1	Drainage and tillage <u>practices</u> in <u>the</u> winter fallow season mitigate <u>global warming</u>		
2	potential of CH4 and NO2 emissions from a double-rice field in China		
3			
4	Guangbin Zhang ¹ , Haiyang Yu ^{1,2} , Xianfang Fan ^{1,2} , Yuting Yang ^{1,2} , Jing Ma ¹ , and Hua Xu ¹		
5	¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of		
6	Sciences, Nanjing 210008, China		
7	² University of Chinese Academy of Sciences, Beijing 100049, China		
8	Correspondence to: Hua Xu (hxu@issas.ac.cn)		
9			
10	Abstract. Traditional land managements (neither drainage normanagement (no tillage, no drainage,		
11	NTND) induring the winter fallow season resultresults in substantial CH4 and N2O emissions from the		
12	double-rice fields in China. For investigatingA field experiment was conducted to investigate the effects		
13	of drainage and tillage induring the winter fallow season on global warming potentials (GWPs) of CH4		
14	and N ₂ O emissions and <u>developingto develop</u> mitigation options, a field. The experiment withhad four		
15	treatments: NTND, <u>NTD (</u> drainage but <u>nonno</u> -tillage (<u>NTD)</u> , <u>)</u> , <u>TND (</u> tillage but <u>nonno</u> -drainage (<u>TND</u>),		
16	and TD (both drainage and tillage (TD) were carried out). The study was conducted from 2010 to 2014 in		
17	a Chinese double-rice field. InDuring winter fallow season, total precipitation and mean daily temperature		
18	had important effects on CH4 emission, and significant correlations were observed between them and		
19	significantly affected the level of CH ₄ emission. Compared withto NTND, drainage and tillage reduced		
20	decreased annual CH4emissionemissions in early and late rice seasons and decreased annual emission		
21	by 54 and 33 kg CH ₄ ha^{-1} yr ⁻¹ , respectively. Drainage and tillage increased N ₂ O <u>emissionemissions</u> in <u>the</u>		
22	winter fallow season whilebut reduced it in early and late rice seasons, causing resulting in no annual		
23	change in N2O emission unaffected. Accordingly, the GWPs. Global Warming Potentials of CH4 and N2O		
24	emissions gases were decreased by 1.49 and 0.92 t CO_2 -eq ha ⁻¹ yr ⁻¹ , respectively, and they were farreduced		
25	more reduced by combining drainage with tillage, withproviding a mitigation potential of 1.96 t CO2-eq		
26	ha ⁻¹ yr ⁻¹ . LowA low total C content and high C/N ratio in rice residues revealedshowed that tillage in the		
27	winter fallow season reduced CH_4 and N_2O emissions in <u>both</u> early and late rice seasons. <u>Moreover</u> ,		
28	drainageDrainage and tillage significantly decreased the abundance of methanogens in paddy soil, which		
29	was a possible reason for and this may explain the decrease of CH ₄ emissionemissions. Greenhouse gas		
30	intensity was levels were significantly decreased by drainage and tillage separately, and itthe reduction		

带格式的: 下标

─ 带格式的: 下标
 ─ 带格式的: 下标

was much more reducedgreater by combining drainage with tillage, with resulting in a reduction of 0.17
t CO₂-eq t⁻¹ yield. The results indicate that soil drainage combined with tillage in TD treatment during the
winter fallow season is an effective strategy for mitigating strategy ingreenhouse gas releases from doublerice fields.

