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Abstract. A Bayesian inversion system is used to evaluate the capability of the current global surface network and of the space-

borne GOSAT/TANSO-FTS and IASI instruments to quantify surface flux anomalies of methane at various spatial (global,

semi-hemispheric and regional) and time (seasonal, yearly, 3-yearly) scales. The evaluation is based on a signal-to-noise ratio

analysis, the signal being the methane fluxes inferred from the surface-based inversion from 2000 to 2011 and the noise

(i.e. precision) of each of the three observing systems being computed from the Bayesian equation. At the global and semi-5

hemispheric scales, all observing systems detect flux anomalies at most of the tested time scales. At the regional scale, some

seasonal flux anomalies are detected by the three observing systems, but year-to-year anomalies and longer-term trends are

only poorly detected. Moreover, reliably detected regions depend on the reference surface-based inversion used as the signal.

Indeed, tropical flux inter-annual variability, for instance, can be attributed mostly to Africa in the reference inversion or spread

between tropical regions in Africa and America. Our results show that inter-annual analyses of methane emissions inferred by10

atmospheric inversions should always include an uncertainty assessment and that the attribution of current trends in atmospheric

methane to particular regions needs increased effort, for instance gathering more observations (in the future) and improving

transport models. At all scales, GOSAT generally shows the best performance of the three observing systems.

1 Introduction

As the second most important anthropogenic greenhouse gas after carbon dioxide in terms of radiative forcing, methane (CH4)15

is an important climate driver. Monitoring atmospheric CH4 concentrations and their driving emissions are therefore primary

research objectives for Earth observation science. These two objectives are combined in atmospheric inversion systems. Such

systems infer the space-time variations of the global or regional emissions from the assimilation of observations of atmo-

spheric mole fractions into chemistry-transport models (CTMs) (Houweling et al., 1999; Bergamaschi et al., 2007; Bousquet

et al., 2011; Pison et al., 2013). For these systems, explaining the trends of CH4 concentrations, such as their stability between20

2000 and 2006 and their later increase (Kirschke et al., 2013), is a major scientific objective. Despite considerable efforts in

developing observing systems at the Earth’s surface, in the atmosphere and from space, the inferred fluxes are associated with

large uncertainties. This still allows diverging interpretations of the trends, depending on which CTM is used or on how the in-

1



version set-up is defined (Bousquet et al., 2006, 2011; Rigby et al., 2008; Dlugokencky et al., 2009; Bergamaschi et al., 2013).

In principle, the Bayesian framework should reconcile all well-tuned inversion systems because it characterizes the uncertainty

of each inversion product at all space-time scales, thereby weighting each scenario suggested by the inversion approach. In

practice, posterior uncertainties are often difficult to compute and are also affected by mis-specified prior or observation un-

certainties (Berchet et al., 2015). In a previous study, Cressot et al. (2014) applied objective tuning methods imported from5

Numerical Weather Prediction (Desroziers et al., 2005) within a robust Monte-Carlo approach to optimize the input error co-

variance matrices of a global CH4 inversion system. Here, we use their results as a starting point to characterize the uncertainty

of the year-to-year variations of the inferred fluxes at various temporal (e.g. seasonal, annual, 3-yearly, monthly) and spatial

(global, latitudinal bands, large regions) scales in order to document which anomaly signals from the inversions are reliable

and which are not within our framework. To do so, three different global CH4 observation systems are considered: surface10

sites from various global networks (flasks and continuous), the space-borne Infra-red Atmospheric Sounding Interferometer

(IASI) that provides a mid-to-upper-tropospheric column and the Thermal And Near infra-red Sensor for carbon Observation

- Fourier Transform Spectrometer (TANSO-FTS), that observes the total column from space. Using the flux anomalies of the

surface inversion as the signal, signal-to-noise ratios for different temporal and spatial scales are computed, the noise being

the uncertainty (precision) of the year-to-year changes of the inferred fluxes for each observing system. Signal-to-noise ratios15

are then considered as a statistical criterion to evaluate the ability of an observing system to retrieve the CH4 flux inter-annual

variability.

The paper is structured as follows. The theoretical framework and the different data sets are presented in Section 2. The

signal-to-noise ratios are presented in Section 3 and further discussed in Section 4.

2 Method20

2.1 Inversion Framework

Our inversion system is based on a variational formulation of Bayes’ theorem, as detailed by Chevallier et al. (2005), which

has been adapted to the inversion of CH4 fluxes by Pison et al. (2009). It allows inferring grid-point-scale fluxes, thereby

avoiding gross aggregation errors (Kaminski et al., 2001), while assimilating the large flow of satellite data at appropriate

observation times and locations. It ingests observations of CH4 mole fractions and prior information about the variables that25

are to be optimized, with associated error covariance matrices. Bayesian error statistics of the inferred variables are computed

from a Monte-Carlo ensemble of inversions which is consistent with the assigned prior and observation errors (Chevallier

et al., 2007). The inversion system includes the LMDz transport model of Hourdin et al. (2006) at resolution 3.75◦× 2.5◦

(longitude x latitude) for 19 vertical levels nudged to ECMWF analysed winds in its on-line mode. We use here its off-line

mode that exploits the output variables of the on-line version. We couple it to a simplified chemistry module to represent the30

interactions between CH4 and the hydroxyl radical (OH), its main sink in the atmosphere, and between methyl chloroform

(MCF) and OH. Note that the loss due to chlorine in the marine boundary layer is not implemented yet in this model. When

it assimilates both CH4 and MCF mole fractions, as is done here, it synergistically optimizes both CH4 surface sources at
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weekly and model grid resolution and OH at weekly resolution over 4 latitude bands (-90/-30, -30/0, 0/30, 30/90). This set-

up therefore dynamically distinguishes between CH4 net surface emissions (soil uptake included) and atmospheric loss. The

system iteratively minimizes the Bayesian cost function (made non-quadratic by the non-linear chemistry) using the M1QN3

algorithm (Gilbert and Lemaréchal, 1989).

This system is applied here to assimilate data from each one of three CH4 observing systems together with data from a MCF5

observing system (to constrain OH concentrations), in the configuration used by Cressot et al. (2014). The reader is referred

to Cressot et al. (2014) for a detailed description of this configuration. It is important here to recall that the prior fluxes (fires

excepted) have no inter-annual variability (IAV). This choice is made for IAV to be generated by atmospheric observations

and atmospheric transport and chemistry and not by prior IAVs of emissions (and sinks) which are still uncertain or even

controversial (e.g. Schaefer et al. (2016); Hausmann et al. (2016); Nisbet et al. (2014)).10

Two types of inversions are presented in this study:

– a reference inversion (hereafter called REFSURF) using CH4 and MCF surface measurements from December 1999 to

December 2011

– three ensembles of inversions (see Section 2.3 for the use of these), one using surface measurements only (called SURF

hereafter), one using IASI data and MCF observations only (called IASI hereafter) and one using TANSO-FTS data15

and MCF observations only (called GOSAT hereafter, from the name of the platform, Greenhouse gases Observing

SATellite); each ensemble consists of ten one-year inversions from 10/2009 to 09/2010, with respective inversion set-ups

tuned according to an objective analysis described in Cressot et al. (2014).

