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Abstract. This paper presents an analysis of methane emissions from the Los Angeles basin at 1	

monthly timescales across a four-year time period – from September 2011 to August 2015. 2	

Using observations acquired by a ground-based near-infrared remote sensing instrument on 3	

Mount Wilson, California combined with atmospheric CH4-CO2 tracer-tracer correlations, we 4	

observed -18% to +22% monthly variability in CH4:CO2 from the annual mean in the Los 5	

Angeles basin. Top-down estimates of methane emissions for the basin also exhibit significant 6	

monthly variability (-19% to +31% from annual mean and a maximum month-to-month change 7	

of 47%). During this period, methane emissions consistently peaked in the late summer/early fall 8	

and winter. The estimated annual methane emissions did not show a statistically significant trend 9	

over the 2011 to 2015 time period.  10	

  11	
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1 Introduction 1	

Methane (CH4) is a potent and newly regulated greenhouse gas in California. However, its 2	

emissions are poorly understood. In the South Coast Air Basin, which holds more than 43% of 3	

state’s population, the annual methane emissions estimates based on atmospheric CH4 4	

observations indicate that the bottom-up emission inventory was systematically underestimated 5	

by 30% to >100% (Wong et al., 2015; Jeong et al., 2013; Peischl et al., 2013; Wennberg et al., 6	

2012; Wunch et al., 2009; Wecht et al., 2014; Cui et al., 2015). Methane sources in the basin can 7	

be classified into two categories – biogenic and thermogenic. Biogenic methane is emitted from 8	

anaerobic digestion of organic matter by bacteria in waste management facilities, and by cattle in 9	

dairy farms. Waste management facilities include landfills, wastewater treatment plants and 10	

manure management facilities in dairy farms. Thermogenic methane emissions include natural 11	

sources, such as seeps and tar pits, and anthropogenic sources such as natural gas system leakage 12	

and gas/oil fields. Emissions from these sources are likely to have different seasonal patterns. 13	

Quantifying and tracking the seasonal variability will help us understand methane emissions and 14	

are essential for verifying emissions regulation and mitigation policies. However, most studies to 15	

date have been based on data from short-term measurement campaigns and have provided 16	

limited information on the temporal variability or trends of methane emissions in the basin 17	

(Peischl et al., 2013; Wecht et al., 2014; Cui et al., 2015; Wunch et al., 2009).   18	

One commonly used approach to estimate CH4 emissions from atmospheric observations is the 19	

tracer-tracer correlation technique. This method uses the regression slopes between observed 20	

trace gas mixing ratios (e.g. CH4:CO2 or CH4:CO) in the atmosphere to calculate CH4 emissions 21	

based on the more accurately known emissions of the correlate (e.g. CO2 or CO). This method 22	

permits the derivation of the relative emissions of the two trace gases without the use of transport 23	

models and does not require the sources to be co-located (Wong et al., 2015; Peischl et al., 2013; 24	

Wennberg et al., 2012; Hsu et al., 2010; Wunch et al., 2009). Based on in situ flask observations 25	

on Mount Wilson, Hsu et al. (2010) did not observe any seasonal variability in the CH4:CO ratio 26	

from April 2007 to February 2008. Using column observations from the Total Carbon Column 27	

Observing Network (TCCON) in Pasadena, Wennberg et al. (2012) observed a ±15% monthly 28	

variability in the CH4:CO ratio between August 2007 to June 2008, but the monthly variability in 29	

methane emissions was not reported.  30	
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This paper presents the first study to quantify total methane emissions from an urban region at 1	

the monthly intervals and for an extended period of four years – from September 2011 to August 2	

2015. Using a unique dataset of mountaintop remote sensing observations acquired with the 3	

California Laboratory of Atmospheric Remote Sensing Fourier transform spectrometer (CLARS-4	

FTS) (Wong et al., 2015; Fu et al., 2014), we have constructed a series of monthly CH4:CO2 5	

tracer-tracer correlations to address the following questions:  6	

1. What is the monthly variability in methane emissions in the Los Angeles basin? 7	

2. Is there a detectable year-to-year methane emissions change in the basin?     8	

3. What methane source(s) is(are) responsible for any observed temporal trends? 9	

 10	

2  Methods 11	

Since September 2011, continuous daytime ground-based remote sensing measurements of CH4 12	

and CO2 have been acquired by a JPL-built Fourier transform spectrometer on Mount Wilson 13	

(Wong et al., 2015; Fu et al., 2014). The California Laboratory of Atmospheric Remote Sensing 14	

(CLARS) is located at an altitude of 1670 m above sea level with a panorama of the Los Angeles 15	

basin (Fig. 1). CLARS-FTS quantifies atmospheric column CH4 and CO2 using reflected sunlight 16	

in the near-infrared region. It operates in two measurement modes: Spectralon Viewing 17	