35

36 1 Introduction

37 Methane (CH₄) and nitrous oxide (N₂O) are two of the most important greenhouse gases (GHGs) after 38 carbon dioxide (CO2) in the atmosphere.). According to the Greenhouse Gas Bulletin of World 39 Meteorological Organization, the concentrations of atmospheric CH4 and N2O reached at 1833 and 327 40 ppb in 2014, respectively (WMO, 2015). PaddyRice paddy fields are considered to be the major sources of atmospheric CH₄ and N₂O. Since the 2000s, effectiveEffective options for mitigating CH₄ and N₂O 41 42 emissions from rice paddy fields worldwide have been continually explored studied over the worldlast two 43 decades (McCarl and Schneider, 2001; Yan et al., 2005; Hussain et al., 2015), i.e.. Ideas have included modifying irrigation and fertilization patterns (Cai et al., 2003; Hussain et al., 2015; Linquist et al., 2015), 44 45 settingestablishing integrated soil-crop system management practices (Zhang et al., 2013; Chen et al., 46 2014), and selection of suitable rice cultivarcultivars with high productionyields but low GHGs emissions (Ma et al., 2010; Hussain et al., 2015; Su et al., 2015), etc. Nevertheless, other potential 47 48 mitigatingmitigation methods might be still availableuseful due to the diversity of rice-based ecosystems 49 and the difference invariety of agronomic management practices (Weller et al., 2016). 50 China is one of the largest rice producers in the world, and its harvested area contributes 18.9% of the 51 world rice total (FAOSTAT, 2014). In China, total CH4 and N2O emissions from paddy fields wereare 52 estimated to be 6.4 Tg yr⁻¹ and 180 Gg yr⁻¹, respectively (Zhang et al., 2014). Double rice is the major 53 rice-cropping system in China, accounting for over 40% of the total rice cultivation area (Yearbook, 2014) and emitting ca. 50% of the total paddy CH4 in China (Zhang et al., 2011; Chen et al., 2013). Double-rice 54 55 fields mainly distribute at theoccur south of the Yangtze River where usually has relative large relatively 56 high precipitation and high temperature in warm temperatures occur during the winter fallow season. 57 Traditionally, the fields are fallow in winter season with the soil being neither drainagedrained nor 58 tillagetilled after the late-rice harvest, and they. The fields, which are usually subjected to visible 59 floodwateroften flooded after a heavy or a long-time raining. It is very likely to bring about CH₄ emissions 60 from emissions occur in these fields induring the winter fallow season and further to promote its

域代码已更改

域代码已更改		
域代码已更改		
域代码已更改		
AITHUCK		

域代码已更改	
域代码已更改	
域代码已更改	
域代码已更改	

61	emission <u>also</u> during the following <u>early</u> rice growth season. Modeling data <u>had shownshows</u> that CH ₄
62	emission waslevels were significantly correlated with simulated soil moisture and mean precipitation
63	ofduring the preceding non-rice growth season (Kang et al., 2002). Incubation and pot experiments also
64	affirmedshowed that the higher thehigh soil water contentscontent in the non-rice growth season, the
65	higher the was associated with high CH4 production rates and the more thegreater CH4 emissions in the
66	subsequent rice season (Xu et al., 2003). An available mitigating mitigation option is hence proposed infor
67	this region, that is, the fields are. Fields can be drained to decrease the accumulation of rainwater in the
68	winter fallow season and finally to attenuatereduce the positive effect of winter precipitation on CH4
69	emission. However, drainage possibly stimulatescan stimulate N2O emission from paddy fieldfields in
70	winter fallow season because soil water content changes can change more quickly and intensively. It is well
71	recognized that soilrapidly. Soil moisture regulates the processes of denitrification and nitrification and
72	thus N ₂ O emission (Bateman and Baggs, 2005; Lan et al., 2013). Since the overall balance between the
73	net exchange of CH ₄ and N ₂ O emissions constitutes the global warming potentials potential (GWPs) of the
74	rice ecosystem, the effecteffects of soil drainage in the winter fallow season on mitigating the yearly GWPs
75	year-round from the double-rice fieldfields is not well understoodunclear.
76	Soil tillage is a conventional practice in rice cultivation, and considerable reports have shown that tilling
77	the soil prior to rice transplanting playscan play a key role in CH4 and N2O emissions (Hussain et al., 2015;
78	Zhao et al., 2016). Meanwhile, tillageTillage after rice harvest in the winter fallow season probably has
79	very is also likely to have important effects on CH4 and N2O emissions. Firstly, itlt is beneficial for the
80	rainwater to penetrate into the subsoil, which won't lead to the because this minimizes rainwater
81	accumulation of rainwater in winter fallow season. It is then . However, tillage makes it difficult to form
82	theestablish a strict anaerobic environmentsenvironment in the top soil, which not only reduces CH ₄
83	emissionwould directly reduce CH4 emissions during the non-rice growing season, but also and indirectly
84	inhibitsinhibit CH4 emissionemissions during the following spring rice season. On the contrary, tillage
85	makes Tillage allowsallows rice residues fullyto contact with the soil, and microorganism, which maysoil
86	microorganisms accelerate the decomposition of organic mattersmatter and then in favor offacilitate CH4
87	production and emission in the non-rice growthfallow season (Pandey et al., 2012; Hussain et al., 2015).
88	Secondly, itTillage may also play a key role in CH4 emission during the following rice season owing to
89	the incompletely decomposed rice residues (Tang et al., 2016). In addition, tillage induring the winter
90	$fallow\ season\ \underline{whether\ increases may\ increase}\ N_2O\ \underline{emission\ from emissions\ but}\ the\ \underline{field\ orextent\ of\ this\ is}$
•	