For all inversions, the minimization of the non-quadratic cost function is stopped when the ratio of the final to the initial

norm of the gradient is less than 0.01.20

2.2 Data sets

In order to have continuous and homogeneous surface data throughout the extended assimilation window of REFSURF, we

restrict the methane site list to 36 instead of 49 as used in Cressot et al. (2014). They come from the National Oceanic

and Atmospheric Administration (NOAA) global cooperative air sampling network (Dlugokencky et al., 1994, 2009), the

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Francey et al., 1999) and the National Institute of25

Water and Atmospheric Research (NIWA) (Lowe et al., 1991). We also use station Alert (ALT) from Environment Canada

(EC) (Worthy et al., 2009). MCF measurements are provided by 11 NOAA surface sites (Montzka et al., 2011) and are used to

constrain OH concentrations (Pison et al., 2009). The surface sites used in our inversions are presented in Figure 1.

We use observations of the mid-to-upper tropospheric CH4 column made by IASI, a thermal interferometer on-board the

Meteorological Operational (MetOp) satellites. This quantity is retrieved based on a non-linear inference scheme (Crevoisier30

et al., 2009) within 30 degrees of the Equator over both land and ocean at about 09:30 a.m./p.m. local time, with an accuracy

of 1.2% (≈20 ppb).
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Last, we use observations of the CH4 atmospheric total column over land from TANSO-FTS, a near-infra-red spectrometer

on-board GOSAT. Total columns are retrieved by optimal estimation using the algorithm of Parker et al. (2011) and with a

precision of 0.6% (≈10 ppb).

The averaging kernel or weighting function and the prior profile (when available) of each IASI or TANSO-FTS retrieval are

directly accounted for in the inversion system following Connor et al. (2008).5

2.3 Error statistics

The error statistics are described in detail in Cressot et al. (2014). For the fluxes, the spatial correlations are defined by e-folding

lengths of 500 km over land and 1000 km over ocean (no correlation between land and ocean); time correlations are defined

by an e-folding length of 2 weeks: it was checked that these choices lead to a budget uncertainty which is consistent with the

uncertainty of bottom-up inventories as described in Kirschke et al. (2013).10

The input error statistics for the prior and the observations are tuned using objective diagnostics as described by Cressot et al.

(2014). This means that they exhibit some objectivity that is seen to translate into realistic Bayesian posterior error statistics,

which in particular make all present inversions statistically consistent at the annual and global or regional scales (Cressot et al.,

2014).

In order to keep the computational burden to a reasonable level, we compute the posterior error statistics from a Monte-15

Carlo inversion ensemble of 10 times one year for each of the three observing systems (ensembles GOSAT, IASI and SURF as

described in Section 2.1).

The posterior error statistics (the "noise" for our study) are estimated as follows:

– we estimate the ratio of posterior to prior standard deviations of the annual flux errors r = σa

σb
from the ensemble, a

quantity which is more robust than σa and σb individually for small ensembles (because some of the underspread affects20

the prior and the posterior in a similar way); the number of members in the ensemble depends on the time scale e.g. 10

members for the yearly time scale (10 inversions, each one covering 1 year), 120 members for the monthly time scale

– we estimate the posterior standard deviations of the annual flux errors by multiplying r to the known value of σb i.e. the

one implied by our error covariance matrix (computed from the above assumptions)

– the posterior standard deviations of the pluri-annual flux errors errors for n years is obtained by applying a factor of 1√
n

25

to the previous result, assuming that the errors are uncorrelated from one year to the next

– the posterior standard deviations of the difference between fluxes from one year to the next (i.e. the error on the IAV

for two consecutive years) is computed by applying an inflation factor of
√
2 to the previous result, still assuming that

the errors are uncorrelated from one year to the next. We assume this approach to be a conservative hypothesis since in

reality some of the transport and retrieval errors are recurrent, thereby inducing positive correlations and reducing the30

inflation factor.
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The variability of CH4 concentrations depends on the oxidizing capacity of the atmosphere, which is largely controlled

by OH concentrations. Since OH concentrations are constrained through MCF data in our multi-species inversion system

(Section 2.1), the uncertainty on OH (≈5% after optimization) is accounted for in the uncertainty of the inferred CH4 emissions

and of their inter-annual variations.

At a given space-time scale, the differences between the posterior errors of the three observing systems are mainly due5

to the constraints that each observing system brings on the flux estimates. This in turn is linked to the number of data, to

their distribution in time and space, and also to their sensitivity to methane surface fluxes and to their uncertainty. It may also

depends on the ability of the transport model to properly represent the various data.

2.4 Evaluation criterion

CH4 regional flux anomalies are defined here as the deviation from a reference of the CH4 inferred fluxes for various time10

periods, from the monthly to the 3-yearly scale. The reference is the 2004-2005 mean over the same time-period. The aim of

this definition is to get the order of magnitude of the year-to-year changes at various time scales. As the 2004-2005 reference

corresponds to a period of minimum atmospheric methane growth rate (Dlugokencky et al., 2011), it leads to more positive

anomalies for the longer time scales. The regional scale is based on the regions shown in Figure 2 and large latitudinal bands

are defined as BorN for latitudes higher than 60 degrees North, MidN between 30 and 60 degrees North, TropN between 0 and15

30 degrees North, TropS between 0 and 30 degrees South, MidS between 30 and 60 degrees South and BorS higher than 60

degrees South. We study various spatial and temporal scales of inferred flux anomalies.

Our criterion consists in evaluating the ability of the observing systems to detect CH4 anomalies of a given amplitude,

defined by the reference inversion. For this, we define a signal-to-noise ratio:

– the inversion with surface measurements is chosen to provide the signal as the data covers a long time window (2000-20

2011) as compared to the two other observing systems. This longer window makes it possible to sample the CH4 IAV

more robustly than a 2-3 year inversion. We assume that the fluxes inferred by this inversion are representative of state-

of-the art inversions currently published. The signal is actually the CH4 anomalies for the various time scales derived

from REFSURF.

– for the three observing systems (SURF, IASI and GOSAT), the Bayesian posterior errors of the year-to-year changes25

of CH4 fluxes, computed from the Monte-Carlo ensemble as described in Section 2.3, constitute the noise associated to

each observing system.

Finally, the criterion for detecting CH4 anomalies is that the signal-to-noise ratio is larger than 1 (≈68% confidence).