Observations (SVO) and Los Angeles Basin Surveys (LABS). In the SVO mode, the instrument 18	

quantifies the background tropospheric column CH4 and CO2 above the Los Angeles basin by 19	

measuring reflectance from a Spectralon® plate located at the CLARS site. In the LABS mode, 20	

the instrument samples the basin slant column CH4 and CO2 by measuring the surface reflection 21	

from 28 geographical locations (or reflection points) in the basin (Fig. 1). We selected 28 22	

reflection points to achieve an optimal spatial and temporal coverage of the Los Angeles basin. 23	

The number, locations and repeat frequencies of the reflection points can be easily modified to 24	

meet specific measurement requirements. In each measurement cycle, we collect one set of 25	

LABS measurements and four SVO measurements. Four SVO measurements are performed per 26	

measurement cycle so that any variability in the background during each measurement cycle, 27	

which typically lasts for 90 minutes, can be captured. There are 5 to 8 measurement cycles per 28	

day, depending on the time of the year.  29	
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Based on the Beer-Lambert Law, the slant column density (SCD) – the total number of absorbing 1	

molecules per unit area along the sun-Earth-instrument optical path – is retrieved for CH4
 at 1.67 2	

µm, CO2 at 1.60 µm, and O2 at 1.27 µm using a modified version of the GFIT algorithm 3	

developed at JPL (Fu et al., 2014; Wunch et al., 2011). The retrieved SCDs of CH4 and CO2 are 4	

then converted to slant column-averaged dry air mixing ratio, XCH4 and XCO2, by normalizing 5	

to the retrieved SCD of O2 (SCDO2) (Eq. 1).  6	

XGHG = %&'	)*)
%&'	+,

		×	0.2095                                                                                                          (1) 7	

Individual retrievals are analyzed with multiple post-processing filters to ensure data quality. 8	

Spectra are removed when the residual root mean square errors of the fits to the GFIT radiative 9	

transfer model exceed a pre-defined threshold. These are usually associated with aerosols, high 10	

and low clouds, electrical or mechanical noise, and other transient behavior. Details about the 11	

CLARS-FTS design, data retrieval algorithm and data filtering process are described in Fu et al. 12	

(2014) and Wong et al. (2015).  13	

Wong et al. (2015) mapped the spatial distribution of the CH4:CO2 ratio and derived an annual 14	

total CH4 emission for the basin, based on CLARS-FTS observations from 2011 to 2013. Here 15	

we used the same approach but focused on the temporal trend and quantify the monthly total CH4 16	

emissions for the basin. Therefore, following Wong et al. (2015), we calculated the excess XCH4 17	

and XCO2, due to the emissions from the basin, by subtracting the corresponding SVO 18	

measurements from the LABS observations (Eq. 2).  19	

XGHG3% = 	XGHG456% − 	XGHG%89                                                                                             (2)    20	

We then performed orthogonal distance regression (ODR) analyses of XCH4(XS) and XCO2(XS) for 21	

the 28 reflection points for each month starting from September 2011 to August 2015. To 22	

explore the overall monthly variability during this period, we calculated the weighted average 23	

regression slope among the 28 reflection points, R, using Eq. (3). In Eq. (3), r; stands for the 24	

regression slope for reflection point i, w; is the weight which is defined as the reciprocal of the 25	

square of the one sigma uncertainty of the regression slope, σ;.  26	



*Peischl et al. (2013) reported 6.70±0.01 ppb CH4 (ppm CO2)-1 from CalNex in 2010. 	 6 

R|@ABCDEF&45G% = 	 	HIJI	IK,L
IKM

JI
IK,L
IKM

	, where w; =
N
OI
,                                                                                        (3) 1	

 2	

3  Results 3	

In this section, we describe the monthly and multi-year trends of the basin average regression 4	

slope observed by CLARS-FTS. Figure 2 shows the time series of the Los Angeles basin 5	

weighted average monthly XCH4(XS)/XCO2(XS) regression slopes, R, and their uncertainties 6	

observed by the CLARS-FTS from September 2011 to May 2015. During this period, R ranged 7	

from 5.4±0.4 ppb CH4 (ppm CO2)-1 to 7.7±1.0 ppb CH4 (ppm CO2)-1 with an overall mean and 8	

standard deviation of 6.5±0.5 ppb CH4 (ppm CO2)-1. This is consistent with previous atmospheric 9	

observations and their uncertainties: 7.8±0.8 ppb CH4 (ppm CO2)-1 from TCCON in 2007-2008, 10	

6.7±0.6 ppb CH4 (ppm CO2)-1 from ARCTAS in 2008, and 6.7±0.0 ppb CH4 (ppm CO2)-1 from 11	

CalNex in 2010 (Wunch et al., 2009; Wennberg et al., 2012; Peischl et al., 2013). CLARS-FTS 12	

observations showed significant monthly fluctuations. The monthly variability in the slope was -13	

8% to +5% in 2011, -9% to +22% in 2012, -13% to +11% in 2013, -18% to +11% in 2014 and -14	

8% to +11% in 2015. Monthly variability reported here spans the minimum and maximum 15	

deviations from the annual monthly mean for each year. Monthly variability for 2011 and 2015 16	

was calculated based on partial annual data (that is, from September to December for 2011 and 17	

from January to August for 2015). In general, we observed peaks in late summer, fall and winter: 18	