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

91 not is still not very clear. There are some contradictive lines of The evidence assertingfor the promotion 92 andor reduction in N2O emissions from rice fields by soil tillage is contradictory. For instanceexample, 93 tillage changeschanged the soil properties (soil porosity and soil moisture, etc.) and then promotespromoted N2O emissionemissions (Mutegi et al., 2010; Pandey et al., 2012) whereas 94 incorporation of rice residues due toby tillage may reducereduced N2O emissionemissions as a result of N 95 immobilization (Huang et al., 2004; Ma et al., 2010). Based on A possible mitigating strategy that includes 96 97 crop residues plowed into the soil along with drainage in the winter fallow season has been proposed for 98 a 3-yeardouble-rice field measurement (Shang et al., 2011), the possible agricultural mitigating strategy 99 that is crop residues incorporated into the soil accompanying with drainage in winter fallow season, has 100 been proposed in a double-rice field .. Nevertheless, the effects mitigation potential of drainage combined 101 with tillage in the winter fallow season on annual CH4 and N2O emissions from double-rice fields, in

102 particular on the corresponding mitigation potential are scarcely documented remains unclear.

An *in situ* field measurement<u>study</u> was conducted <u>year-roundcontinuously</u> for 4 years from (2010 to 2014) to study the CH₄ and N₂O emissions from a typical double-rice field in China. The <u>study</u> objectives of this study arewere to: (1) to investigate the effects of soil drainage and tillage <u>induring the</u> winter fallow season on CH₄ and N₂O emissions from the paddy field, (2) to, (2) estimate the mitigation potential of drainage and tillage, and <u>thereby</u> (3) to suggest the optimal land management strategies <u>induring the</u> winter fallow season for reducing GWPs of CH₄ and N₂O emissions in the double rice-cropping systems in China.

109

110 2 Methods and materials

111 2.1 Field site and experimental design

The experimental field is located at Yujiang Town, Yingtan City, Jiangxi Province, China (28° 15′ N, 112 113 116° 55′ E). The region has a typical subtropical monsoon climate with an annual mean temperature of 114 about 18 °C and an annual mean precipitation of about 1800 mm. Prior to the experiment, the field was 115 cultivated with early _-rice from April to July and late _-rice from July to November, and then kept in fallow for the rest of yearuntil spring planting. The soil type at the experimental field is classified as Typical 116 117 Haplaquepts (Soil Survey Staff 1975). The initial properties (0-15 cm) of the soil are(at 0-15 cm) were pH (H2O) 4.74, organic carbon (SOC) 17.0 g kg⁻¹, and total N 1.66 g kg⁻¹. Daily air temperature (°C) and 118 119 rainfall (mm) throughout the wholeentire observational period was provided by the Red Soil Ecological

120 Experiment Station, Chinese Academy of Sciences (Appendix S1).

域代码已更改

域代码已更改

121	Four treatments, laid out in a randomized block design in triplicatewith three replicates, were conducted
122	in the experimental field from 2010 to 2014 after late-rice harvest from 2010 to 2014: (1) the: NTND plots
123	were neither drainagedrained nor tillage intilled during the wholeentire winter fallow season as Treatment
124	NTND, which. This is the traditional winter land management in the local region; (2) the. NTD plots
125	werehad drainage but non-tillage as Treatment NTD; (3) thewere not tilled. TND plots were tillagetilled
126	but non-drainage as Treatment TND; (4) and thenot drained. TD plots were drainage and tillage
127	simultaneously as Treatment TDboth drained and tilled. Rice stubble in all treatments was around 25-35
128	cm long, about and 3.0–4.0 t ha^{-1} during the 4 winter fallow seasons, respectively. UndergoneAfter the
129	wholeentire winter fallow season in 2012 and 2013, a small portionsample of rice stubble was collected
130	before early-rice transplanting in 2012 and 2013, and the total C and N contents were measured by using
131	the wet oxidation-redox titration method and the micro-Kjeldahl method, respectively (Lu, 2000). Soil
132	water content in <u>the</u> winter fallow season was determined gravimetrically after drying at 105 $^{\circ}$ C for 8 <u>hhr</u> .
133	Local rice (Oryza sativa L.) cultivars, Zhongzao 33 and Nongxiang 98, were planted form the following
134	early-rice and late-rice seasons, respectively. The seedsSeeds were sown in the seedling nursery and then
135	transplanted intoto the experimental plots at their 3_{-} to 4_{-} leaf stage. Each season, nitrogen (N) and
136	potassium (K) fertilizationsfertilization in form of urea and potassium chloride (KCl) were split into three
137	applications, namely, basal fertilizers consisting of 90 kg N ha $^{-1}$ and 45 kg K ha $^{-1}$, tillering fertilizers
138	consisting of 54 kg N ha ⁻¹ and 60 kg K ha ⁻¹ , and panicle initiation fertilizers consisting of 36 kg N ha ⁻¹
139	and 45 kg K ha ⁻¹ . Phosphorus (P) fertilization in form of phosphorus pentoxide (P_2O_5) was applied to all
140	the treatments as a basal fertilizer at a rate of 75 kg P ha ⁻¹ . After early-rice harvest, rice straw and stubble
141	were all moved out ofremoved from the plots, and. A more detailed descriptions aboutdescription of the
142	water management and fertilization in early- and late-rice seasons are given is provided in Appendix S2.
143	