Comparing signal-to-noise ratios amounts to comparing noises normalized by the expected signals. The normalization pro-

vides an absolute criterion to assess the time scales and regions at which the CH4 anomalies are reliable. However, the quality30

of the chosen signal remains debatable and our diagnostic for GOSAT and IASI may be pessimistic in areas where SURF

signal-to-noise ratio is low.
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In the following, the presentation of the results is done for three time scales (seasonal, yearly, and 3-yearly trends) before

assessing their sensitivity to temporal and spatial aggregations.

3 Results: signal-to-noise ratios

3.1 Seasonal-scale detection

The signal-to-noise ratios are computed over three-month periods (JFM, AMJ, JAS and OND, hereafter referred to as "seasons"5

for simplicity) from 2000 to 2011 i.e. 48 occurrences (12 JFM, 12 AMJ, 12 JAS and 12 OND).

The three observing systems are able to detect almost all anomalies at the global scale (Table 1). As expected, the fraction

of detected anomalies decreases with the spatial scale. At the global scale, 91 to 93% of the flux anomalies are detected

depending on the observing system (Table 1). At semi-hemispheric scales (excluding MidS and BorS areas), this range is of

0-87% (median = 49.5%), GOSAT having the best range (8-87%) compared to IASI (12-60%) and SURF (0-66%). The lack10

of detection in MidS and BorS is not significant considering the small methane fluxes involved. At the regional scale, the

detection range is 0-79% (median = 4%), with large contrasts. Again the range is more favourable for GOSAT (0-79%, median

= 7%) than for SURF (0-75%, median = 3%) and IASI (0-72%, median = 0%). Anomalies in the USA, Central America

[CentralAm], temperate Africa [SouthernAfr], Middle East and Australia&New-Zealand [AustrNZ] are not detected by any of

the three observing systems. GOSAT is the only one of the three observing systems to detect any anomaly in temperate South15

America [SouthSAm] and northern Africa [NorthAfrWest, NorthAfrEast].

At the seasonal time scale, large signals are caused by various processes, depending on the emitting area. At high northern

latitudes, a large seasonal cycle is expected for wetland emission areas, with mostly no emissions during winter and maximum

emissions during summer: this leads to four seasons very different from their average and therefore to large anomalies. The

detection rate is above 50% for the three observing systems in this region (Table 1), but, in contrast to the other regions and to20

the other time scales, the prior error statistics already lead to detection rates of 58% for the prior. This shows that the Tropical

IASI soundings do not add information for this region and at this time scale, as expected. GOSAT performs better by detecting

more than three quarters of the anomalies, about one third of which are in winter (Figure 3, due to almost null emissions when

the surface is snow-covered), one third in summer and one third in fall (Figure 3, due to maximum emissions in summer). Due

to a larger noise (≈1.5 Tg vs ≈1.2 Tg for GOSAT, Figure 4 [a]), SURF misses all springs (Figure 3. In the larger BorN area,25

only winter and summer are detected (Figure 3).

In the Tropics, some areas also have large seasonal variations, mainly due to biomass burning or rice-paddies. In AfrEquat,

some of the AMJ positive signals generated are detected by GOSAT and IASI (Figure 4 [a]). Note that SURF performs poorly

in this area (Table 1), due to the lack of stations which leads to large noise (≈3.3 Tg, Figure 4 [a]). In India and China,

rice-paddy practices lead to a seasonal cycle of methane emissions with a maximum in JAS and a minimum in JFM (Matthews30

et al., 1991). The three systems detect anomalies in JFM and JAS (Figure 3) with consistent signs (≈ half positive, half negative

anomalies) for GOSAT, negative anomalies preferentially detected by IASI and SURF (Table 1).
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3.2 Yearly-scale detection

The signal-to-noise ratios are computed for each year from 2000 to 2011 i.e. 12 occurrences. At the yearly scale, detection

rates are smaller than at the seasonal scale, at all spatial scales. Note that most anomalies are positive since the reference for

computing the signal is 2004-2005 i.e. the period of global minimum over 2000-2011. At the global scale, detection rates range

from 58% to 75% (Table 2). The Boreal zone [BorN] is not detected whereas the Tropics [TropN and TropS] remain the best5

detected zone (16-50%). At the regional scale, the detection rates range between 0 and 33% with a median of 0%: the only

regions above 25% of detection are tropical Africa [AfrEquat] and NorthAfrWest for GOSAT. No detection is obtained in key

regions for methane emissions such as Amazonia (except GOSAT at 8%), India, China and North America [NorthAmBor,

USA].

The differences between the three observing systems are larger at the yearly scale than at the seasonal scale: GOSAT and10

IASI detect 75% of the 12 possible global occurrences versus 58% for SURF (Table 2). At the regional scale, GOSAT detects

more anomalies than the two other systems. Indeed, GOSAT noises are smaller than the two other systems (<3.5 Tg in

AfrEquat for GOSAT against >3.5 Tg for IASI and >5.8 for SURF; <2.5 Tg in NorthAfrWest for GOSAT against > 4.7 Tg

for IASI and SURF). This is partly due to the large number of data available in these two regions (Table 4): with NorthAfrEast,

NorthAfrWest has the largest number of GOSAT and IASI data, mainly because it is among the driest areas i.e. with the lowest15

cloud cover. In agreement with the intuition of Bergamaschi et al. (2013) that performing gross averages makes it possible to

extract a signal from the inversion, the detection is enhanced in the latitudinal bands e.g. detection rates ≥25% in TropN for

GOSAT and SURF. But it remains difficult to robustly extract yearly flux anomalies. Therefore, we now focus our analysis on

longer time scales, with a longer time aggregation of three years, to get hints at the longer trends in methane emissions.

3.3 Trend detection over 2000-201120

To study the detection of flux long-term trend over 12 years, a compromise has to be found between the rather short length of

this time window and the time aggregation of fluxes, which needs to filter out year-to-year changes. Aggregating through time

while still retaining a small enough resolution to discuss trends over 2000-2011, we define four time windows of three years

each: 2000-2002, 2003-2005, 2006-2008 and 2009-2011. The reference period for the definition of the anomalies of each of

these four periods is still 2004-2005 (Section 2.4).25

At the global scale, the emissions have slowly decreased from 2000 to 2005, with a global minimum in 2004-2005, then

increased at a larger rate after 2006 (Kirschke et al., 2013). The three observing systems are able to detect the large positive

anomalies after 2006 and detect nothing before (Table 3). The three observing systems are able to detect the same temporal

evolution of the signal in TropN and TropS. Only GOSAT and SURF detect MidN anomalies; the lower detection by IASI

at these latitudes is expected since the data used here are only within ±30 degrees of the Equator (Table 4: no IASI data in30

MidN). The signal in BorN is never detected. This is consistent with the recent increase of methane global emissions coming

mostly from the Tropics and to a lesser extent from the northern mid-latitudes, as suggested by Bergamaschi et al. (2013) and

Nisbet et al. (2014).
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Being able to detect anomalies at a smaller spatial scale could help attributing the changes in methane emissions to particular

processes. Unfortunately, even when aggregating 3 years together (instead of one as in Section 3.2), it is still difficult to detect

regional anomalies.