R exceeded 7 ppb CH4 (ppm CO2)-1 in August 2012, December 2012, November 2013, August 19	

2014, September 2014, November 2014 and August 2015. The smallest values of R were 20	

observed in the spring and early summer. Typically, R dipped below 6 ppb CH4 (ppm CO2)-1 in 21	

May-June, 2012, June 2013, and March 2013.  22	

Figure 3 compares the year-to-year monthly values of R to the four-year mean values. The 23	

weighted four-year mean values showed maxima in August and September, at 7.0 ppb CH4 (ppm 24	

CO2)-1. Minima occurred in March when the weighted monthly mean was 5.8 ppb CH4 (ppm 25	

CO2)-1. The fall peak was also observed by TCCON observations in Pasadena from 2007 to 2008 26	

(Wennberg et al., 2012). However, no winter peak was observed in their study. CLARS 27	

observations showed multi-year variability for some months but not others. To better understand28	
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the seasonal year-to-year trends in R, we plotted the yearly trends for fall (September, October 1	

and November), winter (December, January and February), spring (March, April and May) and 2	

summer (June, July and August) in Fig. 4. A 15% increase in R over Los Angeles was observed 3	

in the fall season over the last few years. R increased from 6.2 ppb CH4 (ppm CO2)-1 in 2012 to 4	

7.1 ppb CH4 (ppm CO2)-1 in 2014. This increasing trend was also observed in summer from 2012 5	

to 2014. However, the summer value decreased again from 2014 to 2015. No year-to-year 6	

change was observed in spring. In winter, there were some year-to-year changes but no obvious 7	

increasing or decreasing trend over the study period. The annual average R value showed no 8	

significant trend and less than 4% year-to-year variability between 2011 and 2015.  9	

For comparison, we also calculated the CH4:CO2 emission ratio based on the bottom-up emission 10	

inventory. California Air Resources Board (CARB) reported statewide total emissions of CH4 11	

and CO2 through 2013 (http://www.arb.ca.gov/app/ghg/2000_2013/ghg_sector.php). For CO2, 12	

statewide emissions were 384, 389 and 387 Tg CO2 per year in 2011, 2012, and 2013 13	

respectively. Following Wong et al. (2015), we downscaled the statewide CO2 emissions by 14	

fractional population (43% of state population) to obtain 165, 167 and 166 Tg CO2 per year in 15	

2011, 2012 and 2013, respectively, for emissions from the South Coast Air Basin. For CH4, 16	

bottom-up emissions of 1629, 1636 and 1644 Gg CH4 per year were reported by CARB in 2011, 17	

2012 and 2013 respectively. Following the approach used by Wong et al. (2015), we estimated 18	

the emissions from the South Coast Air Basin by subtracting the agriculture and forestry 19	

emissions from the total emissions and then apportioning the emissions by population. This gave 20	

us emissions of 301, 297 and 300 Gg CH4 per year in the South Coast Air Basin from 2011 to 21	

2013. The bottom-up estimate of R, the CH4/CO2 emission ratio, was calculated from Eq. (4), 22	

where E&QR|SBBTSE
;BUVBCAHF is the downscaled CARB annual total CH4 emissions, E&9,|SBBTSE

;BUVBCAHF is the 23	

downscaled CARB annual total CO2 emissions and WXY+,
WXY*R

 is the ratio of the molecular weights 24	

of CH4 and CO2 (that is ZZ	[	&9,/	@AEV
N]	[	&QR/	@AEV

).  25	

RSBBTSE
;BUVBCAHF 	= 	 ^Y*R|_``a_b

I`cd`efgh

^Y+,|_``a_b
I`cd`efgh 			×			

WXY+,
WXY*R

                                                               (4) 26	
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Using the downscaled CARB emission estimates for the South Coast Air Basin yields annual R 1	

values of 5.0, 4.9 and 5.0 ppb CH4 (ppm CO2)-1 for 2011, 2012 and 2013, respectively. Figure 4 2	

shows the annual R values determined from CLARS observations. CLARS annual R values were 3	

6.4±0.1 ppb CH4 (ppm CO2)-1, 6.2±0.1 ppb CH4 (ppm CO2)-1, 6.5±0.1 ppb CH4 (ppm CO2)-1, 4	

6.5±0.1 ppb CH4 (ppm CO2)-1 and 6.4±0.1 ppb CH4 (ppm CO2)-1 in 2011, 2012, 2013, 2014 and 5	

2015 respectively. The inventory-based R value systematically underestimated the observed 6	

annual R values by about 20 to 25% during the time period from 2011 to 2013.  7	

 8	

 4 Discussion 9	

We can rearrange Eq. (4) to estimate monthly CH4 emissions from the South Coast Air Basin 10	

using the CH4/CO2 regression slope R determined from CLARS observations and an inventory-11	

based estimate of monthly CO2 emissions (Wong et al., 2015). 12	

E&QR|@ABCDEF
CAijkAJB = R|@ABCDEF&45G% 			×			E&9,|@ABCDEF

;BUVBCAHF			×			WXY*R
WXY+,

                                                        (5) 13	

However, this requires estimates of the monthly CO2 emissions from the South Coast Air Basin. 14	

