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Abstract. A Bayesian inversion system is used to evaluate the capability of the current global surface network and the space-

borne GOSAT and IASI instruments to quantify surface flux anomalies of methane at various spatial (global, semi-hemispheric

and regional) and time (seasonal, yearly, 3-yearly) scales. The evaluation is based on a signal-to-noise ratio analysis, the

signal being the methane fluxes inferred from the surface-based inversion from 2000 to 2011 and the noise being computed

from the Bayesian equation for each of the three inversions using either surface or satellite data. At the global and semi-5

hemispheric scales, all observing systems properly detect flux anomalies at all the tested time-scales. At the regional scale,

seasonal flux signals are properly detected by all observing systems, but year-to-year changes and longer-term trends are only

poorly detected. Moreover, reliably detected regions depend on the reference surface-based inversion used as a signal. Indeed,

tropical flux inter-annual variability, for instance, can be attributed mostly to Africa in the reference inversion or spread between

tropical regions and China. Our results show that inter-annual analyses of methane emissions inferred by atmospheric inversions10

should always include an uncertainty assessment and that the attribution of the atmospheric methane increase since 2007 to a

particular region still needs more attention i.e. gathering more observations for the future and using improved transport models.

At all scales, GOSAT generally obtains the best results of the three observing systems.

1 Introduction

As the second most important anthropogenic greenhouse gas after carbon dioxide in terms of radiative forcing, methane (CH4)15

is an important climate driver. Monitoring atmospheric CH4 concentrations and their driving emissions are therefore primary

research objectives for Earth observation science. These two objectives are combined in atmospheric inversion systems. Such

systems infer the space-time variations of the global or regional emissions from the assimilation of observations of atmo-

spheric mole fractions into chemistry-transport models (CTMs) (Houweling et al., 1999; Bergamaschi et al., 2007; Bousquet

et al., 2011; Pison et al., 2013). For these systems, explaining the trends of CH4 concentrations, such as their stability between20

2000 and 2006 and their later increase (Kirschke et al., 2013), is a major scientific objective. Despite considerable efforts in

developing observing systems at the Earth’s surface, in the atmosphere and from space, the inverted fluxes are associated with

large uncertainties. This still allows diverging interpretations of the trends, depending on which CTM is used or on how the
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inversion set-up is defined (Bousquet et al., 2006, 2011; Rigby et al., 2008; Dlugokencky et al., 2009; Bergamaschi et al.,

2013). In principle, the Bayesian framework should reconcile all well-tuned inversion systems because it characterizes the

uncertainty of each inversion product at all space-time scales, thereby weighting each scenario suggested by the inversion

approach. In practice, posterior uncertainties are often difficult to compute and are also affected by mis-specified prior or

observation uncertainties (Berchet et al., 2015). In a previous study, Cressot et al. (2014) applied objective tuning methods5

imported from Numerical Weather Prediction (Desroziers et al., 2005) within a robust Monte-Carlo approach to optimize the

input error covariance matrices of a global CH4 inversion system. Here, we use their results as a starting point to characterize

the uncertainty of the year-to-year variations of the inverted fluxes at various temporal and spatial scales, in order to document

which anomaly signals from the inversions are reliable and which are not. To do so, three different global CH4 observation

systems are considered: surface sites from various global networks (flasks and continuous), the space-borne Infrared Atmo-10

spheric Sounding Interferometer (IASI) that provides a mid-to-upper-tropospheric column and the Thermal And Near infrared

Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS), that observes the total column from space.

Using the flux anomalies of the surface inversion as the signal, signal-to-noise ratios for different temporal and spatial scales

are computed, the noise being the uncertainty of the year-to-year changes of the inverted fluxes for each observing system.

Signal-to-noise ratios are then considered as a statistical criterion to evaluate the ability of an observing system to retrieve the15

CH4 flux inter-annual variability.

The paper is structured as follows. The theoretical framework and the different data sets are presented in Section 2. The

signal-to-noise ratios are presented in Section 3 and further discussed in Section 4.

2 Method

2.1 Inversion Framework20

Our inversion system is based on a variational formulation of Bayes’ theorem, as detailed by Chevallier et al. (2005), which

has been adapted to the inversion of CH4 fluxes by Pison et al. (2009). It allows inverting grid-point-scale fluxes, thereby

avoiding gross aggregation errors (Kaminski et al., 2001), while assimilating the large flow of satellite data at appropriate

observation times and locations. It ingests observations of CH4 mole fractions and prior information about the variables that

are to be optimized, with associated error covariance matrices. Bayesian error statistics of the inverted variables are computed25

from a Monte-Carlo ensemble of inversions which is consistent with the assigned prior and observation errors (Chevallier

et al., 2007). The inversion system includes the LMDz transport model of Hourdin et al. (2006) at resolution 3.75◦× 2.5◦

(longitude x latitude) for 19 vertical levels in a nudged and offline mode, which we couple to a simplified chemistry module

(SACS) to represent the interactions between CH4 and the hydroxyl radical (OH), its main sink in the atmosphere, and between

methyl chloroform (MCF) and OH. When it assimilates both CH4 and MCF mole fractions, as is done here, it synergistically30

optimizes both CH4 surface sources at weekly and model grid resolution and OH at weekly resolution over 4 latitude bands

(-90/-30, -30/0, 0/30, 30/90), therefore dynamically distinguishing between CH4 emission and loss. The system iteratively
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minimizes the Bayesian cost function (made non-quadratic by the non-linear chemistry) using the M1QN3 algorithm (Gilbert

and Lemaréchal, 1989).

This system is applied here to assimilate each one of three CH4 observing systems and one MCF observing system, in the

configuration used by Cressot et al. (2014). The reader is referred to Cressot et al. (2014) for a detailed description of this

configuration. It is enough here to recall that the prior fluxes (fires excepted) have no inter-annual variability (IAV). Therefore,5

IAV is generated from atmospheric observations and atmospheric transport and chemistry.

