
Answers to reviewer # 1
We thank the reviewer for his/her comments. We answer them in the

following. The comments are in bold and our answers in normal font, the
new text being in blue.

This manuscript investigates the spatio-temporal resolution of
global methane inversions using different observing systems. This
information is useful for a proper interpretation of inversion re-
sults obtained using existing observing systems, and for the design
of new systems. An expected outcome is that larger regions are
better resolved than smaller regions. Less expected is the finding
that smaller regions are better resolved at the seasonal than at the
inter-annual time scale. While trying to understand this, a couple
of questions came up, as explained below, which I found have not
been dealt with adequately yet. To make this study acceptable for
publication this will have to be repaired, and/or explained more
clearly.

GENERAL COMMENTS
Figure 3 and the tables depend on a detection criterion, like

threshold SNR value which should be exceeded to declare a region
as detected or not. This criterion should be defined explicitly in
the text. From one of the figure captions I found out that the
criterion corresponds to SNR=1. This sounds like a rather loose
criterion. Wouldn’t something like a 95% confidence criterion be
more appropriate? Whatever choice is made it should be stated
and motivated clearly.
We have modified Section 2.4 and added the missing information:
”Our criterion consists in evaluating the ability of the observing systems
to detect CH4 anomalies of a given amplitude, defined by the reference
inversion. For this, we define a signal-to-noise ratio:

• the inversion with surface measurements is chosen to provide the signal
as the data covers a long time window (2000-2011) as compared to the
two other observing systems. This longer window makes it possible
to sample the CH4 IAV more robustly than a 2-3 year inversion. We
assume that the fluxes inferred by this inversion are representatitve of
state-of-the art inversions currently published. The signal is actually
the CH4 anomalies for the various time scales derived from REFSURF.

• for the three observing systems (SURF, IASI and GOSAT), the Bayesian
posterior errors of the year-to-year changes of CH4 fluxes, computed
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from the Monte-Carlo ensemble as described in Section 2.3, constitute
the noise associated to each observing system.

Finally, the criterion for detecting CH4 anomalies is that the signal-to-noise
ratio is larger than 1 (≈68% confidence). ”

It would be more robust to use SNR=2 i.e. 95% but then almost nothing
would be considered as detected so that would prevent any constructive
comments. We also have stressed this point in the conclusion ”Our criterion
is based on a 68% confidence interval (1 sigma). At almost all regional time-
space scales (except in NorthAmbor, AfrEquat at the longer time-scales and
a few cases in India, Indonesia, EastEurRussia and FarEastSib), the three
observing systems would fail the test at 2 sigmas (95%), a more stringent
criterion commonly used in other scientific communities.”

In this study the REFSURF inversion is used as reference, rep-
resenting what the true variability would be like. As long as we
don’t know the true flux the results of an inversion may seem a de-
fensible choice. However, this is only true as long as the validity of
this approximation doesn’t interfere with the conclusions that are
derived from it in the end. Since this reference set of fluxes comes
from an inversion of surface data itself, it suffers from the same
flux detection limitations as the SURF inversion. Suppose that
the setups of REFSURF and SURF were statistically equivalent,
wouldn’t you expect SNR=1? I mean if their posterior uncertain-
ties are the same then REFSURF would be like a random instance
of the posterior uncertainty of SURF. In this case what remains
is equivalent to a comparison of the posterior uncertainties of the
SURF, IASI, and GOSAT inversions.
The comment above has implications for the conclusions regarding
the scale dependency of flux detection. For example, if REFSURF
is not capable of resolving small-scale variability, it will generate
noise (depending on the a priori constraints). If the use of GOSAT
leads to better-constrained small-scale fluxes it may end up ’de-
tecting’ the noise of the REFSURF inversion, rather than the
variability of the true fluxes at that scale. All we learn in the end
is that GOSAT is better able to resolve small-scale fluxes than
the surface network. That is something we could have concluded
already looking only at their posterior uncertainties. Then what
is the added value of the method that is used here?
REFSURF and SURF couldn’t be statistically equivalent: REFSURF is
driven by the observation vector whereas SURF is driven by the statistics
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in the covariance matrices (of observations and the state vector) and by the
(transport-)model.
In this paper we assume that REFSURF reasonably represents the discussed
scale as other state-of-the art inversions. We agree with the reviewer’s com-
ment on the implications if this assumption was wrong, and we tried to clar-
ify even more this assumption in the text e.g. in Section 2.4 ”We assume
that the fluxes inferred by this inversion are representatitve of state-of-the
art inversions currently published.” and ”However, the quality of the chosen
signal remains debatable and our diagnostic for GOSAT and IASI may be
pessimistic in areas where SURF signal-to-noise ratio is low.” We could have
compared the noises of the three systems. But positionning the noises with
the signal allows to go further than comparing the three observing systems.
Indeed, the largest noise may nevertheless be small enough compared to the
signal we want to detect (or the smallest one be too large). This is why
the signal computed from the 12-year REFSURF inversion is used to nor-
malize the noises. The aim is to state whether the inter-annual variability
at various time and spatial scales can be detected by one or several of the
observing system. This is now stated explicitly in Section 2.4:
”Comparing signal-to-noise ratios amounts to comparing noises normalized
by the expected signals. The normalization provides an absolute criterion to
assess the time scales and regions at which the CH4 anomalies are reliable.”

The choice of reference period for calculating the signal should
be explained better. It is chosen because ’it corresponds to a
period of minimum atmospheric growth rate’. I guess this means
that it has a minimal contribution from the long-term trend. How-
ever, shouldn’t it be representative of the entire period also? The
fact that you get anomalies that are predominantly positive sug-
gests it is not. As a result your IAV signal will inevitably contain
signal from a time scale outside the 3-year IAV window. It be-
comes even worse for the annual and seasonal time scale. I don’t
see how the method avoids signals from longer time-scales affecting
the seasonal time scale. Wouldn’t I have been better to take out
variations on longer time-scales before computing seasonal anoma-
lies?
We agree that the way we defined flux anomalies had to be made clearer. Our
aim is not to isolate the various frequencies in the signal due to the fluxes (at
seasonal, annual, year-to-year scales and long-term trend). Since our noise
refers to the year to year changes in methane emissions at various scales,
we defined the signal i.e. ”anomalies”, as the difference between one given
season/year/3year-period and a reference (seasonal/yearly/3yearly mean) to
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be consistent with the noise definition. Doing so, a given time scale contains
contributions from other time scales. The signal is here mostly to give an
order of magnitude, at various time scales, of what we want to detect, con-
sidering the year-to-year noises defined for the three observing systems.
The choice of 2004-2005 is mostly arbitrary and we agree that, as it corre-
sponds to a minimum in methane growth rate and internannual variations
it leads to more positive anomalies for the longer time scales. This is less
true for smaller spatial and temporal scales. We have modified Section 2.4:
”CH4 regional flux anomalies are defined here as the deviation from a refer-
ence of the CH4 inferred fluxes for various time periods, from the monthly
to the 3-yearly scale. The reference is the 2004-2005 mean over the same
time-period. The aim of this definition is to get the order of magnitude
of the year-to-year changes at various time scales. As the 2004-2005 refer-
ence corresponds to a period of minimum atmospheric methane growth rate
(Dlugokencky et al., 2011), it leads to more positive anomalies for the longer
time scales. ”
Taking out the longer time scales to get at the amplitude of seasonal cycles
would be another study.

The role of the prior flux uncertainty should be explained
better. I wonder if some regions get already ’detected’ with-
out using any data, just because the prior uncertainty is already
small enough to satisfy the detection criterion. It would explain
why some regions are detected without the observing contributing
any significant constraint (for example IASI detecting fluxes from
NorthAmericanBoreal, when only data between 30S and 30N are
used).
Section 2.3 now states more clearly how the prior uncertainty is used to
compute the posterior uncertainty (used as noise):
”The posterior error statistics (the ”noise” for our study) are estimated as
follows:

• we estimate the ratio of posterior to prior standard deviations of the
annual flux errors r = σa

σb
from the ensemble, a quantity which is more

robust than σa and σb individually for small ensembles (because some
of the underspread affects the prior and the posterior in a similar way);
the number of members in the ensemble depends on the time scale e.g.
10 members for the yearly time scale (10 inversions, each one covering
1 year), 120 members for the monthly time scale

• we estimate the posterior standard deviations of the annual flux errors
by multiplying r to the known value of σb i.e. the one implied by our
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error covariance matrix (computed from the above assumptions)

• the posterior standard deviations of the pluri-annual flux errors errors
for n years is obtained by applying a factor of 1√

n
to the previous

result, assuming that the errors are uncorrelated from one year to the
next

• the posterior standard deviations of the difference between fluxes from
one year to the next (i.e. the error on the IAV for two consecutive
years) is computed by applying an inflation factor of

√
2 to the previ-

ous result, still assuming that the errors are uncorrelated from one year
to the next. We assume this apporach to be a conservative hypothesis
since in reality some of the transport and retrieval errors are recur-
rent, thereby inducing positive correlations and reducing the inflation
factor.”

Our prior fluxes have nearly no any interannual variability and are there-
fore not supposed to detect anomalies in general. However, we checked that
our prior error statistics reflect this property by confronting them with the
anomalies in the same way as what we present for the posterior. The prop-
erty is verified for all regions and time scales (i.e. the detection rate is
marginal or null) except for NorthAmBor and BorN at the seasonal time
scale, where detection rates of 58% and 37%, respectively, are obtained.
This result was correctly intuited by the reviewer and may suggest that our
prior error statistics in NorthAmBor are underestimated. We have added
a note of caution in the main text: ”The detection rate is above 50% for
the three observing systems in this region (Table 1), but, in contrast to the
other regions and to the other time scales, the prior error statistics already
lead to detection rates of 58% for the prior. This shows that the Tropical
IASI soundings do not add information for this region and at this time scale,
as expected. ”

Another factor influencing the scale dependency of flux detec-
tion is the accuracy at which posterior fluxes are approximated.
Give that only 10 Mont Carlo ensemble members are used this
accuracy cannot be that high (see for example the appendix of
Pandey et al, 2016 for a formula to compute the uncertainty of
a Monte Carlo derived uncertainty for a given number of itera-
tions). Although the limited ensemble size should not introduce a
scale dependency, the number of iterations per inversion could do
that, because, depending on the search algorithm used, the large
scales may be solved first being the dominant eigenvectors of the
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optimization problem.
As now stated in Section 2.3, ”we estimate the ratio of posterior to prior
standard deviations of the annual flux errors r = σa

σb
from the ensemble, a

quantity which is more robust than σa and σb individually for small ensem-
bles (because some of the underspread affects the prior and the posterior in
a similar way).”
No information is given about the number of iterations that is
used, but in our experience the M1QN3 could converge slowly.
Therefore additional information about the convergence of small-
scale fluxes is needed.
The convergence of the inversions with M1QN3 was stopped on the crite-
rion of the ratio final/initial gradient norm: it must be less than 0.01. This
information has been added in Section 2.1.

Somewhere in the discussion a note of caution is required that
the posterior uncertainties are derived without proper account-
ing for systematic errors in the satellite retrieval and transport
model. Because of this, despite the use of real data, the detec-
tion statistics probably end up being rather optimistic. The use of
Desroziers recipe for error tuning does not account for the neglect
of off diagonals in the R matrix.
A ”note of caution” has been added in the discussion in Section 5, Conclu-
sions: ”We also have neglected the impact of likely state-dependent system-
atic errors in current satellite retrievals and transport models that further
reduce the inversion performance to an unknown extent.”

SPECIFIC COMMENTS
Page 3, line 5: How appropriate is it here to use prior fluxes

without IAV? It means that the prior is biased with regard to IAV,
and as a result the posterior IAV will be low biased too (assuming
that all other statistical assumptions are satisfied).
In inversion, the choice of no prior IAV is generally made to minimize the
influence of prior emissions on the inferred signals and let observations gen-
erate the IAV part of it. We choose this assumption following the same
spirit although we agree it may smooth the generated IAV. Indeed, Bergam-
aschi et al. (2013) tested such ”flat” priors (their S3 scenarios) and showed
that the IAV was derived from the assimilated data. We added a sentence
about this in Section 2.1: ”It is important here to recall that the prior fluxes
(fires excepted) have no inter-annual variability (IAV). This choice is made
for IAV to be generated by atmospheric observations and atmospheric trans-
port and chemistry and not by prior IAVs of emissions (and sinks) which are
still uncertain or even controversial (e.g. Schaefer et al. (2016); Hausmann
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et al. (2016); Nisbet et al. (2014))”
Page 4, line 1: I’m trying to understand the logic of the sqrt(2).

How do you define inter-annual variability? Wouldn’t it be the
difference from one year to another? A sqrt(2) inflation rather
suggests the variability of the 2-yearly flux in Tg/(2 year). How
does that fit with the 3 year time windows? Apart from this I
don’t see why the assumption of uncorrelated errors would lead
to a conservative estimate. I would rather think of posterior un-
certainties as being negatively correlated because of limitations in
independently resolving the yearly fluxes. Because of these com-
plications I wonder how appropriate it is to address the 3 yearly
time scale using a one year inversion anyway.
The explanation in Section 2.3 and 2.4 have been made clearer; regarding
the
√

2 factor: ”the posterior standard deviations of the difference between
fluxes from one year to the next (i.e. the error on the IAV for two consecu-
tive years) is computed by applying an inflation factor of

√
2 to the previous

result, still assuming that the errors are uncorrelated from one year to the
next. We assume this approach to be a conservative hypothesis since in real-
ity some of the transport and retrieval errors are recurrent, thereby inducing
positive correlations and reducing the inflation factor.” One issue with this
hypothesis is that the limitation induced by observing systems to solve in-
dependently the methane fluxes also leads to negatively correlated errors.
Remember that we use standard deviations, so that the standard deviation
for a difference is the standard deviation of the sum of the two terms, here
one year and the next one; since the two terms are the same (because we
have only one year in the ensembles), we get that the standard deviation of
the difference from one year to the next is

√
2 × the standard deviation of

the available year.
Page 4, line 6: ’The uncertainty in OH (5% after optimization)’

Which scale does this refer to? If it is the global scale, then how
about the uncertainty per latitude band?
5% refers to the global scale and we did not compute the uncertainty for the
different latitudinal bands. However, as prior error are already low for OH,
we expect very little changes compared to the prior values.

Page 9, line 7: ’PBSURF signal is twice as often detected’
Why is this? I guess it depends on the size of the regions in PB-
SURF compared to the scale of the regions that are evaluated. If
the latter are smaller then wouldn’t you rather expect that the
large-region inversion suppresses the within-region variability? In
that case they would become harder, rather than easier to detect.
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Some further discussion at this point would be helpful.
This is a good point. Large-region based inversions relying on sparse sur-
face networks generally generate larger IAVs than pixel-based inversions
when aggregating the results of the latter at the same regional scale. One
illustration of this can be found in Pison et al., 2013. This can be under-
stood as a large-region based inversion scales up or down a whole region and
changes can be large, especially when the atmospheric constraints are far
from the region (e.g. South America in Pison et al., 2013). In pixel based
inversions, as we only prescribe loose spatial correlation, changes appear to
be more located around the stations. We added this in Section 4.2: ”The
large-region-scale inversion means that the spatial variability of the prior is
kept within each region and is only scaled (contrary to REFSURF, which is
performed at the pixel scale i.e. is able to vary only a few pixels to match
the data). This difference in the methods may lead to very different spatial
variability in each of the regions of interest (Figure 4), a larger variability
allowing a better detection rate with our criterion. Indeed, the large-region-
scale inversion may lead to larger variability than pixel-based inversions in
some regions (e.g. Pison et al., 2013) because of the homothetic scaling of
the pixels composing each region in PBSURF (correlations between pixels of
1) as opposed to the individual scaling of model pixels with soft constraints
in REFSURF (spatial correlations less than 1).”