4.1 Estimating Monthly CO2 emissions  15	

This subsection explores the available CO2 emission database (E&9,|@ABCDEF)	for the basin. 16	

CARB reported annual bottom-up statewide CO2 emissions from 2011 to 2013. As described in 17	

the results section, we estimated the annual emissions in the South Coast Air Basin by 18	

apportioning the statewide emissions using the ratio of population in the South Coast Air Basin 19	

to the state population. Because there is no monthly statewide emissions information available, 20	

we distributed the annual CO2 emission evenly over twelve months (shown as solid light blue 21	

line in Fig. 5). Data in 2014 and 2015 (shown as light blue line) are extrapolated using statewide 22	

annual fuel consumption data provided by the Energy Information Administration 23	

(http://www.eia.gov/dnav/ng/hist/n9140us2M.htm; 24	

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=A103450061&f=M ). 25	
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In addition to the official CARB emission inventory, three CO2 emission data products provide 1	

monthly temporal resolution for the South Coast Air Basin for our observational period.  2	

1. Hestia – The Hestia fossil fuel CO2 emissions data product provides sectoral bottom-up 3	

emissions at the building and street level on hourly timescales (http://hestia.project.asu.edu). 4	

Data are available for the South Coast Air Basin for the years 2011 and 2012. Here, we 5	

calculated the monthly total CO2 emissions for the South Coast Air Basin domain based on 6	

the Hestia 1.3 km x 1.3 km hourly gridded version 1.0 (shown by the solid black line in Fig. 7	

5). We defined the South Coast Air Basin domain as the rectangular box bounded by 118.83° 8	

W, 116.67° W, 33.38°N and 34.77°N. Because there are no data after 2012, we extrapolated 9	

the emissions from 2012 to 2015 (shown as a faded black line in Fig. 5) using the same 10	

approach described above.   11	

2. ODIAC – Open-source Data Inventory for Anthropogenic CO2 (ODIAC) provides global 12	

emission fields of fossil fuel CO2 emission with 1 km × 1 km spatial sampling on a monthly 13	

basis. ODIAC is based on CO2 emission estimates from the Carbon Dioxide Information and 14	

Analysis Center (CDIAC), fuel consumption statistics published by British Petroleum, 15	

satellite-observed nightlights and a global power plant database (Oda and Maksyutov, 2011). 16	

The monthly CO2 emissions for the South Coast Air Basin domain from September 2011 to 17	

December 2014 are shown as the solid red line in Fig. 5. Data in 2015 (shown as the faded 18	

red line) are projected using the same approach used to extrapolate the Hestia emissions.   19	

3. FFDAS - Fossil Fuel Data Assimilation System (FFDAS) provides global monthly/hourly 20	

sectoral fossil fuel CO2 emission with 0.1° × 0.1° (approx. 10 km × 10 km) spatial sampling 21	

(Asefi-Najafabady et al., 2014). This data product is derived from an optimization of the 22	

Kaya identity constrained by national fossil fuel CO2 emissions from the International 23	

Energy Agency, satellite-observed nightlights, population, and the Ventus power plant 24	

dataset. Emissions are available through 2012 (shown as the solid green line). Data from 25	

2013 and onwards (shown as the faded green line) are extrapolated using the same method 26	

described previously for CARB, Hestia and ODIAC.   27	

As shown in Fig. 5, there are differences as large as 3 Tg CO2 per month among the three 28	

gridded datasets: Hestia, ODIAC and FFDAS. The differences result from 1) emission 29	

calculation methods, 2) the underlying dataset used in the emission calculations, and 3) spatial 30	



	 10 

modeling. Hestia is derived primarily from local data in the South Coast Air Basin while ODIAC 1	

and FFDAS are based primarily on national and global proxy approaches. It has been shown that 2	

the use of a global dataset may underestimate emissions in Los Angeles by up to 18% (Brioude 3	

et al., 2013). Despite the systematic differences, all three gridded emission datasets show very 4	

similar monthly variability, with peaks in summer and winter. Based on the source 5	

apportionment in Hestia, the summer peak is due to electricity usage (air conditioning) and the 6	

winter peak is due to space heating. In all three datasets, fossil fuel CO2 emissions in the basin 7	

show -9 to +14% monthly fluctuations about the annual mean. 8	

We believe the Hestia data product provides the most accurate CO2 emission estimates for the 9	

South Coast Air Basin among all available databases. Therefore, we used the Hestia CO2 10	

emissions in our calculations to estimate CH4 emissions. We did not use the CARB CO2 11	

emissions in our calculation because the official CARB emission inventories are annual 12	

statewide estimates. To derive the monthly CO2 emissions for the basin from the CARB 13	

inventory, we have to first scale it to regional emissions by population and then apply the 14	

monthly variability from Hestia. Through these steps, we will introduce additional uncertainties 15	

in the derived emissions.  16	

4.2 Deriving top-down monthly CH4 emissions  17	

This subsection explains the monthly and annual trends of our methane emission estimates.  18	