Two types of inversions are presented in this study: a reference inversion (hereafter called REFSURF) using CH4 surface

measurements from December 1999 to December 2011; and three ensembles of inversions (see Section 2.3 for the use of these),

one using surface measurements (called SURF hereafter), one using IASI observations (called IASI hereafter) and one using

TANSO-FTS observations (called GOSAT hereafter), each ensemble consisting of ten inversions from 10/2009 to 09/2010.10

2.2 Data sets

In order to have continuous and homogeneous surface data throughout the extended assimilation window, we restrict the

methane site list to 36 instead of 49 as used in Cressot et al. (2014). They come from the National Oceanic and Atmospheric

Administration (NOAA) global cooperative air sampling network (Dlugokencky et al., 1994, 2009), the Commonwealth Scien-

tific and Industrial Research Organisation (CSIRO) (Francey et al., 1999) and the National Institute of Water and Atmospheric15

Research (NIWA) (Lowe et al., 1991). We also use the station Alert (ALT) from Environment Canada (EC) (Worthy et al.,

2009). MCF measurements are provided by 11 NOAA surface sites (Montzka et al., 2011). The surface sites used in our

inversions are presented in Figure 1.

We use observations of the mid-to-upper tropospheric CH4 column made by IASI, a thermal interferometer on-board the

Meteorological Operational (MetOp) satellites. This quantity is retrieved based on a non-linear inference scheme (Crevoisier20

et al., 2009) within 30 degrees of the Equator over both land and ocean at about 09:30 a.m./p.m. local time, with an accuracy

of 1.2% (≈20 ppb).

Last, we use observations of the CH4 atmospheric total column over land from TANSO-FTS, a near-infrared spectrometer

on-board the Greenhouse gases Observing SATellite (GOSAT). Total columns are retrieved by optimal estimation using the

algorithm of Parker et al. (2011) and with a precision of 0.6% (≈10 ppb).25

The averaging kernel or weighting function and the prior profile (when available) of each IASI or TANSO-FTS retrieval are

directly accounted for in the inversion system following Connor et al. (2008).

2.3 Error statistics

The input error statistics for the prior and the observations are tuned using objective diagnostics as described by Cressot et al.

(2014). This means that they exhibit some objectivity that is seen to translate into realistic Bayesian posterior error statistics,30

which in particular make all present inversions statistically consistent at the annual and global or regional scales (Cressot

et al., 2014). In order to keep the computational burden to a reasonable level, we compute the posterior error statistics from a

Monte-Carlo inversion ensemble of 10 times one year (10/2009 to 09/2010). Therefore, posterior error statistics of inter-annual
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emissions are computed from the ones of annual emissions by applying an inflation factor of
√

2. This means that we consider

that the errors are uncorrelated from one year to the next. This is a conservative hypothesis since in reality some of the transport

and retrieval errors are recurrent, thereby inducing positive correlations and reducing the inflation factor.

The variability of CH4 concentrations depends on the oxidizing capacity of the atmosphere, which is largely controlled

by OH concentrations. Since OH concentrations are constrained through MCF data in our multi-species inversion system5

(Section 2.1), the uncertainty on OH (≈5% after optimization) is accounted for in the uncertainty of the inverted CH4 emissions

and of their inter-annual variations.

2.4 Evaluation criterion

CH4 regional flux anomalies are defined here as the deviation from the 2004-2005 mean of the CH4 inverted fluxes. 2004-2005

has been chosen as a reference because it corresponds to a period of minimum atmospheric growth rate (Dlugokencky et al.,10

2011). The regional scale is based on the regions shown in Figure 2 and large latitudinal bands are defined as BorN for latitudes

higher than 60 degrees North, MidN between 30 and 60 degrees North, TropN between 0 and 30 degrees North, TropS between

0 and 30 degrees South, MidS between 30 and 60 degrees South and BorS higher than 60 degrees South. We study various

timescales from the week to 3 years.

Our criterion consists in evaluating the ability of the observing systems to detect CH4 anomalies of a given amplitude,15

defined by the reference inversion. The inversion of surface measurements is chosen to provide the signal as the data cover

a long time window (2000-2011) as compared to the two other observing systems. This longer window makes it possible to

sample the CH4 IAV more robustly than a 2-3 year inversion. We compare the CH4 anomalies derived from REFSURF to the

error variances computed for each observing system (from SURF, IASI and GOSAT). The Bayesian posterior error variances

associated with the IAV of CH4 fluxes are computed from the Monte-Carlo ensemble as described in Section 2.3 and constitute20

the noise associated to each observing system. To evaluate the space-time scales at which the anomalies are larger than the

detection limit of each observing system, the signal-to-noise ratios are computed at the same spatial scales for weekly to 3-

yearly time scales. This statistical criterion estimates for which time scales and regions the CH4 anomalies are reliable for each

observing system. In the following, the presentation of the results is done for three timescales (seasonal, yearly, and 3-yearly

trends) before assessing their sensitivity to temporal and spatial aggregations.25

3 Results: signal-to-noise ratios

3.1 Seasonal-scale detection

The signal-to-noise ratios are computed over three-month periods (JFM, AMJ, JAS and OND, hereafter referred to as "seasons"

for simplicity) from 2000 to 2011 i.e. 48 occurrences (12 years of 4 seasons). The three observing systems are able to detect

almost all the anomalies at the global scale (Table 1). As expected, the fraction of detected anomalies decrease with the spatial30

scale. At the global scale, 93 to 97% of the flux anomalies are detected depending on the observing system (Table 1). At
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semi-hemispheric scales (excluding MidS and BorS areas), this range is of 10-91% (median = 52%), GOSAT having the best

range (25-91%) compared to IASI (22-79%) and SURF (10-81%). The lack of detection in MidS and BorS is not significant

considering the small methane fluxes involved. At the regional scale, the detection range is 0-97% (median = 10%), with

large contrasts. Again the range is more favorable for GOSAT (0-97%, median = 20%) than for SURF (0-87%, median =

10%) and IASI (0-52%, median = 6%). Only anomalies in Central America are not detected by any of the three observing5

systems. GOSAT is the only one of the three observing systems to detect any anomalies in the USA, temperate South America

[SouthSAm] and temperate Africa [SouthernAfr].

At the seasonal time-scale, large signals are due to various causes, depending on the emitting area. At high Northern latitudes,

a large seasonal cycle is expected for wetland emissions, with mostly no emissions during winter and maximum emissions

during summer: this leads to four seasons very different from their average and therefore to large anomalies. This is illustrated10

on the detection in NorthAmBor (Table 1): GOSAT is able to detect almost all the anomalies, half of which are positive

(Table 1/Figure 3, due to maximum emissions in spring and summer) and half negative (Table 1/Figure 3, due to almost null

emissions when the surface is snow-covered). Due to a larger noise (≈1.4 Tg vs≈1 Tg for GOSAT, Figure 4 [a]), SURF misses

some springs (Figure 3); and IASI, with the largest noise (≈1.9 Tg, Figure 4 [a]), mostly detects winter and summer (Figure 3).