144 2.2 CH₄ and N₂O fluxes sampling and measurements

Both CH₄ and N₂O fluxes were measured once every 2–6 d and 7–10 d during the rice and non-rice seasons, respectively, using the static chamber technique (Zhang et al., 2011). The flux chamber wasmeasured 0.5 \times 0.5 \times 1 m, and a plastic base (0.5 \times 0.5 m) for the chamber was installed before initiation of the experiment. Four gas samples from each chamber were collected using 18-mL vacuum vials at 15-min intervals. Soil temperature and soil redox potential (Eh) at 0.1 m depth were simultaneously measured during gas collection. Rice grain yields were determined in each plot at early- and late-rice harvests. 域代码已更改

151	The concentrations of CH ₄ and N ₂ O were analyzed with <u>a gas chromatographschromatograph</u> equipped	
152	with a flame ionization detector (Shimadzu GC-12A, Shimadzu Co., Japan) and with an electron capture	
153	detector (Shimadzu GC-14B, Shimadzu Co., Japan), respectively. Both the emission fluxes were	
154	calculated from the linear increase of gas concentration at each sampling time (0, 15, 30 and 45 min during	
155	the timeinterval of chamber closure) and adjusted for area and volume of the chamber. Sample sets were	
156	rejected unless they yielded a linear regression value of r^2 greater than > 0.90. The amounts of CH ₄ and	
157	N_2O emissions were calculated by successive linear interpolation of $\underline{averagemean}\ CH_4$ and N_2O emissions	
158	on the sampling days, assuming. This assumed that CH_4 and N_2O emissions followed a linear trend during	
159	the periods when no sample wassamples were taken.	
160		
161	2.3 GWPs and GHGI estimates	
162	The 100-year GWPs (CH ₄ and N_2O) in different treatments were calculated by using IPCC factors (100-	
163	year GWPs (CH ₄ + N ₂ O) = $28 \times CH_4 + 265 \times N_2O$) (Myhre et al., 2013). The greenhouse gas intensity	
164	(GHGI) represented the GWPs per unit rice grain yield (Li et al., 2006): GHGI = GWPs/grain yield.	
165		
166	2.4 Soil sampling and DNA extraction	
166 167	2.4 Soil sampling and DNA extraction During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the	
1		
167	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected inat the	
167 168	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u>	
167 168 169	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u> <u>abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3	
167 168 169 170	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons ×3 stages in each season ×4 treatments ×3 replicates). Each sample was <u>a combined mixture of</u>	
167 168 169 170 171	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u> <u>abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons × 3 stages in each season × 4 treatments × 3 replicates). Each sample was <u>a combined mixture of</u> <u>3 subsamples</u> collected at 0–5 cm depth <u>in triplicate and fully mixed</u> . Subsequently, all. All samples were	
167 168 169 170 171 172	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons \times 3 stages in each season \times 4 treatments \times 3 replicates). Each sample was <u>a combined mixture of 3 subsamples</u> collected at 0–5 cm depth <u>in triplicate and fully mixed</u> . <u>Subsequently, all</u> . <u>All</u> samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA	
167 168 169 170 171 172 173	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons \times 3 stages in each season \times 4 treatments \times 3 replicates). Each sample was <u>a combined mixture of</u> <u>3 subsamples</u> collected at 0–5 cm depth in triplicate and fully mixed. Subsequently, all. All samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA extraction.	
167 168 169 170 171 172 173 174	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons × 3 stages in each season × 4 treatments × 3 replicates). Each sample was <u>a combined mixture of 3 subsamples</u> collected at 0–5 cm depth <u>in triplicate and fully mixed</u> . <u>Subsequently, all</u> . <u>All</u> samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA extraction. For each soil sample, genomic DNA was extracted from 0.5 g soil using a FastDNA spin kit for soil	
167 168 169 170 171 172 173 174 175	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u> <u>abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons × 3 stages in each season × 4 treatments × 3 replicates). Each sample was <u>a combined mixture of</u> <u>3 subsamples</u> collected at 0–5 cm depth in triplicate and fully mixed. Subsequently, all. All samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA extraction. For each soil sample, genomic DNA was extracted from 0.5 g soil using a FastDNA spin kit for soil (MP Biomedicals LLC, Ohio, USA) according to the <u>manufacturer'smanufacturer</u> instructions. The	
167 168 169 170 171 172 173 174 175 176	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u> <u>abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons ×3 stages in each season ×4 treatments ×3 replicates). Each sample was <u>a combined mixture of</u> <u>3 subsamples</u> collected at 0–5 cm depth <u>in triplicate and fully mixed</u> . <u>Subsequently, all</u> . <u>All</u> samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA extraction. For each soil sample, genomic DNA was extracted from 0.5 g soil using a FastDNA spin kit for soil (MP Biomedicals LLC, Ohio, USA) according to the <u>manufacturer'smanufacturer</u> instructions. The extracted soil DNA was dissolved in 50 µl of elution buffer, checked by electrophoresis on 1% agarose,	
167 168 169 170 171 172 173 174 175 176 177	During the 2013–2014 winter fallow and early- and late-rice seasons, soil samples were collected <u>inat</u> the beginning, middle and end of each season from the experimental plots <u>and analyzed</u> for <u>analyzing the</u> <u>abundanceslevels</u> of methanogens and methanotrophs. <u>TotallyIn total</u> , there were 108 soil samples (3 seasons × 3 stages in each season × 4 treatments × 3 replicates). Each sample was <u>a combined mixture of</u> <u>3 subsamples</u> collected at 0–5 cm depth <u>in triplicate and fully mixed</u> . <u>Subsequently, all</u> . All samples were stored at 4 °C for analyses of soil characteristics and subsamples were maintained at –80 °C for DNA extraction. For each soil sample, genomic DNA was extracted from 0.5 g soil using a FastDNA spin kit for soil (MP Biomedicals LLC, Ohio, USA) according to the <u>manufacturer'smanufacturer</u> instructions. The extracted soil DNA was dissolved in 50 µl of elution buffer, checked by electrophoresis on 1% agarose, and then quantified using a spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) <u>(Fan et</u>	