Figure 6 shows the time series of monthly methane emissions computed from Eq. (5). Shaded 19	

areas represent the 1σ uncertainties of the derived emissions. Uncertainties are propagated from 20	

the uncertainties of CLARS-FTS XCH4(XS)/XCO2(XS) regression slopes and CO2 emissions. For 21	

CO2 emissions, we assumed a 10% uncertainty in the Hestia monthly CO2 emissions.  22	

Derived methane emission estimates ranged from 23 to 39 Gg CH4 per month. Methane emission 23	

peaks occurred in late summer/early fall and winter months. Distinct peaks of methane emission 24	

occurred in December 2011, August 2012 and December 2012 when methane emissions 25	

exceeded 33 Gg per month. In 2013 and 2014, the summer and fall peaks were less prominent 26	

than in 2012. Minimum methane emissions occurred in late spring/early summer when emissions 27	

dropped below 27 Gg per month. The monthly variability in methane emissions was -12 to +16% 28	
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in 2011, -13% to +31% in 2012, -19% to +14% in 2013, -16% to +17% in 2014 and -14% to 1	

+17% in 2015. Monthly variability reported here is the minimum and maximum percent 2	

difference from the annual average. Note that monthly variability in 2011 and 2015 was 3	

calculated based on partial annual data, that is, from September to December in 2011 and from 4	

January to August in 2015.  5	

Figure 7 plots the monthly patterns of CLARS-FTS inferred methane emissions for each year. 6	

The inferred methane emission estimates showed a bimodal distribution with peaks during the 7	

winter and the late summer/early fall. The weighted monthly average over this period showed 8	

maxima in January, August and December at 31, 33 and 32 Gg CH4 per month. The weighted 9	

monthly average gradually decreased from January to June when methane emission reached a 10	

minimum of 25 Gg CH4 per month. No statistically significant interannual seasonal variability 11	

was observed. 12	

4.3 Yearly trends in top-down CH4 emissions  13	

Figure 8 shows the estimated CH4 annual emissions for the South Coast Air Basin from 2011 to 14	

2015. The annual methane emission derived for the South Coast Air Basin was 345 Gg CH4 per 15	

year in 2011. Derived emission increased to 356 Gg CH4 per year in 2013. Since then, there has 16	

been a decreasing trend reaching 325 Gg CH4 per year in 2015. Due to the large uncertainty 17	

propagated mainly from CO2 emissions, we derived a decreasing trend of -5 ± 4 Gg CH4 per year 18	

with only 25% confidence level.  19	

Figure 9 compares all reported CH4 annual total emission estimates for the South Coast Air 20	

Basin in the past ten years. These estimates were derived based on in situ ground observations 21	

(Hsu et al., 2010), column measurements (Wunch et al., 2009, Wennberg et al., 2012; Wong et 22	

al., 2015) and aircraft measurements (Peischl et al., 2013; Wennberg et al., 2012; Wecht et al., 23	

2014; Cui et al., 2015) in the Los Angeles basin. Among all the previous studies, only one study 24	

(Wong et al., 2015) estimated methane emissions for the period between 2011 and 2015. Our 25	

estimates for 2011 to 2013 were lower but within uncertainties with the estimates reported by 26	

Wong et al. (2015). The difference in the estimated methane emissions between the present study 27	

and Wong et al. (2015) is due to differences in the CO2 reference emissions used in the 28	
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calculations. Hestia CO2 emissions used in the present calculations were lower than the 1	

population-scaled CARB emissions used in Wong et al., 2015. The rest of the studies were based 2	

on methane observations from 2007 to 2010. Despite the different study periods, methane 3	

emission estimates from our study are in consistent with previous top-down estimates. About 4	

half of previously reported methane emission estimates were focused on the CALNEX field 5	

experiment in May and June 2010. The annual methane emission estimates from these studies 6	

could be underestimated as we observed that methane emissions tend to be lowest during these 7	

months. Comparing our results to the bottom-up inventory, the scaled CARB CH4 emissions 8	

from 2011 to 2013 were 2-31% lower than our estimates.  9	

4.4 Analysis assumptions  10	

In this subsection, we discuss the analysis assumptions used to derive CH4 emissions for the 11	

South Coast Air Basin using CLARS-FTS observations.  12	

• Spatial and temporal representation based on CLARS-FTS measurement technique. 13	

We assumed that the CLARS-FTS measurement domain is representative of the South Coast 14	

Air Basin. The CLARS-FTS measurement domain covers 67% of CO2 emissions in the 15	

South Coast Air Basin spatial domain according to the Hestia CO2 data product. Therefore, 16	

the CLARS-FTS observations are more representative of the sampled area in the South Coast 17	

Air Basin than the entire basin. In addition, our methane emission estimates were based on 18	

daytime-only observations.  19	

• Spatial and temporal bias due to data filtering. CLARS-FTS samples the Los Angeles 20	

basin using its standard measurement sequence. However, as described in Wong et al. 21	