In TropN, among the regions with a good detection rate are NorthAfrWest and NorthAfrEast plus some of AfrEquat, the

remainder of this region being in TropS. In these regions, all three observing systems detect anomalies, even though GOSAT5

has the largest signal-to-noise ratios. Note that SURF seems to benefit from the stations located mostly on the coasts (only ASK

is actually inland). GOSAT is also able to detect negative (2000-2003) and positive (2006-2011) anomalies in the MiddleEast;

SURF is under the detection threshold because the available station in the region, WIS, is upwind the area and no other station

is available close enough downwind; the anomalies are not detected by IASI either because IASI weighting function peaks in

the mid-troposphere. In a region dominated by subsidence, like the MiddleEast, the altitude concentrations seen by IASI are10

not directly connected to the surface. The detection of surface variations in the fluxes is therefore poor, contrary to regions

dominated by convection like Indonesia, where IASI has the best detection rates. In Indonesia, IASI and GOSAT agree on

detectable positive anomalies in 2000-2002 and nothing detectable for 2003-2005 and 2009-2011. Indeed, no large El Niño

occurred during the first decade of the 21st century with the associated large fires such as those experienced in 1997-1998 or

more recently in 2015-2016 for instance (National Weather Service - Climate Prediction Center, 2016).15

Among the key-areas for methane emissions, signals in Amazonia (dominated by tropical wetlands) and in BorN, particularly

in SiberianLowlands (dominated by boreal wetlands in summer), remain undetectable by the three systems. In SiberianLow-

lands, the noises of the three systems are small (between 3.8 and 7.8 Tg [not shown]); in Amazonia, the noises of the satellites

are relatively small (≈6 and≈7 Tg resp. for GOSAT and IASI), whereas the noise of SURF, for which no stations are available

closer than ASC in the Atlantic, is ≈24 Tg (Figure 7, 3Y case). Nevertheless, all these anomalies remain smaller than the20

smaller noise, and are therefore not detectable in our framework. This is because the signal variability remains small after

inversion (less than 20% of the average mass over 2004-2005). Possible reasons for this are an actual low variability in these

regions for this period and the fact that the choice to limit IAV in the prior emissions to biomass burning together with the lack

of constraints from the atmosphere lead the inferred fluxes to stick to the low-IAV prior.

3.4 Detection at other time scales25

As shown previously, the temporal scale at which the signal and noise are computed has an impact on the detection: 3-monthly

("seasonal", Section 3.1) and yearly (year-to-year changes, Section 3.3) time scales over a 12-year time window; 3-yearly time

scale in 3-year time windows (trend, Section 3.3). We investigate the impact of the time scale of flux aggregation within the 3-

year time windows of Section 3.3 on the noise and the signal for three areas: global (Figure 5), the northern Tropics (Figure 6)

and Amazonia (Figure 7). For each area, we perform time aggregations from 3-yearly to monthly scales, the 3-yearly case30

corresponds to the results commented in Section 3.3 about trend. At all spatial scales, the noises and signals are smaller when

the time scale is smaller (from 3-yearly to monthly). As expected for emissions with "seasonal" cycles, the seasonal scale (4-

or 3-monthly) is particularly detected (Figure 5, Figure 6) in our relatively large areas.
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In key-region Amazonia (Figure 7), no signal is detected at the 3-yearly time scale nor at the monthly time scale by any of

the three systems; only GOSAT detects about 8% of the anomalies at the yearly time scale. Actually, the time scale at which

the best detection rates are found depends on the region and varies from the largest possible (3-year scale) to the 2-month scale.

In Africa [NorthAfrWest, NorthAfrEast, AfrEquat, SouthernAfr], the best detection rates are obtained at the 3-year scale by

all three systems, as in Europe, Indonesia and Australia&New-Zealand [AustrNZ]. In the North of Eurasia [EastEurRussia,5

SiberianLowlands, SiberianHighlands, FarEastSib], the best detection rates range from the 3-yearly to the 3-monthly time

scales. In Central Asia, IASI obtains the best detection rates at the 2-monthly time scale. At high latitudes [NorthAmBor], the

best detection rates are found at the 2-monthly (SURF), 3-monthly (IASI) and 4-monthly (GOSAT) time scales (with 88 to

100% for GOSAT, up to 75% for IASI (but which is not better than the prior detection rate, see Section 3.1) and up to 77% for

SURF), which is consistent with seasonal cycles with a large magnitude over a short period of time in this region.10

In order to further understand the various levels of detection described above, we investigate the sensitivity of our results to

two main parameters of our set-up: spatial aggregation and signal used.

4 Sensitivity analysis

4.1 Impact of spatial aggregation on trend detection

Our inversion system solves for methane fluxes at model resolution (3.75◦x2.5◦) worldwide. Although spatial and temporal15

correlations are prescribed (see Section 2.3), flux anomalies of different signs may still be obtained. These anomalies may be

either the realistic result of the constraints or due to the optimization taking an easy path when too few constraints are available.

The definition of larger areas may lead to summing up anomalies of opposite signs and hide (realistic or not) spatial variations.

We try here to investigate the impact of the spatial aggregation of model pixels in the case of one illustrative region, Amazonia,

which is a key-area for methane emissions and remains poorly detected by all the studied observing systems at all time scales20

(see Section 3.4). In the region as defined on our model grid, the signal at the pixel scale is indeed patchy (Figure 8). Dipoles of

negative/positive signal are summed up when aggregating at region scale. The impact of the progressive aggregation of rings of

pixels from the center of Amazonia is displayed in Figure 9 for the 3-yearly time scale: the signal is detected by all systems for

the four 3-year periods up to the 3rd ring i.e. for a region covering 25 pixels instead of 66. It would then be possible to define

the regions based on the spatial aggregation that allows the best detection rates for the chosen observing system. Nevertheless,25

this may be inconsistent with users’ needs e.g. if they are expressed in terms of country-based budgets.

4.2 Impact of the signal on seasonal and yearly detection

Since the signal is obtained from one inversion only, it depends on a series of assumptions (error statistics, data selection, etc)

and may have large uncertainties in various areas (e.g. far from the observing stations). Another signal definition is therefore

tested. We choose an inversion by Bousquet et al. (2011), (called PBSURF hereafter) instead of the REFSURF inversion30
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described above. Like REFSURF, PBSURF covers enough years of analysis to be representative of the variability of methane

fluxes. The main differences between PBSURF and REFSURF are:

– PBSURF uses an analytical inversion whereas REFSURF is variational,

– because of this, PBSURF solves for methane fluxes for large regions whereas REFSURF works at the pixel scale,

– PBSURF retrieves monthly fluxes whereas REFSURF retrieves fluxes at a weekly resolution,5

– PBSURF solves for methane fluxes for several processes in each region whereas REFSURF solves for net emissions,

– as a consequence of the three previous points, the B matrices of the two inversions are quite different,

– PBSURF uses monthly means of the surface observations as constraints whereas REFSURF uses hourly data,

– because of this, the sets of surface stations used by PBSURF and REFSURF are different.