In the larger BorN area, only winter and summer are detected (Figure 3).15

In the Tropics, some areas also have large seasonal variations, mainly due to biomass burning or rice-paddies. In AfrEquat,

the AMJ positive signals generated are almost all detected by GOSAT (Figure 4 [a]). Note that SURF performs poorly in this

area (Table 1), due to the lack of stations which leads to large noise (≈3.3 Tg, Figure 4 [a]). In India and China, the rice-paddy

practices lead to a seasonal cycle of methane emissions with a maximum in JAS and a minimum in JFM (Matthews et al., 1991).

The three systems detect anomalies in JFM and JAS (Figure 3) with consistent signs (half positive, half negative anomalies for20

GOSAT and IASI, positive anomalies preferentially detected by SURF (Table 1).

3.2 Yearly-scale detection

The signal-to-noise ratios are computed over the years from 2000 to 2011 i.e. 12 occurrences. At the yearly scale, detection

rates are smaller than at the seasonal scale, at all spatial scales. Note that most anomalies are positive since the reference for

computing the signal is 2004-2005 i.e. the period of global minimum over 2000-2011. At the global scale, detection rates range25

from 58% to 83% (Table 2). The Boreal zone [BorN] is only poorly detected (8%) whereas the Tropics [TropN and TropS]

remain the best detected zone (16-58%). At the regional scale, the detection rates range between 0 and 58% with a median of

0%: the only regions above 25% of detection are Africa [NorthAfrWest, NorthAfrEast, AfrEquat], Middle East for GOSAT and

Eastern Siberia [FarEastSib]. No detection is obtained in key regions for methane emissions such as Amazonia, India, China

(except SURF at 16%) and North America [NorthAmBor, USA].30

The differences between the three observing systems are larger at the yearly scale than at the seasonal scale: GOSAT and

IASI detect more than 75% of the 12 possible global occurrences versus 58% for SURF (Table 2). At the regional scale,

GOSAT detects more anomalies than the two other systems, IASI and SURF being comparable in their detection rates. Indeed,

GOSAT noises are smaller than the two other systems (<1.5 Tg in MiddleEast for GOSAT against >4.5 Tg for SURF and
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IASI; <1.8 Tg in NorthAfrEast for GOSAT against >2.9 Tg for SURF and IASI). This is partly due to the large number of

data available in these two regions (Table 4): with NorthAfrWest, CentralAsia and AustrNZ, they have the largest number of

GOSAT data, mainly because they are among the driest areas i.e. with the lowest cloud cover. In agreement with the intuition of

Bergamaschi et al. (2013) that performing gross averages makes it possible to extract a signal from the inversion, the detection

is enhanced in the latitudinal bands e.g. detection rates >50% in MidN and TropN for GOSAT, TropN for SURF. But, at the5

regional scale, it remains difficult to robustly extract yearly flux anomalies. Therefore, we now focus our analysis on longer

time scales, with a longer time aggregation of three years, to get hints at the trends in methane emissions.

3.3 Trend detection over 2000-2011

Aggregating through time while still retaining a small enough resolution to discuss tendencies over 2000-2011, we define four

time-windows of three years each: 2000-2002, 2003-2005, 2006-2008 and 2009-2011. The reference period for the definition10

of the anomalies of each of these four periods is still 2004-2005 (Section 2.4).

At the global scale, the emissions have slowly decreased from 2000 to 2005, with a global minimum in 2004-2005, then

increased at a larger rate after 2006 (Kirschke et al., 2013). The three observing systems are able to detect the large positive

anomalies after 2006 and consistently detect nothing or small positive anomalies before (Table 3). The three observing systems

are able to detect the same time-evolution of the signal in TropN. Only GOSAT and SURF detect MidN anomalies; the lower15

detection by IASI at these latitudes is expected since the data used here are only within +/-30 degrees of the Equator (Table 4:

no IASI data in MidN). The signal in BorN is never detected. This is consistent with the recent increase of methane global

emissions coming mostly from the Tropics and to a lesser extent from the northern mid-latitudes, as suggested by Bergamaschi

et al. (2013) and Nisbet et al. (2014).

Being able to detect anomalies at a smaller spatial scale could help attributing the changes in methane emissions to particular20

processes. Unfortunately, even when aggregating 3 years together (instead of one as in Section 3.2), it is still difficult to detect

regional anomalies. On top of the regions already detected at the yearly time scale, a positive change in Chinese emissions is

detected with the three-year aggregation, but only by IASI and SURF. The lack of detection by GOSAT stems from the small

number of GOSAT data compared to IASI over India and China (Table 4), which is due to cloud cover and aerosol column

content. On the contrary, GOSAT alone suggests detectable negative anomalies in NorthAmBor in 2000-2002 and 2009-2011.25

This is consistent with the lack of surface sites in this area (e.g. the Canadian stations from Environment Canada were not used

here) and the lack of data by IASI North of 30 degrees (Table 4).

At high northern latitudes, positive anomalies in FarEastSib are detected by all three systems in 2000-2005 and again in

2009-2011 by GOSAT and SURF, even though the emissions in this area are small (1 Tg in 2004-2005, Table 3). This is due

to the very small noises, mainly due to the small prior errors, which are built proportional to the fluxes. Moreover, for SURF,30

3 stations are available downwind of this region.