TECHNICAL COMMENTS
Page 9, line 7: ’REFSURF’ i.o. ’SURF’. Please check if there

are other instances where REFSURF was meant.
OK

Page 11, line 11: ’acknowledge’ i.o. ’aknowledge’
OK.

Figure 5: What happens to the whisker-boxes at the 2Y time
scale? I guess they become too compressed to see. If so, then
please mention this somewhere (it shows up in other figures also).
There are no whisker-boxes for the 3Y scale since there is only one window
of three years in each of the 3-year periods (the whisker-boxes for Y are
made with 3 values, 6 values for 6M, etc).

Figure 5, 6 & 7, caption: ’aggregation’ i.o. ’agregation’
OK.

8



Answers to reviewer #2
We thank the reviewer for his/her comments. We answer them in the

following. The comments are in bold and our answers in normal font, the
new text being in blue.

This paper shows results from a set of CH4 inversions using
three different observation sets (in situ, IASI, and GOSAT) to test
whether anomalies in flux can be detected across a range of time
and spatial scales. The ultimate goal is to determine whether such
inversions can be used to attribute methane flux signals, like the
change in global growth rate through the 2000s, to a particular
region or regions and, perhaps, biogeochemical processes. The
authors have done a lot of work to make the results statistically
meaningful, the approach is generally sound, figures and tables
are informative, and the discussion is accurate, if perhaps not
fully satisfying. In my opinion the material is clearly worthy of
publication in ACP after satisfying the concerns of the reviewers.

The paper suffers at times from lack of clarity and some in-
verse methodological issues exist, which are well-characterized by
Anonymous Reviewer #1 and the comment from T. G. Nuñez
Ramirez. I did not find the tables too difficult, but they do take
some focus.
We have particularly re-written Sections 2.3 and 2.4 to make them clearer
and answered the comments of reviewer #1 and T.G. Nuñez Ramirez.

These issues aside, the question that remains to me is: so what?
What are the implications of the findings for using CH4 measure-
ments and inverse models to understand the underlying processes?
What is the message for carbon cycle science? To my reading the
answer to the title question is: NO, except on the broadest of
scales and strongest of signals (seasonality), which doesn’t really
require very extensive measurements or sophisticated mathemati-
cal techniques and holds little useful information. This is a serious
problem for understanding the current CH4 budget, for projecting
future interactions of CH4 and climate, and for designing mitiga-
tion policies to reduce the radiative forcing of CH4. The paper
alludes to some of the most egregious short-comings, but never
really comes out and says our data and techniques are inadequate
and what should be done about it.
We modified the end of the paper (Section 5 Conclusions) to acknowledge
that the situation of methane atmospheric inversions may not be as opti-
mistic as found in current papers, although our study has limitations that
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we also acknowledge more clearly (e.g. underestimation of the signal, over-
estimation of the noises).

I fully agree with other comments that setting the detection
criterion to SNR =1 is a very low bar for attributing anomalies
to specific locations and processes.
It would be more robust to use SNR=2 i.e. 95% but then almost nothing
would be considered as detected so that would prevent any constructive
comments. We also have stressed this point in the conclusion ”Our criterion
is based on a 68% confidence interval (1 sigma). At almost all regional time-
space scales (except in NorthAmbor, AfrEquat at the longer time-scales and
a few cases in India, Indonesia, EastEurRussia and FarEastSib), the three
observing systems would fail the test at 2 sigmas (95%), a more stringent
criterion commonly used in other scientific communities.”

The paper is also sometimes seemingly overly optimistic about
the model ability to capture signals, e.g., Conclusions line 8-11,
where having any detectable anomalies (≈25% on average) is called
’fair to good’ and Abstract, where regional scale signals are said
to be ’properly detected.’
Taking into account this comment, we found that we had chosen a too
optimistic way of computing the noises. We have therefore corrected the
problem and modified the results and the text accordingly.

Clearly something much better than current observations and/or
existing model formulations is needed. I think the paper should
not shy away from such a statement and point out specifically
where the problems reside in the analysis. The fact that the de-
tectability depends on the underlying (modeled) signal configura-
tion is further indictment of the overall flux analysis method. The
statements that inversions ’should always include an uncertainty
assessment’, ’attribution. . . needs more attention’, and ’more ob-
servations and . . . improved transport’ are platitudes that don’t
require a detailed analysis like the one produced in this paper.
Go ahead and give the discussion some punch.
We rephrased the end of the paper (Section 5: conclusions) in this sense,
although one has to consider that our work has limitations and is not posi-
tioned as the ultimate ”killer” of atmospheric inversions. We now acknowl-
edge more clearly the challenges for atmospheric inversions and for the work
presented here. We still think that the message to deliver systematically an
uncertainty assessment in inversion papers is useful to mention as it is not
always reported in current papers. Indeed, the cost of running Monte-Carlo
ensembles or the explicit computation of posterior errors with the Hessian
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matrix or the difficulty in designing relevant sensitivity studies often limit
the uncertainty analysis proposed in papers. Our work also shows the criti-
cal importance to do so systematically to have the proper level of significance
of the inferred fluxes.

Minor Comments:
The analysis does not address transport issues at all, although

perhaps it could. Such analysis could include impact of trans-
port uncertainty on inference of fluxes in unobserved regions (e.g.,
satellite data in dark or high latitudes) and resulting ’noise.’ Ex-
pand discussion or delete from Conclusions lines 32-33.
OK, this part has been deleted.

Not clear that detection of anomalies at grid scale in Amazon
is robust. Depends on signal, which may not be realistic from
sparse data constraint. Maybe examine more closely or moderate
expectations.
We moderated our statements here.
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Can we detect regional methane anomalies? A comparison between
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Abstract. A Bayesian inversion system is used to evaluate the capability of the current global surface network and
:
of

:
the space-

borne GOSAT
:::::::::::
/TANSO-FTS

:
and IASI instruments to quantify surface flux anomalies of methane at various spatial (global,

semi-hemispheric and regional) and time (seasonal, yearly, 3-yearly) scales. The evaluation is based on a signal-to-noise ratio

analysis, the signal being the methane fluxes inferred from the surface-based inversion from 2000 to 2011 and the noise
:::
(i.e.

::::::::
precision)

::
of

::::
each

:::
of

:::
the

::::
three

:::::::::
observing

:::::::
systems being computed from the Bayesian equationfor each of the three inversions5

using either surface or satellite data. At the global and semi-hemispheric scales, all observing systems properly detect flux

anomalies at all the tested time-scales
::::
most

::
of

:::
the

:::::
tested

::::
time

::::::
scales. At the regional scale, seasonal flux signals are properly

detected by all
::::
some

::::::::
seasonal

:::
flux

:::::::::
anomalies

:::
are

:::::::
detected

:::
by

:::
the

::::
three

:
observing systems, but year-to-year changes

::::::::
anomalies

and longer-term trends are only poorly detected. Moreover, reliably detected regions depend on the reference surface-based

inversion used as a
::
the

:
signal. Indeed, tropical flux inter-annual variability, for instance, can be attributed mostly to Africa in10

the reference inversion or spread between tropical regions and China
:
in

::::::
Africa

:::
and

::::::::
America. Our results show that inter-annual

analyses of methane emissions inferred by atmospheric inversions should always include an uncertainty assessment and that

the attribution of the atmospheric methane increase since 2007 to a particular region still needs more attention i.e.
:::::
current

::::::
trends

::
in

::::::::::
atmospheric

:::::::
methane

::
to

::::::::
particular

:::::::
regions

:::::
needs

::::::::
increased

:::::
effort,

:::
for

:::::::
instance gathering more observations for the futureand

using improved
::
(in

:::
the

::::::
future)

::::
and

::::::::
improving

:
transport models. At all scales, GOSAT generally obtains the best results

:::::
shows15

::
the

::::
best

:::::::::::
performance of the three observing systems.

1 Introduction

As the second most important anthropogenic greenhouse gas after carbon dioxide in terms of radiative forcing, methane (CH4)

is an important climate driver. Monitoring atmospheric CH4 concentrations and their driving emissions are therefore primary

research objectives for Earth observation science. These two objectives are combined in atmospheric inversion systems. Such20

systems infer the space-time variations of the global or regional emissions from the assimilation of observations of atmo-

spheric mole fractions into chemistry-transport models (CTMs) (Houweling et al., 1999; Bergamaschi et al., 2007; Bousquet

et al., 2011; Pison et al., 2013). For these systems, explaining the trends of CH4 concentrations, such as their stability between
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2000 and 2006 and their later increase (Kirschke et al., 2013), is a major scientific objective. Despite considerable efforts in

developing observing systems at the Earth’s surface, in the atmosphere and from space, the inverted
::::::
inferred

:
fluxes are associ-

ated with large uncertainties. This still allows diverging interpretations of the trends, depending on which CTM is used or on

how the inversion set-up is defined (Bousquet et al., 2006, 2011; Rigby et al., 2008; Dlugokencky et al., 2009; Bergamaschi

et al., 2013). In principle, the Bayesian framework should reconcile all well-tuned inversion systems because it characterizes5

the uncertainty of each inversion product at all space-time scales, thereby weighting each scenario suggested by the inversion

approach. In practice, posterior uncertainties are often difficult to compute and are also affected by mis-specified prior or obser-

vation uncertainties (Berchet et al., 2015). In a previous study, Cressot et al. (2014) applied objective tuning methods imported

from Numerical Weather Prediction (Desroziers et al., 2005) within a robust Monte-Carlo approach to optimize the input error

covariance matrices of a global CH4 inversion system. Here, we use their results as a starting point to characterize the uncer-10

tainty of the year-to-year variations of the inverted
::::::
inferred fluxes at various temporal and spatial scales,

::::
(e.g.

:::::::
seasonal,

:::::::
annual,

:::::::
3-yearly,

::::::::
monthly)

:::
and

::::::
spatial

::::::
(global,

:::::::::
latitudinal

:::::
bands,

:::::
large

:::::::
regions)

:::::
scales in order to document which anomaly signals from

the inversions are reliable and which are not
:::::
within

::::
our

:::::::::
framework. To do so, three different global CH4 observation systems

are considered: surface sites from various global networks (flasks and continuous), the space-borne Infrared
:::::::
Infra-red

:
Atmo-

spheric Sounding Interferometer (IASI) that provides a mid-to-upper-tropospheric column and the Thermal And Near infrared15

:::::::
infra-red Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS), that observes the total column from

space. Using the flux anomalies of the surface inversion as the signal, signal-to-noise ratios for different temporal and spatial

scales are computed, the noise being the uncertainty
:::::::::
(precision)

:
of the year-to-year changes of the inverted

:::::::
inferred fluxes for

each observing system. Signal-to-noise ratios are then considered as a statistical criterion to evaluate the ability of an observing

system to retrieve the CH4 flux inter-annual variability.20

The paper is structured as follows. The theoretical framework and the different data sets are presented in Section 2. The

signal-to-noise ratios are presented in Section 3 and further discussed in Section 4.

2 Method

2.1 Inversion Framework

Our inversion system is based on a variational formulation of Bayes’ theorem, as detailed by Chevallier et al. (2005), which has25

been adapted to the inversion of CH4 fluxes by Pison et al. (2009). It allows inverting
:::::::
inferring

:
grid-point-scale fluxes, thereby

avoiding gross aggregation errors (Kaminski et al., 2001), while assimilating the large flow of satellite data at appropriate

observation times and locations. It ingests observations of CH4 mole fractions and prior information about the variables that

are to be optimized, with associated error covariance matrices. Bayesian error statistics of the inverted
::::::
inferred

:
variables are

computed from a Monte-Carlo ensemble of inversions which is consistent with the assigned prior and observation errors30

(Chevallier et al., 2007). The inversion system includes the LMDz transport model of Hourdin et al. (2006) at resolution

3.75◦× 2.5◦ (longitude x latitude) for 19 vertical levels in a nudged and offline mode, which we couple
::::::
nudged

::
to

::::::::
ECMWF

:::::::
analysed

:::::
winds

:::
in

::
its

:::::::
on-line

:::::
mode.

::::
We

:::
use

::::
here

:::
its

::::::
off-line

:::::
mode

::::
that

:::::::
exploits

:::
the

::::::
output

::::::::
variables

::
of

:::
the

:::::::
on-line

:::::::
version.
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:::
We

::::::
couple

:
it
:

to a simplified chemistry module (SACS) to represent the interactions between CH4 and the hydroxyl radical

(OH), its main sink in the atmosphere, and between methyl chloroform (MCF) and OH.
::::
Note

:::
that

:::
the

::::
loss

:::
due

::
to
::::::::

chlorine
::
in

::
the

:::::::
marine

::::::::
boundary

::::
layer

::
is
::::
not

:::::::::::
implemented

:::
yet

::
in

:::
this

::::::
model.

:
When it assimilates both CH4 and MCF mole fractions, as

is done here, it synergistically optimizes both CH4 surface sources at weekly and model grid resolution and OH at weekly

resolution over 4 latitude bands (-90/-30, -30/0, 0/30, 30/90), therefore dynamically distinguishing
:
.
::::
This

::::::
set-up

::::::::
therefore5

::::::::::
dynamically

:::::::::::
distinguishes between CH4 emission and

::
net

:::::::
surface

::::::::
emissions

::::
(soil

::::::
uptake

::::::::
included)

::::
and

::::::::::
atmospheric loss. The

system iteratively minimizes the Bayesian cost function (made non-quadratic by the non-linear chemistry) using the M1QN3

algorithm (Gilbert and Lemaréchal, 1989).

This system is applied here to assimilate
:::
data

:::::
from each one of three CH4 observing systems and one

:::::::
together

::::
with

::::
data

::::
from

:
a
:
MCF observing system

::
(to

::::::::
constrain

:::
OH

:::::::::::::
concentrations), in the configuration used by Cressot et al. (2014). The reader10

is referred to Cressot et al. (2014) for a detailed description of this configuration. It is enough
::::::::
important

:
here to recall that the

prior fluxes (fires excepted) have no inter-annual variability (IAV). Therefore, IAV is generated from
:::
This

::::::
choice

::
is

:::::
made

:::
for

:::
IAV

::
to

:::
be

::::::::
generated

::
by

:
atmospheric observations and atmospheric transport and chemistry .

:::
and

:::
not

::
by

:::::
prior

::::
IAVs

::
of

:::::::::
emissions

::::
(and

:::::
sinks)

:::::
which

::::
are

:::
still

::::::::
uncertain

:::
or

::::
even

:::::::::::
controversial

::::
(e.g.