The large-region-scale inversion means that the spatial variability of the prior is kept within each region and is only scaled10

(contrary to REFSURF, which is performed at the pixel scale i.e. is able to vary only a few pixels to match the data). This

difference in the methods may lead to very different spatial variability in each of the regions of interest (Figure 4), a larger

variability allowing a better detection rate with our criterion. Indeed, the large-region-scale inversion may lead to larger vari-

ability than pixel-based inversions in some regions (e.g. (Pison et al., 2013)) because of the homothetic scaling of the pixels

composing each region in PBSURF (correlations between pixels of 1) as opposed to the individual scaling of model pixels with15

soft constraints in REFSURF (spatial correlations less than 1).

We first focus on the seasonal (3-monthly) scale, which is the time scale at which the detection is the most favourable in

the largest areas (Section 3.4) while being relevant for methane emissions at the regional scale defined here. The issue here is

not whether the two inversions agree on the retrieved fluxes but whether the detection rates differ. Europe illustrates how the

detection rates of two signals can differ: for GOSAT, signal PBSURF is more than twice as often detected as REFSURF and20

the signs of the detected anomalies are opposite (positive for REFSURF, mostly negative with PBSURF, Table 1 and Table 5:

less positive anomalies are detected for a larger total number of detected anomalies).

Signal PBSURF contains more negative anomalies than REFSURF at the global scale and in MidN and TropN. This is due to

the fact that the two years of global minimum in PBSURF are not 2004 and 2005 but 2004 and 2006, so that using 2004-2005 as

the reference period does not lead to mainly positive anomalies. For the three observing systems, detection is better with signal25

PBSURF in the Southern hemisphere Tropics (TropS). In the Northern hemisphere, at the regional scale, the detection rate

is shifted in longitude. NorthAmBor seasons are about 25% less often detected whereas up to 30 times more occurrences are

detected in SiberianLowlands, SiberianHighlands and FarEastSib. In SiberianLowlands and FarEastSib, the larger number is

due to negative signals for GOSAT and SURF. The same pattern is seen in the mid-latitudes where MiddleEast, India and China,

which are almost never detected with signal PBSURF (only India for GOSAT), versus NorthAfrWest and NorthAfrEast, in30

which mainly positive anomalies are detected (IASI and SURF) or both positive and negative anomalies (GOSAT). The regional
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scale in the Southern hemisphere confirms the better detection with signal PBSURF (Amazonia, SouthSAm, SouthernAfr). In

Amazonia, the (mainly positive) signals are detectable by GOSAT and IASI, but China (resp. India) is not any more (resp.

poorly) detectable using PBSURF.

At the yearly scale (Table 6), the detection rates are shifted to the South (from TropN and MidN to TropS). Detection rates

higher than 50% are found in Amazonia for GOSAT and IASI; in Europe for GOSAT.5

One important outcome of this sensitivity test to the signal is that some regional or hemispheric flux anomalies are detected

but the localization of the detected signal varies depending on the inversion characteristics (including the observations used).

This is of course one important limitation in attributing the observed atmospheric changes to particular regions and to the

underlying emission processes.

The impact of the signal on the detection of anomalies has also been tested by using a variational inversion at the pixel scale10

assimilating both surface and IASI data. With this signal, the detection rates are higher in the Tropics (particularly in India and

China) and in the Southern hemisphere at mid-latitudes [not shown]. This suggests that the joint assimilation of surface and

satellite data may lead to a better localization of the anomalies of the surface methane fluxes. Nevertheless, this requires that

the consistency between the two types of data (surface and remote-sensed) be improved (Locatelli et al., 2015; Monteil et al.,

2013).15

5 Conclusions

This study aimed at investigating the spatial and temporal scales of methane surface flux anomalies that current atmospheric

inversions can detect. To do so, we have proposed a signal-to-noise ratio analysis, the signal being the methane fluxes inferred

from a reference surface-based inversion from 2000 to 2011 and the noise being computed from three inversion systems using

surface or satellite data (GOSAT and IASI). At the global and semi-hemispheric scales, all observing systems detect flux20

anomalies at various time scales from seasonal (3-month average) to long-term trend (3-year average). At all scales, GOSAT

generally shows the best results among the different systems, as could be expected from the density of the data and their

sensitivity to surface emissions.

At the regional scale, the results are more variable. In 8 regions out of 20, anomalies are detected by the three networks; in

5 regions, no anomaly is detected by any of the three systems. The year-to-year changes are detected in 9 regions by GOSAT25

but with poor detection rates (lower than 40%). Longer term trends (three year averages) in African regions are detected with

variable rates by the three systems. In some key regions for the methane cycle, anomalies are hardly detected, both in the

case of dominant anthropogenic emissions (North America) or natural emissions (Amazonia, Siberian lowlands). A sensitivity

test to the spatial scale through aggregation shows that dipole effects in the retrieved flux anomalies prevent anomalies in

Amazonia (as defined in this study) to be detected. Flux anomalies in India and China, two areas with large and mixed (natural30

and anthropogenic) methane emissions, are generally poorly detected. A sensitivity test with a second signal, also obtained

from an inversion with surface constraints, shows that overall, the detection at a yearly scale remains poor to fair (>50% in

Amazonia for the test signal). These tests point at the importance of properly determining the spatial aggregation at which
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the inferred fluxes are used, with the issue that such an aggregation depends on the inversion system used. This suggests that

the ability of the inversions to retrieve significant inter-annual variations in the methane fluxes is not evident and should be

evaluated against uncertainties, which are not always computed and/or provided with the inversion products.

The use of another signal (which is from a different surface-based inversion) does not change the main conclusion that

anomalies at the regional scale are not well detected but shows that the regions which are not seen may be different: some5

yearly changes in Amazonia can be detected but tropical Africa is much less detected with the second signal. Therefore, the

precise identification of flux anomalies in the Tropics appears not to be robust with regard to changes in the inversion used for

the signal. This is of course an issue when attributing the increase observed in atmospheric methane since 2006 to a particular

region, as already noticed by Locatelli et al. (2015).

Our criterion is based on a 68% confidence interval (1 sigma). At almost all regional time-space scales (except in NorthAm-10

Bor, AfrEquat at the longer time-scales and a few cases in India, Indonesia, EastEurRussia and FarEastSib), the three observing

systems would fail the test at 2 sigmas (95%), a more stringent criterion commonly used in other scientific communities. We

also have neglected the impact of likely state-dependent systematic errors in current satellite retrievals and transport models

that further reduce the inversion performance to an unknown extent.

