

additional uncertainty component of 50% of the seasonal flux amplitude. This allows the 12 

inversion to shift the seasonal cycle more freely; otherwise, the seasonal turning points – i.e. 13 

the switch between net CO2 uptake in the summer months and net release in the winter – 14 

would essentially be fixed as the flux is near zero and the grid-scale uncertainty estimates for 15 

the Biome-BGC model are proportional to the flux strength. The diagonal prior covariance 16 

matrix C0 contains the regional uncertainty. 17 

The regional prior is linked to the data vector as in Equation (1), except x now contains fluxes 18 

on the regional instead of grid scale, and the transport matrix T links regional total fluxes to 19 

the data time series with baseline and fossil signal subtracted. 20 

The inversion process seeks an optimal solution to the transport equation by balancing the 21 

data and prior constraints (Tarantola, 2005), i.e., by minimizing a Bayesian cost function J 22 

with respect to x, 23 

𝐽 =
1
2 𝑇𝒙− 𝒅 !𝐶!!! 𝑇𝒙− 𝒅 +

1
2 𝒙− 𝒙𝟎 !𝐶!!! 𝒙− 𝒙𝟎 +

1
2 𝑆𝒙 !𝐶!!! 𝑆𝒙  

= !
!
𝑇𝒙− 𝒅 !𝐶!!! 𝑇𝒙− 𝒅 + !

!
𝒙− 𝒙𝟎 !𝐶!!! 𝒙− 𝒙𝟎                                         (2) 24 

The first term in the equation evaluates the deviation of the modelled time series from the 25 

data, with each data point weighted with the inverse uncertainty. The second term evaluates 26 

the deviation of the optimized regional fluxes from the prior fluxes. The last term is a 27 

Gaussian smoother, which limits changes in week-to-week fluxes. The operator S forms a 28 

vector whose elements correspond to the difference of each flux in x and the flux of the 29 
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following week. The diagonal matrix Cs contains the squares of values representing the 1 

strength of the smoother. We chose 5 kg CO2 m-2 yr-1 for every grid cell, which is more than 2 

ten times larger than the largest flux from any grid cell of the a priori flux maps (Figure 5), 3 

hence the smoother is very weak. In fact the smoother was designed to have a negligible 4 

effect on estimated CO2 fluxes and not interfere with the prior and data constraints. Its role is 5 

merely to favour solutions with small week-to-week changes in cases where a second solution 6 

with much larger week-to-week changes would result in a very similar cost, J. Note that the 7 

smoothing factors for individual regions differ slightly due to varying surface areas. Due to 8 

their similar mathematical forms, the smoothing term can be absorbed in the data term in 9 

Equation (2) by appending S to T (forming 𝑇), Cs to Cd (forming 𝐶!), and a zero vector of 10 

appropriate length to d (forming 𝒅). The reduced chi-squared statistic 𝜒! = 2𝐽 𝑛  is used to 11 

assess the fit of the inverse model to the observations (other examples of how this statistic can 12 

be used are described in, e.g., Gurney et al., 2004; Baker et al., 2006), where n is the number 13 

of observations. Computing the data uncertainty as described above ensures 𝜒! ≈ 1, which 14 

means that the extent of the match between observations and the model as well as between the 15 

a priori and a posteriori sources are in accord with their respective uncertainties.  16 

The cost function in Equation (2) is minimised analytically (Enting, 2002; Tarantola, 2005), 17 

to yield a posteriori fluxes x and covariance matrix C,  18 

𝒙 = 𝐶 𝑇!𝐶!!!𝒅+ 𝐶!!!𝒙𝟎                                                        

𝐶 =  𝑇!𝐶!!!𝑇 + 𝐶!!! !!                                                 (3)  

The square root of the diagonal elements of C are reported as uncertainty estimates for the a 19 

posteriori fluxes.  20 

 21 

5.4 Sensitivity scenarios 22 

Considerable effort has been undertaken to ensure, e.g., the high quality of available 23 

observations, the inter-comparability of measurements from BHD and LAU, and the use of a 24 

state-of-the-art land process model to provide meaningful first-guess estimates. However, 25 

there are a number of potential sources for error that cannot be accounted for explicitly, but 26 

could have a significant influence on estimated land fluxes. These include (i) the CO2 27 

baseline, (ii) the flux distribution within each region, and (iii) the ocean prior fluxes.  28 
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Sensitivity scenarios were designed to quantify each of these potential errors, as described 1 

below. The results of these scenarios and analysis of potential bias due to diurnal variability 2 

and atmospheric transport model error are discussed in section 7.4.  3 

(i) The inverse method assumes that air entering the domain is accurately characterized by the 4 

baseline CO2 time series. While random noise in the baseline concentration is accounted for 5 

(Section 5.1), there remains the possibility of systematic errors. A positive (negative) bias in 6 

the baseline would cause the inversion to estimate a total CO2 flux that is depressed 7 

(elevated), in order to explain the measurements at the stations. Sensitivity runs were 8 

conducted with both positive and negative biases. The baseline mixing ratio is first decreased, 9 

then increased, by one standard deviation, i.e., its uncertainty.  10 

(ii) The inverse model optimizes total fluxes across large spatial regions, but the geographic 11 

distribution of the CO2 fluxes within each region is not adjusted by the inversion but 12 

prescribed based on the prior flux distribution. This can lead to biases in the estimated flux if 13 

the region is being unevenly sampled. That is, if a specific observation is sensitive to only a 14 

small area inside the region, then the flux estimate for the entire region will be biased towards 15 

that area, which may not be representative for the region. This is why we took the geographic 16 

distribution of biomes into account when defining the regions. The number of different 17 

biomes was minimized and isolated patches of biomes avoided inside each region. However, 18 

the region definition remained subjective, so we included a sensitivity case where the within-19 

region flux pattern is flat, i.e., the flux is constant region-wide. Not all potential biases are 20 

removed this way, as that would require solving the inverse problem at a much higher 21 

resolution, but it gives an indication of the influence of a particular choice of pattern.  22 

(iii) Estimates of terrestrial CO2 fluxes in New Zealand are influenced by the ocean flux prior 23 

through atmospheric transport. After entering the model domain at baseline levels, the air 24 

travels inevitably over a large stretch of ocean and will arrive at the New Zealand coast 25 

carrying an oceanic signal in its CO2 concentration. Errors in the oceanic prior flux estimates 26 

can result in inaccurate terrestrial CO2 flux estimates. In a sensitivity test, the oceanic prior 27 

uncertainty was raised to 108 Tg CO2 yr-1, effectively excluding the ocean prior. 28 

6 Analysis of New Zealand’s in situ CO2 Observing Sites 29 

We conducted a clustering analysis using NAME III to characterize the catchment areas of the 30 

BHD and LAU stations. The clustering was performed using a convergent k-means 31 
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procedure, which is based on Kidson (1994), but adjusted slightly to allow a larger number of 1 

trajectories to be clustered, i.e., by using a smaller number of random seeds. This significantly 2 

boosts the computation at the expense of likelihood to find the global minimum, however, the 3 

reduced number of seeds appeared large enough to come sufficiently close, as repeated 4 

computations with randomly different subsets all produced very similar results.  5 

A set of 1000 trajectories was used between 15:00-16:00 LT for every day in 2011-2013, 6 

resulting in approximately 1 million trajectories for each station. The number of clusters was 7 

set to 7, because this number maximised the distinctness of clusters with respect to each other 8 

as obtained from their silhouette values. Cluster centroids and sizes are overlain on the station 9 

footprints in Figure 4, together with the geographical width of the clusters.  10 

In addition to the clustering analysis, we applied Equation (1) to the a priori flux maps for 11 

every day in 2011-2013. This allows us to calculate the imprint of Australian and New 12 

Zealand fossil emissions as well as oceanic and New Zealand terrestrial sinks and sources on 13 

the CO2 concentration measured at BHD and LAU (Figure 7).  14 

Generally, CO2 measurements at BHD are most sensitive to sinks and sources in the Southern 15 