:
Schaefer et al. (2016); Hausmann et al. (2016); Nisbet et al.

(2014)
:
).
:

15

Two types of inversions are presented in this study:

– a reference inversion (hereafter called REFSURF) using CH4 :::
and

:::::
MCF surface measurements from December 1999 to

December 2011 ; and

– three ensembles of inversions (see Section 2.3 for the use of these), one using surface measurements
:::
only

:
(called SURF

hereafter), one using IASI observations
:::
data

::::
and

::::
MCF

:::::::::::
observations

::::
only (called IASI hereafter) and one using TANSO-20

FTS observations
:::
data

::::
and

::::
MCF

:::::::::::
observations

::::
only

:
(called GOSAT hereafter), each ensemble consisting of ten ,

:::::
from

::
the

:::::
name

:::
of

:::
the

::::::::
platform,

::::::::::
Greenhouse

:::::
gases

:::::::::
Observing

:::::::::
SATellite);

:::::
each

::::::::
ensemble

:::::::
consists

::
of

:::
ten

::::::::
one-year

:
inversions

from 10/2009 to 09/2010.
:::::
2010,

::::
with

::::::::
respective

::::::::
inversion

:::::::
set-ups

:::::
tuned

::::::::
according

::
to

:::
an

:::::::
objective

:::::::
analysis

:::::::::
described

::
in

Cressot et al. (2014)
:
.

:::
For

::
all

::::::::::
inversions,

:::
the

:::::::::::
minimization

::
of

:::
the

::::::::::::
non-quadratic

::::
cost

:::::::
function

::
is
:::::::
stopped

:::::
when

:::
the

:::::
ratio

::
of

:::
the

::::
final

::
to

:::
the

::::::
initial25

::::
norm

::
of

:::
the

:::::::
gradient

::
is
::::
less

::::
than

::::
0.01.

:

2.2 Data sets

In order to have continuous and homogeneous surface data throughout the extended assimilation window
::
of

:::::::::
REFSURF, we

restrict the methane site list to 36 instead of 49 as used in Cressot et al. (2014). They come from the National Oceanic

and Atmospheric Administration (NOAA) global cooperative air sampling network (Dlugokencky et al., 1994, 2009), the30

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Francey et al., 1999) and the National Institute of

Water and Atmospheric Research (NIWA) (Lowe et al., 1991). We also use the station Alert (ALT) from Environment Canada
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(EC) (Worthy et al., 2009). MCF measurements are provided by 11 NOAA surface sites (Montzka et al., 2011)
:::
and

:::
are

::::
used

::
to

:::::::
constrain

::::
OH

::::::::::::
concentrations (Pison et al., 2009). The surface sites used in our inversions are presented in Figure 1.

We use observations of the mid-to-upper tropospheric CH4 column made by IASI, a thermal interferometer on-board the

Meteorological Operational (MetOp) satellites. This quantity is retrieved based on a non-linear inference scheme (Crevoisier

et al., 2009) within 30 degrees of the Equator over both land and ocean at about 09:30 a.m./p.m. local time, with an accuracy5

of 1.2% (≈20 ppb).

Last, we use observations of the CH4 atmospheric total column over land from TANSO-FTS, a near-infrared
:::::::::::
near-infra-red

spectrometer on-board the Greenhouse gases Observing SATellite (GOSAT)
::::::
GOSAT. Total columns are retrieved by optimal

estimation using the algorithm of Parker et al. (2011) and with a precision of 0.6% (≈10 ppb).

The averaging kernel or weighting function and the prior profile (when available) of each IASI or TANSO-FTS retrieval are10

directly accounted for in the inversion system following Connor et al. (2008).

2.3 Error statistics

:::
The

::::
error

::::::::
statistics

:::
are

::::::::
described

::
in

::::
detail

::
in
:
Cressot et al. (2014).

::::
For

::
the

::::::
fluxes,

:::
the

::::::
spatial

:::::::::
correlations

:::
are

:::::::
defined

::
by

::::::::
e-folding

::::::
lengths

::
of

::::
500

:::
km

::::
over

::::
land

:::
and

:::::
1000

:::
km

::::
over

:::::
ocean

::::
(no

:::::::::
correlation

:::::::
between

::::
land

::::
and

::::::
ocean);

::::
time

::::::::::
correlations

:::
are

:::::::
defined

::
by

::
an

::::::::
e-folding

::::::
length

::
of

::
2

::::::
weeks:

:
it
::::
was

:::::::
checked

::::
that

::::
these

:::::::
choices

::::
lead

::
to

:
a
::::::
budget

::::::::::
uncertainty

:::::
which

::
is

:::::::::
consistent

::::
with

:::
the15

:::::::::
uncertainty

::
of

:::::::::
bottom-up

:::::::::
inventories

::
as

:::::::::
described

::
in Kirschke et al. (2013).

:

The input error statistics for the prior and the observations are tuned using objective diagnostics as described by Cressot et al.

(2014). This means that they exhibit some objectivity that is seen to translate into realistic Bayesian posterior error statistics,

which in particular make all present inversions statistically consistent at the annual and global or regional scales (Cressot et al.,

2014).20

In order to keep the computational burden to a reasonable level, we compute the posterior error statistics from a Monte-

Carlo inversion ensemble of 10 times one year (
::
for

::::
each

:::
of

:::
the

::::
three

:::::::::
observing

::::::
systems

::::::::::
(ensembles

:::::::
GOSAT,

:::::
IASI

:::
and

::::::
SURF

::
as

::::::::
described

::
in

::::::
Section

:::::
2.1).

:::
The

::::::::
posterior

::::
error

:::::::
statistics

::::
(the

::::::
"noise"

:::
for

:::
our

::::::
study)

:::
are

::::::::
estimated

::
as

:::::::
follows:

:

–
::
we

::::::::
estimate

:::
the

::::
ratio

:::
of

:::::::
posterior

:::
to

::::
prior

::::::::
standard

:::::::::
deviations

::
of

:::
the

::::::
annual

::::
flux

:::::
errors

:::::::
r = σa

σb ::::
from

:::
the

:::::::::
ensemble,

::
a25

:::::::
quantity

:::::
which

::
is

::::
more

::::::
robust

::::
than

::
σa::::

and
::
σb::::::::::

individually
:::
for

:::::
small

:::::::::
ensembles

:::::::
(because

:::::
some

::
of

:::
the

::::::::::
underspread

::::::
affects

::
the

:::::
prior

::::
and

:::
the

:::::::
posterior

:::
in

:
a
::::::
similar

::::::
way);

:::
the

::::::
number

:::
of

::::::::
members

::
in

:::
the

::::::::
ensemble

::::::::
depends

::
on

:::
the

:::::
time

::::
scale

::::
e.g.

10 /2009 to 09/2010). Therefore, posterior error statistics of inter-annual emissions are computed from
:::::::
members

:::
for

:::
the

:::::
yearly

::::
time

:::::
scale

:::
(10

:::::::::
inversions,

::::
each

:::
one

::::::::
covering

:
1
:::::
year),

::::
120

::::::::
members

:::
for

:::
the

:::::::
monthly

::::
time

::::
scale

:

–
::
we

:::::::
estimate

:::
the

::::::::
posterior

:::::::
standard

:::::::::
deviations

::
of

:::
the

::::::
annual

::::
flux

:::::
errors

::
by

::::::::::
multiplying

::
r

::
to

:::
the

:::::
known

:::::
value

::
of

:::
σb:::

i.e.
:::
the30

:::
one

::::::
implied

:::
by

:::
our

:::::
error

:::::::::
covariance

:::::
matrix

:::::::::
(computed

:::::
from

:::
the

:::::
above

:::::::::::
assumptions)

:

–
::
the

::::::::
posterior

:::::::
standard

:::::::::
deviations

::
of
:

the ones of annual emissions
::::::::::
pluri-annual

:::
flux

::::::
errors

:::::
errors

:::
for

::
n

::::
years

::
is
::::::::
obtained

::
by

::::::::
applying

:
a
:::::
factor

::
of

:::

1√
n:::

to
::
the

::::::::
previous

:::::
result,

::::::::
assuming

::::
that

:::
the

:::::
errors

:::
are

::::::::::
uncorrelated

:::::
from

:::
one

::::
year

::
to

:::
the

::::
next
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–
::
the

::::::::
posterior

::::::::
standard

::::::::
deviations

:::
of

:::
the

:::::::::
difference

:::::::
between

:::::
fluxes

:::::
from

:::
one

::::
year

:::
to

:::
the

::::
next

:::
(i.e.

::::
the

::::
error

:::
on

:::
the

::::
IAV

::
for

::::
two

::::::::::
consecutive

:::::
years)

::
is
:::::::::
computed by applying an inflation factor of

√
2 . This means that we consider that

::
to

:::
the

:::::::
previous

:::::
result,

::::
still

::::::::
assuming

:::
that

:
the errors are uncorrelated from one year to the next. This is

::
We

:::::::
assume

:::
this

::::::::
approach

::
to

::
be a conservative hypothesis since in reality some of the transport and retrieval errors are recurrent, thereby inducing

positive correlations and reducing the inflation factor.5

The variability of CH4 concentrations depends on the oxidizing capacity of the atmosphere, which is largely controlled

by OH concentrations. Since OH concentrations are constrained through MCF data in our multi-species inversion system

(Section 2.1), the uncertainty on OH (≈5% after optimization) is accounted for in the uncertainty of the inverted
:::::::
inferred CH4

emissions and of their inter-annual variations.

::
At

::
a

:::::
given

:::::::::
space-time

:::::
scale,

:::
the

::::::::::
differences

:::::::
between

::::
the

:::::::
posterior

::::::
errors

::
of

:::
the

:::::
three

:::::::::
observing

:::::::
systems

:::
are

::::::
mainly

::::
due10

::
to

:::
the

:::::::::
constraints

::::
that

::::
each

:::::::::
observing

::::::
system

::::::
brings

::
on

::::
the

:::
flux

:::::::::
estimates.

::::
This

:::
in

::::
turn

::
is

:::::
linked

:::
to

:::
the

:::::::
number

::
of

::::
data,

:::
to

::::
their

:::::::::
distribution

::
in
:::::

time
:::
and

:::::
space,

::::
and

::::
also

::
to

::::
their

:::::::::
sensitivity

::
to

:::::::
methane

::::::
surface

::::::
fluxes

:::
and

::
to

::::
their

::::::::::
uncertainty.

::
It

::::
may

::::
also

:::::::
depends

::
on

:::
the

::::::
ability

::
of

:::
the

:::::::
transport

::::::
model

::
to

:::::::
properly

::::::::
represent

:::
the

::::::
various

:::::
data.

2.4 Evaluation criterion

CH4 regional flux anomalies are defined here as the deviation from the 2004-2005 mean a
::::::::
reference

:
of the CH4 inverted fluxes15

.
:::::::
inferred

:::::
fluxes

:::
for

::::::
various

:::::
time

:::::::
periods,

::::
from

:::
the

::::::::
monthly

::
to

:::
the

:::::::
3-yearly

::::::
scale.

:::
The

::::::::
reference

::
is
::::

the 2004-2005 has been

chosen as a reference because it
::::
mean

::::
over

:::
the

:::::
same

::::::::::
time-period.

::::
The

:::
aim

::
of

::::
this

::::::::
definition

::
is

::
to

:::
get

:::
the

::::
order

:::
of

:::::::::
magnitude

::
of

::
the

:::::::::::
year-to-year

:::::::
changes

::
at

::::::
various

::::
time

::::::
scales.

:::
As

:::
the

:::::::::
2004-2005

::::::::
reference corresponds to a period of minimum atmospheric

:::::::
methane growth rate (Dlugokencky et al., 2011),

::
it
:::::
leads

::
to

:::::
more

:::::::
positive

::::::::
anomalies

:::
for

:::
the

::::::
longer

::::
time

:::::
scales. The regional

scale is based on the regions shown in Figure 2 and large latitudinal bands are defined as BorN for latitudes higher than 6020

degrees North, MidN between 30 and 60 degrees North, TropN between 0 and 30 degrees North, TropS between 0 and 30

degrees South, MidS between 30 and 60 degrees South and BorS higher than 60 degrees South. We study various timescales

from the week to 3 years
:::::
spatial

:::
and

::::::::
temporal

:::::
scales

::
of
:::::::
inferred

::::
flux

:::::::::
anomalies.

Our criterion consists in evaluating the ability of the observing systems to detect CH4 anomalies of a given amplitude,

defined by the reference inversion. The inversion of
::
For

::::
this,

:::
we

::::::
define

:
a
::::::::::::
signal-to-noise

:::::
ratio:

:
25

–
::
the

::::::::
inversion

:::::
with surface measurements is chosen to provide the signal as the data cover

:::::
covers a long time window

(2000-2011) as compared to the two other observing systems. This longer window makes it possible to sample the

CH4 IAV more robustly than a 2-3 year inversion. We compare the
::::::
assume

::::
that

:::
the

:::::
fluxes

:::::::
inferred

::
by

::::
this

::::::::
inversion

:::
are

:::::::::::
representative

::
of

::::::::::
state-of-the

::
art

:::::::::
inversions

::::::::
currently

:::::::::
published.

:::
The

:::::
signal

::
is
:::::::
actually

:::
the CH4 anomalies

::
for

:::
the

:::::::
various

::::
time

:::::
scales derived from REFSURFto the error variances computed for each observing system (from

:
.30

–
::
for

:::
the

:::::
three

::::::::
observing

:::::::
systems

::
(SURF, IASI and GOSAT). The Bayesian posterior error variances associated with the

IAV
:
,
:::
the

::::::::
Bayesian

::::::::
posterior

:::::
errors

::
of

::::
the

::::::::::
year-to-year

:::::::
changes

:
of CH4 fluxesare ,

:
computed from the Monte-Carlo
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ensemble as described in Section 2.3and
:
, constitute the noise associated to each observing system. To evaluate the

space-time scales at which the anomalies are larger than the detection limit of each observing system, the

::::::
Finally,

:::
the

:::::::
criterion

:::
for

::::::::
detecting

::::
CH4:::::::::

anomalies
::
is

:::
that

:::
the signal-to-noise

::::
ratio

:
is
::::::
larger

:::
than

::
1
::::::
(≈68%

:::::::::::
confidence).

:::::::::
Comparing

::::::::::::
signal-to-noise

:
ratios are computed at the same spatial scales for weekly to 3-yearly time scales. This statistical

criterion estimates for which
:::::::
amounts

::
to

:::::::::
comparing

::::::
noises

:::::::::
normalized

:::
by

:::
the

:::::::
expected

:::::::
signals.

:::
The

::::::::::::
normalization

:::::::
provides

:::
an5

:::::::
absolute

:::::::
criterion

::
to

::::::
assess

:::
the time scales and regions

:
at
::::::

which
:
the CH4 anomalies are reliablefor each observing system.

:
.

::::::::
However,

:::
the

::::::
quality

::
of

:::
the

::::::
chosen

::::::
signal

:::::::
remains

::::::::
debatable

:::
and

::::
our

:::::::::
diagnostic

::
for

::::::::
GOSAT

:::
and

:::::
IASI

::::
may

::
be

::::::::::
pessimistic

::
in

::::
areas

:::::
where

::::::
SURF

::::::::::::
signal-to-noise

:::::
ratio

:
is
::::
low.