Overall, our study may appear to be pessimistic about the skill of current inversions at the regional scale. However, at least15

two elements put this view into perspective.

First, we focussed on the first decade of the XXIst century, a time period with relatively flat methane signals. Neither a strong

El Niño, nor a large volcanic eruption occurred, contrary to the previous decade (1990-1999). As an illustration, the methane at-

mospheric growth rate fluctuates from 2 to 16 ppb/yr in the 1990s (standard deviation of yearly annual increase of±4.5 ppb/yr)

as compared to -4 to +7 ppb/yr (standard deviation of yearly annual increase of ±3.5 ppb/yr) in the 2000s (Dlugokencky et al.,20

2011). This reduces methane flux anomalies and their detectability for a given noise. A time period with larger year-to-year

changes in the methane cycle could lead to an improved detectability.

Second, as mentioned in Section 2, we have been relatively conservative to estimate the noise, possibly leading to its overesti-

mation, therefore also limiting the detectability of methane flux anomalies.

Our work has several implications for methane inversions.25

First, inversion results should never be presented without an extensive uncertainty analysis to distinguish between robust and

more hypothetical results. This may seem obvious but such an analysis is not always provided, or only partially, in inversion

papers, mostly because of its computational cost.

Second, to increase the detection robustness, the information amount from the satellite data and from the surface sites should

be dramatically increased, as shown by the regional differences between the two surface-based inversions (e.g. Africa versus30

Tropical regions and China) and between the satellite based inversions. Defining smaller regions, as tested here in Amazonia,

may also improve the detection of anomalies in small key areas with intense methane emissions. An increase in the robustness

of the attribution of flux anomalies to a particular region goes with the improvement of the consistency of error statistics

prescribed for fluxes and observations (Berchet et al., 2015).

Third, as the regions robustly inferred depend on the assimilated datasets, but also on the transport model and inversion set-up,35
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it seems important to push for regular comparisons and syntheses of the various transport models and inversion systems, which

is at present the only way to approach the full range of uncertainty.

With time, the increase of observations in density, precision, and accuracy, if sustained by long-term funding of surface

networks and development of satellite instruments, together with the necessary improvement of transport models, should allow

to reduce uncertainties in methane flux estimates. The joint assimilation of surface and satellite observations could be a solution5

to further improve the constraint on methane surface fluxes, if the consistency between surface and remote sensed data can be

improved (Locatelli et al., 2015; Monteil et al., 2013; Cressot et al., 2014). Cloud cover and aerosol layers limit the observability

of key regions such as China and India or even Amazonia and induce systematic errors in passive satellite instruments (e.g.

Buchwitz et al. (2016)). Solar based satellite instruments also provide limited data at high latitudes. The future space mission

MERLIN, based on a differential active LIDAR measurement with a very small spot on the ground, should overcome these10

issues and provide data at all latitudes and all seasons (Kiemle et al., 2014). In this context, MERLIN seems a promising

mission to improve some of the limitations raised in this paper.
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Figure 1. Surface sites from the NOAA, CSIRO, NIWA and EC networks used in this study with red circles for surface sites observing MCF

dry air mole fractions and blue squares for surface sites observing CH4 dry air mole fractions.

Figure 2. Regions on the model grid, adapted to key-area for methane fluxes.
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Figure 3. Number of detected seasons over the 12 possible for winter (JFM, blue), spring (AMJ, green), summer (JAS, red) and fall (OND,

orange) in the various regions.
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Figure 4. Noise at the seasonal time scale by the three observing systems (bars) and box plots (median, 25 and 75%) for the signal in various

areas (latitudinal bands and regions). Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box

plot which lay outside the matching coloured bar.

Figure 5. Impact of temporal aggregation on noise (bars) and signal (box plots with median, 25 and 75%) over 3-year time windows.

Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box plot which lay outside the matching

coloured bar. Link to Table 3: the Global lines of the Table corresponds to the 3Y bars here.
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Figure 6. Impact of temporal aggregation on noise (bars) and signal (box plots with median, 25 and 75%) over 3-year time windows.

Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box plot which lay outside the matching

coloured bar. Link to Table 3: the TropN lines of the Table corresponds to the 3Y bars here.

Figure 7. Impact of temporal aggregation on noise (bars) and signal (box plots with median, 25 and 75%) over 3-year time windows.

Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box plot which lay outside the matching

coloured bar. Link to Table 3: the Amazonia lines of the Table corresponds to the 3Y bars here.
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Figure 8. Signal (Tg) for the four 3-year time windows at the pixel scale.
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Figure 9. Impact of spatial aggregation in Amazonia on noise (bars) and signal (box plots with median, 25 and 75%) over 3-year time

windows: from a unique pixel to larger rings around it. Detection is achieved when the signal is larger than the noise i.e. for all the

occurrences which lay outside the matching coloured bar.
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Table 1: Detection of the signal consisting in the anomalies at the "seasonal" time scale i.e. quarters of the year (JFM, AMJ,

JAS, OND). The signal is the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and the 2004-2005

average from REFSURF. The noise is computed at the quarter time scale from each of the three observation systems, GOSAT,

IASI and SURF. See Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X%(YY/ZZ) where X% is the

percentage of quarterly anomalies detected (among 48 possible), YY is the number of positive anomalies detected among the

ZZ detected anomalies. Column "Ave. mass" indicates the average emitted mass of CH4 over 2004-2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 93%(22/45) 91%(21/44) 91%(21/44)

BorN 18 45%(10/22) 39%(07/19) 54%(12/26)

MidN 177 77%(14/37) 39%(12/19) 70%(12/34)

TropN 194 87%(22/42) 60%(16/29) 66%(17/32)

TropS 115 08%(03/04) 12%(04/06) ∅

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 79%(14/38) 58%(04/28) 75%(12/36)

USA 37 ∅ ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 14%(01/07) 06%(00/03) ∅

SouthSAm 30 04%(00/02) ∅ ∅

NorthAfrWest 13 10%(05/05) ∅ ∅

NorthAfrEast 11 04%(02/02) ∅ ∅

AfrEquat 32 22%(11/11) 16%(08/08) 02%(01/01)

SouthernAfr 10 ∅ ∅ ∅

Europe 33 06%(03/03) ∅ 04%(02/02)

EastEurRussia 30 33%(12/16) ∅ 16%(08/08)

MiddleEast 16 ∅ ∅ ∅
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Table 1: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time scale.