Ocean (south of 55°S), the Tasman Sea and the South Island. Australia and the North Island 16 

influence BHD CO2 to a lesser extent. Observations at LAU are strongly influenced by local 17 

to regional terrestrial sinks and sources of CO2, enabling the station to see air from a large 18 

portion of the southern South Island. Further site-specific details are given in the subsections 19 

below. 20 

The low sensitivity to Australia means it is infeasible to infer Australian CO2 fluxes with our 21 

observational network most of the time. On the other hand, this underscores the isolation of 22 

New Zealand, where air is received that largely contains background concentrations from the 23 

vast body of surrounding ocean. This allows us to estimate terrestrial fluxes in New Zealand 24 

with high sensitivity and little disturbing influence from continental sources. 25 

6.1 Baring Head 26 
In 2011-2013, BHD sampled air that has travelled from the Southern Ocean 41% of the time 27 

along two cluster pathways (Figure 4), which correspond to southerly wind conditions at the 28 

site. The more southerly cluster of the two (16%) contains trajectories that mostly have not 29 

seen land over at least 4 days and will carry Southern Ocean baseline CO2. Trajectories in the 30 

more westerly cluster (25%) have travelled across most of the South Island after originating in 31 
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the Southern Ocean and will carry a signal of the terrestrial sinks and sources of CO2 there. 1 

Another 17% of trajectories are originating from the south-west, but are associated with 2 

slower wind speeds, so that within the 4-day timeframe of the back-trajectories they have not 3 

yet left the domain. They correspond to a local northerly wind at BHD associated with a 4 

common synoptic pattern involving an anticyclone over the Tasman Sea. The Southern Alps 5 

on the South Island strongly influence the south-westerly air flow and deflect it northward 6 

along the west coast and then through Cook Strait, where it is channelled into a northerly flow 7 

by local topography. Trajectories arriving from Australia and the Tasman Sea occur 13% and 8 

9% of the time, respectively. 10% of the trajectories have crossed large parts of the North 9 

Island before arriving at the station.  10 

The application of Equation (1) to the a priori flux maps shows that there are only 4 days in 11 

2011-2013 when a discernible (>0.1 ppm) signal from Australian fossil fuel emissions within 12 

the inversion domain was received at BHD. The signal was always much smaller than 1.16 13 

ppm, the minimum overall uncertainty assumed in the modeling system. 14 

During the winter and summer seasons, the New Zealand land area is the main contributor to 15 

the BHD data series, with a seasonal pattern matching the respiration and growing cycles. 16 

Assumed aseasonal fossil emissions from New Zealand (mostly from the nearby city of 17 

Wellington) as well as seasonal oceanic fluxes also play an important role at BHD.  18 

6.2 Lauder 19 
For LAU, there are two southernmost clusters representing a combined 40% percent of 20 

trajectories. These are very similar in size to the corresponding clusters for BHD and have 21 

identical source areas in the Southern Ocean. While similar to BHD’s southern cluster, the air 22 

from the LAU southern cluster would have travelled over a considerable stretch of land before 23 

arriving at LAU. 14% of the time, the air being sampled belongs to a southwestern cluster, 24 

which originates in the Tasman Sea. In addition, there is a western cluster containing 15% of 25 

trajectories that has crossed South Australia and the Tasman Sea as well as two northern 26 

clusters representing air with mixed origin from the northern Tasman Sea or the North Island. 27 

About 14% of trajectories are contained in a slow cluster whose origin is not very far from 28 

LAU. These cases correspond to slow winds at the site and indicate that the measurements are 29 

highly impacted by local and regional sources as the air has been travelling over nearby land 30 

for the preceding 4 days. 31 
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The application of Equation (1) to the a priori flux maps shows that LAU station is dominated 1 

by terrestrial fluxes from New Zealand (particularly from the South Island), with only minor 2 

contributions from the ocean, reflecting its location further inland and shielded from the 3 

predominant westerly winds by the Southern Alps. The seasonal amplitude in the CO2 signal 4 

at LAU is about twice as large as at BHD, due to the more continental climate and more 5 

pronounced growing seasons in the central South Island. Similar to BHD, there are only 5 6 

days in 2011-2013 when a larger than 0.1 ppm signal from Australian fossil fuel emissions 7 

within the inversion domain was received at LAU.  8 

7 Flux Results and Discussion 9 

7.1 Seasonal cycle  10 

The inversion finds a much stronger seasonal cycle in terrestrial CO2 fluxes than the Biome-11 

BGC model simulations used as a prior (Figure 5c), especially associated with enhanced CO2 12 

uptake during the growing season in (austral) summer (Figure 10). There is very good 13 

agreement in the phasing of the seasons with the land process model during all 3 years, which 14 

is particularly encouraging in light of the weak constraints on the phasing applied through the 15 

prior (section 5.3). This strong seasonality is robust within the estimated a posteriori 16 

uncertainty range and across the sensitivity cases. Uncertainties for weekly fluxes were 17 

reduced significantly compared to the prior, even when the range of sensitivity cases is added 18 

as extra uncertainty. 19 

The enhanced seasonal amplitude is assigned to the South Island almost exclusively, with 20 

much stronger uptake during the growing season compared with carbon uptake in Biome-21 

BGC. The uncertainties associated with South Island fluxes are generally smaller than on the 22 

country scale, because of the high sensitivity of the LAU and BHD stations to fluxes from 23 

much of the South Island. On the other hand, the North Island is estimated to have a weaker 24 

seasonal cycle, in good agreement with the prior, which can be attributed to widespread areas 25 

of summer soil water deficits, and the more marine climate there, i.e., weaker seasonal 26 

temperature variations and milder winters. Uncertainties for North Island fluxes, especially 27 

from the northern half of the North Island, are generally larger due to the lower sensitivity of 28 

the stations to that area. While northerly breezes are very common at BHD (Figure 4), they 29 

often correspond to a situation where southwesterly air was deflected by the Southern Alps 30 

and channelled by local topography to turn into a northerly at the station. Air that has 31 
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travelled across the North Island and picked up its terrestrial CO2 signal is therefore less often 1 

sampled at BHD than local wind direction would suggest. At LAU, North Island air can be 2 

sampled only about 8% of the time, based on the NAME cluster analysis. In a future study, 3 

the sensitivity to North Island fluxes can be greatly enhanced by CO2 observations at the 4 

recently established Maunga Kākaramea/Rainbow Mountain station in the central North 5 

Island.  6 

When separating the South Island into parts east and west of the Southern Alps, it becomes 7 

apparent that most of the enhanced seasonal cycle occurs, in fact, in the west, despite the 8 

slightly smaller surface area (86,173 km2 compared to 88,348 km2). Along the west coast, the 9 

inversion estimates the seasonal amplitude to be more than twice as large as suggested by the 10 

prior. Tracing the cause further to the individual regions reveals that Fiordland (region #13) is 11 

the strongest contributor to the signal. Fiordland is extremely sparsely populated and covered 12 

to a large extent by indigenous temperate rainforest with southern beeches (Nothofagus sp.), 13 

fern trees and shrub. When forming the prior flux map, these forests were categorized as 14 

evergreen broadleaf forest (EBF), and the respective module from Biome-BGC used. 15 

However, the EBF module had not been optimized for New Zealand forests, so it is possible 16 

that the Fiordland forests are not well described by that category. The inversion suggests 17 

much stronger photosynthetic and respiratory activity in these forests than the prior model. 18 

7.2 Response to the 2012/2013 drought  19 
In this section, we assess the ability of the inversion to detect the carbon flux response to 20 

drought. The austral summer of 2013 was characterized by unusually high temperatures and 21 

low precipitation over much of New Zealand (Turner, 2013; Blunden and Arndt, 2014), with 22 

sustained periods of severe drought in February-March 2013. The North Island and the west 23 

of the South Island were the most strongly affected regions (Porteous and Mullan, 2013). The 24 

Biome-BGC model is driven by detailed, reanalyzed weather data and clearly shows a 25 

positive flux anomaly, i.e., loss of CO2 to the atmosphere, due to enhanced respiration and 26 

inhibited growth during that period (Figure 5c). The inversion sees this event in the 27 

observations as well, suggesting even more CO2 release than Biome-BGC across the South 28 