In TropN, among the regions with a good detection rate are NorthAfrWest and NorthAfrEast plus part of AfrEquat, the

remainder of this region being in TropS. In these regions, all three observing systems detect anomalies, even though GOSAT

has the largest signal-to-noise ratios. Note that SURF seems to be able to make use of the stations located mostly on the coasts
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(only ASK is actually in the land-mass). GOSAT is also able to detect large negative (2000-2003) and positive (2006-2011)

anomalies in the MiddleEast; SURF is under the detection threshold because the available station in the region, WIS, is upwind

of the area and no other station is available close enough downwind; the anomalies are not detected by IASI either because

IASI’s weight-function peaks in the mid-troposphere. In a region dominated by subsidence, like the MiddleEast, the altitude

concentrations seen by IASI are not directly connected to the surface. The detection of surface variations in the fluxes is5

therefore poor, contrary to regions dominated by convection like Indonesia, where IASI has the best detection rates. In China,

the three systems agree on the detectable negative anomalies in 2000-2002 and do not detect any signal in 2003-2005. After

2006, SURF detects the positive anomalies, because its noise is the smallest (≈12 Tg) with about 3 stations providing relatively

direct constraints in the region. The two satellites, for which noises are 15 to 40% larger (≈14 and ≈17 Tg), do not detect this

signal.10

In Indonesia, IASI and GOSAT agree on detectable positive anomalies in 2000-2002 and 2006-2008 and nothing detectable

for the other two periods. Indeed, no large El Niño occurred during the first decade of the 21st century with the associated large

fires such as those experienced late in 2015 for instance (National Weather Service - Climate Prediction Center, 2016).

Among the key-areas for methane emissions, signals in Amazonia (dominated by tropical wetlands) and in BorN, particularly

in SiberianLowlands (dominated by boreal wetlands in summer), remain undetectable by the three systems. In SiberianLow-15

lands, the noises of the three systems are small (between 3 and 6 Tg [not shown]); in Amazonia, the noises of the satellites are

relatively small (≈8 and ≈6 Tg resp. for GOSAT and IASI), whereas the noise of SURF, for which no stations are available

closer than ASC in the Atlantic, is ≈19 Tg (Figure 7, 3Y case). Nevertheless, all these anomalies remain smaller than the

smaller noise, and are therefore not detectable. This is because the signal variability remain small after inversion (less than

20% of the average mass over 2004-2005). As there is no IAV in the prior emissions (except biomass burning), the lack of20

constraints from the atmosphere leads some fluxes to stick to the low-IAV prior, leading to small anomalies.

3.4 Detection at other timescales

As shown previously, the temporal scale at which the signal and noise are computed has an impact on the detection. Section 3.1

deals with the 3-monthly time-scale over a 12-year time-window; Section 3.3 deals with the 3-yearly time-scale in 3-year

time-windows. The impact of temporal aggregation on the noise and the signal in these time-windows is displayed in Figure 5,25

Figure 6 and Figure 7 for three areas: Global, hemispheric with the example of BorN, and regional with the example of

Amazonia. At all spatial scales, the noises and signals are smaller when the time-scale is smaller (from 3-yearly to weekly). As

expected for emissions with "seasonal" cycles, the seasonal scale (4- or 3-monthly) is particularly detected (Figure 5, Figure 6)

in our relatively large areas.

The minimum time-resolution of one week could be relevant in regions where the signal is mostly from wetland emissions30

and/or biomass burning; it would be useful to be able to detect the beginning of the emitting season for wetlands and the

short-lived fires. In NorthAmBor, where both these sources are found, about 55% of weekly anomalies are detected by GOSAT

and SURF. In all other regions, the detection rates at this time-scale are small (<≈25%, not shown).
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In key-region Amazonia (Figure 7), no signal is detected at the 3-yearly time-scale nor at the weekly time-scale by any of the

three systems; only GOSAT detects about 15% of the anomalies at the yearly time-scale. Actually, the time-scale at which the

best detection rates are found depends on the region and varies from the largest possible (12-year scale) to the 2-month scale.

In most of Africa [NorhtAfrWest, NorthAfrEast, AfrEquat], the signal at the 12-year scale is detected by all three systems (it

is detected by GOSAT only in SouthernAfr). In India and China, the best detection rates are obtained at the 2- or 3-monthly5

time-scale for GOSAT (77 and 43% respectively) but at the 4-monthly time scale for IASI (66 and 30% respectively) and SURF

(61 and 44% respectively). At high latitudes [BorN], the best detection rates are found at the 2-monthly time-scale (between

70% for IASI and 86% for GOSAT).

In order to further understand the various levels of detection described above, we investigate the sensitivity of our results to

two main parameters of our set-up: spatial aggregation and signal used.10

4 Sensitivity analysis

4.1 Impact of spatial aggregation on trend detection

Our inversion systems solves methane fluxes at the model resolution (3.75◦x2.5◦) worldwide. Although spatial and temporal

correlations are prescribed (see Section 2.3), flux anomalies of different signs may still be obtained. These anomalies may be

either the realistic result of the constraints or due to the optimization taking an easy path when too few constraints are available.15

The definition of larger areas may lead to summing up anomalies of opposite signs and hide (realistic or not) spatial variations.

We then try to investigate the impact of the spatial aggregation of model pixels in the case of one illustrative region, Amazonia,

which is a key-area for methane emissions and remains poorly detected by all the studied observing systems at all time-scales

(see Section 3.4). In the region as defined on our model grid, the signal at the pixel scale is indeed patchy (Figure 8). Dipoles

of negative/positive signal are summed up when aggregating at the region’s scale. The impact of the progressive aggregation20

of rings of pixels from the center of Amazonia is displayed in Figure 9: the 3-yearly signal could be detected by all systems for

the four 3-year periods up to the 3rd ring i.e. for a region covering 25 pixels instead of 66. It would then be possible to define

the regions based on the spatial aggregation that allows the best detection rates for the chosen observing system. This would

nevertheless lead to the issue of the user needs e.g. whether the regions are actually relevant for country budgets.

4.2 Impact of the signal on seasonal and yearly detection25

Since the signal is obtained from one inversion only i.e. depends on numerous assumptions (error statistics, set of assimilated

data, etc) and has potentially large uncertainties in various areas (e.g. far from the observing stations), another signal definition

has been tested. It must cover enough years of analysis to be representative of the variability of methane fluxes. We therefore

chose an inversion by Bousquet et al. (2011), (called PBSURF hereafter) instead of the SURF inversion described above.

PBSURF solves methane fluxes for large regions and several processes in each region, using observations from a set of surface30

stations different from SURF. The large-region-scale inversion means that the spatial variability of the prior is kept within each
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region and is only scaled (contrary to SURF, which is performed at the pixel scale i.e. is able to vary only a few pixels to

match the data). This difference in the methods may lead to very different spatial variability in each of the regions of interest

(Figure 4), a larger variability ensuring a better detection rate with our criterion.