域代码已更改 域代码已更改

181	The abundance <u>frequency</u> of methanogenic mcrA gene copies and of methanotrophic pmoA genesgene
182	copies was determined by quantitative PCR (qPCR) (Fan et al., 2016). Fragments of the mcrA and pmoA
183	genes, encoding the methyl coenzyme-M reductase and the α subunit of the particulate methane
184	monooxygenase, respectively, were amplified using primers according to Hales et al. (1996) and Costello
185	and Lidstrom (1999), respectively. Real-time quantitative PCR was performed on a CFX96 Optical Real-
186	Time Detection System (Bio-Rad Laboratories, Inc. Hercules, USA), and for the). For detailed method
187	descriptions please refer to our previous study (Fan et al., (2016).

189 **2.6 Statistical analyses**

Statistical analysis was performed using SPSS 18.0 software for Windows (SPSS Inc., USA). Differences in seasonal CH₄ and N₂O emissions, 100-year GWPs (CH₄ and N₂O), and grain yields among treatments were analyzed with a repeated-measures one-way analysis of variance (ANOVA) and least significant differences (LSD) test. The significance of the factors (land management and year) was examined by using a two-way analysis of variance (ANOVA). Statistically significant differences and correlations were set at P < 0.05.

196

1

197 3 Results

198 3.1 CH₄ emission

199	ObviousSignificant CH4 fluxes were observed over the 4 winter fallow seasons, particularly during the
200	2011-2012 winter fallow season though a small net sink of CH ₄ to the atmosphere was measured
201	occasionally (Fig. 1). Total CH ₄ emissions of the 4 treatments were <u>highly significantly</u> lower ($P < 0.05$)
202	in the 2010–2011 winter fallow season (~0.1–1 kg CH_4 ha ⁻¹) than in the following three winter fallow
203	seasons (~1–11 kg CH ₄ ha ⁻¹), and they were ranged from 1.73 to 4.91 kg CH ₄ ha ⁻¹ on average (Table 1).
204	Seasonal CH ₄ emissions varied significantly with year and field land managementsmanagement (Table 2,
205	P < 0.01). Tillage increased CH ₄ emissions by 43–69% relative to non-tillage over the 4 winter fallow
206	seasons. In comparison \underline{ofto} non-drainage, drainage reduced CH ₄ emissions by 40–50%. Consequently,
207	CH4 emission wasemissions were decreased by 14.8% relative to Treatment NTND with the
208	integrated combined effects of soil drainage and tillage (Table 1).
209	During the 4 early- and late-rice seasons, the CH4 fluxes of all treatments dramatically

 $\frac{1}{210}$ ascended increased under continuous flooding, and the highest CH₄ fluxes were observed <u>on</u> about 20–30

-	域代码已更改	J
	域代码已更改	J
-	域代码已更改)

daysd after rice transplanting in early-rice seasons and about 10–30 daysd after rice transplanting in laterice seasons (Fig. 1). Subsequently, they sharply decreased after midseason aeration. An obvious flux peak
was observed again approximately 1–2 weeks after re-flooding, particularly in the early-rice season.
Apparently, the CH₄ emissionemissions always showed a higher flux peak in Treatment NTND than in
Treatment TD.