Island. Unfortunately, a prolonged data gap in the LAU time series during that period caused 29 

by a lack of field standards (Figure 1), leads to weaker constraints from the atmospheric CO2 30 

data and therefore larger uncertainty in the flux estimates in the South Island.  31 
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A signal of excess CO2 release in February-March 2013 is seen by the inversion across the 1 

North Island, too (Figure 10). The limited coverage of some areas in the North Island, 2 

especially in the north and east (Figure 9), leads to high annual mean flux uncertainty for 3 

individual regions and prevents a robust analysis as to which regions responded the most 4 

strongly to the drought. Eddy covariance data from a dairy pasture site in the northwestern 5 

North Island during a ~100 day drought in 2008 found a temporary loss of CO2 to the 6 

atmosphere, but the ecosystem recovered to become a net sink of CO2 for the year (Mudge et 7 

al., 2011).   8 

7.3 Annual fluxes 9 

The geographic air-land flux distribution averaged over 2011-2013 is shown in Figure 11, 10 

including flux gradients on the sub-regional level that were prescribed in the inversion. A 11 

comparison to the a priori distribution in Figure 5b shows larger areas acting as a net carbon 12 

source. These include the central and north-eastern parts of the South Island, which roughly 13 

correspond to the Canterbury region and mostly contain pasture land, in particular sheep and 14 

beef pasture (Figure 5a). The inversion does not, however, resolve ecosystem processes, but 15 

merely estimates net air-land fluxes, so it is not possible to make a causal link between 16 

pasture and a net CO2 source. A counterexample is the south-east of the South Island, which 17 

also contains large areas of pasture, but is estimated to be a net carbon sink. In general, the 18 

inversion assigns much more of the total land sink to forested areas than the Biome-BGC 19 

prior. This is particularly apparent along the western South Island, but also in the eastern half 20 

of the North Island. The strong flux gradients seen in region #3 (north western central North 21 

Island) are likely to be the result of the very heterogeneous composition of LCLU types there, 22 

combined with BHD and LAU having low sensitivity in the region (Figure 9), rather than a 23 

real signal. The inclusion of an additional station with high sensitivity to the northern North 24 

Island, such as Maunga Kākaramea/Rainbow Mountain, would be needed to improve flux 25 

estimates there. 26 

In the inset of Figure 11, we compare annual mean results from the inversion with bottom-up 27 

estimates from the National Inventory Report (MfE, 2015), or NIR. The inversion suggests a 28 

much larger net CO2 sink across the country compared to the NIR. Particularly in the forest of 29 

the south-western South Island, the inversion suggests both stronger photosynthetic and 30 

respiratory activity than the prior model, with the overall balance towards a larger CO2 sink 31 

over the course of a year. For example, Fiordland appears to take up between 22 and 68 Tg 32 
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CO2 each year in 2011-2013 (Table 1), which corresponds to per-area uptake rates of 614 and 1 

1899 g CO2 m-2 yr-1, respectively. By comparison, the Biome-BGC estimates range from 0 to 2 

3 Tg CO2 yr-1. 3 

The NIR estimates do not come with an overall uncertainty, but based on their reporting of 4 

typical uncertainty for individual ecosystems, and personal communication, an approximate 5 

figure of 50% of the flux value was identified. This implies statistical significance for the 6 

difference in annual sink estimates, except in 2013, when both estimates agree within their 7 

uncertainty range. Without ocean prior or by assuming a baseline bias of 0.1 ppm, the 8 

differences are reduced by up to a half (section 7.4), but do not disappear. How can these 9 

differences be explained? There are a number of possible scenarios, which we explore in the 10 

following. 11 

The accounting of fossil emissions differs between the NIR and the inversion. The EDGAR 12 

emissions of 47.8 Tg CO2 yr-1 prescribed in the inversion contain elements of land-use change 13 

and agriculture. The NIR gives total emissions of 34.6 Tg CO2 yr-1 for 2013. The difference 14 

of about 13 Tg CO2 yr-1 would appear in the inversion as an additional sink of equal size. 15 

The inversion and NIR estimates are not directly comparable, due to differences in the top-16 

down versus bottom-up viewpoints. While the inversion sees the overall net CO2 exchange 17 

between the atmosphere and the land, the NIR estimate represents the so-called LULUCF 18 

sector, i.e., it includes contributions from Land-Use, Land-Use-Change and Forestry. In the 19 

LULUCF model, it is assumed that CO2 emissions from harvested wood products occur at the 20 

location of the tree, a process particularly important to forest plantations located in the central 21 

North Island and in the north of the South Island (Figure 5a). However, about 70% of the 22 

biomass from forest harvesting is exported before major processing, i.e., in the form of logs, 23 

sawn timber, or manufactured wood products (Pike, 2014). Most of the CO2 release 24 

associated with harvesting will subsequently occur far away from New Zealand, e.g., in China 25 

with a 34% share of New Zealand’s forestry exports in 2012. In a regional inversion these 26 

emissions cannot be seen, leaving a larger net sink. Emissions from harvested wood products 27 

are reported in the NIR at 10.3 Tg CO2 yr-1 in 2013, translating into about 7 Tg CO2 yr-1 that 28 

cannot be seen by the inversion when assuming a 70% export rate. No emissions are reported 29 

for earlier years, because the harvested wood products category was introduced for the first 30 

time in the 2015 report. The 2013 estimate is likely to be an upper bound for the years 2011 31 

and 2012, because the volume of harvested wood products has increased steadily since 2009 32 
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(MfE, 2015). Other possible discrepancies between the NIR methodology and the net CO2 1 

fluxes for forests include the variance in the timing of root carbon emission following tree 2 

mortality (Kirschbaum et al., 2013). Large sinks observed but not accounted for in NIR can 3 

result from applying steady state assumptions to natural or pre-1990 forests when they are  4 

accumulating carbon in biomass during recovery from past disturbance, with potential rates of 5 

biomass accumulation by native species reaching 700-900 g CO2 m-2 yr-1 (Trotter et al., 2005). 6 

For pastoral agriculture, a more complex set of differences applies to the intercomparison of 7 

inversion results, a priori process-based model results and the NIR methodology. Similar to 8 

forestry, agricultural exports (e.g. milk, meat and wool) equated to 340 g CO2 m-2 yr-1 for a 9 

dairy pasture (Mudge et al., 2011), and the 165 Gg of nitrogen estimated as exported in 10 

produce (Parfitt et al., 2006) will equate to an apparent net CO2 uptake of 5.8 Tg CO2 yr-1 11 

across New Zealand. The second-most important gap between methodologies results from the 12 

NIR calculation that 6.3-6.5% of the energy content of pasture consumed by ruminants is 13 

converted to CH4 emissions. These CH4 emissions represent a carbon flux to the atmosphere 14 

not observable as CO2, and therefore require separate quantification. They have been 15 

calculated as 79 g CO2 m-2 yr-1
 in a dairy pasture (Mudge et al., 2011) and the carbon content 16 

of the NIR’s 1137 Gg of CH4 emissions equates to an unobserved 3.1 Tg CO2 yr-1. Several 17 

additional terms, including leaching of dissolved carbon forms, and imports of feed and 18 

fertiliser can also provide important corrections between net ecosystem productivity (NEP) 19 

seen by inversions and eddy-covariance, and net ecosystem carbon balance (NECB) (Mudge 20 

et al., 2011).   21 

The NIR methodology also does not account for above or below-ground grassland biomass, 22 

nor does it account for soil carbon changes. The process-based model Biome-BGC potentially 23 

accounts for both these flux terms, but not in relation to intensive management. Therefore, 24 

both biomass and soil carbon must be considered to explain additional CO2 uptake or loss by 25 

pastures that might be seen by the inversion, but not by NIR or Biome-BGC.  26 

Biomass carbon is relatively small in New Zealand pastures (Tate et al., 1997), but can be a 27 

significant component of seasonal net exchange (Mudge et al., 2011; Rutledge et al., 2015; 28 

