Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-generated aerosol particles

X. Yu1,2, Z. Wang2, M. Zhang2, U. Kuhn2, Z. Xie1, Y. Cheng2, U. Pöschl2, H. Su2

1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
2Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany

Correspondence to Zhibin Wang (zhibin.wang@mpic.de) and Zhouqing Xie (zqxie@ustc.edu.cn)
Abstract

Fluorescence characteristics of aerosol particles in polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The ratios of FAPs to total aerosol particles (1-15 μm) increased with increasing particle size and finally reached ~100%. The average number concentrations of FAPs (1-15 μm) detected in the three WIBS measurement channels (FL1: 0.6 cm$^{-3}$, FL2: 3.4 cm$^{-3}$, FL3: 2.1 cm$^{-3}$) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-generated aerosols. To distinguish bioaerosols from combustion-generated FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-generated particles seem to dominate the 1-2 μm size range while bioaerosols dominate 2-5 μm. The number fractions of combustion-generated particles and non-combustion-generated particles were ~11% and ~5%, respectively.
1 Introduction

From the beginning of atmospheric aerosols studies, airborne biological particles have been found as an important class of aerosol particles (Bary et al., 1887; Haldane and Anderson, 1887; Després et al., 2012). They are ubiquitous in the atmosphere with a wide size range from approximately several nanometers to a few hundred micrometers (Pöschl, 2005; Després et al., 2012). Primary biological aerosol particles (PBAPs) are a subset of biological particles, usually defined as the aerosols of biological origin or carry living organisms, including viruses, bacteria, fungal, pollen, cell or plant debris and animal tissue (Huffman et al., 2012). PBAPs can affect the Earth’s radiation balance directly by absorbing and scattering solar radiation, and indirectly by serving as giant cloud condensation nuclei (CCN) and ice nuclei (IN), and thereby influence cloud microphysical and climate-relevant properties (Christner et al., 2008; Pöschl et al., 2010; DeLeon-Rodriguez et al., 2013; Morris et al., 2013). These impacts are not only restricted to a local scale, but may also be effective in a regional scale due to the transport of bioaerosols, e.g., by dust storms (Griffin, 2007; Polymenakou et al., 2008; Hallar et al., 2011; Creamean et al., 2013). In addition, PBAPs can spread human, animal and plant disease and influence public health (Després et al., 2012; Cao et al., 2014). Considering its comprehensive impacts in diverse scientific fields, a better understanding of PBAPs such as its concentration, composition, spatial and temporal variability becomes critically important.

Despite its importance, information of PBAPs in the atmosphere is still very limited. Further investigation is hindered due to the lack of automatic measurement techniques. Most previous studies are based on the analysis of cultivable PBAPs or DNAs from filter samples (Henningson and Ahlberg, 1994; Duchaine et al., 2001; Yu et al., 2013). These methods are time-consuming and their results may differ depending on the cultivation condition and procedures. The low time resolution of cultivation methods makes it difficult to investigate the emission mechanisms of PBAPs, which happen at a time scale of less than a few hours.

Since most biological materials contain fluorophores, instruments based on the fluorescence detection, such as UV-APS (Ultraviolet Aerodynamic Particle Sizer) and
WIBS (Wideband Integrated Bioaerosol Spectrometer), have recently been developed for automatic online measurements of PBAPs. UV-APS is based on the UV light-induced fluorescence (UV-LIF) method and is the first commercially available instrument for real time analysis of biological aerosols (Hairston et al., 1997; Brosseau et al., 2000). It can measure size distribution of single fluorescent aerosol particles with much higher time resolution (~5 min) and aerodynamic size resolution (from 0.54 μm to 20 μm) than traditional methods. An ultraviolet laser (355 nm) is used to excite individual aerosol particles and the fluorescence emission in the wavelength range of 420-575 nm is collected by a fluorescent detector. Compared to the UV-APS with a single excitation wavelength and emission waveband, WIBS uses two excitation (280 nm and 370 nm) and emission wavebands (310-400 nm and 420-650 nm) aiming at detecting biological fluorophores tryptophan and NAD(P)H (Nicotinamide adenine dinucleotide; Healy et al., 2012).

UV-APS and WIBS have been applied in various atmospheric environments, including rainforest (Gabey et al., 2010; Huffman et al., 2012), forest (Huffman et al., 2013; Schumacher et al., 2013; Crawford et al., 2014), rural (Healy et al., 2014), suburban (Huffman et al., 2010; Toprak and Schnaiter, 2013) and urban environments (Gabey et al., 2011; Miyakawa et al., 2015; Wei et al., 2016). Besides settled sampling sites, WIBS has also been used for airborne observations (Perring et al., 2015). In clean environments, these techniques can effectively distinguish PBAPs from other kinds of aerosol particles. For example, Huffman et al. (2012) found similar size distributions of PBAPs measured by UV-APS and scanning electron microscopy (SEM) in the Amazon rainforest.