:

In the following, the presentation of the results is done for three timescales
::::
time

:::::
scales

:
(seasonal, yearly, and 3-yearly trends)

before assessing their sensitivity to temporal and spatial aggregations.10

3 Results: signal-to-noise ratios

3.1 Seasonal-scale detection

The signal-to-noise ratios are computed over three-month periods (JFM, AMJ, JAS and OND, hereafter referred to as "seasons"

for simplicity) from 2000 to 2011 i.e. 48 occurrences (12 years of 4 seasons).
::::
JFM,

:::
12

:::::
AMJ,

::
12

::::
JAS

::::
and

::
12

::::::
OND).

:

The three observing systems are able to detect almost all the anomalies at the global scale (Table 1). As expected, the fraction15

of detected anomalies decrease
:::::::
decreases

:
with the spatial scale. At the global scale, 93 to 97

::
91

::
to

::
93% of the flux anomalies

are detected depending on the observing system (Table 1). At semi-hemispheric scales (excluding MidS and BorS areas), this

range is of 10-91
:::
0-87% (median = 52

::::
49.5%), GOSAT having the best range (25-91

::::
8-87%) compared to IASI (22-79

::::
12-60%)

and SURF (10-81
:::
0-66%). The lack of detection in MidS and BorS is not significant considering the small methane fluxes

involved. At the regional scale, the detection range is 0-97
:::
0-79% (median = 10

:
4%), with large contrasts. Again the range20

is more favorable
::::::::
favourable

:
for GOSAT (0-97

:::
0-79%, median = 20

:
7%) than for SURF (0-87

::::
0-75%, median = 10

:
3%) and

IASI (0-52
:::
0-72%, median = 6

:
0%). Only anomalies in Central America

:::::::::
Anomalies

::
in

:::
the

:::::
USA,

::::::
Central

::::::::
America [

:::::::::
CentralAm]

:
,

::::::::
temperate

::::::
Africa [

::::::::::
SouthernAfr],

:::::::
Middle

::::
East

::::
and

::::::::
Australia&

:::::::::::
New-Zealand

:
[
::::::::
AustrNZ] are not detected by any of the three

observing systems. GOSAT is the only one of the three observing systems to detect any anomalies in the USA,
:::::::
anomaly

::
in

temperate South America [SouthSAm] and temperate
:::::::
northern

:
Africa [SouthernAfr

::::::::::::
NorthAfrWest,

:::::::::::
NorthAfrEast].25

At the seasonal time-scale
::::
time

::::
scale, large signals are due to various causes

::::::
caused

::
by

:::::::
various

::::::::
processes, depending on the

emitting area. At high Northern
:::::::
northern

:
latitudes, a large seasonal cycle is expected for wetland emissions

:::::::
emission

::::
areas, with

mostly no emissions during winter and maximum emissions during summer: this leads to four seasons very different from their

average and therefore to large anomalies. This is illustrated on the detection in NorthAmBor
:::
The

::::::::
detection

:::
rate

::
is
::::::
above

::::
50%

::
for

:::
the

:::::
three

::::::::
observing

:::::::
systems

::
in

:::
this

::::::
region (Table 1): GOSAT is able to detect almost all the anomalies, half ,

::::
but,

::
in

:::::::
contrast30

::
to

:::
the

::::
other

:::::::
regions

:::
and

::
to
:::
the

:::::
other

::::
time

::::::
scales,

:::
the

:::::
prior

::::
error

::::::::
statistics

::::::
already

::::
lead

::
to

::::::::
detection

::::
rates

:::
of

::::
58%

:::
for

:::
the

:::::
prior.

::::
This

:::::
shows

:::
that

:::
the

::::::::
Tropical

::::
IASI

::::::::
soundings

:::
do

:::
not

:::
add

::::::::::
information

:::
for

:::
this

::::::
region

:::
and

::
at
::::
this

::::
time

:::::
scale,

::
as

::::::::
expected.

:::::::
GOSAT
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:::::::
performs

:::::
better

:::
by

:::::::
detecting

:::::
more

::::
than

::::
three

:::::::
quarters

::
of
:::
the

:::::::::
anomalies,

:::::
about

::::
one

::::
third of which are positive (Table 1/

:
in

::::::
winter

:
(Figure 3, due to maximum emissions in spring and summer ) and half negative (Table 1/

:::::
almost

::::
null

::::::::
emissions

::::::
when

:::
the

::::::
surface

::
is

:::::::::::::
snow-covered),

:::
one

::::
third

::
in
::::::::

summer
:::
and

:::
one

:::::
third

::
in

:::
fall

:
(Figure 3, due to almost null emissions when the surface

is snow-covered
::::::::
maximum

:::::::::
emissions

::
in

:::::::
summer). Due to a larger noise (≈1.4

::
1.5 Tg vs ≈1

::
1.2 Tg for GOSAT, Figure 4 [a]),

SURF misses some
::
all

:
springs (Figure 3); and IASI, with the largest noise (≈1.9 Tg, Figure 4 a), mostly detects winter and5

summer (Figure 3). In the larger BorN area, only winter and summer are detected (Figure 3).

In the Tropics, some areas also have large seasonal variations, mainly due to biomass burning or rice-paddies. In AfrEquat,

::::
some

:::
of the AMJ positive signals generated are almost all detected by GOSAT

::
and

:::::
IASI

:
(Figure 4 [a]). Note that SURF

performs poorly in this area (Table 1), due to the lack of stations which leads to large noise (≈3.3 Tg, Figure 4 [a]). In India

and China, the rice-paddy practices lead to a seasonal cycle of methane emissions with a maximum in JAS and a minimum10

in JFM (Matthews et al., 1991). The three systems detect anomalies in JFM and JAS (Figure 3) with consistent signs (
::
≈

:
half

positive, half negative anomaliesfor GOSAT and IASI, positive
:
)
:::
for

:::::::
GOSAT,

::::::::
negative anomalies preferentially detected by

::::
IASI

:::
and

:
SURF (Table 1).

3.2 Yearly-scale detection

The signal-to-noise ratios are computed over the years
::
for

::::
each

::::
year

:
from 2000 to 2011 i.e. 12 occurrences. At the yearly15

scale, detection rates are smaller than at the seasonal scale, at all spatial scales. Note that most anomalies are positive since

the reference for computing the signal is 2004-2005 i.e. the period of global minimum over 2000-2011. At the global scale,

detection rates range from 58% to 83
::
75% (Table 2). The Boreal zone [BorN] is only poorly detected (8%)

:::
not

:::::::
detected whereas

the Tropics [TropN and TropS] remain the best detected zone (16-58
:::::
16-50%). At the regional scale, the detection rates range

between 0 and 58
::
33% with a median of 0%: the only regions above 25% of detection are

:::::::
tropical Africa [NorthAfrWest,20

NorthAfrEast, AfrEquat] , Middle East for GOSATand Eastern Siberia FarEastSib
:::
and

::::::::::::
NorthAfrWest

:::
for

:::::::
GOSAT. No detection

is obtained in key regions for methane emissions such as Amazonia , India, China (except SURF at 16%)
::::::
(except

:::::::
GOSAT

::
at

::::
8%),

:::::
India,

:::::
China

:
and North America [NorthAmBor, USA].

The differences between the three observing systems are larger at the yearly scale than at the seasonal scale: GOSAT and

IASI detect more than 75% of the 12 possible global occurrences versus 58% for SURF (Table 2). At the regional scale,25

GOSAT detects more anomalies than the two other systems, IASI and SURF being comparable in their detection rates. Indeed,

GOSAT noises are smaller than the two other systems (<1.5
:::
3.5 Tg in MiddleEast

::::::::
AfrEquat for GOSAT against >4.5

:::
3.5 Tg

for SURF and IASI
::::
IASI

:::
and

:::::
>5.8

:::
for

:::::
SURF; <1.8

:::
2.5 Tg in NorthAfrEast

::::::::::::
NorthAfrWest for GOSAT against > 2.9

::
4.7 Tg for

SURF and IASI
::::
IASI

::::
and

:::::
SURF). This is partly due to the large number of data available in these two regions (Table 4): with

NorthAfrWest, CentralAsia and AustrNZ, they have
:::::::::::
NorthAfrEast,

::::::::::::
NorthAfrWest

:::
has

:
the largest number of GOSAT

:::
and

:::::
IASI30

data, mainly because they are
:
it

::
is among the driest areas i.e. with the lowest cloud cover. In agreement with the intuition of

Bergamaschi et al. (2013) that performing gross averages makes it possible to extract a signal from the inversion, the detection

is enhanced in the latitudinal bands e.g. detection rates>50% in MidN and
:::::
≥25%

::
in TropN for GOSAT , TropN for

:::
and SURF.
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But , at the regional scale, it remains difficult to robustly extract yearly flux anomalies. Therefore, we now focus our analysis

on longer time scales, with a longer time aggregation of three years, to get hints at the
:::::
longer

:
trends in methane emissions.

3.3 Trend detection over 2000-2011

::
To

:::::
study

:::
the

::::::::
detection

::
of

::::
flux

::::::::
long-term

:::::
trend

::::
over

::
12

:::::
years,

::
a
::::::::::
compromise

:::
has

:::
to

::
be

:::::
found

:::::::
between

:::
the

:::::
rather

:::::
short

::::::
length

::
of

:::
this

::::
time

:::::::
window

:::
and

:::
the

::::
time

::::::::::
aggregation

::
of

::::::
fluxes,

:::::
which

:::::
needs

:::
to

::::
filter

:::
out

::::::::::
year-to-year

:::::::
changes.

:
Aggregating through time5

while still retaining a small enough resolution to discuss tendencies
:::::
trends

:
over 2000-2011, we define four time-windows

::::
time

:::::::
windows

:
of three years each: 2000-2002, 2003-2005, 2006-2008 and 2009-2011. The reference period for the definition of the

anomalies of each of these four periods is still 2004-2005 (Section 2.4).

At the global scale, the emissions have slowly decreased from 2000 to 2005, with a global minimum in 2004-2005, then

increased at a larger rate after 2006 (Kirschke et al., 2013). The three observing systems are able to detect the large positive10

anomalies after 2006 and consistently detect nothing or small positive anomalies
::::
detect

:::::::
nothing

:
before (Table 3). The three

observing systems are able to detect the same time-evolution
:::::::
temporal

:::::::::
evolution of the signal in TropN

:::
and

:::::
TropS. Only

GOSAT and SURF detect MidN anomalies; the lower detection by IASI at these latitudes is expected since the data used here

are only within +/-30
::::
±30 degrees of the Equator (Table 4: no IASI data in MidN). The signal in BorN is never detected. This

is consistent with the recent increase of methane global emissions coming mostly from the Tropics and to a lesser extent from15

the northern mid-latitudes, as suggested by Bergamaschi et al. (2013) and Nisbet et al. (2014).

Being able to detect anomalies at a smaller spatial scale could help attributing the changes in methane emissions to particular

processes. Unfortunately, even when aggregating 3 years together (instead of one as in Section 3.2), it is still difficult to detect

regional anomalies. On top of the regions already detected at the yearly time scale, a positive change in Chinese emissions is

detected with the three-year aggregation, but only by IASI and SURF. The lack of detection by GOSAT stems from the small20

number of GOSAT data compared to IASI over India and China (Table 4), which is due to cloud cover and aerosol column

content. On the contrary, GOSAT alone suggests detectable negative anomalies in NorthAmBor in 2000-2002 and 2009-2011.

This is consistent with the lack of surface sites in this area (e.g. the Canadian stations from Environment Canada were not used

here) and the lack of data by IASI North of 30 degrees (Table 4).

At high northern latitudes, positive anomalies in FarEastSib are detected by all three systems in 2000-2005 and again in25

2009-2011 by GOSAT and SURF, even though the emissions in this area are small (1 Tg in 2004-2005, Table 3). This is due

to the very small noises, mainly due to the small prior errors, which are built proportional to the fluxes. Moreover, for SURF,

3 stations are available downwind of this region.

In TropN, among the regions with a good detection rate are NorthAfrWest and NorthAfrEast plus part
::::
some

:
of AfrEquat, the

remainder of this region being in TropS. In these regions, all three observing systems detect anomalies, even though GOSAT has30

the largest signal-to-noise ratios. Note that SURF seems to be able to make use of
::::::
benefit

::::
from

:
the stations located mostly on

the coasts (only ASK is actually in the land-mass
:::::
inland). GOSAT is also able to detect large negative (2000-2003) and positive

(2006-2011) anomalies in the MiddleEast; SURF is under the detection threshold because the available station in the region,

WIS, is upwind of the area and no other station is available close enough downwind; the anomalies are not detected by IASI
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either because IASI ’s weight-function
::::::::
weighting

:::::::
function

:
peaks in the mid-troposphere. In a region dominated by subsidence,

like the MiddleEast, the altitude concentrations seen by IASI are not directly connected to the surface. The detection of surface

variations in the fluxes is therefore poor, contrary to regions dominated by convection like Indonesia, where IASI has the best

detection rates. In China, the three systems agree on the detectable negative anomalies in 2000-2002 and do not detect any

signal in 2003-2005. After 2006, SURF detects the positive anomalies, because its noise is the smallest (≈12 Tg) with about5

3 stations providing relatively direct constraints in the region. The two satellites, for which noises are 15 to 40% larger (≈14

and ≈17 Tg), do not detect this signal.

In Indonesia, IASI and GOSAT agree on detectable positive anomalies in 2000-2002 and 2006-2008 and nothing detectable

for the other two periods
::::::::
2003-2005

::::
and

:::::::::
2009-2011. Indeed, no large El Niño occurred during the first decade of the 21st

century with the associated large fires such as those experienced late in 2015
::
in

:::::::::
1997-1998

::
or

:::::
more

:::::::
recently

::
in

:::::::::
2015-2016 for10

instance (National Weather Service - Climate Prediction Center, 2016).

Among the key-areas for methane emissions, signals in Amazonia (dominated by tropical wetlands) and in BorN, particularly

in SiberianLowlands (dominated by boreal wetlands in summer), remain undetectable by the three systems. In SiberianLow-

lands, the noises of the three systems are small (between 3 and 6
:::
3.8

:::
and

:::
7.8 Tg [not shown]); in Amazonia, the noises of the

satellites are relatively small (≈8
:
6 and ≈6

:
7 Tg resp. for GOSAT and IASI), whereas the noise of SURF, for which no sta-15

tions are available closer than ASC in the Atlantic, is ≈19
::
24 Tg (Figure 7, 3Y case). Nevertheless, all these anomalies remain

smaller than the smaller noise, and are therefore not detectable
:
in

:::
our

::::::::::
framework. This is because the signal variability remain

::::::
remains

:
small after inversion (less than 20% of the average mass over 2004-2005). As there is no

:::::::
Possible

:::::::
reasons

::
for

::::
this

:::
are

::
an

:::::
actual

::::
low

::::::::
variability

::
in
:::::
these

::::::
regions

:::
for

::::
this

:::::
period

::::
and

:::
the

:::
fact

::::
that

:::
the

:::::
choice

::
to
:::::
limit IAV in the prior emissions (except

biomass burning ),
:
to

:::::::
biomass

:::::::
burning

:::::::
together

::::
with

:
the lack of constraints from the atmosphere leads some

:::
lead

:::
the

:::::::
inferred20

fluxes to stick to the low-IAV prior, leading to small anomalies.