We first focus on the seasonal (3-monthly) scale, which is the time-scale at which the detection is the most favorable for

SURF (Section 3.4) while being relevant for methane emissions at the regional scale defined here. The issue here is not whether5

the two inversions agree on the retrieved fluxes but whether the detection rates differ. Europe illustrates how the detection rates

of two signals can differ: for all three observing systems, PBSURF signal is more than twice as often detected as SURF and

the signs of the detected anomalies are opposite (positive for SURF, negative with PBSURF, Table 1 and Table 5: less positive

anomalies are detected for a larger total number of detected anomalies).

The signal by PBSURF contains more negative anomalies than SURF at the global scale and in BorN and MidN (for GOSAT10

and SURF). This is due to the fact that the two years of global minimum in SURFPB are not 2004 and 2005 but 2004 and

2006, so that using 2004-2005 as the reference period does not lead to mainly positive anomalies. For the three observing

systems, detection is better with PBSURF signal in the Southern hemisphere (TropS, MidS). In the Northern hemisphere, at

the regional scale, the detection rate is shifted in longitude. NorthAmBor seasons are about half as often detected whereas

up to 5 times more occurrences are detected in SiberianLowlands, SiberianHighlands and FarEastSib. In SiberianLowlands15

and FarEastSib, the larger number is due to negative signals for GOSAT and SURF. The same pattern is seen in the mid-

latitudes where MiddleEast, India and China, which are almost never detected with PBSURF signal, versus NorthAfrWest

and NorthAfrEast, in which mainly positive anomalies are detected (IASI and SURF) or both positive and negative anomalies

(GOSAT). The regional scale in the Southern hemisphere confirms the better detection with PBSURF signal (Amazonia,

SouthSAm, SouthernAfr, Indonesia, AustrNZ). In Amazonia, the (mainly positive) signals are detectable by GOSAT and IASI,20

but China (resp. India) is not anymore (resp. poorly) detectable using PBSURF.

At the yearly scale (Table 6), the detection rates are shifted to the North in the Northern hemisphere and to the South in the

Southern hemisphere (from TropN and MidN to BorN and TropS). Detection rates higher than 50% are found in Amazonia for

GOSAT and IASI; in Europe for GOSAT and SURF; in Indonesia for GOSAT and IASI.

One important outcome of this sensitivity test to the signal is that regional or hemispheric flux anomalies are detected at25

all latitudes at most time-scales but the localization of the detected signal varies depending on the inversion characteristics

(including the observations used). This is of course one important limitation in attributing the observed atmospheric changes

to particular regions and to the underlying emission processes.

The impact of the signal on the detection of anomalies has also been tested by using a variational inversion at the pixel scale

assimilating both surface and IASI data. With this signal, the detection rates are higher in the Tropics (particularly in India and30

China) and in the Southern hemisphere at mid-latitudes [not shown]. This suggests that the joint assimilation of surface and

satellite data may lead to a better localization of the anomalies of the surface methane fluxes. Nevertheless, this requires that

the consistency between the two types of data (surface and remote-sensed) be improved (Locatelli et al., 2015; Monteil et al.,

2013).

9

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-234, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 18 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 Conclusions

The aim of this study was to investigate which spatial and temporal scales current atmospheric inversions may detect in terms

of methane surface flux anomalies. To do so, we have proposed a signal-to-noise ratio analysis, the signal being the methane

fluxes inferred from a reference surface-based inversion from 2000 to 2011 and the noise being computed from three inversion

systems using surface or satellite data (GOSAT and IASI). At the global and semi-hemispheric scales, all observing systems5

detect flux anomalies at all time-scales from seasonal (3-month average) to long-term trend (3-year average). At all scales,

GOSAT generally shows the best results among the different systems.

At the regional scale, the results are more variable. The seasonal changes are all detected with fair to good rates by at least

one network (GOSAT), and more than 50% of the regions are detected by the three networks. The year-to-year changes and

longer term trends (three year averages) are detected for up to 50% of the regions (by GOSAT) with detection rates mostly10

lower than 50%. Anomalies in African regions (all), Middle East (GOSAT), Eastern Siberia and Europe (all) are detected

with variable rates. In some key regions for the methane cycle, anomalies are hardly detected, both in the case of dominant

anthropogenic emissions (North America) or natural emissions (Amazonia, Siberian lowlands). A sensitivity test to the spatial

scale through aggregation shows that dipole effects in the retrieved flux anomalies prevent anomalies in Amazonia (as defined

in this study) to be detected. Flux anomalies in India and China, two areas with large and mixed (natural and anthropogenic)15

methane emissions, are generally poorly detected. Only a long-term trend over China is detected, with larger emissions after

2006 for IASI and the surface network but not for GOSAT, which has a lower number of observations over these regions

because of cloud cover and aerosol layers. North-American emission changes are not detected, with the exception of the long

term trend of boreal North America (negative after 2006 for GOSAT). Overall, the detection at a yearly scale is generally

poor to fair for the two signals tested, both obtained with surface constraints. This suggests that the ability of the inversions to20

retrieve significant inter-annual variations in the methane fluxes is not evident and should be evaluated against uncertainties,

which are not always computed and/or provided with the inversion products.

The use of another signal (a different surface-based inversion) does not change the main conclusion that anomalies at the

regional scale are only fairly-well detected but shows that the regions which are not seen may be different: some yearly changes

in Amazonia and India can be detected but tropical Africa is much less detected with the second signal. Therefore, the precise25

identification of flux anomalies in the Tropics appears not to be robust with regards to changes in the inversion used for the

signal. This is of course an issue when attributing the increase observed in atmospheric methane since 2006 to a particular

region, as already noticed by Locatelli et al. (2015).

To increase the detection rates, the number of constraints (i.e. of assimilated data, either from satellite or from surface

sites) should be increased, as shown by the regional differences between the two surface-based inversions (e.g. Africa versus30

Tropical regions and China) and between the satellite based inversions (more IASI observations over China and India than

GOSAT ones). To increase the robustness of the attribution of flux anomalies to a particular region, transport models should be

improved together with the consistency of error statistics prescribed for flux and observations (Berchet et al., 2015).Defining

smaller regions, as tested here in Amazonia, may also improve the detection of anomalies in small key-areas with intense
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methane emissions. The joint assimilation of surface and satellite observations could be a solution to better constrain the

surface methane fluxes, if the consistency between surface and remote sensed data can be improved (Locatelli et al., 2015;

Monteil et al., 2013). Cloud cover and aerosol layers may limit the observability of key regions such as China and India.