(2015), certain months of the year are more prone to cloud and aerosol interference in the 22	

Los Angeles basin. This may introduce biases in the monthly sampling of post-filtered data. 23	

The number of post-filtered observations did not have a strong diurnal bias however. To 24	

accurately estimate the LA basin value, we used the weighted average XCH4(XS)/XCO2(XS) 25	

regression slope, as the statistical weight for each reflection point is based on the number of 26	

samples passing through the data quality filters. We also performed a bootstrap analysis to 27	

ensure that there is no sampling bias in the regression slopes (Efron and Tibshirani, 1993).  28	
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• Seasonal bias due to transport variability. Changes in meteorology patterns in summer vs. 1	

winter can lead to a seasonal dependence on the observations’ footprint, which is the 2	

sensitivity of the observations to changes in emissions. In the Los Angeles basin, the 3	

prevailing winds are typically northwesterly and onshore throughout the year, except for 4	

Santa Ana events (Conil and Hall, 2006). During Santa Ana events, which typically occur 5	

during the period from October to March, the wind patterns in the basin shift to easterly and 6	

offshore flow (Hughes and Hall, 2010). We investigated the impact of Santa Ana events on 7	

our results using the Santa Ana Index to remove observations during Santa Ana events 8	

(Hughes and Hall, 2010; Conil and Hall, 2006; http://meteora.ucsd.edu/weather/). A 9	

correlation analysis showed that applying the Santa Ana Index filter did not cause any 10	

statistically significant bias on the CLARS monthly CH4:CO2 ratios. This insensitivity is 11	

likely due to the effect of spatial averaging over 28 slant column measurements that span a 12	

50 x 100 km2 spatial domain in the Los Angeles basin, mitigating the effect of transport 13	

variability, especially when compared with measurements from individual tower sites. A 14	

more diagnostic approach involving the application of a high-resolution tracer transport 15	

model to investigate potential transport-induced biases on CLARS-FTS results will be 16	

carried out in the future.   17	

4.5 Exploring seasonal variability from major CH4 emission sources  18	

Currently, there is no monthly-resolved inventories available for us to compare with our top-19	

down results. When these data become available in the future, we hope to understand better the 20	

role of each CH4 source in the monthly variability we observed in total CH4 emissions in Los 21	

Angeles. In this subsection of the paper, we review previous studies of the seasonal emissions 22	

variability from major methane sources (landfills, dairies, wastewater treatment plants and 23	

natural gas system leakage) to understand possible contributions to the observed monthly 24	

variability in total CH4 emission in the South Coast Air Basin.  25	

• Landfills. Landfills are major emitters of CH4 in the basin. Previous studies suggested that 26	

landfills could contribute 41-63% of total annual methane emissions (Peischl et al., 2013; 27	

Wennberg et al., 2012; Hsu et al., 2010). The seasonal variability in landfill CH4 emissions is 28	

poorly understood, however. Peischl et al. (2013) estimated the emissions from two of the 29	

largest landfills in the basin – Olinda Alpha landfill and Puente Hills landfill – based on 30	
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aircraft measurements in May and June 2010. Based on observations taken from four flights 1	

in May and one flight in June, their studies found that CH4 emissions from Olinda Alpha 2	

landfill was almost double in June relative to May while Puente Hills landfill (which was 3	

closed in 2012) showed less than 15% changes in monthly emissions in 2010. Using a 4	

landfill model, Spokas et al. (2015) found that the statewide landfill emissions were largest in 5	

October and smallest in April in 2010. Other observational studies found that CH4 emissions 6	

from landfills peak in July and August (Shan et al., 2013; Spokas et al., 2011; Tratt et al., 7	

2014; Goldsmith et al., 2012). These studies suggest that landfills can contribute to the late 8	

summer/early fall peak in the total CH4 emissions observed by CLARS-FTS but are unlikely 9	

to explain the winter peaks. 10	

• Dairies.  Previous observations suggested that dairy farms could contribute 32 – 76 Gg CH4 11	

per year in the South Coast Air Basin (Peischl et al., 2013; Wennberg et al., 2012). This 12	

corresponds to 8% to 36% of the reported total annual CH4 emissions in the studies. In 13	

general, studies on dairies focus on mitigation strategies rather than quantifying temporal 14	

changes in emissions. Limited studies of dairy emissions report peaks in CH4 emissions in 15	

summer and early fall (from June to September), and steady minima in spring and winter 16	

(VanderZaag et al., 2014; VanderZaag et al., 2013; VanderZaag et al., 2010; VanderZaag et 17	

al., 2009; Ulyatt et al., 2002; Kaharabata et al., 1998). These findings imply that dairies can 18	

also be contributing to the summer/early fall peaks in the CLARS-FTS inferred CH4 19	

emissions.  20	

• Wastewater treatment.  This sector is suggested to be responsible for 33% of Los Angeles 21	

County and 9.4% of the South Coast Air Basin (Hsu et al., 2010; Wennberg et al., 2012). 22	