3.4 Detection at other timescales
::::
time

:::::
scales

As shown previously, the temporal scale at which the signal and noise are computed has an impact on the detection. Section 3.1

deals with the
:
:
:
3-monthly time-scale

:::::::::
("seasonal",

:::::::
Section

::::
3.1)

::::
and

:::::
yearly

::::::::::::
(year-to-year

:::::::
changes,

:::::::
Section

::::
3.3)

::::
time

::::::
scales

over a 12-year time-window; Section 3.3 deals with the
::::
time

:::::::
window;

:
3-yearly time-scale

:::
time

:::::
scale in 3-year time-windows.25

The impact of temporal aggregation
::::
time

::::::::
windows

:::::
(trend,

:::::::
Section

::::
3.3).

::::
We

:::::::::
investigate

:::
the

::::::
impact

:::
of

:::
the

::::
time

:::::
scale

::
of

::::
flux

:::::::::
aggregation

::::::
within

:::
the

::::::
3-year

::::
time

::::::::
windows

:::
of

::::::
Section

:::
3.3

:
on the noise and the signal in these time-windows is displayed

in Figure 5, Figure 6 and Figure 7 for three areas: Global, hemispheric with the example of BorN, and regional with the

example of Amazonia .
:::::
global

::::::
(Figure

:::
5),

:::
the

:::::::
northern

:::::::
Tropics

::::::
(Figure

::
6)

::::
and

::::::::
Amazonia

:::::::
(Figure

::
7).

::::
For

::::
each

::::
area,

:::
we

:::::::
perform

::::
time

::::::::::
aggregations

:::::
from

:::::::
3-yearly

:::
to

:::::::
monthly

::::::
scales,

:::
the

::::::::
3-yearly

::::
case

::::::::::
corresponds

::
to
::::

the
:::::
results

:::::::::::
commented

::
in

:::::::
Section

:::
3.330

::::
about

::::::
trend. At all spatial scales, the noises and signals are smaller when the time-scale

::::
time

::::
scale

:
is smaller (from 3-yearly to

weekly
::::::
monthly). As expected for emissions with "seasonal" cycles, the seasonal scale (4- or 3-monthly) is particularly detected

(Figure 5, Figure 6) in our relatively large areas.
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The minimum time-resolution of one week could be relevant in regions where the signal is mostly from wetland emissions

and/or biomass burning; it would be useful to be able to detect the beginning of the emitting season for wetlands and the

short-lived fires. In NorthAmBor, where both these sources are found, about 55% of weekly anomalies are detected by GOSAT

and SURF. In all other regions, the detection rates at this time-scale are small (<≈25%, not shown).

In key-region Amazonia (Figure 7), no signal is detected at the 3-yearly time-scale
::::
time

::::
scale

:
nor at the weekly time-scale5

:::::::
monthly

::::
time

::::
scale

:
by any of the three systems; only GOSAT detects about 15

:
8% of the anomalies at the yearly time-scale

::::
time

::::
scale. Actually, the time-scale

::::
time

::::
scale

:
at which the best detection rates are found depends on the region and varies from

the largest possible (12-year
:::::
3-year

:
scale) to the 2-month scale. In most of Africa [NorhtAfrWest

:::::::::::
NorthAfrWest, NorthAf-

rEast, AfrEquat,
:::::::::::

SouthernAfr], the signal at the 12-year scale is detected
:::
best

:::::::::
detection

::::
rates

:::
are

::::::::
obtained

::
at
::::

the
::::::
3-year

::::
scale

:
by all three systems(it is detected by GOSAT only in SouthernAfr). In India and China, ,

:::
as

::
in

:::::::
Europe,

::::::::
Indonesia

::::
and10

:::::::
Australia&

:::::::::::
New-Zealand [

:::::::
AustrNZ].

::
In

:::
the

:::::
North

::
of

::::::
Eurasia

:
[
:::::::::::::
EastEurRussia,

:::::::::::::::
SiberianLowlands,

::::::::::::::::
SiberianHighlands,

:::::::::
FarEastSib],

the best detection rates are obtained at the 2- or
::::
range

::::
from

:::
the

::::::::
3-yearly

::
to

:::
the 3-monthly time-scale for GOSAT (77 and 43%

respectively) but at the 4-monthly time scalefor IASI (66 and 30% respectively) and SURF (61 and 44% respectively)
::::
time

:::::
scales.

::
In

:::::::
Central

::::
Asia,

:::::
IASI

::::::
obtains

:::
the

:::
best

::::::::
detection

::::
rates

::
at

:::
the

:::::::::
2-monthly

::::
time

::::
scale. At high latitudes [BorN

:::::::::::
NorthAmBor],

the best detection rates are found at the 2-monthly time-scale (between 70% for IASI and 86% for GOSAT)
:::::::
(SURF),

:::::::::
3-monthly15

:::::
(IASI)

::::
and

::::::::
4-monthly

:::::::::
(GOSAT)

::::
time

:::::
scales

:::::
(with

::
88

::
to

:::::
100%

:::
for

:::::::
GOSAT,

:::
up

::
to

::::
75%

:::
for

::::
IASI

::::
(but

:::::
which

::
is

:::
not

:::::
better

::::
than

:::
the

::::
prior

::::::::
detection

::::
rate,

:::
see

::::::
Section

::::
3.1)

:::
and

::
up

::
to
:::::
77%

::
for

:::::::
SURF),

:::::
which

::
is

::::::::
consistent

::::
with

::::::::
seasonal

:::::
cycles

::::
with

:
a
:::::
large

:::::::::
magnitude

:::
over

::
a
::::
short

::::::
period

::
of

::::
time

::
in

::::
this

:::::
region.

In order to further understand the various levels of detection described above, we investigate the sensitivity of our results to

two main parameters of our set-up: spatial aggregation and signal used.20

4 Sensitivity analysis

4.1 Impact of spatial aggregation on trend detection

Our inversion systems solves
:::::
system

::::::
solves

:::
for

:
methane fluxes at the model resolution (3.75◦x2.5◦) worldwide. Although

spatial and temporal correlations are prescribed (see Section 2.3), flux anomalies of different signs may still be obtained. These

anomalies may be either the realistic result of the constraints or due to the optimization taking an easy path when too few25

constraints are available. The definition of larger areas may lead to summing up anomalies of opposite signs and hide (realistic

or not) spatial variations. We then try
::
try

::::
here

:
to investigate the impact of the spatial aggregation of model pixels in the case

of one illustrative region, Amazonia, which is a key-area for methane emissions and remains poorly detected by all the studied

observing systems at all time-scales
::::
time

:::::
scales

:
(see Section 3.4). In the region as defined on our model grid, the signal at the

pixel scale is indeed patchy (Figure 8). Dipoles of negative/positive signal are summed up when aggregating at the region ’s30

:::::
region

:
scale. The impact of the progressive aggregation of rings of pixels from the center of Amazonia is displayed in Figure 9

:
:::
for the 3-yearly signal could be

:::
time

::::::
scale:

:::
the

:::::
signal

::
is
:
detected by all systems for the four 3-year periods up to the 3rd

ring i.e. for a region covering 25 pixels instead of 66. It would then be possible to define the regions based on the spatial
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aggregation that allows the best detection rates for the chosen observing system. This would nevertheless lead to the issue of

the user
:::::::::::
Nevertheless,

:::
this

::::
may

:::
be

::::::::::
inconsistent

::::
with

:::::
users’

:
needs e.g. whether the regions are actually relevant for country

:
if

:::
they

:::
are

:::::::::
expressed

::
in

:::::
terms

::
of

::::::::::::
country-based budgets.

4.2 Impact of the signal on seasonal and yearly detection

Since the signal is obtained from one inversion onlyi.e. depends on numerous
:
,
:
it
::::::::

depends
::
on

::
a
:::::
series

:::
of assumptions (er-5

ror statistics, set of assimilated data
:::
data

::::::::
selection, etc) and has potentially

::::
may

::::
have

:
large uncertainties in various areas

(e.g. far from the observing stations), another signal definition has been tested. It must cover enough years of analysis to be

representative of the variability of methane fluxes. We therefore chose .
:::::::
Another

::::::
signal

::::::::
definition

:
is
::::::::
therefore

::::::
tested.

:::
We

::::::
choose

an inversion by Bousquet et al. (2011), (called PBSURF hereafter) instead of the SURF
:::::::::
REFSURF

:
inversion described above.

PBSURF solves
:::
Like

::::::::::
REFSURF,

::::::::
PBSURF

:::::
covers

:::::::
enough

:::::
years

::
of

:::::::
analysis

::
to

:::
be

:::::::::::
representative

::
of

:::
the

:::::::::
variability

::
of

::::::::
methane10

:::::
fluxes.

::::
The

::::
main

::::::::::
differences

:::::::
between

::::::::
PBSURF

:::
and

:::::::::
REFSURF

::::
are:

–
:::::::
PBSURF

::::
uses

:::
an

::::::::
analytical

::::::::
inversion

:::::::
whereas

:::::::::
REFSURF

::
is

:::::::::
variational,

:

–
::::::
because

::
of
::::
this,

::::::::
PBSURF

::::::
solves

:::
for methane fluxes for large regions and

::::::
whereas

:::::::::
REFSURF

::::::
works

::
at

:::
the

::::
pixel

:::::
scale,

:

–
:::::::
PBSURF

::::::::
retrieves

:::::::
monthly

:::::
fluxes

:::::::
whereas

:::::::::
REFSURF

::::::::
retrieves

:::::
fluxes

::
at

:
a
:::::::
weekly

:::::::::
resolution,

–
:::::::
PBSURF

::::::
solves

:::
for

:::::::
methane

:::::
fluxes

:::
for several processes in each region , using observations from a set of surface stations15

different from SURF.
::::::
whereas

:::::::::
REFSURF

::::::
solves

:::
for

:::
net

::::::::
emissions,

:

–
::
as

:
a
:::::::::::
consequence

::
of

:::
the

::::
three

::::::::
previous

::::::
points,

:::
the

:
B

:::::::
matrices

::
of

:::
the

:::
two

:::::::::
inversions

:::
are

::::
quite

::::::::
different,

:

–
:::::::
PBSURF

::::
uses

::::::::
monthly

:::::
means

::
of

:::
the

:::::::
surface

::::::::::
observations

::
as

:::::::::
constraints

:::::::
whereas

::::::::::
REFSURF

::::
uses

:::::
hourly

:::::
data,

–
::::::
because

::
of
::::
this,

:::
the

::::
sets

::
of

::::::
surface

:::::::
stations

::::
used

:::
by

:::::::
PBSURF

::::
and

:::::::::
REFSURF

:::
are

::::::::
different.

The large-region-scale inversion means that the spatial variability of the prior is kept within each region and is only scaled20

(contrary to SURF
:::::::::
REFSURF, which is performed at the pixel scale i.e. is able to vary only a few pixels to match the data).

This difference in the methods may lead to very different spatial variability in each of the regions of interest (Figure 4), a

larger variability ensuring
:::::::
allowing

:
a better detection rate with our criterion.

::::::
Indeed,

:::
the

:::::::::::::::
large-region-scale

::::::::
inversion

::::
may

::::
lead

::
to

:::::
larger

::::::::
variability

::::
than

::::::::::
pixel-based

:::::::::
inversions

::
in

::::
some

:::::::
regions

::::
(e.g. (Pison et al., 2013)

:
)
:::::::
because

::
of

:::
the

:::::::::
homothetic

:::::::
scaling

::
of

::
the

::::::
pixels

:::::::::
composing

::::
each

::::::
region

::
in

::::::::
PBSURF

::::::::::
(correlations

:::::::
between

::::::
pixels

::
of

::
1)

::
as

:::::::
opposed

::
to
:::
the

:::::::::
individual

::::::
scaling

::
of

::::::
model25

:::::
pixels

::::
with

:::
soft

:::::::::
constraints

:::
in

:::::::::
REFSURF

::::::
(spatial

::::::::::
correlations

::::
less

:::
than

:::
1).

:

We first focus on the seasonal (3-monthly) scale, which is the time-scale
::::
time

:::::
scale at which the detection is the most

favorable for SURF
::::::::
favourable

::
in
:::

the
::::::

largest
:::::

areas
:
(Section 3.4) while being relevant for methane emissions at the regional

scale defined here. The issue here is not whether the two inversions agree on the retrieved fluxes but whether the detection

rates differ. Europe illustrates how the detection rates of two signals can differ: for all three observing systems, PBSURF signal30
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:::::::
GOSAT,

:::::
signal

::::::::
PBSURF

:
is more than twice as often detected as SURF

:::::::::
REFSURF and the signs of the detected anomalies

are opposite (positive for SURF,
:::::::::
REFSURF,

::::::
mostly negative with PBSURF, Table 1 and Table 5: less positive anomalies are

detected for a larger total number of detected anomalies).

The signal by
:::::
Signal

:
PBSURF contains more negative anomalies than SURF

::::::::
REFSURF

:
at the global scale and in BorN and

MidN (for GOSAT and SURF)
:::::
MidN

::::
and

::::::
TropN. This is due to the fact that the two years of global minimum in SURFPB5

:::::::
PBSURF

:
are not 2004 and 2005 but 2004 and 2006, so that using 2004-2005 as the reference period does not lead to mainly

positive anomalies. For the three observing systems, detection is better with PBSURF signal
:::::
signal

::::::::
PBSURF in the Southern

hemisphere (TropS, MidS
::::::
Tropics

::::::
(TropS). In the Northern hemisphere, at the regional scale, the detection rate is shifted in lon-

gitude. NorthAmBor seasons are about half as
::::
25%

:::
less

:
often detected whereas up to 5

::
30

:
times more occurrences are detected

in SiberianLowlands, SiberianHighlands and FarEastSib. In SiberianLowlands and FarEastSib, the larger number is due to neg-10

ative signals for GOSAT and SURF. The same pattern is seen in the mid-latitudes where MiddleEast, India and China, which

are almost never detected with PBSURF signal
:::::
signal

::::::::
PBSURF

:::::
(only

:::::
India

:::
for

:::::::
GOSAT), versus NorthAfrWest and NorthAf-

rEast, in which mainly positive anomalies are detected (IASI and SURF) or both positive and negative anomalies (GOSAT).

The regional scale in the Southern hemisphere confirms the better detection with PBSURF signal
:::::
signal

::::::::
PBSURF (Amazonia,

SouthSAm, SouthernAfr, Indonesia, AustrNZ). In Amazonia, the (mainly positive) signals are detectable by GOSAT and IASI,15

but China (resp. India) is not anymore
:::
any

::::
more

:
(resp. poorly) detectable using PBSURF.