216 Seasonal CH4 emissions in early-rice season varied significantly with land managements, but it was not 217 highly impacted influenced by year or their interaction interactions (Table 2). In contrast, total CH4 emission 218 did significantly varyvaried with land managementsmanagement and year in the late-rice season (Table 2). 219 In comparison ofto Treatment NTND, CH4 emission wasemissions were decreased by soil drainage and 220 tillage, and on average, reduced by 22.2% and 17.8% in early- and late-rice seasons, respectively (Table 221 1). Soil drainage combined with tillage further reduced CH₄ emission by 35.0% and 29.4% in early- and 222 late-rice seasons, respectively. Compared withto the early-rice season (68.3-105.1 kg CH₄ ha⁻¹), total CH₄ 223 emission in the late-rice season was 8.0-17.9% greater.

Annually, total CH₄ emission <u>was</u> ranged from 151 to 222 kg CH₄ ha⁻¹, <u>averaged</u>. An <u>average of 46.1%</u> and 52.1% of <u>which this</u> came from the early- and late-rice seasons, respectively (Tables 1 and 3). Soil drainage and tillage played important roles in decreasing CH₄ emission. Relative to Treatment NTND, <u>averaged the mean</u> CH₄ emission was decreased by 24.3% and 14.9% by drainage and tillage, separately, and it was <u>highly significantly</u> reduced by 32.0% when drainage <u>wasand tillage were</u> combined <u>with tillage</u> <u>simultaneously</u> (Table 3).

230

231 3.2 N₂O emission

232 Substantial N₂O emission was measured in the non-rice growth season though the fields were fallowed 233 with no N-fertilization (Fig. 2 and Table 1). Total N2O emissions over the 4 winter fallow seasons varied 234 significantly with land management and year while it did not significantly depended on theirbut the 235 interaction affect was not significant (Table 2). Seasonal N2O emissions were relatively lower in the 2010-236 2012 winter fallow seasons than the following two winter fallow seasons. Compared with Treatment 237 NTND, soil drainage and tillage generally increased N2O emissions, separately, and N2O emissions were 238 significantly stimulated when combined drainage withand tillage simultaneouslywere combined. Over the 239 4 winter fallow seasons, seasonal N2O emissions averaged 36.4-68.2 g N2O-N ha-1, being 87.3%, 64.5% 240 and 57.5% higher in Treatment TD than in Treatments NTND, TND, and NTD, respectively (Table 1).

After rice transplanting, pronounced N₂O fluxes were observed with N-fertilization and midseason aeration, particularly <u>induring</u> the period of dry<u>/-wet_alternation</u> (Fig. 2). Two-way ANOVA analyses indicated that seasonal N₂O emissions during the early- and late-rice seasons were not highly influenced by land management, and the interactions of land management and year, except that N₂O emissions depended significantly on year (Table 2). Compared with Treatments NTND and NTD, tillage increased N₂O emission in 2011 early- and late-rice seasons whereas <u>there were</u> generally reduced N₂O <u>emissionemissions</u> during the following rice seasons (Table 1).

248 Over the 4 early-rice seasons, drainage increased seasonal N₂O emissions by 38.9-43.5% while tillage 249 decreased N2O emissions by 10-12.9%, although nothe differences were not significant difference was 250 observed (Table 1). In contrast, the effects of drainage and tillage seemed to be more important over the 4 251 late-rice seasons. For instance, drainage increased seasonal N₂O emissions by 41.0-47.8% while tillage 252 decreased N2O emissions by 10.3-14.4%. Annually, total N2O emission wasemissions ranged from 113 to 253 167 g N2O-N ha⁻¹, averaged . An average of 34.4% of which this was derived from the winter fallow season 254 (Tables 1 and 3). There was no significant difference in total N2O emission among the 4 treatments (Table 255 3).