Solar based satellite instruments also provide limited data at high latitudes. The future space mission MERLIN, based on a

differential LIDAR measurement with a very small spot on the ground, is less sensitive to cloud cover and does not need light5

to provide data (Kiemle et al., 2014). In this context, MERLIN seems a promising mission to improve some of the limitations

raised in this paper.
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Figure 1. Surface sites from the NOAA, CSIRO, NIWA and EC networks used in this study with red circles for surface sites observing MCF

dry air mole fractions and blue squares for surface sites observing CH4 dry air mole fractions.

Figure 2. Regions on the model grid, adapted to key-area for methane fluxes.
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Figure 3. Number of detected seasons over the 12 possible for winter (JFM, blue), spring (AMJ, green), summer (JAS, red) and fall (OND,

orange) in the various regions. 16
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Figure 4. Noise by the three observing systems (bars) and box plots (median, 25 and 75%) for the signal in various areas (latitudinal bands

and regions). Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box plot which lay outside the

matching colored bar.

Figure 5. Impact of temporal agregation on noise and signal over 3-year time-windows. Link to Table 3: the Global lines of the Table

corresponds to the 3Y bars here.
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Figure 6. Impact of temporal agregation on noise and signal over 3-year time-windows. Link to Table 3: the TropN lines of the Table

corresponds to the 3Y bars here.

Figure 7. Impact of temporal agregation on noise and signal over 3-year time-windows. Link to Table 3: the Amazonia lines of the Table

corresponds to the 3Y bars here.
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Figure 8. Signal (Tg) for the four 3-year time-windows at the pixel scale.
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Figure 9. Impact of spatial aggregation in Amazonia: from a unique pixel to larger rings around it.
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Table 1: Detection of the signal consisting in the anomalies at the "seasonal" time-scale i.e. quarters of the year (JFM, AMJ,

JAS, OND). The signal is the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and the 2004-2005

average from REFSURF. The noise is computed at the quarter time-scale from each of the three observation systems, GOSAT,

IASI and SURF. See Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X%(YY/ZZ) where X% is the

percentage of quarterly anomalies detected (among 48 possible), YY is the number of positive anomalies detected among the

ZZ detected anomalies. Column "Ave. mass" indicates the average emitted mass of CH4 over 2004-2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 97%(24/47) 93%(22/45) 93%(22/45)

BorN 18 50%(12/24) 50%(12/24) 52%(13/25)

MidN 177 87%(18/42) 54%(12/26) 81%(16/39)

TropN 194 91%(24/44) 79%(20/38) 81%(21/39)

TropS 115 25%(10/12) 22%(10/11) 10%(05/05)

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 97%(23/47) 52%(13/25) 87%(18/42)

USA 37 20%(09/10) ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 08%(01/04) 02%(00/01) ∅

SouthSAm 30 06%(03/03) ∅ ∅

NorthAfrWest 13 16%(08/08) ∅ 04%(02/02)

NorthAfrEast 11 20%(10/10) 06%(03/03) 02%(01/01)

AfrEquat 32 35%(17/17) 20%(10/10) 04%(02/02)

SouthernAfr 10 04%(00/02) ∅ ∅

Europe 33 14%(07/07) 04%(02/02) 14%(07/07)

EastEurRussia 30 45%(12/22) 08%(04/04) 22%(11/11)

MiddleEast 16 14%(04/07) ∅ ∅
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Table 1: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time-scale.

Region Ave. mass (Tg) GOSAT IASI SURF

SiberianLowlands 8 47%(12/23) 12%(06/06) 35%(12/17)

SiberianHighlands 5 22%(11/11) 06%(03/03) 22%(11/11)

FarEastSib 1 16%(08/08) 16%(08/08) 16%(08/08)

CentralAsia 28 33%(09/16) 02%(01/01) 18%(06/09)

India 50 62%(13/30) 50%(12/24) 35%(12/17)

China 64 43%(11/21) 10%(03/05) 31%(09/15)

Indonesia 36 06%(03/03) 16%(07/08) 06%(03/03)

AustrNZ 6 02%(01/01) ∅ 02%(01/01)
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Table 2: Detection of the signal consisting in the anomalies at the yearly time-scale. The signal is the difference between each

year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from REFSURF. The noise is computed at the

yearly time-scale from each of the three observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3 for

details. In each cell of the Table, we show X%(YY/ZZ) where X% is the percentage of yearly anomalies detected (among 12

possible), YY is the number of positive anomalies detected among the ZZ detected anomalies. Column "Ave. mass" indicates

the average emitted mass of CH4 over 2004-2005 in the area.

Region Ave. mass (Tg) Gosat Iasi Surf

Global 517 83%(08/10) 75%(08/09) 58%(07/07)

BorN 18 08%(01/01) ∅ 08%(01/01)

MidN 177 66%(07/08) ∅ ∅

TropN 194 58%(06/07) 41%(05/05) 50%(06/06)

TropS 115 25%(03/03) 33%(04/04) 16%(02/02)

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 ∅ ∅ ∅

USA 37 ∅ ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 ∅ ∅ ∅

SouthSAm 30 08%(01/01) ∅ ∅

NorthAfrWest 13 41%(05/05) 33%(04/04) 41%(05/05)

NorthAfrEast 11 50%(06/06) 25%(03/03) 08%(01/01)

AfrEquat 32 41%(05/05) 33%(04/04) 33%(04/04)

SouthernAfr 10 ∅ ∅ ∅

Europe 33 16%(02/02) 08%(01/01) 16%(02/02)

EastEurRussia 30 ∅ ∅ ∅

MiddleEast 16 58%(04/07) ∅ ∅
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Table 2: (continued) Detection of the signal consisting in the anomalies at the yearly time-scale.

Region Ave. mass (Tg) Gosat Iasi Surf

SiberianLowlands 8 ∅ ∅ ∅

SiberianHighlands 5 08%(01/01) 08%(01/01) 08%(01/01)

FarEastSib 1 25%(03/03) 25%(03/03) 25%(03/03)

CentralAsia 28 08%(00/01) ∅ ∅

India 50 ∅ ∅ ∅

China 64 ∅ ∅ 16%(00/02)

Indonesia 36 16%(02/02) 25%(02/03) 16%(02/02)

AustrNZ 6 16%(02/02) ∅ ∅
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Table 3: Detection of the signal consisting in the anomalies at the 3-yearly time-scale. The signal is the difference between

each 3-year time-window in the 2000-2011 period (2000-2002, 2003-2005, 2006-2008, 2009-2011) and the 2004-2005 average

from REFSURF. The noise is computed at the 3-yearly time-scale from each of the three observation systems, GOSAT, IASI

and SURF. See Section 2.4 and Section 2.3 for details.