At the yearly scale (Table 6), the detection rates are shifted to the North in the Northern hemisphere and to the South in

the Southern hemisphere
::::
South

:
(from TropN and MidN to BorN and TropS). Detection rates higher than 50% are found in

Amazonia for GOSAT and IASI; in Europe for GOSATand SURF; in Indonesia for GOSAT and IASI.

One important outcome of this sensitivity test to the signal is that
::::
some regional or hemispheric flux anomalies are detected20

at all latitudes at most time-scales but the localization of the detected signal varies depending on the inversion characteristics

(including the observations used). This is of course one important limitation in attributing the observed atmospheric changes

to particular regions and to the underlying emission processes.

The impact of the signal on the detection of anomalies has also been tested by using a variational inversion at the pixel scale

assimilating both surface and IASI data. With this signal, the detection rates are higher in the Tropics (particularly in India and25

China) and in the Southern hemisphere at mid-latitudes [not shown]. This suggests that the joint assimilation of surface and

satellite data may lead to a better localization of the anomalies of the surface methane fluxes. Nevertheless, this requires that

the consistency between the two types of data (surface and remote-sensed) be improved (Locatelli et al., 2015; Monteil et al.,

2013).

5 Conclusions30

The aim of this study was to investigate which
::::
This

:::::
study

::::::
aimed

::
at

:::::::::::
investigating

:::
the

:
spatial and temporal scales current

atmospheric inversions may detect in terms of methane surface flux anomalies
:::
that

::::::
current

::::::::::
atmospheric

::::::::
inversions

::::
can

:::::
detect. To

do so, we have proposed a signal-to-noise ratio analysis, the signal being the methane fluxes inferred from a reference surface-
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based inversion from 2000 to 2011 and the noise being computed from three inversion systems using surface or satellite data

(GOSAT and IASI). At the global and semi-hemispheric scales, all observing systems detect flux anomalies at all time-scales

::::::
various

::::
time

:::::
scales from seasonal (3-month average) to long-term trend (3-year average). At all scales, GOSAT generally shows

the best results among the different systems
:
,
::
as

:::::
could

::
be

::::::::
expected

::::
from

:::
the

:::::::
density

::
of

:::
the

::::
data

:::
and

:::::
their

::::::::
sensitivity

::
to
:::::::
surface

::::::::
emissions.5

At the regional scale, the results are more variable. The seasonal changes are all detected with fair to good rates by at least

one network (GOSAT), and more than 50% of the regions are detected by
::
In

:
8
:::::::
regions

:::
out

::
of

:::
20,

::::::::
anomalies

:::
are

:::::::
detected

:::
by the

three networks
::::
three

::::::::
networks;

::
in

::
5

:::::::
regions,

::
no

::::::::
anomaly

:
is
::::::::
detected

::
by

:::
any

:::
of

:::
the

::::
three

:::::::
systems. The year-to-year changes and

longer term trends (three year averages) are detected for up to 50% of the regions (by GOSAT ) with detection rates mostly

lower than 50%. Anomalies
::
are

:::::::
detected

:
in

:
9
::::::
regions

:::
by

:::::::
GOSAT

:::
but

::::
with

::::
poor

::::::::
detection

::::
rates

::::::
(lower

::::
than

:::::
40%).

:::::::
Longer

::::
term10

:::::
trends

:::::
(three

::::
year

::::::::
averages)

::
in

:
African regions (all), Middle East (GOSAT), Eastern Siberia and Europe (all) are detected with

variable rates
::
by

:::
the

::::
three

:::::::
systems. In some key regions for the methane cycle, anomalies are hardly detected, both in the

case of dominant anthropogenic emissions (North America) or natural emissions (Amazonia, Siberian lowlands). A sensitivity

test to the spatial scale through aggregation shows that dipole effects in the retrieved flux anomalies prevent anomalies in

Amazonia (as defined in this study) to be detected. Flux anomalies in India and China, two areas with large and mixed (natural15

and anthropogenic) methane emissions, are generally poorly detected. Only a long-term trend over China is detected, with

larger emissions after 2006 for IASI and the surface network but not for GOSAT, which has a lower number of observations

over these regions because of cloud cover and aerosol layers. North-American emission changes are not detected, with the

exception of the long term trend of boreal North America (negative after 2006 for GOSAT). Overall, the
::
A

::::::::
sensitivity

::::
test

::::
with

:
a
::::::
second

::::::
signal,

::::
also

:::::::
obtained

::::
from

:::
an

::::::::
inversion

::::
with

::::::
surface

::::::::::
constraints,

:::::
shows

::::
that

::::::
overall,

:::
the

:
detection at a yearly scale is20

generally
::::::
remains

:
poor to fair for the two signals tested, both obtained with surface constraints

::::::
(>50%

::
in

:::::::::
Amazonia

:::
for

:::
the

:::
test

::::::
signal).

::::::
These

::::
tests

:::::
point

::
at

:::
the

::::::::::
importance

::
of

:::::::
properly

:::::::::::
determining

:::
the

::::::
spatial

::::::::::
aggregation

::
at

:::::
which

:::
the

:::::::
inferred

::::::
fluxes

::
are

:::::
used,

::::
with

:::
the

:::::
issue

::::
that

::::
such

:::
an

::::::::::
aggregation

:::::::
depends

::
on

:::
the

::::::::
inversion

:::::::
system

::::
used. This suggests that the ability of the

inversions to retrieve significant inter-annual variations in the methane fluxes is not evident and should be evaluated against

uncertainties, which are not always computed and/or provided with the inversion products.25

The use of another signal (
::::
which

::
is
:::::

from
:
a different surface-based inversion) does not change the main conclusion that

anomalies at the regional scale are only fairly-well
:::
not

::::
well detected but shows that the regions which are not seen may be

different: some yearly changes in Amazonia and India can be detected but tropical Africa is much less detected with the second

signal. Therefore, the precise identification of flux anomalies in the Tropics appears not to be robust with regards
::::::
regard to

changes in the inversion used for the signal. This is of course an issue when attributing the increase observed in atmospheric30

methane since 2006 to a particular region, as already noticed by Locatelli et al. (2015).

To increase the detection rates, the number of constraints (i. e. of assimilated data, either from satellite or from surface

sites) should be
:::
Our

:::::::
criterion

::
is

:::::
based

:::
on

:
a
::::
68%

:::::::::
confidence

:::::::
interval

::
(1

::::::
sigma).

:::
At

::::::
almost

::
all

:::::::
regional

:::::::::
time-space

:::::
scales

:::::::
(except

::
in

:::::::::::
NorthAmBor,

::::::::
AfrEquat

::
at
:::
the

::::::
longer

::::::::::
time-scales

:::
and

::
a
:::
few

:::::
cases

::
in

:::::
India,

:::::::::
Indonesia,

:::::::::::::
EastEurRussia

:::
and

:::::::::::
FarEastSib),

:::
the

::::
three

:::::::::
observing

:::::::
systems

:::::
would

:::
fail

::::
the

:::
test

::
at

::
2

::::::
sigmas

::::::
(95%),

::
a

::::
more

::::::::
stringent

:::::::
criterion

::::::::::
commonly

::::
used

::
in

:::::
other

::::::::
scientific35
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:::::::::::
communities.

:::
We

::::
also

::::
have

::::::::
neglected

:::
the

::::::
impact

:::
of

:::::
likely

:::::::::::::
state-dependent

:::::::::
systematic

:::::
errors

::
in

:::::::
current

::::::
satellite

::::::::
retrievals

::::
and

:::::::
transport

::::::
models

::::
that

::::::
further

::::::
reduce

:::
the

:::::::
inversion

:::::::::::
performance

::
to

::
an

::::::::
unknown

::::::
extent.

:

::::::
Overall,

::::
our

:::::
study

::::
may

:::::
appear

::
to
:::

be
:::::::::
pessimistic

:::::
about

:::
the

::::
skill

::
of
:::::::

current
::::::::
inversions

::
at
:::
the

:::::::
regional

:::::
scale.

:::::::::
However,

::
at

::::
least

:::
two

::::::::
elements

:::
put

:::
this

::::
view

::::
into

::::::::::
perspective.

:

::::
First,

:::
we

::::::::
focussed

:::
on

:::
the

::::
first

::::::
decade

:::
of

:::
the

::::::
XXIst

:::::::
century,

::
a

::::
time

::::::
period

::::
with

::::::::
relatively

::::
flat

:::::::
methane

:::::::
signals.

:::::::
Neither

::
a5

:::::
strong

::
El

::::::
Niño,

:::
nor

:
a
:::::

large
:::::::
volcanic

::::::::
eruption

::::::::
occurred,

:::::::
contrary

::
to
::::

the
:::::::
previous

::::::
decade

:::::::::::
(1990-1999).

:::
As

:::
an

::::::::::
illustration,

:::
the

:::::::
methane

::::::::::
atmospheric

:::::::
growth

:::
rate

:::::::::
fluctuates

::::
from

::
2

::
to

:::
16

::::::
ppb/yr

::
in

:::
the

:::::
1990s

::::::::
(standard

::::::::
deviation

:::
of

:::::
yearly

:::::::
annual

:::::::
increase

::
of

::::
±4.5

:::::::
ppb/yr)

::
as

:::::::::
compared

::
to

::
-4

::
to
:::

+7
::::::
ppb/yr

::::::::
(standard

::::::::
deviation

:::
of

:::::
yearly

::::::
annual

:::::::
increase

:::
of

::::
±3.5

:::::::
ppb/yr)

::
in

:::
the

::::::
2000s

(Dlugokencky et al., 2011).
::::
This

:::::::
reduces

:::::::
methane

::::
flux

::::::::
anomalies

::::
and

::::
their

::::::::::
detectability

:::
for

::
a
:::::
given

:::::
noise.

::
A

::::
time

::::::
period

::::
with

:::::
larger

::::::::::
year-to-year

:::::::
changes

::
in

:::
the

:::::::
methane

:::::
cycle

:::::
could

::::
lead

::
to

::
an

::::::::
improved

:::::::::::
detectability.10

::::::
Second,

::
as

:::::::::
mentioned

::
in

:::::::
Section

:
2,
:::
we

::::
have

::::
been

::::::::
relatively

:::::::::::
conservative

::
to

:::::::
estimate

::
the

::::::
noise,

:::::::
possibly

::::::
leading

::
to

::
its

:::::::::::::
overestimation,

:::::::
therefore

::::
also

:::::::
limiting

:::
the

::::::::::
detectability

::
of

::::::::
methane

:::
flux

:::::::::
anomalies.

:

:::
Our

:::::
work

:::
has

::::::
several

::::::::::
implications

:::
for

:::::::
methane

::::::::::
inversions.

::::
First,

::::::::
inversion

::::::
results

::::::
should

:::::
never

::
be

::::::::
presented

:::::::
without

::
an

::::::::
extensive

::::::::::
uncertainty

:::::::
analysis

::
to

::::::::::
distinguish

:::::::
between

:::::
robust

::::
and

::::
more

:::::::::::
hypothetical

::::::
results.

::::
This

::::
may

:::::
seem

:::::::
obvious

:::
but

::::
such

::
an

:::::::
analysis

::
is
:::
not

:::::::
always

::::::::
provided,

::
or

::::
only

::::::::
partially,

::
in

::::::::
inversion15

::::::
papers,

::::::
mostly

::::::
because

:::
of

::
its

::::::::::::
computational

::::
cost.

:

::::::
Second,

::
to
::::::::

increase
:::
the

:::::::
detection

::::::::::
robustness,

:::
the

::::::::::
information

::::::
amount

:::::
from

:::
the

:::::::
satellite

::::
data

:::
and

::::
from

:::
the

:::::::
surface

::::
sites

::::::
should

::
be

::::::::::
dramatically

:
increased, as shown by the regional differences between the two surface-based inversions (e.g. Africa versus

Tropical regions and China) and between the satellite based inversions(more IASI observations over China and India than

GOSAT ones). To increase .
::::::::
Defining

::::::
smaller

:::::::
regions,

::
as

:::::
tested

::::
here

::
in

:::::::::
Amazonia,

::::
may

:::
also

:::::::
improve

:::
the

::::::::
detection

::
of

:::::::::
anomalies20

::
in

:::::
small

:::
key

:::::
areas

::::
with

:::::::
intense

:::::::
methane

:::::::::
emissions.

:::
An

::::::::
increase

::
in

:
the robustness of the attribution of flux anomalies to a

particular region , transport models should be improved together with the
:::
goes

:::::
with

:::
the

:::::::::::
improvement

::
of

:::
the

:
consistency of

error statistics prescribed for flux
:::::
fluxes and observations (Berchet et al., 2015). Defining smaller regions, as tested here in

Amazonia, may also improve the detection of anomalies in small key-areas with intense methane emissions

:::::
Third,

::
as

:::
the

::::::
regions

:::::::
robustly

:::::::
inferred

::::::
depend

:::
on

:::
the

:::::::::
assimilated

::::::::
datasets,

:::
but

:::
also

:::
on

:::
the

:::::::
transport

::::::
model

:::
and

::::::::
inversion

::::::
set-up,25

:
it
:::::
seems

:::::::::
important

::
to

::::
push

:::
for

::::::
regular

::::::::::
comparisons

::::
and

::::::::
syntheses

::
of

:::
the

::::::
various

::::::::
transport

::::::
models

:::
and

::::::::
inversion

:::::::
systems,

::::::
which

:
is
::
at
:::::::
present

::
the

:::::
only

:::
way

::
to
::::::::
approach

:::
the

:::
full

:::::
range

:::
of

:::::::::
uncertainty.

:

::::
With

:::::
time,

:::
the

:::::::
increase

::
of

:::::::::::
observations

::
in
:::::::

density,
:::::::::

precision,
:::
and

:::::::::
accuracy,

::
if

::::::::
sustained

::
by

:::::::::
long-term

:::::::
funding

::
of

:::::::
surface

:::::::
networks

::::
and

::::::::::
development

::
of
:::::::
satellite

::::::::::
instruments,

:::::::
together

::::
with

:::
the

:::::::::
necessary

:::::::::::
improvement

::
of

:::::::
transport

:::::::
models,

::::::
should

:::::
allow

::
to

:::::
reduce

:::::::::::
uncertainties

::
in

:::::::
methane

::::
flux

::::::::
estimates. The joint assimilation of surface and satellite observations could be a solution30

to better constrain the surface methane
::::::
further

:::::::
improve

:::
the

::::::::
constraint

:::
on

:::::::
methane

:::::::
surface fluxes, if the consistency between

surface and remote sensed data can be improved (Locatelli et al., 2015; Monteil et al., 2013; Cressot et al., 2014). Cloud cover

and aerosol layers may limit the observability of key regions such as China and India .
::
or

::::
even

:::::::::
Amazonia

:::
and

::::::
induce

:::::::::
systematic

:::::
errors

::
in

::::::
passive

:::::::
satellite

::::::::::
instruments

::::
(e.g. Buchwitz et al. (2016)

:
). Solar based satellite instruments also provide limited data

at high latitudes. The future space mission MERLIN, based on a differential
::::
active

:
LIDAR measurement with a very small spot35
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on the ground, is less sensitive to cloud cover and does not need light to provide data
::::::
should

::::::::
overcome

:::::
these

:::::
issues

:::
and

:::::::
provide

:::
data

::
at

:::
all

:::::::
latitudes

:::
and

:::
all

::::::
seasons

:
(Kiemle et al., 2014). In this context, MERLIN seems a promising mission to improve some

of the limitations raised in this paper.
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Figure 1. Surface sites from the NOAA, CSIRO, NIWA and EC networks used in this study with red circles for surface sites observing MCF

dry air mole fractions and blue squares for surface sites observing CH4 dry air mole fractions.