Hunt et al., 2016) as described in section 7.1. Repeated measurements of soil profiles suggest 29 

that soil carbon changes can also be significant but uncertain due to limited sites available for 30 

resampling. For example, a recent analysis of all sites available nationally suggests that sites 31 

on flat pasture are losing soil carbon at rates of ~170 g CO2 m-2 yr-1, while sites in hill country 32 
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are gaining ~770 g CO2 m-2 yr-1
 (Schipper et al., 2014). In addition to large areas of grazed 1 

pastures on both islands, significant areas of tussock grasslands on the South Island could be 2 

gaining biomass and soil carbon as they recover from historic overgrazing (Tate et al., 1997). 3 

The extensive area of grasslands on both islands could result in large net CO2 exchange fluxes 4 

usefully observed by inversion studies. New Zealand’s first process-based studies of net 5 

national ecosystem carbon balance suggested large uncertainties in grasslands (Tate et al., 6 

2000) and later suggested grasslands were approximately carbon neutral in 2001 (Trotter et 7 

al., 2004). Eddy covariance studies remain limited in coverage across New Zealand, but tend 8 

to suggest potential for large negative NEP and near neutral NECB. Rutledge et al. (2015) 9 

updated and extended the Mudge et al. (2011) results to 4 years, yielding average NEP of 10 

600±180 g CO2 m-2 yr-1
 and NECB of 220±200 g CO2 m-2 yr-1. Hunt et al. (2016) also report 11 

eddy-covariance carbon budgets for an irrigated intensively-grazed dairy pasture and an 12 

unirrigated winter-grazed pasture in Canterbury on the South Island’s east coast. Over one 13 

year, the unirrigated pasture was carbon neutral (±80 g CO2 m-2 yr-1
), while the intensively-14 

managed and irrigated pasture displayed NEP of 1500±140 g CO2 m-2 yr-1
 and NECB of 380 15 

(±150) g CO2 m-2 yr-1. The forest and grassland studies described above suggest that large, 16 

negative flux anomalies estimated by the inversion may be plausible when extrapolated across 17 

the large areas of these LCLU categories.  18 

Additional real land carbon balance terms may also contribute to large, negative flux 19 

anomalies that differ from NIR and process-based models such as Biome-BGC. These terms 20 

include areas of organic soil accumulation in wet forests and bogs, typical of west-coast 21 

environments where the largest negative flux anomalies are observed. Campbell et al. (2014) 22 

used eddy covariance to find NEE of 800–900 g CO2 m-2 yr-1
 with a strong seasonal cycle. 23 

Erosion and deposition can also create a net carbon sink that may be unusually significant at 24 

active tectonic margins such as New Zealand (Tate et al., 2000; Baisden and Manning, 2011). 25 

Small catchment and site studies have estimated rates of net pasture soil carbon sequestration 26 

due to erosion and burial, accounting for upland soil carbon recovery, of 220 g CO2 m-2 yr-1 27 

(Page et al., 2004) and 370 g CO2 m-2 yr-1 (Parfitt et al., 2013). Scott et al. (2006) have 28 

estimated the national delivery of eroded carbon to the coast as 11±4 Tg CO2 yr-1 and 29 

suggested that much of this carbon is likely to be buried and replaced in uplands. Dymond 30 

(2010) attempts to more fully and dynamically account for erosion, burial and replacement, 31 

suggesting a range of 4-20 Tg CO2 yr-1
. Both studies suggest the largest erosion-induced CO2 32 

sinks occur in the Southern Alps in the west of the South Island, where the Lauder station 33 
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allows observation of a strong sink, as well as in the North Island’s east coast. These 1 

estimates may partly be included in the hill country soil carbon accumulation estimated by 2 

Schipper et al. (2014). Smith et al. (2015) suggest that fiords may also create a strong carbon 3 

sink, with about 18 Mt of organic carbon being buried in fiord sediments globally each year, 4 

yielding a rate of 198 g CO2 m-2 yr-1. Thus, a number of plausible mechanisms have been 5 

documented in the literature to explain that the CO2 sink seen by the inversion is stronger than 6 

estimated in the NIR. 7 

7.4 Uncertainty and bias assessment 8 
In addition to regional uncertainty, the posterior covariance matrix from the Bayesian 9 

optimisation also contains weekly error correlations between regional flux estimates, which 10 

are used to inform flux uncertainties. Strong negative correlations between two regions would 11 

indicate that the inversion has difficulties distinguishing their individual flux components 12 

with the available data, while their sum is better constrained. Similarly, positive correlations 13 

indicate that the difference of flux components is constrained better than each individually. 14 

An analysis of all regional error correlations reveals that both negative and positive 15 

correlations are present, however, only 0.13% of all pairwise correlations have an absolute 16 

value greater than 0.1. Hence, with the available data, the inversion appears able to resolve 17 

weekly fluxes at the chosen regional level. 18 

An analysis of the mismatch of modelled CO2 (i.e., the CO2 time series obtained by 19 

propagating the posterior flux through the transport model) and observed CO2 reveals 20 

differences between the BHD and LAU stations (Figure 12). At BHD, the mismatch 21 

distributions are very similar for the 13:00-14:00 and 15:00-16:00 time series, have a positive 22 

bias (modelled CO2 is higher than observations) of 11-13% of the prior data uncertainty and 23 

show no discernible temporal pattern (smoothed, thick lines in the figure). At LAU, the 24 

mismatch distribution is similar for the 13:00-14:00 time series, with an even smaller bias of 25 

7%, but for the 15:00-16:00 time series there is a much larger bias of 52% of the data 26 

uncertainty. This means the inversion has difficulties reproducing the low CO2 concentrations 27 

in the LAU 15:00-16:00 observational record. The temporal evolution indicates an alternating 28 

pattern of small mismatch during the (austral) winter and larger mismatch during summer.  29 

In an attempt to explain this mismatch, we looked at two possible sources of bias: 1) a 30 

misrepresentation of the planetary boundary layer (PBL) depth in the NZLAM model, and 2) 31 
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diurnal variability in the fluxes that is not captured because we use afternoon data only and do 1 

not have diurnal variability in our a priori fluxes. 2 

Biases in the Modelled Planetary Boundary Layer 3 

At a site like LAU, strong solar radiation during a clear summer day might lead to a sudden 4 

deepening of the PBL in the afternoon between the two release periods, which could prove 5 

difficult for NZLAM to model accurately. Consequently, if the modelled PBL is deeper than 6 

in reality, any signal from surface fluxes would be mixed in a larger volume of air and their 7 

effect on modelled CO2 concentrations would be attenuated. This would require the inversion 8 

to estimate stronger surface fluxes in order to explain measured CO2 concentrations. This 9 

would lead to an overestimation of CO2 uptake during summer. The opposite is true if the 10 

modelled PBL is too shallow and the measured concentrations can be explained with less CO2 11 

uptake. We compared the model PBL depth at 15:00-16:00 to radiosonde measurements made 12 

at LAU (Figure 13). The Heffter method (Heffter, 1980) was used to compute PBL height from 13 

the radiosonde data. The comparison suggests that the boundary layer is too shallow in the 14 

model during summer, thus enhancing the effect of CO2 uptake on the modelled 15 

concentrations. Thus, smaller fluxes shoud be required to match the uptake signals observed 16 

at LAU, and therefore this process does not explain the observed mismatch. An equivalent 17 

analysis with the 13:00-14:00 LT PBL data suggests a similar discrepancy, yet these data can 18 

be explained by the inversion, further reducing the likelihood that the PBL representation in 19 

the model causes the observed mismatch. However, this analysis has caveats, because the 20 

radiosonde dataset is preliminary, and only few measurements were taken during the right 21 

times of day (13:00-14:00 LT and 15:00-16:00 LT, respectively).  22 

Diurnal Variability 23 

Our method estimates surface fluxes on a weekly scale based on afternoon measurements and 24 

does not resolve the diurnal cycle of the CO2 land natural fluxes. The diurnal cycle is 25 

particularly pronounced in summer, with strong uptake during the afternoon. This could cause 26 

the inversion to overestimate the weekly sink and thus bias the annual sink towards more 27 

uptake, in an attempt to match the low afternoon observations that are being assimilated. This 28 

issue is of most concern near the stations, because varying atmospheric transport integrates 29 

flux signals from more distant regions across a larger range of times. We would therefore 30 

expect this effect to be most pronounced in the local regions surrounding each station. 31 