PBAPs, however, are not the only fluorescent aerosol particles (FAPs) in the atmosphere. Other materials such as polycyclic aromatic hydrocarbon (PAH) and humic-like substances (HULIS) may also fluoresce and contribute to the measured fluorescence signals (Pöhlker et al., 2012; Healy et al., 2014; Miyakawa et al., 2015). Hence, the fluorescent information given by WIBS or UV-APS may include both fluorescent biological and non-biological particles.

In order to have a deeper insight into the ambient FAPs in polluted area, we have performed WIBS measurements in Nanjing, China in the autumn of 2013. In this study,
we first present the number concentration of FAPs in Nanjing in comparison to previous
studies. Then we demonstrate the potential impacts of combustion-generated aerosol
particles in discrimination of bioaerosols under the polluted atmosphere. Finally, we
introduce alternative methods to quantify the relative contributions of different
fluorescent materials (combustion- and bioaerosol-type particles) to FAPs.

2 Methods and instrumentation

2.1 Site description

WIBS measurements were performed at the Station for Observing Regional
Processes of the Earth System (SORPES station), Xianlin campus of Nanjing University
(32.12°N, 118.95°E). Nanjing lies in the Yangtze River Delta with a total population of
8.18 million (data of 2013), and it’s a large commercial center in the East China region.
The measurement site is ~20 km in the east of the urban center. The SORPES station is
located on a hill about 40 m above the surroundings. Details of this station were
described by Ding et al. (2013) and Herrmann et al. (2014). A 0.75 inch stainless-steel
tube inlet was installed ~3 m above the roof, and sample air was dried by a silica gel drier
prior to entering the WIBS. Data were collected from 29 October to 15 November 2013.

2.2 Instruments

Measurements of FAPs were performed with a WIBS-4A. It uses the single-particle
elastic scattering intensity at 535 nm to calculate the optical size of particles. The
scattering signal is used to trigger the flash of two xenon lamps with UV wavelength of
280 nm and 370 nm, respectively. The fluorescent signals are recorded at two wavelength
bands (310-400 nm and 420-650 nm). This results in three wavelength channels: FL1
with excitation at 280 nm and detection 310–400 nm, FL2 with excitation wavelength at
280 nm and detection wavelength at 420–650 nm, and FL3 with excitation wavelength at
370 nm and detection wavelength at 420-650 nm. Respective abbreviations are listed in
Table 1. During the measurement period, we used 1 μm and ~2 μm fluorescent and non-
fluorescent PSL microspheres (Duke Scientific, Inc.) for calibration. The fluorescence
noise threshold is defined as:

\[E_{\text{Threshold}} = E + 3\sigma \]
Where E is the modal baseline and σ is the standard deviations in each channel. Particles with fluorescence signals above the noise threshold are classified as FAPs. Single-particle data were converted into a size distribution with a 5-min integration time and particles with diameter of 1-15 μm were analyzed in this study.

Meteorological data were collected with an Automatic Weather Station (CAMPBEL co., AG1000). The differential mobility particle sizer (DMPS, built at Helsinki University) was used to measure the number size distribution of sub-micron particles between 6 and 800 nm mobility diameter (Herrmann et al., 2014). Particle mass concentration below 800 nm (PM_{800}) was calculated from the measured size distributions assuming a density of 1.6 g cm$^{-3}$ (Wang et al., 2014). A 7-wavelength “Spectrum” Aethalometer (AE-31, Magee Scientific co.) was used to measure the black carbon (BC) mass concentration M_{BC}.

3 Results and discussion

3.1 General characteristics of fluorescent aerosol particles

Figure 1 shows the time series of number concentrations and size distributions of total aerosol particles and FAPs during the measurement period. Total particle number concentrations varied from 2 to 49 cm$^{-3}$, with a mean value of 13 cm$^{-3}$ (Table 2). The FAPs exhibited strong diurnal and day-to-day variability, as shown in Fig. 2. Number concentrations of total particles and FAPs all peaked in the morning (~08:00 local time) and reached a minimum in the afternoon (~14:00). Their similar diurnal patterns indicate the dominant effect of boundary layer development in controlling the variability of aerosol particles. To better understand the source of FAPs, we also investigated the number fraction of FAPs in total particles. The boundary layer development exerts similar effect on all kinds of aerosol particles. Thus for particles of the same origin, their ratios will remain constant and a difference in their ratios reflects their different sources.