Region Ave. mass (Tg) GOSAT IASI SURF

SiberianLowlands 8 43%(10/21) 02%(01/01) 43%(10/21)

SiberianHighlands 5 08%(04/04) 04%(02/02) 04%(02/02)

FarEastSib 1 16%(08/08) 08%(04/04) 08%(04/04)

CentralAsia 28 06%(03/03) ∅ 06%(03/03)

India 50 56%(12/27) 35%(05/17) 25%(00/12)

China 64 14%(03/07) 04%(00/02) 10%(01/05)

Indonesia 36 06%(03/03) 06%(03/03) 04%(02/02)

AustrNZ 6 ∅ ∅ ∅
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Table 2: Detection of the signal consisting in the anomalies at the yearly time scale. The signal is the difference between each

year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from REFSURF. The noise is computed at the

yearly time scale from each of the three observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3 for

details. In each cell of the Table, we show X%(YY/ZZ) where X% is the percentage of yearly anomalies detected (among 12

possible), YY is the number of positive anomalies detected among the ZZ detected anomalies. Column "Ave. mass" indicates

the average emitted mass of CH4 over 2004-2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 75%(08/09) 75%(08/09) 58%(07/07)

BorN 18 ∅ ∅ ∅

MidN 177 08%(01/01) ∅ 08%(01/01)

TropN 194 50%(06/06) ∅ 25%(03/03)

TropS 115 16%(02/02) 16%(02/02) 16%(02/02)

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 ∅ ∅ ∅

USA 37 ∅ ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 08%(00/01) ∅ ∅

SouthSAm 30 ∅ ∅ ∅

NorthAfrWest 13 33%(04/04) ∅ ∅

NorthAfrEast 11 08%(01/01) ∅ ∅

AfrEquat 32 33%(04/04) 33%(04/04) 25%(03/03)

SouthernAfr 10 ∅ ∅ ∅

Europe 33 16%(02/02) ∅ ∅

EastEurRussia 30 ∅ ∅ ∅

MiddleEast 16 ∅ ∅ ∅

25



Table 2: (continued) Detection of the signal consisting in the anomalies at the yearly time scale.

Region Ave. mass (Tg) Gosat Iasi Surf

SiberianLowlands 8 ∅ ∅ ∅

SiberianHighlands 5 08%(01/01) ∅ ∅

FarEastSib 1 08%(01/01) ∅ ∅

CentralAsia 28 08%(00/01) ∅ ∅

India 50 ∅ ∅ ∅

China 64 ∅ ∅ ∅

Indonesia 36 16%(02/02) 16%(02/02) ∅

AustrNZ 6 ∅ ∅ ∅
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Table 3: Detection of the signal consisting in the anomalies at the 3-yearly time scale. The signal is the difference between

each 3-year time window in the 2000-2011 period (2000-2002, 2003-2005, 2006-2008, 2009-2011) and the 2004-2005 average

from REFSURF. The noise is computed at the 3-yearly time scale from each of the three observation systems, GOSAT, IASI

and SURF. See Section 2.4 and Section 2.3 for details.

In each cell of the Table, we show whether a positive anomaly, a negative anomaly or no anomaly is detected and with which

signal-to-noise ratio: positive anomaly detected: +++ = with stn ratio > 3, ++= stn ratio > 2 and + = stn ratio > 1; negative

anomaly detected with - -= stn ratio <-2, - = stn ratio <-2,∅ = no anomaly detected.

The number below the name of the area is the average emitted mass of CH4 over 2004-2005 in the area.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Global Gosat ∅ ∅ +++ +++

517 Iasi ∅ ∅ +++ +++

Surf ∅ ∅ +++ +++

BorN Gosat ∅ ∅ ∅ ∅

18 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MidN Gosat ∅ ∅ + +

177 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ + +

TropN Gosat ∅ ∅ ++ +++

194 Iasi ∅ ∅ + +

Surf ∅ ∅ + +

TropS Gosat ∅ ∅ ∅ +

115 Iasi + ∅ ∅ +

Surf ∅ ∅ ∅ +

MidS Gosat ∅ ∅ ∅ ∅

12 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

BorS Gosat ∅ ∅ ∅ ∅

1 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

NorthAmBor Gosat ∅ ∅ ∅ ∅

20 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

USA Gosat ∅ ∅ ∅ ∅

37 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

CentralAm Gosat ∅ ∅ ∅ ∅

17 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Amazonia Gosat ∅ ∅ ∅ ∅

38 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SouthSAm Gosat ∅ ∅ ∅ +

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

NorthAfrWest Gosat ∅ ∅ + ++

13 Iasi ∅ ∅ ∅ +

Surf ∅ ∅ ∅ +

NorthAfrEast Gosat ∅ ∅ + +

11 Iasi ∅ ∅ + +

Surf ∅ ∅ + +

AfrEquat Gosat ∅ ++ +++

32 Iasi ∅ ∅ ++ +++

Surf ∅ ∅ + ++

SouthernAfr Gosat ∅ ∅ ∅ ∅

10 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Europe Gosat + ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

33 Iasi ∅ ∅ ∅ ∅

Surf + ∅ ∅ ∅

EastEurRussia Gosat ∅ ∅ ∅ ∅

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MiddleEast Gosat - ∅ ∅ +

16 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianLowlands Gosat ∅ ∅ ∅ ∅

8 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianHighlands Gosat ∅ ∅ ∅ ∅

5 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

FarEastSib Gosat + ∅ ∅ ∅

1 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

CentralAsia Gosat - ∅ ∅ ∅

28 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

India Gosat ∅ ∅ ∅ ∅

50 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

China Gosat ∅ ∅ ∅ ∅

64 Iasi - ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Indonesia Gosat + ∅ ∅ ∅

36 Iasi + ∅ + ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Surf ∅ ∅ ∅ ∅

AustrNZ Gosat ∅ ∅ ∅ ∅

6 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅
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Appendix A: Supplementary tables

Table 4: Yearly mean number of observations over the period used for the Monte-Carlo noise computation (10/2009-09/2010)

in the various regions for the three observing systems.

Region Area (x106km2) GOSAT IASI SURF

Global 510 32348 240084 1722

BorN 31 92 00 172

MidN 91 9060 00 556

TropN 126 14934 121756 602

TropS 128 6118 107148 156

MidS 95 2132 9078 140

BorS 37 00 00 96

NorthAmBor 14 194 00 00

USA 11 2516 2218 124

CentralAm 05 608 6328 24

Amazonia 07 802 3366 00

SouthSAm 10 1780 3068 24

NorthAfrWest 10 4986 4564 94

NorthAfrEast 07 3756 5148 00

AfrEquat 07 1394 3572 14

SouthernAfr 07 1488 3246 28

Europe 06 572 00 94

EastEurRussia 07 896 00 00

MiddleEast 06 2456 3748 26

SiberianLowlands 02 170 00 00
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Table 4: (continued) Yearly mean number of observations.