However, based on a synthetic data experiment described below, we find that this is not the 32 
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case; the sink in the two local regions is actually slightly suppressed and does not reveal any 1 

discernible seasonal pattern.  2 

We conducted a synthetic data experiment in order to asess the potential bias caused by 3 

diurnal variations not represented in our inversion framework. A synthetic dataset that 4 

included the atmospheric signature of diurnal variability was generated using hourly 5 

footprints from the transport model (instead of the 4-day mean footprints described in section 6 

3.1) together with hourly Biome-BGC flux maps for 2012. These flux maps were prepared by 7 

imposing a simplified diurnal cycle on daily, gridded Biome-BGC outputs of GPP, NPP and 8 

HR. The diurnal variation in GPP is directly proportional to the relative amount of solar 9 

insolation, and HR is assumed to occur at a constant rate and spread evenly throughout the 10 

day. There are a number of aspects of plant physiology and ecosystem biogeochemistry that 11 

cause actual diurnal variation in NEE to be more muted than the solar-radiation driven pattern 12 

we have modelled. These include reductions in photosynthesis during the middle of the day 13 

and afternoon as stomata close due to drought or leaf temperature stress. Similarly, reduced 14 

respiration can be expected at night due to cooler temperatures. Synthetic CO2 concentrations 15 

were created for every day at 15:00-16:00 LT by propagating the hourly fluxes through the 16 

hourly model. This set of synthetic mole fractions was then assimilated in an inversion 17 

analogous to the reference inversion, whereby oceanic prior fluxes, fossil emissions, and the 18 

data uncertainties were kept the same as in the reference case. The weekly averages of the 19 

hourly fluxes then represent the “truth” against which the posterior fluxes can be compared. 20 

The weekly averages of the true fluxes are also used as a prior in the inversion, albeit with an 21 

uncertainty twice as large as in the reference inversion, to limit its influence on the results.  22 

Unrepresented diurnal variability led to biases in the annual mean flux estimates for some 23 

regions in our inversion, but these errors were much smaller than our uncertainty estimates for 24 

most regions on an annual scale (Figure 14). Importantly, this experiment does not reveal a 25 

substantial systematic bias in the annual mean across all regions. Two of the best constrained 26 

regions (upwind of LAU during average wind conditions), regions 13 and 14 (south-western 27 

South Island and local LAU region) show a suppressed, rather than overestimated, annual 28 

mean sink and this bias emerges without a distinctive seasonal pattern. This is especially 29 

surprising in the local region around the LAU station where the effect should be strongest.  30 

This suggests that a diurnal bias is unlikely to be the cause of the observed 15:00-16:00 data 31 

mismatch, as the latter is characterized by a clear seasonal cycle. Adding to this, the other 32 
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local region (around BHD, region 8) does not show any distinctive bias for both weekly and 1 

annual sinks. This is less surprising as the BHD site is characterised by very high wind speeds 2 

for much of the year (Stephens et al., 2013) and therefore less sensitive to local effects. 3 

Overall, diurnal variability leads to an overestimation of the annual mean land sink in the 4 

South Island of 3.5 Tg CO2 yr-1, which is well within the uncertainty envelope of the 5 

reference inversion (Table 1). 6 

On a weekly time scale, estimates generally agree to within their uncertainties for most 7 

regions, with the exception of the eastern South Island (Regions 12 and 15), the southern 8 

central North Island (region 7), and the local area region around Lauder (region 14.) Regions 9 

12 and 15 (eastern and south-eastern South Island) show an increased sink late in the year (as 10 

part of the 2012/2013 summer) but a smaller sink early in the year (as part of the 2011/2012 11 

summer), suggesting that there may be a seasonal bias in our inverse methodology for the 12 

eastern South Island. Likewise, diurnal cycle bias leads to significant weekly errors in the 13 

central North Island (region 7), although with less seasonal coherence. The Lauder local 14 

region (region 14) was created to capture local signals that are not well represented in our 15 

inverse model, including diurnal variability, and prevent them from biasing the inverse 16 

estimates on larger spatial scales.  Thus the larger errors for this region are expected. 17 

Sensitivity Scenarios 18 

Results from the sensitivity scenarios (i)-(iii) are incorporated in the figures as an additional 19 

uncertainty band on top of the Bayesian posterior uncertainties from the default run (Figure 20 

10). That band represents the maximum (minimum) value of the flux plus (minus) its 21 

uncertainty at every point in time and across all runs, i.e., including the default and sensitivity 22 

runs.  23 

While the uncertainty range associated with the suite of sensitivity scenarios is symmetrical 24 

around the reference case for most regions, the sensitivity range is characterized by more 25 

positive flux estimates than the reference case in the western South Island (Figure 10), i.e., a 26 

slightly smaller annual carbon sink. This can be attributed to sensitivity case (iii), in which the 27 

inversion is allowed to adjust air-sea fluxes to any value without penalty. Some of the 28 

terrestrial CO2 uptake is relocated to upwind ocean regions, as this yields a lower Bayesian 29 

cost, because fluxes from the western South Island are shifted towards the Biome-BGC prior 30 

estimates. However, in order to offset a relatively small flux change on land, the change in 31 

ocean flux has to be large due to the distance to the stations and the dilution of CO2 32 
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concentrations on the way. This leads to an ocean sink of 6 Pg CO2 in 2012 in our regional 1 

domain for this sensitivity test, which is more than ten times larger than estimates for the 2 

whole Southern Ocean from global inversions, ocean carbon data, and ocean biogeochemistry 3 

models (Gruber et al., 2009). Despite this unrealistic result for the oceans in the sensitivity 4 

test, the conclusions about the seasonal pattern in CO2 uptake and release and its spatial 5 

distribution in the New Zealand land regions remain robust.  6 

The inversion assumes an unbiased baseline CO2 record. Any positive (negative) bias would 7 

be interpreted by the inversion as an additional sink (source) of CO2. From the sensitivity runs 8 

we find that a constant bias in the baseline of 0.1 ppm would cause the total CO2 flux of New 9 

Zealand for each year in 2011-2013 to be offset by approximately 20 Tg CO2 yr-1. This 10 

corresponds to about 50% of the flux uncertainty from the default run (Table 1), thus 11 

underscoring the importance of an accurate baseline in a regional inversion. An inversion 12 

such as ours can always benefit from advances in air-sea flux datasets, such as pCO2 13 

measurements from a regional cruise network, as well as well-characterized background air 14 

concentrations. However, similar to the sensitivity case without ocean prior, the biased 15 

baseline has only a minor influence on seasonal flux patterns over land. 16 

Current plans to aid the baseline representation in future top-down studies of the New Zealand 17 

region include the addition of in situ measurement sites that observe inflow from the north-18 

westerly and westerly sectors on the upper North Island or west coast of the South Island, 19 

which will improve the characterization of synoptic scale variability in inflow that does not 20 

originate from the Southern Ocean sector.  21 

8 Conclusions 22 

We present the first regional inversion estimates of air-land and air-sea CO2 fluxes for the 23 

New Zealand region, which were estimated from two in situ observing stations in New 24 

Zealand, ship based measurements, and Lagrangian model simulations using the NAME 25 

dispersion model driven by NZLAM meteorology. The results imply a strong seasonal cycle, 26 

especially for fluxes in the western South Island. Regions covered predominantly by 27 

indigenous forest appear to have more pronounced photosynthetic and respiratory activity 28 

than suggested by the land model’s evergreen broadleaf forest (EBF) category. This is most 29 

apparent in Fiordland, which is a key contributor to the seasonal cycle, as well as the annual 30 

mean sink, in the South Island. The timing, magnitude and regional distribution of seasonal 31 
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flux patterns are well constrained and robust across sensitivity cases, while uncertainties in 1 

annual totals are more significant. Enhanced CO2 release from the terrestrial biosphere in 2 