As shown in Fig. 2, the fractions of FAPs presented quite different diurnal patterns. The fractions of FL1 particles (F_{FL1}) revealed substantial diurnal differences with a clear morning peak and an early afternoon minimum. On the contrary, F_{FL3} showed a much weaker variability, implying a similar source of FAPs as the total aerosol particles.
The number concentration of FAPs was dominated by FL2 fluorescent particles with a mean number concentration N_{FL2} of 3.4 cm^{-3}, followed by N_{FL3} of 2.1 cm^{-3} and N_{FL1} of 0.6 cm^{-3} (Table 2). These number concentrations were 1~2 order of magnitudes higher than those observed in clean areas where bioaerosols dominate the FAPs (Table 3). For example, FAPs of 0.093 cm^{-3}, 0.15 cm^{-3} and 0.023 cm^{-3} were reported for the Amazon, Borneo and Hyytiälä forests, respectively (Gabey et al., 2010; Huffman et al., 2012; Toprak and Schnaiter, 2013). Since polluted areas are characterized by less plants and natural biological processes, less bioaerosols are expected compared to the forests. The much higher number concentration of FAPs observed in Nanjing suggests other kinds of FAPs being detected by WIBS.

Number size distributions of FAPs are shown in Fig.1 and Fig.3. The FAPs number concentration peaked at $\sim 1 \mu \text{m}$ with a second peak at $4-5 \mu \text{m}$ and $3-4 \mu \text{m}$ for FL1 and FL2, respectively. No second peak was found in FL3. Figure 3 also shows the ratio of the number concentration of FAPs (N_{FLi}) to total particles (N_T) in each size. Number fractions of FAPs generally increased as the particle size increased, reaching $\sim 100\%$ at $14-15 \mu \text{m}$ for FL1 and FL3 channels, and at $3-4 \mu \text{m}$ for FL2 channel. These results reveal that most coarse mode particles contain certain kinds of fluorophores.

3.2 Non-biological fluorescent aerosol particles

As aforementioned, not only bioaerosols but also non-biological aerosols can contribute to the FAPs in Nanjing. Previous studies (Pöhlker et al., 2012; Miyakawa et al., 2015; Perring et al., 2015) reported that non-biological compounds like PAH, mineral dust and HULIS can also fluoresce. Several non-biological fluorophores such as SOAs, pyrene, humic acid and naphthalene have fluorescent property in the same excitation and emission wavelength bands of FL1 channel (Chang and Thompson, 2010; Pöhlker et al., 2012). These materials originate from sources different from bioaerosols. For example, PAH enriches on the surface of soot particles from biomass burning and fuel combustion, challenging the interpretation of ambient particle fluorescence measurements.

Our sampling site is located in the vicinity of the polluted Nanjing city and is intensively affected by human activities. To check the potential influences of PAH and combustion processes, we compared the variability of FAPs with that of BC, on which the PAHs are often coated. To minimize the impacts of transport and boundary layer...
dynamics, we compared the ratio of BC and FAPs to the total particles (roughly) in their respective size range, i.e., M_{BC}/PM_{800} and F_{FLi} instead of using absolute concentrations. Miyakawa et al. (2015) had used similar methods (using concentration instead of ratio) to identify "combustion-type" and "dust-type" aerosols in urban area. We found that M_{BC}/PM_{800} showed a good correlation with the number fraction of FAPs, especially in the FL1 channel ($r=0.748$, Fig.4). For FL2 and FL3 channels, the number fractions also nicely followed the variation of M_{BC}/PM_{800} except for November 8, which deteriorated the overall correlation. Since BC and PAHs are products of incomplete combustion, the similar variability suggests a large contribution from combustion-generated aerosols to the measured FAPs, especially in the FL1 channel. Our results strongly support previous results (Toprak and Schnaiter, 2013; Miyakawa et al., 2015) that FAPs (FL1 channel) may came from combustion process and anthropogenic interference.

Meanwhile, we found that particles within the same FLi group may come from different sources. Figure 4d shows that the fractional contribution of the 3-4 μm peak in the FL2 channels presented a better correlation with M_{BC}/PM_{800} than that of the total FL2 particles, suggesting a closer link of this peak to combustion process.