Figure 2. Regions on the model grid, adapted to key-area for methane fluxes.
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Figure 3. Number of detected seasons over the 12 possible for winter (JFM, blue), spring (AMJ, green), summer (JAS, red) and fall (OND,

orange) in the various regions.
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Figure 4. Noise
:
at

:::
the

::::::
seasonal

::::
time

::::
scale by the three observing systems (bars) and box plots (median, 25 and 75%) for the signal in various

areas (latitudinal bands and regions). Detection is achieved when the signal is larger than the noise i.e. for all the occurrences in each box

plot which lay outside the matching colored
::::::
coloured

:
bar.

Figure 5. Impact of temporal agregation
:::::::::
aggregation on noise

::::
(bars)

:
and signal

::::
(box

::::
plots

::::
with

::::::
median,

:::
25

::::
and

::::
75%)

:
over 3-year

time-windows
:::
time

:::::::
windows.

:::::::
Detection

::
is
:::::::
achieved

::::
when

:::
the

:::::
signal

::
is
:::::

larger
::::

than
:::
the

:::::
noise

::
i.e.

:::
for

:::
all

:::
the

:::::::::
occurrences

::
in

::::
each

:::
box

::::
plot

::::
which

:::
lay

::::::
outside

::
the

:::::::
matching

:::::::
coloured

:::
bar.

:
Link to Table 3: the Global lines of the Table corresponds to the 3Y bars here.
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Figure 6. Impact of temporal agregation
:::::::::
aggregation on noise

::::
(bars)

:
and signal

::::
(box

::::
plots

::::
with

::::::
median,

:::
25

::::
and

::::
75%)

:
over 3-year

time-windows
:::
time

:::::::
windows.

:::::::
Detection

::
is
:::::::
achieved

::::
when

:::
the

:::::
signal

::
is
:::::

larger
::::

than
:::
the

:::::
noise

::
i.e.

:::
for

:::
all

:::
the

:::::::::
occurrences

::
in

::::
each

:::
box

::::
plot

::::
which

:::
lay

::::::
outside

::
the

:::::::
matching

:::::::
coloured

:::
bar.

:
Link to Table 3: the TropN lines of the Table corresponds to the 3Y bars here.

Figure 7. Impact of temporal agregation
:::::::::
aggregation on noise

::::
(bars)

:
and signal

::::
(box

::::
plots

::::
with

::::::
median,

:::
25

::::
and

::::
75%)

:
over 3-year

time-windows
:::
time

:::::::
windows.

:::::::
Detection

::
is
:::::::
achieved

::::
when

:::
the

:::::
signal

::
is
:::::

larger
::::

than
:::
the

:::::
noise

::
i.e.

:::
for

:::
all

:::
the

:::::::::
occurrences

::
in

::::
each

:::
box

::::
plot

::::
which

:::
lay

::::::
outside

::
the

:::::::
matching

:::::::
coloured

:::
bar.

:
Link to Table 3: the Amazonia lines of the Table corresponds to the 3Y bars here.
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Figure 8. Signal (Tg) for the four 3-year time-windows
:::
time

:::::::
windows at the pixel scale.
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Figure 9. Impact of spatial aggregation in Amazonia
::
on

::::
noise

:::::
(bars)

::::
and

:::::
signal

:::
(box

::::
plots

::::
with

:::::::
median,

::
25

:::
and

:::::
75%)

::::
over

:::::
3-year

::::
time

::::::
windows: from a unique pixel to larger rings around it.

:::::::
Detection

::
is

:::::::
achieved

::::
when

:::
the

:::::
signal

::
is
:::::
larger

::::
than

:::
the

:::::
noise

::
i.e.

:::
for

:::
all

:::
the

:::::::::
occurrences

::::
which

:::
lay

::::::
outside

::
the

::::::::
matching

::::::
coloured

::::
bar.
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Table 1: Detection of the signal consisting in the anomalies at the "seasonal" time-scale
:::
time

:::::
scale

:
i.e. quarters of the year

(JFM, AMJ, JAS, OND). The signal is the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and

the 2004-2005 average from REFSURF. The noise is computed at the quarter time-scale
::::
time

:::::
scale from each of the three

observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3 for details. In each cell of the Table, we show

X%(YY/ZZ) where X% is the percentage of quarterly anomalies detected (among 48 possible), YY is the number of positive

anomalies detected among the ZZ detected anomalies. Column "Ave. mass" indicates the average emitted mass of CH4 over

2004-2005 in the area.

Region Ave. mass (Tg) GOSAT IASI SURF

Global 517 97%(24/47) 93%(22/45) 93%(22
:::::::
91%(21/45

::
44)

::::::::::
91%(21/44)

BorN 18 50%(12
::::::
45%(10/24

::
22) 50%(12

:::::::
39%(07/24

::
19) 52%(13

::::::
54%(12/25

::
26)

MidN 177 87%(18
::::::
77%(14/42

::
37) 54

::
39%(12/26

::
19) 81%(16

::::::
70%(12/39

::
34)

TropN 194 91%(24
::::::
87%(22/44

::
42) 79%(20

:::::::
60%(16/38

::
29) 81%(21

::::::
66%(17/39

::
32)

TropS 115 25%(10
::::::
08%(03/12

::
04) 22%(10

:::::::
12%(04/11

::
06) 10%(05/05)

::
∅

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 97%(23
::::::
79%(14/47

::
38) 52%(13

:::::::
58%(04/25

::
28) 87%(18

::::::
75%(12/42

::
36)

USA 37 20%(09/10)
::
∅ ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 08
::
14%(01/04

::
07) 02

::
06%(00/01

::
03) ∅

SouthSAm 30 06%(03
::::::
04%(00/03

::
02) ∅ ∅

NorthAfrWest 13 16%(08
::::::
10%(05/08

::
05) ∅ 04%(02/02)

::
∅

NorthAfrEast 11 20%(10
::::::
04%(02/10

::
02) 06%(03/03)

::
∅ 02%(01/01)

::
∅

AfrEquat 32 35%(17
::::::
22%(11/17

::
11) 20%(10

:::::::
16%(08/10

::
08) 04%(02

::::::
02%(01/02

::
01)

SouthernAfr 10 04%(00/02)
::
∅ ∅ ∅

Europe 33 14%(07
::::::
06%(03/07

::
03)

::
∅ 04%(02/02) 14%(07/07)

EastEurRussia 30 45
::
33%(12/22

::
16)

::
∅

:::::
16%(08%(04/04

::
08) 22%(11/11)

25



Table 1: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time-scale
:::
time

:::::
scale.

Region Ave. mass (Tg) GOSAT IASI SURF

MiddleEast 16 14%(04/07)
::
∅ ∅ ∅

SiberianLowlands 8 47%(12
::::::
43%(10/23

::
21) 12%(06

:::::::
02%(01/06

::
01) 35%(12

::::::
43%(10/17

::
21)

SiberianHighlands 5 22%(11
::::::
08%(04/11

::
04) 06%(03

:::::::
04%(02/03

::
02) 22%(11

::::::
04%(02/11

::
02)

FarEastSib 1 16%(08/08) 16%(08
:::::::
08%(04/08

::
04) 16%(08

::::::
08%(04/08

::
04)

CentralAsia 28 33%(09
::::::
06%(03/16

::
03) 02%(01/01)

::
∅ 18%(06

::::::
06%(03/09

::
03)

India 50 62%(13/30) 50%(
::::
56%(12/24

::
27) 35%(12

::
05/17)

::::::::::
25%(00/12)

China 64 43%(11
::::::
14%(03/21

::
07) 10%(03

:::::::
04%(00/05

::
02) 31%(09

::::::
10%(01/15

::
05)

Indonesia 36 06%(03/03) 16%(07/08) 06%(03/03)
::::::::::
04%(02/02)

AustrNZ 6 02%(01/01)
::
∅ ∅ 02%(01/01)

::
∅
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Table 2: Detection of the signal consisting in the anomalies at the yearly time-scale
:::
time

:::::
scale. The signal is the difference

between each year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from REFSURF. The noise

is computed at the yearly time-scale
:::
time

:::::
scale from each of the three observation systems, GOSAT, IASI and SURF. See

Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X%(YY/ZZ) where X% is the percentage of yearly

anomalies detected (among 12 possible), YY is the number of positive anomalies detected among the ZZ detected anomalies.

Column "Ave. mass" indicates the average emitted mass of CH4 over 2004-2005 in the area.

Region Ave. mass (Tg) Gosat
:::::::
GOSAT Iasi

:::
IASI

:
Surf

:::::
SURF

Global 517 83
::
75%(08/10

::
09) 75%(08/09) 58%(07/07)

BorN 18
::
∅

::
∅

::
∅

:::::
MidN

:::
177 08%(01/01) ∅ 08%(01/01)

MidN 177 66%(07/08) ∅ ∅ TropN 194 58
::
50%(06/07

::
06) 41%(05/05)

::
∅ 50%(06

::::::
25%(03/06

::
03)

TropS 115 25%(03
:::::::
16%(02/03

::
02) 33%(04

:::::::
16%(02/04

::
02) 16%(02/02)

MidS 12 ∅ ∅ ∅

BorS 1 ∅ ∅ ∅

NorthAmBor 20 ∅ ∅ ∅

USA 37 ∅ ∅ ∅

CentralAm 17 ∅ ∅ ∅

Amazonia 38 ∅
::::::::::
08%(00/01) ∅ ∅

SouthSAm 30 08%(01/01)
::
∅ ∅ ∅

NorthAfrWest 13 41%(05/05) 33%(04/04) 41%(05/05)
::
∅

::
∅

NorthAfrEast 11 50%(06/06) 25%(03/03) 08%(01/01)
::
∅

::
∅

AfrEquat 32 41%(05
:::::::
33%(04/05

::
04) 33%(04/04) 33%(04

::::::
25%(03/04

::
03)

SouthernAfr 10 ∅ ∅ ∅

Europe 33 16%(02/02) 08%(01/01)
::
∅ 16%(02/02)

::
∅

EastEurRussia 30 ∅ ∅ ∅

MiddleEast 16 58%(04/07)
::
∅ ∅ ∅
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Table 2: (continued) Detection of the signal consisting in the anomalies at the yearly time-scale
::::
time

::::
scale.

Region Ave. mass (Tg) Gosat Iasi Surf

SiberianLowlands 8 ∅ ∅ ∅

SiberianHighlands 5 08%(01/01) 08%(01/01)
::
∅ 08%(01/01)

::
∅

FarEastSib 1 25%(03
:::::::
08%(01/03

::
01) 25%(03/03)

::
∅ 25%(03/03)

::
∅

CentralAsia 28 08%(00/01) ∅ ∅

India 50 ∅ ∅ ∅

China 64 ∅ ∅ 16%(00/02)
::
∅

Indonesia 36 16%(02/02) 25%(02/03) 16%(02/02)
::
∅

AustrNZ 6 16%(02/02)
::
∅ ∅ ∅
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Table 3: Detection of the signal consisting in the anomalies at the 3-yearly time-scale
::::
time

:::::
scale. The signal is the difference

between each 3-year time-window
:::
time

:::::::
window

:
in the 2000-2011 period (2000-2002, 2003-2005, 2006-2008, 2009-2011) and

the 2004-2005 average from REFSURF. The noise is computed at the 3-yearly time-scale
:::
time

:::::
scale

:
from each of the three

observation systems, GOSAT, IASI and SURF. See Section 2.4 and Section 2.3 for details.

In each cell of the Table, we show whether a positive anomaly, a negative anomaly or no anomaly is detected and with which

signal-to-noise ratio: positive anomaly detected: +++ = with stn ratio > 3, ++= stn ratio > 2 and + = stn ratio > 1; negative

anomaly detected with - -= stn ratio <-2, - = stn ratio <-2,∅ = no anomaly detected.

The number below the name of the area is the average emitted mass of CH4 over 2004-2005 in the area.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Global Gosat ∅ +
::
∅ +++ +++

517 Iasi ∅ +
::
∅ +++ +++

Surf ∅ ∅ +++ +++

BorN Gosat ∅ ∅ ∅ ∅

18 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MidN Gosat -
::
∅ ∅ + + + +

177 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ + +

TropN Gosat ∅ ∅ ++ + +++

194 Iasi ∅ ∅ + + + +

Surf ∅ ∅ + ++ + ++

TropS Gosat +
::
∅ ∅ ∅ +

115 Iasi + ∅ ∅ +

Surf +
::
∅ ∅ ∅ +

MidS Gosat ∅ ∅ ∅ ∅

12 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

BorS Gosat ∅ ∅ ∅ ∅

1 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale
::::
time

::::
scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

NorthAmBor Gosat -
::
∅ ∅ ∅ -

::
∅

20 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

USA Gosat ∅ ∅ ∅ ∅

37 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

CentralAm Gosat ∅ ∅ ∅ ∅

17 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Amazonia Gosat ∅ ∅ ∅ ∅

38 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SouthSAm Gosat ∅ ∅ ∅ +

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ +
::
∅

NorthAfrWest Gosat ∅ ∅ + ++

13 Iasi ∅ ∅ +
::
∅ + +

Surf ∅ ∅ +
::
∅ + +

NorthAfrEast Gosat ∅ ∅ + ++ + ++

11 Iasi ∅ ∅ + +

Surf ∅ ∅ + +

AfrEquat Gosat + ∅ ++ + +++

32 Iasi ∅ ∅ ++ +++

Surf ∅ ∅ + ++

SouthernAfr Gosat ∅ ∅ ∅ ∅

10 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

Europe Gosat + ∅ ∅ ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale
::::
time

::::
scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

33 Iasi +
::
∅ ∅ ∅ ∅

Surf + ∅ ∅ ∅

EastEurRussia Gosat ∅ ∅ ∅ ∅

30 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

MiddleEast Gosat - - ∅ +
::
∅ + +

16 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianLowlands Gosat ∅ ∅ ∅ ∅

8 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

SiberianHighlands Gosat +
::
∅ ∅ ∅ ∅

5 Iasi ∅ ∅ ∅ ∅

Surf +
::
∅ ∅ ∅ ∅

FarEastSib Gosat + + +
::
∅ ∅ +

::
∅

1 Iasi +
::
∅ +

::
∅ ∅ ∅

Surf ++
:
∅
:

+
::
∅ ∅ +

::
∅

CentralAsia Gosat - ∅ ∅ ∅

28 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

India Gosat ∅ ∅ ∅ ∅

50 Iasi ∅ ∅ ∅ ∅

Surf ∅ ∅ ∅ ∅

China Gosat -
::
∅ ∅ ∅ ∅

64 Iasi - ∅ +
::
∅ ∅

Surf -
::
∅ ∅ +

::
∅ +

::
∅

Indonesia Gosat + ∅ +
::
∅ ∅

36 Iasi + + ∅ + + ∅
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Table 3: (continued) Detection of the signal consisting in the anomalies at the 3-yearly time-scale
::::
time

::::
scale.