New Zealand is apparent in response to the 2012/2013 drought period. This response appears 3 

most prominent in the North Island and western parts of the South Island, consistent with 4 

reports about these regions being most severely affected.   5 

The annual total CO2 sink in New Zealand is estimated to have decreased over the 3-year 6 

period, at 132 ±36, 97 ±36 and 64 ±40 Tg CO2 yr-1 in 2011, 2012 and 2013, respectively. The 7 

New Zealand national inventory reports a much smaller sink of 28, 27 and 27 Tg CO2 yr-1 for 8 

the same years (with uncertainty around 50%). About 7 Tg CO2 yr-1 of the discrepancy can be 9 

attributed to emissions associated with forest harvesting, which are included in the inventory 10 

but missed by the inversion due to forestry exports. Another 13 Tg CO2 yr-1 arise from 11 

different accounting of fossil emissions between the inventory and the inversion. Additional 12 

factors relating to the difference between NEP and NECB in pastures can account for another 13 

9 Tg CO2 yr-1, Other terms such as erosion, burial and soil carbon recovery may account for 14 

another 4-20 Tg CO2 yr-1. These differences largely reconcile both results for 2013, but not 15 

2011-2012. Carbon sequestration by grassland and soil carbon could also play an important 16 

role in causing differences between the two methods, as these processes are not included or 17 

fully resolved in inventory reporting but would be seen by the inversion. Collectively, these 18 

factors are likely to reconcile both results only partially, with some differences remaining.  19 

Detailed sensitivity studies suggest that the most important causes of uncertainty in the 20 

inverse estimates are uncertainties in the estimate of baseline air entering the domain and air-21 

sea fluxes from the ocean surrounding New Zealand. These uncertainties could be reduced 22 

through higher density of pCO2 measurements in the oceans around New Zealand, and 23 

extending the ship based atmospheric CO2 measurements presently used to estimate the 24 

baseline air farther to the south and west. Another possibility is to establish additional surface 25 

stations in strategic locations, i.e., with footprints in areas where Lauder and Baring Head 26 

have low sensitivity. While it was out of scope for this study, more detailed analyses of the 27 

uncertainties associated with the atmospheric transport model are needed, particularly the role 28 

of model resolution given the complex topography of New Zealand.    29 

The inversion methodology developed here is a powerful tool to validate net regional CO2 30 

sinks in the New Zealand national inventory report. It offers an independent, top-down view 31 

on the national carbon budget. The limited sensitivity to the northern half of the North Island, 32 
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as well as baseline errors, can lead to large uncertainties for annual mean flux estimates in 1 

some regions. Improving on these factors in future studies can further increase the usefulness 2 

of the top-down approach.   3 

Appendix A -  Lauder site description 4 

A.1 The Lauder station 5 

The Lauder atmospheric research station (45.038S, 169.684E, 370m AMSL) is located in the 6 

broad Manuherikia river valley on the South Island of New Zealand. A semi-arid continental 7 

climate predominates with an annual rainfall of 450mm and mean annual temperature of 8 

9.7C. The prevailing wind is from the westerly quarter (a mean daily wind run of 9 

approximately 300 km). Periodic southerly frontal systems bring air masses from the 10 

Southern Ocean and Tasman Sea. The station is surrounded by pastoral land dominated by 11 

non-intensive sheep and cattle farming practices along with seasonal cropping. The valley is 12 

sparsely populated. The land westward (on average upwind) of the valley consists of 13 

numerous valley systems and mountainous terrain. The vast majority of this land is 14 

undeveloped and is part of New Zealand’s national park system. There is no major industry 15 

present in the region. 16 

Due to the relatively clear unclouded skies, low light pollution and low levels of local and 17 

regional anthropogenic emissions, ‘clean air’ ground-based remote sensing, balloon sonde and 18 

in situ measurements are routinely conducted at the station as part of NDACC (formerly 19 

known as NDSC) (Kurylo, 1991), GAW (WMO-GAW, 2007), TCCON (Wunch et al., 2011) 20 

and GRUAN (Seidel et al., 2009) activities. 21 

A.2 Lauder in situ trace gas measurements 22 

Long term routine in situ measurements began at Lauder in 2003 with the installation of a 23 

TEI-49C Ozone monitor (Zellweger et al., 2010). Previous to this only sporadic short term 24 

campaigns focusing on tropospheric nitrogen dioxide had been undertaken (Johnston and 25 

McKenzie, 1984). Continuous in situ measurements of carbon dioxide (CO2), methane (CH4), 26 

nitrous oxide (N2O) and carbon monoxide (CO) began in March 2007 when a prototype FTIR 27 

trace gas analyser was installed (Griffith et al., 2012; Sepúlveda et al., 2014). In June 2008 a 28 

well-calibrated continuous CO2 NDIR (differential, non-dispersive, infrared) analyser (LI-29 

7000, manufactured by LI-COR, Inc, USA, www.licor.com) was installed at Lauder. This was 30 
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followed by regular fortnightly flask samples analysed for CO2, CH4, N2O, CO and δ13C-CO2 1 

concentrations, starting in May 2009. An added advantage of employing the NDIR analysers 2 

at both sites (Lauder and Baring Head) is that they share common data processing code and 3 

calibration routines.  4 

A.3 Air inlet system 5 

The air inlet system consists of a permanent 10 m high metal NIWA meteorological mast 6 

erected at a distance of 33 m to the north, of the nearest building, housing the in situ 7 

instrumentation. Two sets of 60 m long stainless steel (SS) tubing (ID 8.8 mm) are used to 8 

sample air from the mast (inlet at 10 m) to two distribution manifolds, prior to 2012 these 9 

were baked copper tube (ID 8.8 mm). The inlets are fitted with inverted funnels with coarse 10 

mesh (0.7 mm) to provide rain and dust protection. For electrical isolation of the 11 

instrumentation and the meteorological mast a 100 mm length of PFA 9.5 mm tubing is 12 

inserted between the sampling lines, and the manifolds. The manifolds are constructed from 13 

25 mm SS diameter tubing 200 mm in length (volume = 0.086 l). Each port consists of a SS 14 

tube (OD 6.3 mm) welded perpendicular to the main body, these extend 15 mm centrally into 15 

the main body and terminated with a 45 degree angle cut facing the direction of flow. Sample 16 

air is drawn into the two 4-port manifolds with a roughing pump (KNF Neuberger, N035 17 

AN18) at 10-15 l min-1 giving an effective residence time of approximately 35 seconds and an 18 

associated pressure drop of 40 mbar. The roughing pump allows sample air to be drawn at a 19 

higher flow rate and allows multiple instruments to sample air without front end pressure 20 

coupling between co-sampling instruments.  21 

The LI-7000 samples air, at 2.6 l min-1, from one of the manifolds connected to the 10 m 22 

sampling inlet, with Synflex (Eaton Synflex 1300, OD = 6.3 mm) tubing. An FTIR trace gas 23 

analyser  samples air from a port on the same manifold through a 6.3 mm PFA tube (300 mm 24 

length) at a rate of 3.5 l min-1, and a flask sampling system is connected to the same manifold 25 

port with Nylon (Ledalon© 1200 Series Nylon 12 Tubing, OD = 3.2mm) tubing. When flask 26 

samples are taken a flow rate of up to 2 l min-1 is used. 27 

A.4 LI-7000 28 

A commercially available dual cell Licor NDIR analyser the LI-7000 is able to calculate CO2 29 

mole fractions via measurements in the CO2 4.255 µm absorption band. The LI-7000 has been 30 

proven to be a low maintenance robust CO2 analyser able to meet GAW measurement criteria 31 
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when operated in the correct manner (WMO, 2001). A gas delivery and data acquisition and 1 

diagnostics system designed by NIWA (Gomez, 1997) on a LabView© platform is used to 2 

automate and manage the delivery sample and reference air along with calibration gas. The 3 

Lauder gas handling and data acquisition system is similar to that described by  Brailsford et 4 

al. (2012). The main difference is that a LI-7000 is employed at Lauder whereas at Baring 5 

Head a Siemens Ultramat 3 gas analyser is used.  6 

The LI-7000 draws air from the manifold via a diaphragm pump (KNF Neuberger, KNF 7 