Daelman et al. (2012; 2013) measured CH4 emissions from a wastewater treatment facility 23	

for one year (2010-2011) and reported up to 40% monthly fluctuations from the mean, with a 24	

maximum in June.  25	

• Fossil fuel sources.  Recent studies based on mobile, stationary and airborne measurements 26	

of methane in Los Angeles indicated that fossil fuel sources contribute 47% to 90% of the 27	

total CH4 emissions in the basin (Wennberg et al., 2012; Townsend-Small et al. 2012; Peischl 28	

et al., 2013; Hopkins et al., 2015). Wennberg et al. (2012) and Peischl et al. (2013) suggested 29	

that fugitive emission from natural gas distribution system leakage contributes to the gaps 30	

between bottom-up and top-down total CH4 emissions in the South Coast Air Basin. McKain 31	
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et al. (2014) found little seasonal dependence (<10%) on the emissions from the natural gas 1	

system in Boston, Massachusetts. Their studies showed a leakage rate of 2.7 ± 0.6% from the 2	

natural gas system. Wennberg et al. (2012) reported a consistent leakage rate from the natural 3	

gas system in Los Angeles and suggested that most of the leakages from such systems are 4	

likely to occur in residential/commercial areas where the distribution system ends. Publicly 5	

available natural gas consumption data from residential and commercial sectors in the South 6	

Coast Air Basin show a significant seasonal cycle with a maximum in winter due to heating 7	

(https://energydatarequest.socalgas.com/). Wennberg et al. (2012) and McKain et al. (2014) 8	

observed that the leakage rate from the natural gas system is constant throughout the year and 9	

suggested that the majority of leakage occurs in the distribution system to the residential and 10	

commercial sectors. This conclusion is reasonable since the natural gas distribution pipeline 11	

system is pressure-regulated at several points, and leakage should be independent of 12	

consumption to first order. However, this is not the case for natural gas storage facilities 13	

which are pressurized to higher levels in the summer and late fall in Southern California to 14	

respond to increased demands for summertime electric power generation for air conditioning 15	

and wintertime space heating. In October, 2015, a massive leak began at an underground well 16	

pipe at the Aliso Canyon (Los Angeles) natural gas storage facility as it was being 17	

pressurized to provide wintertime reserves. While this leak was unprecedented in scale, it 18	

raises the question whether smaller fugitive leaks in the storage infrastructure from this and 19	

numerous other above- and below-ground reservoirs contribute to the seasonal variability 20	

observed in CLARS-FTS data. The Aliso Canyon leak resulted in very large increases (as 21	

much as a factor of 10) in the observed instantaneous values of XCH4(XS)/XCO2(XS) throughout 22	

the entire CLARS-FTS field of regard (Wong et al., in prep.). Since CLARS-FTS is capable 23	

of resolving CH4 enhancements that are significantly smaller than those caused by the Aliso 24	

Canyon leak, perhaps seasonally-varying fugitive emissions from natural gas storage 25	

facilities and associated infrastructure are partially responsible for the observed monthly 26	

variability. Enhanced long-term monitoring for fugitive emissions will be required to test this 27	

hypothesis.   28	

 29	

5 Summary and Conclusions  30	
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Using CLARS-FTS mountaintop remote sensing observations from Mount Wilson along with 1	

tracer-tracer CH4:CO2 correlation analyses, we estimated the monthly variability in CH4:CO2 and 2	

top-down CH4 emissions from the South Coast Air Basin from 2011-2015. Significant monthly 3	

variability (-18% to +22%) in CH4:CO2 was observed. Double peaks in late summer/early fall 4	

and winter occurred consistently during the study period. The fall peak in the CH4:CO2 ratios 5	

was also observed by TCCON (Wennberg et al., 2012). The CLARS-FTS XCH4(XS)/XCO2(XS) 6	

regression slopes showed -7% to 10% year-to-year seasonal variability, with an increasing trend 7	

in the fall season from 2012 to 2014. The annual average XCH4(XS)/XCO2(XS) regression slopes 8	

showed less than 4% year-to-year variability between 2011 and 2015.  9	

Using the best available estimates of CO2 emissions, top-down estimates of CH4 emissions were 10	

determined using the emission ratio method. Repeatable peaks in late summer/early fall and 11	

winter were observed between 2011 and 2015. There were significant monthly fluctuations (-12	

19% to +31% from annual mean and a maximum month-to-month change of 47%) in the 13	

inferred methane emissions in the basin. Based on previous studies on the seasonal variability of 14	

CH4 emissions from CH4 sources, we concluded that landfills, dairies and wastewater treatment 15	

facilities are likely sources of the peak CH4 emissions in late summer/early fall. Fugitive 16	

emissions from natural gas storage facilities and associated infrastructure may contribute to both 17	

the late summer and late fall peaks.  18	

No significant trend in CH4 emissions  (-5 ± 4 Gg CH4 per year with a 25% confidence level due 19	

to the uncertainty in CO2 emissions) could be discerned over the 2011 to 2015 time period. The 20	

population-scaled bottom-up CH4 emissions from 2011 to 2013 were 2-31% lower than our top-21	

down estimates. These results are consistent with previous studies (Wunch et al., 2009; Hsu et 22	

al., 2010; Wennberg et al., 2012; Peischl et al., 2013; Wong et al., 2015). A combination of 23	

several measurement and modeling strategies are necessary to further disentangle the monthly 24	

variability of methane sources in the Los Angeles basin.  25	
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    1	