In each cell of the Table, we show whether a positive anomaly, a negative anomaly or no anomaly is detected and with which

signal-to-noise ratio: positive anomaly detected: +++ = with stn ratio > 3, ++= stn ratio > 2 and + = stn ratio > 1; negative

anomaly detected with - -= stn ratio <-2, - = stn ratio <-2,∅ = no anomaly detected.

The number below the name of the area is the average emitted mass of CH4 over 2004-2005 in the area.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Global Gosat ∅ + +++ +++

517 Iasi ∅ + +++ +++

Surf ∅ ∅ +++ +++

BorN Gosat ∅ ∅ ∅ ∅

18 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MidN Gosat - ∅ ++ ++

177 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ + +

TropN Gosat ∅ ∅ +++ +++

194 Iasi ∅ ∅ ++ ++

Surf ∅ ∅ +++ +++

TropS Gosat + ∅ ∅ +

115 Iasi + ∅ ∅ +

Surf + ∅ ∅ +

MidS Gosat ∅ ∅ ∅ ∅

12 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

BorS Gosat ∅ ∅ ∅ ∅

1 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

NorthAmBor Gosat - ∅ ∅ -

20 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

USA Gosat ∅ ∅ ∅ ∅

37 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

CentralAm Gosat ∅ ∅ ∅ ∅

17 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Amazonia Gosat ∅ ∅ ∅ ∅

38 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SouthSAm Gosat ∅ ∅ ∅ +

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ +

NorthAfrWest Gosat ∅ ∅ + ++

13 Iasi ∅ ∅ + ++

Surf ∅ ∅ + ++

NorthAfrEast Gosat ∅ ∅ +++ +++

11 Iasi ∅ ∅ + +

Surf ∅ ∅ + +

AfrEquat Gosat + ∅ +++ +++

32 Iasi ∅ ∅ ++ +++

Surf ∅ ∅ + ++

SouthernAfr Gosat ∅ ∅ ∅ ∅

10 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Europe Gosat + ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

33 Iasi + ∅ ∅ ∅

Surf + ∅ ∅ ∅

EastEurRussia Gosat ∅ ∅ ∅ ∅

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MiddleEast Gosat - - ∅ + ++

16 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianLowlands Gosat ∅ ∅ ∅ ∅

8 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianHighlands Gosat + ∅ ∅ ∅

5 Iasi ∅ ∅ ∅ ∅

Surf + ∅ ∅ ∅

FarEastSib Gosat ++ + ∅ +

1 Iasi + + ∅ ∅

Surf ++ + ∅ +

CentralAsia Gosat - ∅ ∅ ∅

28 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

India Gosat ∅ ∅ ∅ ∅

50 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

China Gosat - ∅ ∅ ∅

64 Iasi - ∅ + ∅

Surf - ∅ + +

Indonesia Gosat + ∅ + ∅

36 Iasi ++ ∅ ++ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Surf ∅ ∅ ∅ ∅

AustrNZ Gosat + ∅ ∅ ∅

6 Iasi + ∅ ∅ ∅

Surf + ∅ ∅ ∅
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Appendix A: Supplementary tables

Table 4: Yearly mean number of observations over the period used for the Monte-Carlo noise computation (10/2009-09/2010)

in the various regions for the three observing systems.

Region Area (x106km2) GOSAT IASI SURF

Global 510 32348 240084 1722

BorN 31 92 00 172

MidN 91 9060 00 556

TropN 126 14934 121756 602

TropS 128 6118 107148 156

MidS 95 2132 9078 140

BorS 37 00 00 96

NorthAmBor 14 194 00 00

USA 11 2516 2218 124

CentralAm 05 608 6328 24

Amazonia 07 802 3366 00

SouthSAm 10 1780 3068 24

NorthAfrWest 10 4986 4564 94

NorthAfrEast 07 3756 5148 00

AfrEquat 07 1394 3572 14

SouthernAfr 07 1488 3246 28

Europe 06 572 00 94

EastEurRussia 07 896 00 00

MiddleEast 06 2456 3748 26

SiberianLowlands 02 170 00 00
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Table 4: (continued) Yearly mean number of observations.

Region Area (x106km2) GOSAT IASI SURF

SiberianHighlands 05 126 00 00

FarEastSib 03 54 00 00

CentralAsia 12 3864 694 74

India 03 1180 4190 00

China 05 1164 4574 00

Indonesia 07 312 3324 26

AustrNZ 10 3308 4362 50
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Table 5: Detection of the signal consisting in the anomalies at the "seasonal" time-scale (JFM, AMJ, JAS, OND). The signal is

the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and the 2004-2005 average from PBSURF.

The noise is computed at the quarter time-scale from each of the three observation systems, GOSAT, IASI and SURF. See

Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where X% is the percentage

of quarterly anomalies detected, [±TT] is the difference with REFSURF (Table 1), ±YY is the difference in the number of

positive anomalies detected compared to REFSURF and ±ZZ is the difference in the total number of detected anomalies

compared to REFSURF. Ave. mass= average emitted mass of CH4 over 2004-2005.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 93 [-4] (-11/-2) 75 [-18] (-10/-9) 85 [-8] (-10/-4)

BorN 18/17 87 [+37] (0/+18) 81 [+31] (0/+15) 87 [+35] (-1/+17)

MidN 177/172 83 [-4] (-6/-2) 50 [-4] (0/-2) 77 [-4] (-4/-2)

TropN 194/165 64 [-27] (-12/-13) 37 [-42] (-8/-20) 39 [-42] (-9/-20)

TropS 115/120 43 [+18] (+7/+9) 43 [+21] (+7/+10) 27 [+17] (+7/+8)

MidS 12/25 10 [+10] (+2/+5) 10 [+10] (+2/+5) 14 [+14] (+3/+7)

BorS 1/0 97 [+97] (+23/+47) 10 [+10] (0/0) 91 [+91] (+20/+44)

NorthAmBor 20/8 54 [-43] (-11/-21) 27 [-25] (-1/-12) 39 [-48] (-6/-23)