3.3 Classification of fluorescent aerosol particles

3.3.1 Spectral patterns of fluorescent aerosol particles

The complex nature of FAPs in polluted areas challenges the interpretation of ambient measurements. Different fluorophores have their characteristic excitation-emission matrices (EEM) map, which can be useful for discrimination of biological from non-biological FAPs (Pöhlker et al., 2012). Since WIBS only has two excitation and emission wavebands, a high-resolution EEM map cannot be retrieved. But we can still consider the two wavebands as a low resolution EEMs, of which the distribution (i.e., the ratio of the two wavebands) may also contain information about the nature of FAPs. For example, we can assume two kinds of fluorescent compounds I and II have different fluorescent spectra, as shown in Fig. 5a. For each compound, the integrated fluorescence intensity are determined in two wavebands by WIBS (Fig. 5b). For qualitative analysis, a normalized EEM is often used providing the relative wavelength dependence of fluorescent materials. For WIBS, we simply used the ratio of fluorescence intensity from different WIBS channels to represent the wavelength dependence (Fig. 5c).
Figure 6 shows the intensity distributions of aerosol particles in different fluorescence bands/channels. Due to the instrument setting, fluorescence signal intensities beyond 2200 arbitrary units (a.u.) are forced to the range of 2000-2200 arbitrary units, regarding as saturated signal. Hence we only discussed fluorescence signal intensities below 2000 arbitrary units. We first investigated the intensity ratio between channel FL1 and FL2, as shown in Fig. 6a. With increasing fluorescence intensity, the number concentrations sharply dropped, i.e., most of the abundant aerosol particles exhibited no or only weak fluorescence. Using the intensity ratio of FL1 to FL2 \((I_{FL1}/I_{FL2}) \) as a fluorescence fingerprint, we obtained two prominent groups of aerosols with \(I_{FL1}/I_{FL2} \) approaching 0 or infinity. \(I_{FL1}/I_{FL2} \sim 0 \) means that the aerosol have a low FL1 intensity below the detection limit and a high FL2 intensity, while \(I_{FL1}/I_{FL2} \) approaching infinity means the opposite. According to the detection thresholds of both FL1 and FL2 channels, we then classified the aerosol particles into four groups with FL1/FL2 above or below the detection threshold (labelled as g1 to g4 in Fig. 6). We further investigated the FL3 properties of the various groups. As shown in Figs. 6b-d, the aerosol number concentration decreased as FL3 intensity increased resembling the distribution for FL1 and FL2. Similarly we used the fluorescence threshold of FL3 to classify aerosols from g1 to g4 into subgroups.

Our efforts towards a spectral fingerprint resulted in the same classification method as in Perring et al. (2015). Here we adopted the labels of Perring et al. (2015) in which channel A refers to FL1, channel B refers to FL2 and channel C refers to FL3. Any aerosol particle can have signals above/below the fluorescence threshold in any of these channels, leading to seven combinations of fluorescence signals, i.e., particles with fluorescence signals above the threshold in single channel as types A, B and C; particles with fluorescence signals in two channels as types AB, AC and BC and particles with fluorescence signals in all three channels as type ABC (Table 1).

As shown in Fig.7a, types B, BC and C were the most abundant FAPs, followed by types ABC, AB and A. Type AC had the lowest loading and was not even visible. The mean number concentrations of dominant types B, BC and C were 1.77 cm\(^{-3}\), 1.06 cm\(^{-3}\) and 0.66 cm\(^{-3}\), respectively (Table 4). Meanwhile, the number fractions of types A, AB, and ABC showed good correlations with \(M_{BC}/PM_{800} \) (Fig. 8), suggesting a large...
The contribution of combustion-generated aerosol particles to these types. Note that all these types contain FL1 signals, implying the potential application of FL1 in the identification of biomass burning (or other combustions) events. Likewise, fluorescent types B and BC mostly followed the variation of M_{BC}/PM_{800} except for November 8 when elevated fractional contributions were observed one day before a rain event on November 9. A dramatic release of certain fungal spores was often observed before rain (Hjelmroos, 1993). However, the increase on November 8 was mainly contributed by 1-2 µm FAPs rather than larger than 3 µm fungal spores shown by Hjelmroos (1993). So the origin of this elevated FAPs remained inconclusive. Fluorescent type C showed a weak negative correlation with M_{BC}/PM_{800}, suggesting a minor role of combustion-generated aerosols or major contribution of non-combustion related aerosols (e.g., bioaerosols or dusts).

3.3.2 Fluorescence intensity

Besides the relative wavelength dependence, the absolute quantum yield is also one of the most important characteristics of a fluorophore. Discrepancies in the quantum yield can directly influence the fluorescence, resulting in different intensity levels. Thus it is possible to use the intensity information to identify different kinds of FAPs. Huffman et al. (2012) showed that the UV-APS can be used to successfully discriminate bioaerosols from dust particles, both of which have been suggested to fluoresce (Pöhlker et al., 2012).

Since FL3 is running in a similar excitation-emission wavelength as the UV-APS, we suggest that the FL3 channel can be used to discriminate bioaerosols from combustion-generated FAPs in a similar approach.