256

257 3.3 Global warming potential (GWP)

Throughout the 4 winter fallow seasons, soil drainage and tillage had important effects on GWPs (CH₄ and N₂O) over the 100-year time, although it was, on average, very small, <u>beingranging</u> from 0.07 to 0.16 t CO₂-eq ha⁻¹ yr⁻¹ (Table 1). Compared with Treatment NTND, drainage significantly decreased GWPs while tillage <u>highlysignificantly</u> increased it. Consequently, soil drainage combined with tillage played a <u>slightlyrather slight</u> role in GWPs relative to Treatment NTND.

263 In contrast, both soil drainage and tillage decreased GWPs in comparison of compared to Treatment 264 NTND over the 4 early-rice seasons, with 16.0-36.2% and 4.2-36.2% lower values in Treatment NTD 265 and Treatment TND, respectively (Table 1). The GWPs was hence farwere more decreased by drainage 266 combined with tillage, being 26.6-42.4% lower in Treatment TD, than in Treatment NTND. Totally, 267 drainageDrainage significantly reduced GWPs by 27.4% for Treatment NTD, in particular onand 34.8% 268 for Treatment TD by 34.8% withthat had the integrated effect of drainage and tillage relative to Treatment NTND. Meanwhile, tillage Tillage also tended to decrease GWPs relative to Treatment NTND but this 269 270 effect was not statistically significant.

Similar effects of soil drainage and tillage on GWPs were observed over the 4 late-rice seasons (Table
1). Compared with Treatment NTND, GWPs was 7.5–35.4% and 11.7–20.4% lower in Treatments NTD
and TND, respectively. Soil drainage combined with tillage significantly decreased GWPs by 23.7–36.8%
for Treatment TD in comparison ofto Treatment NTND. On average, drainage and tillage reduced GWPs
by 20.6% and 15%, separately, and GWPs was significantly reduced (29.1%) by combining drainage with
tillage simultaneously.
Annually, the GWPs averagedaverage ranged from 4.29–6.25 t CO₂-eq ha⁻¹, with 46% and 52% of

which was derived from the early-rice and late-rice seasons, respectively (Tables 1 and 3). Compared with Treatment NTND, GWPs was significantly reduced by 0.92-1.49 t CO₂-eq ha⁻¹ in Treatments TND and NTD, respectively, and it was decreased much more by (1.96 t CO₂-eq ha⁻¹) in Treatment TD (Table 3).

282 3.4 Rice grain yields

283 Grain yields of Treatments TND and TD were generally higher than those of Treatments NTND and NTD 284 over the 4 annual cycles (Table 1) though the yields slightly varied with land management and year as well 285 as their interaction (Table 2). On The average, the yields in Treatments TND and TD were over 6.5 t ha-1, 286 which was 4.8%-7.3% and 3.1%-4.4% higher than thoseyields of Treatments NTND and NTD during the 287 early- and late-rice seasons, respectively. Annually, there was no significancedifference in the total yields 288 was observed_among the treatments over the 4 years (Table 3). Throughout the 4 late-rice seasons, a 289 positive correlation was observed between grain yields of the 4 treatments and the corresponding CH4 290 emissions (r= 0.733, P < 0.01).

291

281

292 3.5 Greenhouse gas intensity (GHGI)

Annual GHGI ranged from 0.32 to 0.49 t CO₂-eq t⁻¹ yield, and it <u>changedvaried</u> significantly among the treatments owing to <u>the GWPs highly controlledstrong control</u> while annual rice yields <u>were</u> slightly influenced by soil drainage and tillage (Table 3). Compared <u>withto</u> Treatment NTND, drainage and tillage reduced GWPs by 23.8% and 14.7%, thus causing GHGI to significantly <u>decreaseddecrease</u> by 22.4% and 18.4%, separately. <u>ExpectedlyaAs expected</u>, soil drainage combined with tillage reduced GHGI much more, with a <u>34.7%</u> reduction <u>of 34.7%</u> relative to Treatment NTND.

299

300 3.6 Precipitation, temperature, soil Eh and soil water content in winter fallow season

带格式的:非上标/下标

301 Over the 4 winter fallow seasons, total precipitation changed remarkably, which was varied greatly and 302 ranged from ~400 mm to ~750 mm during 2010-2012. Subsequently, it was relatively stable around at 303 ~600 mm in 2012–2014 (Table 4). In contrast, mean daily air temperature varied slightlylittle, with values 304 of ca. 9.0 °C to 10.0 °C. Soil Eh, on average, fluctuated obviouslygreatly from the highest values (~150 305 mV) in 2010-2011 to the lowest values (~90 mV) in 2013-2014. Soil water content in the 2010 winter 306 fallow season was generally higher in Treatment NTND than in Treatments NTD and TND, and it was 307 lowest in Treatment TD (Fig. 3a), with a mean valuevalues of 55%, 50%, 44% and 38%, respectively. It 308 is easy to seeWe found that the higher the precipitation and temperature, the lower the soil Eh, and thus the moregreater the CH4 emission in the winter fallow season (Table 4). Statistical analyses showshowed 309 310 that a significant exponential relationship was observed existed between mean CH4 emission and total 311 precipitation (Fig. 3b, P < 0.01), and mean CH₄ emission was positively and negatively correlated with 312 mean temperature (Fig. 3c, P < 0.05) and <u>negatively correlated with soil Eh</u> (Fig. 3d, P < 0.01). 313 respectively.).