Region Area (x106km2) GOSAT IASI SURF

SiberianHighlands 05 126 00 00

FarEastSib 03 54 00 00

CentralAsia 12 3864 694 74

India 03 1180 4190 00

China 05 1164 4574 00

Indonesia 07 312 3324 26

AustrNZ 10 3308 4362 50
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Table 5: Detection of the signal consisting in the anomalies at the "seasonal" time scale (JFM, AMJ, JAS, OND). The signal is

the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and the 2004-2005 average from PBSURF.

The noise is computed at the quarter time scale from each of the three observation systems, GOSAT, IASI and SURF. See

Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where X% is the percentage

of quarterly anomalies detected, [±TT] is the difference with REFSURF (Table 1), ±YY is the difference in the number of

positive anomalies detected compared to REFSURF and ±ZZ is the difference in the total number of detected anomalies

compared to REFSURF. Ave. mass= average emitted mass of CH4 over 2004-2005.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 87% [-6] (-10/-3) 72% [-19] (-9/-9) 72% [-19] (-9/-9)

BorN 18/17 75% [+30] (+2/+14) 75% [+36] (+5/+17) 77% [+23] (0/+11)

MidN 177/172 66% [-11] (-2/-5) 35% [-4] (0/-2) 62% [-8] (0/-4)

TropN 194/165 47% [-40] (-10/-19) 27% [-33] (-5/-16) 29% [-37] (-6/-18)

TropS 115/120 29% [+21] (+9/+10) 31% [+19] (+9/+9) 10% [+10] (+5/+5)

MidS 12/25 ∅ ∅ 04% [+4] (0/+2)

BorS 1/0 ∅ ∅ ∅

NorthAmBor 20/8 64% [-15] (-2/-7) 43% [-15] (+3/-7) 58% [-17] (0/-8)

USA 37/54 3%1 [+31] (+8/+15) 06% [+6] (+1/+3) 10% [+10] (+3/+5)

CentralAm 17/13 ∅ 02% [+2] (+1/+1) ∅

Amazonia 38/31 45% [+31] (+19/+15) 35% [+29] (+15/+14) 04% [+4] (+2/+2)

SouthSAm 30/45 45% [+41] (+15/+20) 08% [+8] (+3/+4) 20% [+20] (+6/+10)

NorthAfrWest 13/13 41% [+31] (+7/+15) 16% [+16] (+8/+8) 16% [+16] (+8/+8)

NorthAfrEast 11/12 39% [+35] (+10/+17) 25% [+25] (+12/+12) 25% [+25] (+12/+12)

AfrEquat 32/33 18% [-4] (-10/-2) 10% [-6] (-8/-3) 00% [-2] (-1/-1)

SouthernAfr 10/14 43% [+43] (+7/+21) 14% [+14] (+5/+7) 14% [+14] (+5/+7)

Europe 33/33 14% [+8] (-3/+4) 04% [+4] (0/+2) 12% [+8] (-2/+4)
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Table 5: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time scale.

Region

GOSAT IASI SURFAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 33% [0] (-2/0) ∅ 10% [-6] (-3/-3)

MiddleEast 16/14 ∅ ∅ ∅

SiberianLowlands 8/14 89% [+46] (+2/+22) 60% [+58] (+11/+28) 85% [+42] (+2/+20)

SiberianHighlands 5/4 22% [+14] (+7/+7) 12% [+8] (+4/+4) 20% [+16] (+8/+8)

FarEastSib 1/2 52% [+36] (+4/+17) 50% [+42] (+8/+20) 50% [+42] (+8/+20)

CentralAsia 28/32 20% [+14] (+5/+7) ∅ 08% [+2] (+1/+1)

India 50/45 10% [-46] (-11/-22) 02% [-33] (-5/-16) 00% [-25] (0/-12)

China 64/46 00% [-14] (-3/-7) 00% [-4] (0/-2) 00% [-10] (-1/-5)

Indonesia 36/33 06% [0] (0/0) 12% [+6] (+2/+3) 00% [-4] (-2/-2)

AustrNZ 6/6 ∅ ∅ ∅
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Table 6: Detection of the signal consisting in the anomalies at the yearly time scale. The signal is the difference between

each year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from PBSURF. The noise is computed at

the yearly time scale from each of the three observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3

for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where X% is the percentage of yearly anomalies

detected, [±TT] is the difference with REFSURF (Table 2),±YY is the difference in the number of positive anomalies detected

compared to REFSURF and ±ZZ is the difference in the total number of detected anomalies compared to REFSURF. Ave.

mass= average emitted mass of CH4 over 2004-2005.

Region

GOSAT IASI SURFAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 58% [-17] (-1/-2) 66% [-9] (0/-1) 4%1 [-17] (-2/-2)

BorN 18/17 ∅ ∅ ∅

MidN 177/172 00% [-8] (-1/-1) ∅ 00% [-8] (-1/-1)

TropN 194/165 00% [-50] (-6/-6) ∅ 00% [-25] (-3/-3)

TropS 115/120 41% [+25] (+3/+3) 41% [+25] (+3/+3) 41% [+25] (+3/+3)

MidS 12/25 ∅ ∅ ∅

BorS 1/0 ∅ ∅ ∅

NorthAmBor 20/8 25% [+25] (+3/+3) ∅ ∅

USA 37/54 ∅ ∅ ∅

CentralAm 17/13 ∅ ∅ ∅

Amazonia 38/31 58% [+50] (+7/+6) 58% [+58] (+7/+7) 08% [+8] (+1/+1)

SouthSAm 30/45 33% [+33] (+3/+4) 16% [+16] (+2/+2) 16% [+16] (+2/+2)

NorthAfrWest 13/13 00% [-33] (-4/-4) ∅ ∅

NorthAfrEast 11/12 00% [-8] (-1/-1) ∅ ∅

AfrEquat 32/33 00% [-33] (-4/-4) 00% [-33] (-4/-4) 00% [-25] (-3/-3)

SouthernAfr 10/14 16% [+16] (+1/+2) ∅ ∅

Europe 33/33 50% [+34] (-2/+4) 08% [+8] (0/+1) 33% [+33] (0/+4)
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Table 6: (continued) Detection of the signal consisting in the anomalies at the yearly time scale.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 16% [+16] (+1/+2) ∅ ∅

MiddleEast 16/14 ∅ ∅ ∅

SiberianLowlands 8/+14 16% [+16] (+1/+2) ∅ ∅

SiberianHighlands 5/4 00% [-8] (-1/-1) ∅ ∅

FarEastSib 1/2 00% [-8] (-1/-1) ∅ ∅

CentralAsia 28/32 00% [-8] (0/-1) ∅ ∅

India 50/45 ∅ ∅ ∅

China 64/46 ∅ ∅ ∅

Indonesia 36/33 33% [+17] (+2/+2) 33% [+17] (+2/+2) ∅

AustrNZ 6/6 ∅ ∅ ∅
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