We first made a hypothesis that there exists a characteristic intensity value I_{cri} (in FL3 channel), above which most FAPs are bioaerosols. Since I_{cri} cannot be directly inferred from the intensity distribution (Fig. 6), we adopted the parameter M_{BC}/PM_{800} to assist our analysis. This is because bioaerosols and combustion-generated FAPs are of different origins, we scanned different values for I_{cri} until the corresponding FAPs (of intensity $> I_{cri}$) fraction showed a non-positive correlation with M_{BC}/PM_{800}.

Figure 9 shows the averaged fractional contribution of FAPs with $I_{FL3} > I_{cri}$ at different M_{BC}/PM_{800} levels. To account for the size dependence of fluorescence signals, we first classified FAPs according to the particle size. For the 1-2 µm size range, the fraction was always positively correlated with M_{BC}/PM_{800} and was independent of the...
selection of I_{cri}. For the size range of 2-5 μm, the FAPs showed mostly negative
275 correlation with M_{BC}/PM_{800} and were also independent of the I_{cri} selection. For FAPs
276 larger than 5 μm, the selection of I_{cri} became critical. With increasing I_{cri}, the dependence of
277 FL3 fraction on M_{BC}/PM_{800} gradually became weaker and finally turned to negative at $I_{cri} >$
278 80 arbitrary units. The results at 5-15 μm were consistent with our hypothesis that
279 bioaerosols have stronger fluorescence intensity than combustion-generated aerosol
280 particles and can be discriminated from their fluorescence intensity. The different
281 correlation statistics of 1-2 μm and 2-5 μm may be explained by the different abundance
282 of bioaerosols and combustion-generated aerosols at different size range. The 2-5 μm
283 mode was dominated by bioaerosols, while the 1-2 μm mode was dominated by
284 combustion-generated aerosol particles. Therefore there was no clear dependence on the
285 selection of I_{cri}. Saari et al. (2015) reported that FAPs at 0.5-1.5 μm might be due to
286 anthropogenic emissions such as biomass burning, while most fungal spores and pollen
287 dominated the larger size range (Després et al., 2012). It is also possible that I_{cri} had a
288 size dependence because different types of bioaerosols may dominate different size
289 ranges.

290 By integrating the FAPs of different correlations with M_{BC}/PM_{800}, we retrieved the
291 number concentrations of “non-combustion-related” (NCR) type particles (FAPs with
292 $I_{FL3}>18$ arbitrary units at 2-5 μm and FAPs with $I_{FL3}>80$ arbitrary units at 5-15 μm) and
293 “combustion-related” (CR) type particles (FAPs with $I_{FL3}>18$ arbitrary units at 1-2 μm
294 and FAPs with $I_{FL3} \leq 80$ at 5-15 μm). The mean number concentrations of NCR type and
295 CR type particles were 0.59±0.42 cm$^{-3}$ and 1.50±1.09 cm$^{-3}$, respectively. The NCR type
296 FAPs are likely bioaerosols.

297 In this study, we applied two methods to classify FAPs measured by WIBS,
298 resulting in two non-combustion-types of particles: type C particles derived from
299 fluorescent spectral pattern analysis and NCR type particles derived from fluorescence
300 intensity pattern analysis. As shown in Fig. 10, the mean number concentrations of type
301 C and NCR type particle were 0.66 cm$^{-3}$ and 0.59 cm$^{-3}$, which were still higher than those
302 found in PBAPs-dominated regions like the Amazon (Huffman et al., 2012), Hyytiälä
303 (Schumacher et al., 2013) and PdD (Gabey et al., 2013). This indicates that still a residual
of these non-combustion type particles may comprise other fluorescent constituents like mineral dusts (Miyakawa et al., 2015; Perring et al., 2015).

4. Summary

On-line measurements of FAPs have been performed in Nanjing by using WIBS in the autumn of 2013. Our results showed that the number concentrations of FAPs were 1~2 order of magnitudes higher than those reported in previous studies. The observed high values suggested that directly using FL1, FL2 and FL3 channels to index PBAPs is not suitable for polluted areas. The number fraction of FL1 showed strong correlation with M_{BC}/PM_{800} ($r=0.748$), indicative of a strong bias by anthropogenic emissions.