 2	
 3	

Figure 1. Top: CLARS facility located at 1.67 km above sea level on Mount Wilson, looking 4	

over the Los Angeles basin. Optical paths from direct sun beam and basin surface reflection are 5	

shown as yellow lines. Bottom: Location of 29 reflection points on Mount Wilson (white square) 6	

and in the basin (yellow triangles).  7	

  8	
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 1	
 2	

Figure 2. Time series of the Los Angeles basin weighted-average monthly regression slopes of 3	

XCH4(XS)—XCO2(XS) (in unit of ppb ppm-1) and their uncertainties observed by the CLARS-FTS 4	

in the basin from September 2011 to May 2015. Uncertainties are ±1σ of the regression slopes.  5	
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 1	
 2	

Figure 3. Monthly patterns of the Los Angeles basin weighted-average regression slopes of 3	

XCH4(XS)—XCO2(XS) (in unit of ppb ppm-1) and their uncertainties observed by the CLARS-FTS 4	

in the basin. Monthly trends are color coded as follows: 2011 in blue, 2012 in cyan, 2013 in 5	

green, 2014 in orange and 2015 in red. Monthly average ratio and its standard deviation over the 6	

entire observational period are shown in black. 7	
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 1	
 2	

Figure 4. Interannual variability of R (in units of ppb CH4 (ppm CO2)-1) in fall (orange), winter 3	

(blue), spring (green) and summer (red) from 2011 to 2015. The annual average ratio is shown in 4	

black. Also shown are the ±1σ uncertainties. Note that data for 2011 and 2015 are derived from 5	

partial annual observations (that is, September to December for 2011 and January to August for 6	

2015. The CH4:CO2 ratio based on the population-scaled bottom-up emission inventory from the 7	

California Resources Board is shown in light blue (California Air Resources Board, 2013).  8	
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 2	

Figure 5. Time series of the different CO2 monthly emissions (in units of Tg per month) from the 3	

South Coast Air Basin. Emissions are color coded as follows: Population-scaled CARB in light 4	

blue, Hestia in solid black, ODIAC in solid red and FFDAS in solid green. Extrapolated 5	

emissions using annual fuel consumption data are shown in faded solid lines.  6	
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 1	
 2	

Figure 6. Time series of CLARS-FTS inferred monthly CH4 emissions (in units of Gg per 3	

month) and their 1σ uncertainties from the Los Angeles basin from September 2011 to August 4	

2015. Overall uncertainties are propagated from the uncertainties of CLARS-FTS XCH4(XS)—5	

XCO2(XS)
 regression slopes and CO2 emissions. 6	
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 1	
 2	

Figure 7. Monthly patterns of derived CH4 emissions (in units of Gg per month). Error bars 3	

represent the ±1σ uncertainties. Derived CH4 emissions are color coded as follows: 2011 in blue, 4	

2012 in cyan, 2013 in green, 2014 in orange and 2015 in red. Average monthly emissions and 5	

their standard deviations over the entire observational period are shown in black.  6	
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Figure 8. CLARS-FTS inferred annual CH4 emission estimates (in units of Gg per month), based 3	

on Hestia CO2 emissions. Red line indicates the regression slope and the shaded area is the 25% 4	

confidence interval.   5	
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 1	
Figure 9. Comparison of annual CH4 emission estimates (in unit of Gg per month) reported in the 2	

past ten years. The Mount Wilson estimate reported by Wennberg et al. (2012) was derived for 3	

the South Coast Air Basin using the emission estimates based on Hsu et al., 2012.    4	

0.6

0.5

0.4

0.3

An
nu

al
 C

H 4
 fl

ux
 (T

g/
ye

ar
)

1/2006 1/2008 1/2010 1/2012 1/2014 1/2016
Date

 TCCON (Wunch et al., 2009)
 CALNEX (Wennberg et al., 2012)
 CALNEX (Peischl et al., 2013)
 CALNEX (Wecht et al., 2014)
 CALNEX (Cui et al., 2015)
 CLARS (Wong et al., 2015)

600#

500#

400#

300#

An
nu

al
#C
H 4
#e
m
iss
io
ns
#(G

g/
ye
ar
)#

Scaled#CARB#(CARB,#2013)#
Mount#Wilson#(Wennberg#et#al.,#2012)#
TCCON#(Wunch#et#a.,#2009)#
ARCTAS#(Wennberg#et#al.,#2012)#
CALNEX#(Wennberg#et#al.,#2012)#
CALNEX#(Peischl#et#al.,#2013)#
CALNEX#(Wecht#et#al.,#2014)#
CALNEX#(Cui#et#al.,#2015)#
CLARS#(Wong#et#al.,#2015)#
This#study#

Measurement#period#