86KNE, 2.6 Lmin-1). A set of four Field standards, with a calibration lineage to the mole 8 

fraction scale maintained by the CCL and a target/archive tank are connected to a valve 9 

manifold consisting of five three-way (Parker B16DK1175) valves in a daisy chain 10 

configuration, along with the dried air allowing selection of either Field standards, target tank 11 

or sample air for the analyser. Gas regulators (Scott Marrin Inc, 1-SS30-590-DAT) and 1.6 12 

mm SS tubing are used to connect tanks to the gas delivery system.  On the outlet of the 13 

sample pump an overpressure is maintained on the inlet to a Nafion drier (Perma Pure LLC, 14 

MD-110-144S-4) with the excess flow vented at this point, this removes the bulk of the water 15 

content from the sample flow. The air or selected calibration gas then passes through a 16 

magnesium perchlorate trap to ensure all the same low water content for gas being introduced 17 

to the analyser by a 100 sccm mass flow controller (McMillian, 80SD-5). One of the Field 18 

standards is also used in the reference cell as a reference gas, and is controlled using a similar 19 

mass flow controller (McMillian, 80SD-3) at 10 sccm. The exhaust sample and reference gas 20 

are joined together and then dried again on molecular sieve trap before acting as the counter 21 

flow on the Nafion drier, in this way dew points of -65°C are consistently met. 22 

The data acquisition system selects the calibration gas to measure and monitors each Field 23 

standard for stability to optimise the gas consumption. When a Field standard has a standard 24 

deviation of less than 0.015 ppm over a minute it is defined as stable and the next gas is 25 

measured. Sample air is continuously measured with 5-minute averages collated and reported. 26 

Every 4-6 hours the suite of four Field standards is measured. A target/archive tank is 27 

measured every 23 hours. Each week the Field standards and target tank are measured as a 28 

separate aliquot multiple times. This sampling sequence is akin to the calibration protocol 29 

employed by Brailsford et al. (2012) and Stephens et al. (2011). Data processing is performed 30 

by Lauder LI-7000 specific scripts adapted from those used by (Stephens et al., 2011) and 31 

written in the free statistical analysis software R.     32 
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Allan variance measurements (Allan, 1966) show the precision of the Lauder LI-7000 system 1 

as 0.004 ppm (1 sigma in five minutes). Calibration of the LI-7000 is obtained by fitting a 3rd 2 

order polynomial to the measurements of the four Field standards to characterise the 3 

concentration dependent nonlinear response of the instrument every 4-6 hours. This 4 

calibration curve is then used to calibrate sample air measurements, putting the measurements 5 

on the WMO X2007 scale. Thirty minute zero offsets are calculated using the interspersed 6 

individual Field standard measurements. Instrument dependent artefacts (e.g instrument 7 

temperature and flushing times) are accounted for in the processing code by calculating a 8 

linear fit of known Field standard concentrations and the parameter in question.  9 

The Field standards and the target tank are filled at BHD and characterised at the NIWA 10 

GASLAB, Greta Point, Wellington, New Zealand. In preparing the Field standards mixtures 11 

are prepared to evenly span the typical air sample concentration range encountered, including 12 

elevated nocturnal levels (typical span of 380-450 ppm).The Field standard CO2 13 

concentrations are calibrated to the WMO X2007 scale, along with δ13C-CO2 (VPDB 14 

referenced to the WMO CCL scale) (Brailsford et al., 2012). Field standards require changing 15 

every 12-18 months. The target tank requires changing every 6-12 months as in parallel it also 16 

functions as a target tank for the FTIR trace gas analyser. 17 

A.5 Meteorological sensors 18 

Meteorological sensors were installed onto the sampling mast. Wind speed is measured at 19 

three heights (2.8 m, 5.8 m and 10.1 m) using Vector instruments A100LK anemometers. A 20 

Vector instruments W200P wind vane mounted at a height of 10.1 m is used to record wind 21 

direction. Relative humidity and temperature are measured using Vaisala Humitter 50U/50Y 22 

sensors, placed at heights of 2.6 m and 9.9 m. In addition, a Vaisala PTB100 analog 23 

barometer was installed adjacent to the in situ instruments (inside the building). All these 24 

sensors are connected to a Campbell CR10X data logger and SDM-INT8 logger module. Ten-25 

minute averages of all sensor output are recorded independently of in situ gas measurement 26 

instrumentation output. 27 

Appendix B -  Baseline Analysis 28 
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A CO2 baseline is constructed as a weighted average of a southern and northern baseline, 1 

which takes into account whether the modelled trajectories originated to the north or south of 2 

the inversion domain for a given data point.  3 

B.1 Southern Baseline 4 

The southern baseline represents a continuous record of steady background CO2 mole 5 

fractions during southerly wind conditions at BHD. A multi-step filter is applied to the BHD 6 

record to obtain a CO2 baseline representative of a large region over the Southern Ocean, as 7 

described by Brailsford et al. (2012) and Stephens et al. (2013). In short, the filter selects 8 

measurements during extended periods of southerly winds at the site, during which a 9 

maximum standard deviation of 0.1 ppm is achieved. Additional meteorological conditions 10 

must be fulfilled to preclude the influence of local sources and to ensure the air has not passed 11 

over the South Island before arriving at BHD. The result of this filtering process is similar to 12 

selecting observations from the southern cluster in Figure 4. The southern baseline based on 13 

the filtering is used in this study. 14 

After filtering the data for baseline conditions, a continuous baseline is constructed using the 15 

seasonal time series decomposition by Loess (STL) algorithm (Cleveland et al., 1990), which 16 

allows estimation of a long-term trend and interannually varying seasonal patterns. The STL 17 

algorithm uses two time windows for the seasonal cycle and the trend, which are set by the 18 

user and define the respective time periods over which variations in the data are considered. 19 

The monthly averaged data fulfilling the baseline conditions are used as input, and the 20 

algorithm is run first with a seasonal cycle window of 5 years and a trend window of 121 21 

months to single out the decadal trend. This trend is then removed before a second run with a 22 

trend window of 25 months to capture the interannual and seasonal patterns. Finally the 23 

decadal, interannual and seasonal time series are summed and the resulting baseline 24 

subsampled at the 13:00-14:00 and 15:00-16:00 LT windows. 25 

The remainder time series, which is the difference between the monthly record and the sum of 26 

the seasonal and trend components from the STL analysis, is used as uncertainty estimate for 27 

the southern baseline. 28 

B.2 Northern Baseline 29 

The northern baseline is based on in situ CO2 observations using a NDIR analyser on board 30 

the TF5, a ship of opportunity that cruised the triangle Japan/Australia/New Zealand about 31 
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once a month during the period 2011-2013 (Chierici et al., 2006). The cluster analysis showed 1 

that during northerly events the air is usually coming from the northern Tasman Sea or the 2 

subtropical waters to the north and only occasionally from the South Pacific eastward of New 3 

Zealand. The layout of the TF5 cruises with legs crossing the Tasman Sea as well as 4 

subtropical legs therefore offers the possibility to characterise the CO2 concentrations in these 5 

regions with monthly resolution. The TF5 dataset provides CO2 concentrations averaged over 6 

10 minute intervals along with the standard deviation of the high frequency measurements 7 

within these intervals. 8 

We defined a regional mask (Fehler! Verweisquelle konnte nicht gefunden werden.) to 9 

keep observations from the open ocean and avoid observations taken close to the land, 10 

especially near the Australian east coast as it is located upwind during average south-westerly 11 

conditions and hosts large urban centres with significant CO2 emissions. The mask spans the 12 

latitudes 39 S to 24 S. The mask was then further partitioned into bands spanning one degree 13 

of latitude and the data within each band averaged for each month in 2011-2013. The 14 

uncertainty of the resulting monthly record is taken as the quadrature sum of the standard 15 

deviation of high-frequency data points measured during the ship’s transit of the respective 16 

latitude band and the standard deviation of the 10 minute data about the monthly mean. 17 