In this study, we used two methods to classify the FAPs. According to the threshold of each channel, FAPs were divided into 7 types. Number fraction of type C showed negative correlation ($r=-0.125$) with M_{BC}/PM_{800}, which might be more representative for bioaerosols. Meanwhile, on the basis of the FL3 fluorescent intensity and its correlations with M_{BC}/PM_{800}, FL3 fluorescent particles were divided into 2 types. Combustion-generated type particles seemed to dominate 1-2 μm, while the non-combustion-related type particles, which concentrated in the size range of 2-5 μm and showed negative correlation ($r=-0.211$) with M_{BC}/PM_{800}, might be originated from biological emissions. The number concentrations of the identified two types of bioaerosols (0.66 cm$^{-3}$ for type C particles and 0.59 cm$^{-3}$ for non-combustion-related type), however, were still higher than those observed in clean background areas, indicating they may also include some other fluorophores, such as dusts.

Our results suggested that fluorescence measurements in polluted areas are prone to interferences and uncertainty introduced by the anthropogenic emissions. Discrimination of biological particles from FAPs still needs further development. Each fluorophore species presents unique fluorescence spectrum, hence we can effectively distinguish biological particles from other FAPs based on their specific EEM maps. Due to the limitation of excitation and emission wavebands of WIBS, the development of a multi-wavebands instrument is hence needed. Other methods such as the cluster analysis (Robinson et al., 2013; Crawford et al., 2014; Crawford et al., 2015) also exhibited the ability to differentiate various FAPs. Measuring additional particle properties such as size...
and morphology will help ameliorate the interferences by providing additional
dimensions to distinguish fluorescent particles of different emission mechanisms.
Acknowledgments

This study was supported by the Max Plank Society (MPG), the European Commission under the projects BACCHUS (Grant No. 603445) and the Natural Science Foundation of China (Project No. 91544103). Xiawei Yu and Minghui Zhang would like to thank the China Scholarship Council (CSC) for financial support. We thank the SORPES-NJU station for logistic and instrumentation support.
References

Morris, C. E., Sands, D. C., Glaux, C., Samsatly, J., Asaad, S., Moukahel, A. R., Gonçalves, F. L. T., and Bigg, E. K.: Urediospores of rust fungi are ice nucleation active at > −10 °C and harbor...
ice nucleation active bacteria, Atmos Chem Phys, 13, 4223-4233, 10.5194/acp-13-4223-2013, 2013.

Tables

Table 1. Definition of abbreviations used in the text.

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBAPs</td>
<td>Primary biological aerosol particles</td>
</tr>
<tr>
<td>FAPs</td>
<td>Fluorescent aerosol particles</td>
</tr>
<tr>
<td>FL1</td>
<td>Fluorescent detected in channel F1 280 (excitation at 280 nm, detection 310–400 nm)</td>
</tr>
<tr>
<td>FL2</td>
<td>Fluorescent detected in channel F2 280 (excitation at 280 nm, detection 420–650 nm)</td>
</tr>
<tr>
<td>FL3</td>
<td>Fluorescent detected in channel F2 370 (excitation at 370 nm, detection 420–650 nm)</td>
</tr>
<tr>
<td>NT</td>
<td>Number of all particles measured by WIBS-4</td>
</tr>
<tr>
<td>N_{FL1}</td>
<td>Number of fluorescent particles in channel FL1</td>
</tr>
<tr>
<td>N_{FL2}</td>
<td>Number of fluorescent particles in channel FL2</td>
</tr>
<tr>
<td>N_{FL3}</td>
<td>Number of fluorescent particles in channel FL3</td>
</tr>
<tr>
<td>F_{FL1}</td>
<td>Fraction of particles in channel FL1</td>
</tr>
<tr>
<td>F_{FL2}</td>
<td>Fraction of particles in channel FL2</td>
</tr>
<tr>
<td>F_{FL3}</td>
<td>Fraction of particles in channel FL3</td>
</tr>
<tr>
<td>M_{BC}</td>
<td>Mass concentration of black carbon</td>
</tr>
<tr>
<td>P_{M800}</td>
<td>Mass concentration of particles in the size range of 6-800 nm</td>
</tr>
<tr>
<td>D_{a}</td>
<td>Particle optical equivalent diameter</td>
</tr>
<tr>
<td>a.u.</td>
<td>Arbitrary units</td>
</tr>
<tr>
<td>Type A</td>
<td>Fluorescent particle signal in channel FL1 only</td>
</tr>
<tr>
<td>Type B</td>
<td>Fluorescent particle signal in channel FL2 only</td>
</tr>
<tr>
<td>Type C</td>
<td>Fluorescent particle signal in channel FL3 only</td>
</tr>
<tr>
<td>Type AB</td>
<td>Fluorescent particle signal in channels FL1 and FL2</td>
</tr>
<tr>
<td>Type AC</td>
<td>Fluorescent particle signal in channels FL1 and FL3</td>
</tr>
<tr>
<td>Type BC</td>
<td>Fluorescent particle signal in channels FL2 and FL3</td>
</tr>
<tr>
<td>Type ABC</td>
<td>Fluorescent particle signal in channels FL1, FL2 and FL3</td>
</tr>
</tbody>
</table>
Table 2. Integrated number concentrations of total and fluorescent particles. \(N \) is number concentration (cm\(^{-3}\)), \(F \) is the ratio of fluorescent particles to total particles.