Region System 2000-2002 2003-2005 2006-2008 2009-2011

Surf ∅ ∅ ∅ ∅

AustrNZ Gosat +
::
∅ ∅ ∅ ∅

6 Iasi +
::
∅ ∅ ∅ ∅

Surf +
::
∅ ∅ ∅ ∅
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Appendix A: Supplementary tables

Table 4: Yearly mean number of observations over the period used for the Monte-Carlo noise computation (10/2009-09/2010)

in the various regions for the three observing systems.

Region Area (x106km2) GOSAT IASI SURF

Global 510 32348 240084 1722

BorN 31 92 00 172

MidN 91 9060 00 556

TropN 126 14934 121756 602

TropS 128 6118 107148 156

MidS 95 2132 9078 140

BorS 37 00 00 96

NorthAmBor 14 194 00 00

USA 11 2516 2218 124

CentralAm 05 608 6328 24

Amazonia 07 802 3366 00

SouthSAm 10 1780 3068 24

NorthAfrWest 10 4986 4564 94

NorthAfrEast 07 3756 5148 00

AfrEquat 07 1394 3572 14

SouthernAfr 07 1488 3246 28

Europe 06 572 00 94

EastEurRussia 07 896 00 00

MiddleEast 06 2456 3748 26

SiberianLowlands 02 170 00 00
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Table 4: (continued) Yearly mean number of observations.

Region Area (x106km2) GOSAT IASI SURF

SiberianHighlands 05 126 00 00

FarEastSib 03 54 00 00

CentralAsia 12 3864 694 74

India 03 1180 4190 00

China 05 1164 4574 00

Indonesia 07 312 3324 26

AustrNZ 10 3308 4362 50
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Table 5: Detection of the signal consisting in the anomalies at the "seasonal" time-scale
:::
time

:::::
scale (JFM, AMJ, JAS, OND).

The signal is the difference between each quarter in the 2000-2011 period (i.e. 48 occurrences) and the 2004-2005 average

from PBSURF. The noise is computed at the quarter time-scale
:::
time

:::::
scale from each of the three observation systems, GOSAT,

IASI and SURF. See Section 2.4 and Section 2.3 for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where

X% is the percentage of quarterly anomalies detected, [±TT] is the difference with REFSURF (Table 1),±YY is the difference

in the number of positive anomalies detected compared to REFSURF and±ZZ is the difference in the total number of detected

anomalies compared to REFSURF. Ave. mass= average emitted mass of CH4 over 2004-2005.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 93
:::
87%

:
[-4

::
-6] (-11

:::
-10/-2

::
-3) 75

::::
72% [-18

::
-19] (-10

::
-9/-9) 85

:::
72%

:
[-8

:::
-19] (-10

::
-9/-4

::
-9)

BorN 18/17 87
::::
75% [+37

::
30] (0

::
+2/+18

::
14) 81

::::
75% [+31

::
36] (0

::
+5/+15

::
17) 87

::::
77% [+35

::
23] (-1

:
0/+17

::
11)

MidN 177/172 83
:::
66%

:
[-4

:::
-11] (-6/-2

::
/-5) 50

:::
35%

:
[-4] (0/-2) 77

::::
62% [-4

:
-8] (-4

:
0/-2

::
-4)

TropN 194/165 64
:::
47%

:
[-27

:::
-40] (-12

:::
-10/-13

:::
-19) 37

::::
27% [-42

:::
-33] (-8

:
-5/-20

:::
-16) 39

:::
29%

:
[-42

:::
-37] (-9

::
-6/-20

:::
-18)

TropS 115/120 43
::::
29%

:
[+18

::
21] (+7

:
9/+9

::
10) 43

:::
31%

:
[+21

::
19] (+7

:
9/+10

:
9) 27

::::
10% [+17

::
10] (+7

:
5/+8

:
5)

MidS 12/25 10 +10(+2/+5)
::
∅ 10 +10(+2/+5)

:
∅

:
14

:::
04%

:
[+14

:
4] (+3

:
0/+7

:
2)

BorS 1/0 97 +97(+23/+47)
::
∅ 10 +10(0/0)

:
∅

:
91 +91(+20/+44)

::
∅

:

NorthAmBor 20/8 54
:::
64%

:
[-43

:::
-15] (-11

::
-2/-21

::
-7) 27

::::
43% [-25

::
-15] (-1

::
+3/-12

::
-7) 39

:::
58%

:
[-48

:::
-17] (-6

:
0/-23

::
-8)

USA 37/54 58
::::
3%1 [+38

::
31] (+4

:
8/+18

::
15) 14

:::
06%

:
[+14

:
6] (+3

:
1/+7

:
3) 08

:::
10%

:
[+8

::
10] (+2

:
3/+4

:
5)

CentralAm 17/13 12 +12(+6/+6)
::
∅ 25

:::
02%

:
[+25

:
2] (+11

:
1/+12

:
1) 10 +10(+5/+5)

::
∅

:

Amazonia 38/31 47
::::
45% [+39

::
31] (+17

::
19/+19

::
15) 35

::
% [+33

::
29] (+14

::
15/+16

::
14) 08

::::
04% [+8

:
4] (+3

:
2/+4

:
2)

SouthSAm 30/45 47
::::
45% [+41] (+12

::
15/+20) 25

::::
08% [+25

:
8] (+5

:
3/+12

:
4) 25

::::
20% [+25

::
20] (+5

:
6/+12

::
10)

NorthAfrWest 13/13 58
::::
41% [+42

::
31] (+4

:
7/+20

::
15) 25

::::
16% [+25

::
16] (+12

:
8/+12

:
8) 25

::::
16% [+21

::
16] (+10

:
8/+10

:
8)

NorthAfrEast 11/12 97
::::
39%

:
[+77

::
35] (+2

::
10/+37

::
17) 29

:::
25%

:
[+23

::
25] (+9

::
12/+11

::
12) 25

:
%

:
[+23

::
25] (+11

::
12/+11

::
12)

AfrEquat 32/33 25
::::
18% [-10

:
-4] (-14

::
-10/-5

:
-2) 14

::::
10%

:
[-6] (-8/-3) 00

::
%

:
[-4

::
-2] (-2

::
-1/-2

::
-1)

SouthernAfr 10/14 52
::::
43%

:
[+48

::
43] (+10

:
7/+23

::
21) 37

:::
14%

:
[+37

::
14] (+9

:
5/+18

:
7) 25

:::
14%

:
[+25

::
14] (+7

:
5/+12

:
7)

Europe 33/33 31
::::
14% [+17

:
8] (-7

:
-3/+8

:
4) 08

::::
04%

:
[+4] (-2

:
0/+2) 37

::::
12% [+23

:
8] (-7

::
-2/+11

:
4)
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Table 5: (continued) Detection of the signal consisting in the anomalies at the "seasonal" time-scale
:::
time

:::::
scale.

Region

GOSAT IASI SURFAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 47
:::
33%

:
[+2

:
0] (-1/+1) 04 -4(-2/-2

:
0) 18

:
∅
: ::::

10% [-4
:
-6] (-3/-2

::
-3)

MiddleEast 16/14 00 -14(-4/-7)
:
∅

:
00 0(0/0)

:
∅

:
00 0(0/0)

::
∅

SiberianLowlands 8/14 97
::::
89% [+50

::
46] (0

::
+2/+24

::
22) 64

:::
60%

:
[+52

::
58] (+6

::
11/+25

::
28) 91

::::
85% [+56

::
42] (0

::
+2/+27

::
20)

SiberianHighlands 5/4 25
::::
22%

:
[+3

::
14] (0

::
+7/+1

:
7) 22

:::
12%

:
[+16

:
8] (+8

:
4/+8

:
4) 25

:::
20%

:
[+3

::
16] (0

::
+8/+1

:
8)

FarEastSib 1/2 87
::::
52%

:
[+71

::
36] (+4/+34

::
17) 72

::::
50% [+56

::
42] (+4

:
8/+27

::
20) 83

::::
50% [+67

::
42] (+4

:
8/+32

::
20)

CentralAsia 28/32 37
::::
20%

:
[+4

::
14] (+3

:
5/+2

:
7) 02 0(0/0)

:
∅

:
31

:::
08%

:
[+13

:
2] (+5

:
1/+6

:
1)

India 50/45 22
::::
10% [-40

::
-46] (-7

::
-11/-19

::
-22) 02

::
% [-48

::
-33] (-11

:
-5/-23

::
-16) 00

::
% [-35

::
-25] (-12

:
0/-17

:::
-12)

China 64/46 00
::
%

:
[-43

:::
-14] (-11

::
-3/-21

::
-7) 00

::
%

:
[-10

::
-4] (-3

:
0/-5

::
-2) 00

::
% [-31

:::
-10] (-9

:
-1/-15

:
-5)

Indonesia 36/33 20
::::
06%

:
[+14

:
0] (+4

:
0/+7

:
0) 31

:::
12%

:
[+15

:
6] (+5

:
2/+7

:
3) 08

::::
00% [+2

::
-4] (+1

:
-2/+1

::
-2)

AustrNZ 6/6 06 +4(+1/+2)
:
∅
:

00 0(0/0)
:
∅

:
06 +4(+1/+2)

::
∅
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Table 6: Detection of the signal consisting in the anomalies at the yearly time-scale
:::
time

:::::
scale. The signal is the difference

between each year in the 2000-2011 period (i.e. 12 occurrences) and the 2004-2005 average from PBSURF. The noise is

computed at the yearly time-scale
:::
time

:::::
scale

:
from each of the three observation systems, GOSAT, IASI and SURF. See Sec-

tion 2.4 and Section 2.3 for details. In each cell of the Table, we show X% [±TT] (±YY/±ZZ) where X% is the percentage of

yearly anomalies detected, [±TT] is the difference with REFSURF (Table 2), ±YY is the difference in the number of positive

anomalies detected compared to REFSURF and ±ZZ is the difference in the total number of detected anomalies compared to

REFSURF. Ave. mass= average emitted mass of CH4 over 2004-2005.

Region

GOSAT IASI SURFAve. mass (Tg)

REFSURF/PBSURF

Global 517/499 75
:::
58%

:
[-8

:::
-17] (0/-1

::
/-2) 66

::
% [-9] (0/-1) 50

::::
4%1 [-8

::
-17] (-1

::
-2/-1

:
-2)

BorN 18/17 41 +33(+4/+4)
::
∅ 00 0(0/0)

::
∅ 41 +33(+4/+4)

:
∅

:

MidN 177/172 25 -41(-6/-5) 00
::
%

:
[0

::
-8] (0

:
-1/0

::
-1)

::
∅ 00

::
%

:
[0

::
-8] (0

:
-1/0

::
-1)

TropN 194/165 16
::::
00% [-42

::
-50] (-4

::
-6/-5

:
-6)

::
∅ 00

::
% [-41

::
-25] (-5

::
-3/-5) 08 -42(-5/-5)

::
-3)

:

TropS 115/120 50
:::
41%

:
[+25] (+3/+3) 66

::::
41% [+33

::
25] (+3/+4

:
3) 41

:
%

:
[+25] (+3/+3)

MidS 12/25 08 +8(+1/+1)
:
∅

:
33 +33(+1/+4)

::
∅ 00 0(0/0)

::
∅

BorS 1/0 00 0(0/0)
:
∅
:

00 0(0/0)
::
∅ 00 0(0/0)

::
∅

NorthAmBor 20/8 41
:::
25%

:
[+41

::
25] (+5

:
3/+5

:
3) 08 +8(+1/+1)

:
∅

:
16 +16(+2/+2)

:
∅

:

USA 37/54 16 +16(0/+2)
::
∅

:
16 +16(0/+2)

:
∅

:
00 0(0/0)

::
∅

CentralAm 17/13 00 0(0/0)
:
∅
:

25 +25(+3/+3)
::
∅ 00 0(0/0)

::
∅

Amazonia 38/31 50
::::
58% [+50] (+6

:
7/+6) 58

::
%

:
[+58] (+7/+7) 08

::
% [+8] (+1/+1)

SouthSAm 30/45 33
::
% [+25

::
33] (+2

:
3/+3

:
4) 25

::::
16% [+25

::
16] (+2/+3

:
2) 25

:::
16%

:
[+25

::
16] (+2/+3

:
2)

NorthAfrWest 13/13 00
:
%

:
[-41(-5/-5) 00 -33] (-4/-4) 00 -41(-5/-5)

:
∅

: ::
∅

NorthAfrEast 11/12 00
:
%

:
[-50(-6/-6) 00 -25(-3/-3) 00 -8] (-1/-1)

::
∅

::
∅

AfrEquat 32/33 08
::::
00%

:
[-33] (-5

::
-4/-4) 00

::
% [-33] (-4/-4) 00

::
%

:
[-33

:::
-25] (-4

::
-3/-4

::
-3)

SouthernAfr 10/14 25 +25(+2/+3) 16
::
%

:
[+16] (+1/+2) 00 0(0/0)

::
∅

::
∅

Europe 33/33 50
:
%

:
[+34] (-2/

:
+4) 41

::::
08%

:
[+33

:
8] (-1

:
0/4

:::
+1) 50

:::
33%

:
[+34

::
33] (-2

:
0/

:
+4)
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Table 6: (continued) Detection of the signal consisting in the anomalies at the yearly time-scale
::::
time

::::
scale.

Region

Gosat Iasi SurfAve. mass (Tg)

REFSURF/PBSURF

EastEurRussia 30/27 16
::
% [+16] (+1/+2) 00 0(0/0)

::
∅ 00 0(0/0)

::
∅

MiddleEast 16/14 00 -58(-4/-7)
::
∅ 00 0(0/0)

::
∅ 00 0(0/0)

::
∅

SiberianLowlands 8/
:
+14 25 +25(+2/+3) 00 0(0/0) 16

::
%

:
[+16] (+1/+2)

::
∅

::
∅

SiberianHighlands 5/4 00
::
%

:
[-8] (-1/-1) 00 -8(-1/-1)

::
∅ 00 -8(-1/-1)

::
∅

FarEastSib 1/2 08 -17(-2/-2) 00
::
% [-25

::
-8] (-3

:
-1/-3

::
-1) 08 -17(-2/-2)

:
∅

: ::
∅

CentralAsia 28/32 00
:
%
:
[-8] (0/-1) 00 0(0/0)

::
∅ 00 0(0/0)

::
∅

India 50/45 08 +8(0/+1)
::
∅ 08 +8(0/+1)

::
∅ 00 0(0/0)

::
∅

China 64/46 00 0(0/0)
:
∅
:

00 0(0/0)
::
∅ 00 -16(0/-2)

::
∅

:

Indonesia 36/33 50
:::
33%

:
[+34

::
17] (+3

:
2/+4

:
2) 66

:::
33%

:
[+41

::
17] (+4

:
2/+5

:
2) 25 +9(+1/+1)

::
∅

AustrNZ 6/6 16 0(-1/0)
::
∅ 08 +8(0/+1)

::
∅ 08 +8(0/+1)

::
∅

:
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