USA 37/54 58 [+38] (+4/+18) 14 [+14] (+3/+7) 08 [+8] (+2/+4)

CentralAm 17/13 12 [+12] (+6/+6) 25 [+25] (+11/+12) 10 [+10] (+5/+5)

Amazonia 38/31 47 [+39] (+17/+19) 35 [+33] (+14/+16) 08 [+8] (+3/+4)

SouthSAm 30/45 47 [+41] (+12/+20) 25 [+25] (+5/+12) 25 [+25] (+5/+12)

NorthAfrWest 13/13 58 [+42] (+4/+20) 25 [+25] (+12/+12) 25 [+21] (+10/+10)

NorthAfrEast 11/12 97 [+77] (+2/+37) 29 [+23] (+9/+11) 25 [+23] (+11/+11)

AfrEquat 32/33 25 [-10] (-14/-5) 14 [-6] (-8/-3) 00 [-4] (-2/-2)

SouthernAfr 10/14 52 [+48] (+10/+23) 37 [+37] (+9/+18) 25 [+25] (+7/+12)

Europe 33/33 31 [+17] (-7/+8) 08 [+4] (-2/+2) 37 [+23] (-7/+11)
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Table 5: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time-scale.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 47 [+2] (-1/+1) 04 [-4] (-2/-2) 18 [-4] (-3/-2)

MiddleEast 16/14 00 [-14] (-4/-7) 00 [0] (0/0) 00 [0] (0/0)

SiberianLowlands 8/14 97 [+50] (0/+24) 64 [+52] (+6/+25) 91 [+56] (0/+27)

SiberianHighlands 5/4 25 [+3] (0/+1) 22 [+16] (+8/+8) 25 [+3] (0/+1)

FarEastSib 1/2 87 [+71] (+4/+34) 72 [+56] (+4/+27) 83 [+67] (+4/+32)

CentralAsia 28/32 37 [+4] (+3/+2) 02 [0] (0/0) 31 [+13] (+5/+6)

India 50/45 22 [-40] (-7/-19) 02 [-48] (-11/-23) 00 [-35] (-12/-17)

China 64/46 00 [-43] (-11/-21) 00 [-10] (-3/-5) 00 [-31] (-9/-15)

Indonesia 36/33 20 [+14] (+4/+7) 31 [+15] (+5/+7) 08 [+2] (+1/+1)

AustrNZ 6/6 06 [+4] (+1/+2) 00 [0] (0/0) 06 [+4] (+1/+2)
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Table 6: Detection of the signal consisting in the anomalies at the yearly time-scale. The signal is the difference between

each year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from PBSURF. The noise is computed at

the yearly time-scale from each of the three observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3

for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where X% is the percentage of yearly anomalies

detected, [±TT] is the difference with REFSURF (Table 2),±YY is the difference in the number of positive anomalies detected

compared to REFSURF and ±ZZ is the difference in the total number of detected anomalies compared to REFSURF. Ave.

mass= average emitted mass of CH4 over 2004-2005.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 75 [-8] (0/-1) 66 [-9] (0/-1) 50 [-8] (-1/-1)

BorN 18/17 41 [+33] (+4/+4) 00 [0] (0/0) 41 [+33] (+4/+4)

MidN 177/172 25 [-41] (-6/-5) 00 [0] (0/0) 00 [0] (0/0)

TropN 194/165 16 [-42] (-4/-5) 00 [-41] (-5/-5) 08 [-42] (-5/-5)

TropS 115/120 50 [+25] (+3/+3) 66 [+33] (+3/+4) 41 [+25] (+3/+3)

MidS 12/25 08 [+8] (+1/+1) 33 [+33] (+1/+4) 00 [0] (0/0)

BorS 1/0 00 [0] (0/0) 00 [0] (0/0) 00 [0] (0/0)

NorthAmBor 20/8 41 [+41] (+5/+5) 08 [+8] (+1/+1) 16 [+16] (+2/+2)

USA 37/54 16 [+16] (0/+2) 16 [+16] (0/+2) 00 [0] (0/0)

CentralAm 17/13 00 [0] (0/0) 25 [+25] (+3/+3) 00 [0] (0/0)

Amazonia 38/31 50 [+50] (+6/+6) 58 [+58] (+7/+7) 08 [+8] (+1/+1)

SouthSAm 30/45 33 [+25] (+2/+3) 25 [+25] (+2/+3) 25 [+25] (+2/+3)

NorthAfrWest 13/13 00 [-41] (-5/-5) 00 [-33] (-4/-4) 00 [-41] (-5/-5)

NorthAfrEast 11/12 00 [-50] (-6/-6) 00 [-25] (-3/-3) 00 [-8] (-1/-1)

AfrEquat 32/33 08 [-33] (-5/-4) 00 [-33] (-4/-4) 00 [-33] (-4/-4)

SouthernAfr 10/14 25 [+25] (+2/+3) 16 [+16] (+1/+2) 00 [0] (0/0)

Europe 33/33 50 [+34] (-2/4) 41 [+33] (-1/4) 50 [+34] (-2/4)

33

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-234, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 18 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 6: (continued) Detection of the signal consisting in the anomalies at the yearly time-scale.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 16 [+16] (+1/+2) 00 [0] (0/0) 00 [0] (0/0)

MiddleEast 16/14 00 [-58] (-4/-7) 00 [0] (0/0) 00 [0] (0/0)

SiberianLowlands 8/14 25 [+25] (+2/+3) 00 [0] (0/0) 16 [+16] (+1/+2)

SiberianHighlands 5/4 00 [-8] (-1/-1) 00 [-8] (-1/-1) 00 [-8] (-1/-1)

FarEastSib 1/2 08 [-17] (-2/-2) 00 [-25] (-3/-3) 08 [-17] (-2/-2)

CentralAsia 28/32 00 [-8] (0/-1) 00 [0] (0/0) 00 [0] (0/0)

India 50/45 08 [+8] (0/+1) 08 [+8] (0/+1) 00 [0] (0/0)

China 64/46 00 [0] (0/0) 00 [0] (0/0) 00 [-16] (0/-2)

Indonesia 36/33 50 [+34] (+3/+4) 66 [+41] (+4/+5) 25 [+9] (+1/+1)

AustrNZ 6/6 16 [0] (-1/0) 08 [+8] (0/+1) 08 [+8] (0/+1)
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