<table>
<thead>
<tr>
<th></th>
<th>(N_T)</th>
<th>(N_{FL,1})</th>
<th>(N_{FL,2})</th>
<th>(N_{FL,3})</th>
<th>(F_{FL,1})%</th>
<th>(F_{FL,2})%</th>
<th>(F_{FL,3})%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th percentile</td>
<td>5.45</td>
<td>0.19</td>
<td>1.11</td>
<td>0.66</td>
<td>2.21</td>
<td>17.25</td>
<td>10.08</td>
</tr>
<tr>
<td>Mean</td>
<td>13.09</td>
<td>0.57</td>
<td>3.35</td>
<td>2.09</td>
<td>4.59</td>
<td>25.32</td>
<td>15.59</td>
</tr>
<tr>
<td>Median</td>
<td>10.74</td>
<td>0.44</td>
<td>2.77</td>
<td>1.67</td>
<td>4.27</td>
<td>25.57</td>
<td>15.63</td>
</tr>
<tr>
<td>90th percentile</td>
<td>23.83</td>
<td>1.16</td>
<td>6.52</td>
<td>4.20</td>
<td>7.57</td>
<td>32.38</td>
<td>20.68</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>8.84</td>
<td>0.46</td>
<td>2.33</td>
<td>1.45</td>
<td>2.23</td>
<td>5.99</td>
<td>3.90</td>
</tr>
</tbody>
</table>
Table 3. The comparisons between the results of this study and previous studies. Unit of fluorescent particles is L$^{-1}$. Numbers in brackets are the number fractions of fluorescent particles.

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Site Category</th>
<th>Season</th>
<th>FL1</th>
<th>FL2</th>
<th>FL3</th>
<th>FAPs</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanjing, China</td>
<td>sub-urban</td>
<td>autumn</td>
<td>570</td>
<td>3350</td>
<td>2090</td>
<td>-</td>
<td>This study</td>
</tr>
<tr>
<td>Manchester, UK</td>
<td>urban</td>
<td>winter</td>
<td>29</td>
<td>52</td>
<td>110</td>
<td>-</td>
<td>(Gabey et al., 2011)</td>
</tr>
<tr>
<td>Puy de Dôme, France</td>
<td>mountain</td>
<td>summer</td>
<td>12</td>
<td>-</td>
<td>94</td>
<td>-</td>
<td>(Gabey et al., 2013)</td>
</tr>
<tr>
<td>Killarney, Ireland</td>
<td>rural</td>
<td>summer</td>
<td>175</td>
<td>95</td>
<td>35</td>
<td>15</td>
<td>(Healy et al., 2014)</td>
</tr>
<tr>
<td>Borneo, Malaysia</td>
<td>rainforest</td>
<td>summer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>(Gabey et al., 2010)</td>
</tr>
<tr>
<td>Karlsruhe, Germany</td>
<td>semi-rural</td>
<td>spring, summer, autumn, winter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>(Toprak and Schnaiter, 2013)</td>
</tr>
<tr>
<td>Amazon, Brazil</td>
<td>rainforest</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>(Huffman et al., 2012)</td>
</tr>
<tr>
<td>Mainz, Germany</td>
<td>semi-urban</td>
<td>summer, autumn, winter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27 (4%)</td>
<td>(Huffman et al., 2010)</td>
</tr>
<tr>
<td>Helsinki, Finland</td>
<td>urban</td>
<td>summer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>(8%)</td>
</tr>
<tr>
<td>Hyytiälä, Finland</td>
<td>boreal forest</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>(4.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>summer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td>(13%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>autumn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>(9.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>winter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>(1.1%)</td>
</tr>
<tr>
<td>Colorado, USA</td>
<td>rural</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>(2.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>summer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>(8.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>autumn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>(5.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>winter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.3</td>
<td>(0.)</td>
</tr>
</tbody>
</table>

a: results of UV-APS
b: combine with FL1 and FL3 channel
Table 4. Integrated mean number concentrations of each type particles. N is number concentration (cm$^{-3}$), fraction is the ratio of each type particles to total particles.