The monthly record within each latitude band was analysed using the same STL routine as for 18 

the southern baseline. An overall uncertainty estimate was formed by root mean square 19 

combination of the monthly uncertainty and the time series of the remainder from the STL 20 

analysis. The remainder time series is the difference between the monthly record and the sum 21 

of the seasonal and trend components from the STL analysis. Finally, the STL baseline for the 22 

two latitude bands for 27-26 S were averaged to produce a baseline representative of the 23 

northern edge of the inversion domain at 26 S. 24 

B.3 Weighted Baseline 25 

A day-to-day baseline was constructed as a weighted superposition of the southern and 26 

northern baselines, with weights depending on the proportional latitude of air origin for the 27 

twice-daily measurements at BHD and LAU. The daily NAME station footprints for the 28 

13:00-14:00 and 15:00-16:00 LT windows were integrated along the southern and northern 29 

edges of the domain to determine the relative fraction of back-trajectories leaving the domain 30 

to the south and north. These fractions are then used to weigh the two baselines and create a 31 
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baseline associated with each of the twice-daily data points. Uncertainties are weighed in the 1 

same way. 2 

For most days the 13:00-14:00 and 15:00-16:00 LT footprints are similar with regard to the 3 

origin of the air, so the weighted baselines for both time windows are almost identical. For 4 

both stations on a typical day the region where the air originates is either clearly in the north 5 

or the south, so that the weights for the southern and northern baselines are close to zero and 6 

one, or vice versa. However, middle cases can occur when the wind conditions at a site 7 

rapidly changed during the one-hour period over which measurements are collected, which 8 

often results in two main branches of trajectories originating in the north and south 9 

respectively. In this case both baselines are weighted proportionally to reflect the mixed 10 

origin of air during the one hour averaging period for the measurements. Yet other days, or 11 

periods of days, are characterised by slow wind speeds, sometimes slow enough that most 12 

back-trajectories end before reaching either the northern or southern edge of the domain. In 13 

this case, the midpoint of the footprint is determined and its latitude used to proportionally 14 

weigh the baselines. The same procedure applies for days with trajectories leaving the domain 15 

predominantly to the west or the east. 16 
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Table 1. Annual mean CO2 flux for selected aggregated regions, in Tg CO2 yr-1. A negative sign indicates uptake 1 
by the land. In parentheses the a posteriori uncertainty (1σ) is shown (excluding the sensitivity cases). 2 

Region 2011 2012 2013 

NZ Total        -132 (36) -97 (36) -64 (40) 

North Island   18 (28) -40 (28) -1 (30) 

North    5 (25) -10 (25) 7 (25) 
South  13 (17) -30 (17) -8 (19) 

South Island        -149 (22) -56 (23) -63 (28) 
East   -37 (17) 9 (18) -10 (23) 

West        -113 (17) -65 (16) -52 (17) 
Fiordland  -68 (13) -22 (12) -31 (14) 

 3 

 4 

 5 

 6 

Figure 1. CO2 observations from BHD and LAU, twice-daily at 13:00-14:00 and 15:00-16:00 LT, 
through 2011-13. The BHD southern baseline is shown along with the weighted baseline used in the 
inversion. Gaps in the coloured bars at the top indicate days when no observations are available. 
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Figure 2. Air history map for 10,000 particles released at BHD during 
15:00-16:00 LT on 19 May 2012 using the NAME III model. The particle 
back-trajectories show a southerly event locally at the station, though not a 
baseline event as the air crosses parts of South Island. Also shown are the 
locations of LAU and RBM stations. 
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Figure 3. Voyages of the Ship of Opportunity "Trans Future 
5". Ship tracks have been slightly spread longitudinally to 
allow one to differentiate individual cruises (more recent 
cruises are to the right). Colours give the in situ CO2 
concentration. Measurements made inside the open ocean 
mask were used in the northern baseline analysis. The 
inversion domain is outlined in grey. 
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Figure 4. Top panel: 2011-2013 mean footprints for BHD and LAU stations, based on twice-daily 
air history maps at 13:00-14:00 and 15:00-16:00 LT. Clusters of 4-day back-trajectories are 
overlain. Percentages give the sizes of clusters, i.e., the probability that a particle released on a 
random day has followed that pathway. Lower panel: Major atmospheric transport pathways for 
both stations from cluster analysis of the back-trajectories from twice-daily particle release. 
Shades represent the geographical spread of each pathway (one standard deviation from cluster 
centroid in latitude/ longitude). 

BHD 

BHD 

LAU 

LAU 
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Figure 5. (a) Land-Cover/Land-Use (LCLU) map with 10 categories, based on the Land 
Cover Database (LCDB3) and the Land-Use in Rural New Zealand (LURNZ) basemap. 
(b) A priori CO2 flux distribution, averaged over 2011-2013, from modelled NEP using 
BiomeBGC with the LCLU categories. Both maps have been regridded to the NAME 
model grid. (c) Monthly and annual contributions from each biome to the overall a 
priori CO2 flux. 

(a) (b) 

(c) 
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Figure 6. Gridded fossil emissions of CO2 across the model 
domain and averaged over 2011-2013, in kg CO2 m-2 yr-1. 
Emissions are based on EDGAR v4.2, with 2011-2013 
estimates extrapolated from the 2000-2010 trend in global 
total emissions. 

Figure 7. Simulated contributions to the observed CO2 anomaly, i.e., concentration minus baseline, at 
BHD (top) and LAU (bottom) for each day in 2011-2013 averaged over both 13:00-14:00 and 15:00-16:00 
LT release periods. Contributions are calculated using NAME transport matrices with EDGAR v4.2 fossil 
fuel emissions, prior oceanic CO2 flux from the Takahashi pCO2 dataset and prior terrestrial CO2 flux from 
the Biome-BGC model. Note that scales vary due to stronger anomalies and seasonal amplitude at LAU. 
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Figure 8. Regional partitioning and indices in the 
inversion. 

Figure 9. Combined 2011-2013 footprint for both 13:00-
14:00 and 15:00-16:00 LT release periods for BHD and 
LAU around New Zealand. 
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Figure 10. Weekly CO2 fluxes in 2011-2013 from selected regions, in Tg CO2 yr-1. Prior flux 
estimates are shown in grey, and the inversion results are shown in blue. Shaded areas 
represent flux uncertainty (1σ). The cyan shade represents the extra uncertainty obtained from 
the sensitivity cases (section 7.4). Note that there is a one-off change in scale of the flux axis for 
sub-island scale regions. A positive flux indicates a net release of CO2 to the atmosphere, while 
a negative value indicates uptake by the land biosphere. Regional indices in parentheses 
correspond to Figure 8. 
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Figure 11. Geographic distribution of land-to-air CO2 
flux, averaged over 2011-2013. Blue and red regions 
indicate net carbon uptake and release, respectively. Per-
area ocean fluxes are too small to show on this scale. 
Fossil fuel emissions are included and reach up to 20 kg 
CO2 m-2 yr-1 in a few grid cells (Auckland area). The 
colour scale is capped to focus on natural fluxes. Inset: 
Annual mean results compared to the National 
Greenhouse Gas Inventory Report. 
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Figure 12. Mismatch (residuals) of modelled vs. observed CO2 in multiples of the prior 
data uncertainty at Baring Head (top) and Lauder (bottom). Vertical dotted lines 
separate the years 2011, 2012 and 2013. Solid lines represent a Loess fit with a 3-month 
window. Horizontal dotted lines mark the prior uncertainty (1σ). The left column shows 
scatter plots for every day and 1 h release period; the right column shows the mismatch 
distribution over 2011-2013. Dashed lines with numbers give the bias. 
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Figure 13. Comparison of boundary layer depth at LAU 
in NAME at 15:00-16:00 LT and radiosonde 
observations made at the site (Heffter method). The 
seasonal cycle has been made more visual using a 
robust Loess smoother. Summer periods are highlighted 
in yellow, winter periods in grey. 
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Figure 14. Deviation of the posterior flux from the “true“ flux (red lines) in the synthetic data 
experiment with a diurnal flux cycle for the 15 land regions in 2012. Patched areas give the 
posterior uncertainty (excluding sensitivity cases). Green bands represent the annual mean 
deviation, with their thickness corresponding to the annual uncertainty. Note there is a change in 
scale of the flux axis for the three local regions (red font).     