<table>
<thead>
<tr>
<th></th>
<th>NCR type</th>
<th>CR type</th>
<th>type A</th>
<th>type B</th>
<th>type C</th>
<th>type AB</th>
<th>type AC</th>
<th>type ABC</th>
<th>type BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (cm$^{-3}$)</td>
<td>0.59</td>
<td>1.50</td>
<td>0.05</td>
<td>1.77</td>
<td>0.66</td>
<td>0.15</td>
<td>0.003</td>
<td>0.37</td>
<td>1.06</td>
</tr>
<tr>
<td>Fraction (%)</td>
<td>4.69</td>
<td>10.91</td>
<td>0.45</td>
<td>12.95</td>
<td>4.40</td>
<td>1.20</td>
<td>0.03</td>
<td>2.91</td>
<td>8.26</td>
</tr>
</tbody>
</table>
Figure 1. Time series of number concentrations and number size distributions of (a) total aerosol particles and fluorescent aerosol particles in channel (b) FL1, (c) FL2, and (d) FL3. In panel top halves, N_T, N_{FL1}, N_{FL2}, and N_{FL3} represent the number concentrations of total aerosol particles and fluorescent aerosol particles in different channels. F_{FL1}, F_{FL2}, and F_{FL3} represent the number fractions of fluorescent aerosol particles in total aerosol particles. The panel bottom halves show the number size distributions of total and fluorescent aerosol particles.
Figure 2. Diurnal variations of number concentrations of (a) total aerosol particles and fluorescent aerosol particles in channel (b) FL1, (c) FL2, and (d) FL3. Gray line indicates the number fraction of respective fluorescent particles (right axis). Shading indicates ± one standard deviation.
Figure 3. Mean (solid diamond) number size distributions of (a) Total particles, black and fluorescent aerosol particles in channel (b) FL1, red, (c) FL2, blue and (d) FL3, yellow. Open cycles represent the mean fraction of fluorescent aerosol particles to total aerosol particles (right axis) and shaded zones indicate 25th and 75th percentiles.
Figure 4. Time series of M_{BC}/PM_{800} (gray line, right axis) and relative number fractions of fluorescent particles in each channel (left axis). (a) F_{FL1}, red line. (b) F_{FL2}, blue line. (c) F_{FL3}, yellow line. (d) F_{FL2} (3-4 μm), light blue: number fraction of FL2 in the size range of 3-4 μm.
Figure 5. (a) Normalized fluorescence emission spectra of two fluorescent compounds: I (black line, biological material) and II (red line, non-biological material) for excitation wavelengths at $\lambda_{ex}=280$ nm. Shadow areas indicate the excitation wavebands of FL1 and FL2 channels of WIBS. (b) Integrated fluorescence intensity of two compounds in two bands (FL1 and FL2). (c) The ratio of fluorescence intensity from different WIBS channels (I_{FL1}/I_{FL2}) of I and II compounds. The fluorescence emission spectra are obtained from Pöhlker et al. (2012).
Figure 6. Spectral pattern of the classified fluorescence intensity. FL1 intensity is grouped at 100 intervals, FL2 intensity is grouped at 80 intervals and FL3 intensity is grouped at 18 intervals. Color scale is measured particle number. None fluorescent and saturating (FL \geq 2000 arbitrary units) aerosol particles were excluded. (a) FL1 intensity versus FL2 intensity of total measured particles; (b) FL2 intensity versus FL3 intensity of g3 type particles; (c) FL2 intensity versus FL3 intensity of g4 type particles; (d) Numbers of g1 and g2 type particles of FL3 fluorescence intensity. Because FL2 intensity of g1 and g2 are below the threshold, the spectral patterns are hence not used. Dotted lines denote the threshold of each channel (200 arbitrary units for FL1, 80 arbitrary units for FL2 and 18 arbitrary units for FL3).
Figure 7. Time series of (a) the fractional contributions of each fluorescent type to the total FAPs and (b) number concentration (left axis) of each fluorescent type and M_{BC}/PM_{800} (gray line, right axis).
Figure 8. Time series of number fractions of various fluorescent particles (left axis) and M_{BC}/PM_{800} (gray line, right axis).
Figure 9. Correlations of FL3 fractions with M_{BC}/PM_{800} in different size ranges. FL3 fraction is the number concentration of the subgroup ratio to the number concentration of total particles in each size bin. (a) Low fluorescent intensity group. (b) High fluorescent intensity group. The color lines represent the FL3 intensity (I_{FL3}) above the certain I_{cri}.
Figure 10. Comparisons of Nanjing data with other previous studies: Puy de Dôme (PdD), France (Gabey et al., 2013); Borneo, Malaysia (Gabey et al., 2010); Amazon (Huffman et al., 2012); Hyytiälä and Colorado (Schumacher et al., 2013). Gray color indicates different type particles of Nanjing.