314

315 3.7 Abundance of methanogens and methanotrophs populations

316 The abundancelevel of methanogens in paddy soil decreased significantly from the winter fallow season 317 to the following early-rice season, but it increased again during the late-rice season (Fig. 4a). Compared 318 withto non-drainage (Treatments NTND and TND), the drainage (Treatments NTD and TD) generally 319 decreased the abundance level of methanogens throughout the winter fallow (Fig. 4a, P < 0.001) and 320 following early- and late-rice seasons (Fig. 4a, P < 0.05). Relative to non-tillage (Treatments treatments 321 (NTND and NTD), he tillage (Treatments treatments (TND and TD) also significantly decreased the 322 abundance of methanogens throughout the winter fallow and following early- and late-rice seasons (Fig. 323 4a, *P* < 0.001).

The abundance of methanotrophs was highest in <u>the</u> winter fallow season, and then it <u>gradually</u> decreased <u>gradually</u> (Fig. 4b). Drainage (<u>Treatments treatments</u> (NTD and TD) relative to non-drainage (<u>Treatments treatments</u> (NTND and TND) significantly decreased the abundance of methanotrophs over the winter fallow and early-rice seasons (Fig. 4b, P < 0.05) though <u>no significancethis was not significant</u> during the late-rice season. In addition, tillage (<u>Treatments treatments</u> (TND and TD) significantly decreased the abundance of methanogens during the previous winter (Fig. 4b, P < 0.001) and following early-rice seasons (Fig. 4b, P < 0.01) in comparison <u>ofto</u> non-tillage (<u>Treatments treatments</u> (NTND and

- 331 NTD), except in the late-rice season.
- 332 333 4 Discussion 4.1 CH₄ emission from double-rice fields 334 335 It is reported that inIn situ measurementmeasurements of CH4 emissionemissions in China was firstly 域代码已更改 336 carried outwere first made from 1987 to 1989 in a double-rice field in Hangzhou City (Shangguan et al., 域代码已更改 337 1993b). Subsequently, more and more CH4 emissions from double-rice fields were observed measured (Cai 338 et al., 2001; Shang et al., 2011). However, few investigations were referred tomade related measurements 域代码已更改 339 induring the non-rice growth season. Fortunately, Shang et al. (2011) found that the double-rice fields in 340 Hunan province. China usually actingacted as a small net sink of CH4 emission (as low as -6 kg CH4 ha-1) 341 in the winter fallow season. Although an occasionallyoccasional negative CH4 flux was also observed over 342 the 4 winter fallow seasons (Fig. 1), the double-rice field in this study was an entire source of CH₄ emission, 343 in particular during the 2011-2012 winter fallow season (Table 1). On average, around 2% of the annual 344 CH4 emission emitted fromoccurred during the winter fallow season. 345 Because of the residues (mainly including roots and stubble) of early rice as well as high 域代码已更改 346 temperaturetemperatures resulting in substantial CH4 production in paddy fields (Shangguan et al., 1993a; 347 Yan et al., 2005), the CH₄ emission offrom the late-rice season was generally higher than that of early-rice 348 season. More importantly, a very high CH4 flux peak was usually observed in shortly (a couple offew days) 域代码已更改 349 after late-rice transplanting (Cai et al., 2001; Shang et al., 2011). In the present study, CH4 emission in 350 late-rice seasons was 80.1-113.5 kg CH₄ ha⁻¹, beingand 8.0-17.9% largergreater than that of early-rice 351 seasons (Table 1) though total CH4 emission in the last two early-rice seasons was found to be slightslightly 352 greater than those mission in the late-rice seasons (Fig. 1). Mean annual CH4 emission varied between 域代码已更改 353 151 and 222 kg CH₄ ha⁻¹ over the 4 years (Table 3), which was much lower than previous results Cai et 354 al., 2001; Shang et al., 2011). Great differences. Differences in these CH4 measurements were probably 355 attributeddue to different water and rice straw managementsmanagement practices. Significant differences in CH4 emission from the fields in winter fallow and late-rice seasons were 356 带格式的:图案:清除 357 observed (Table 2), indicating large changes in the interannual CH4 emission. It is believed that the climatic 带格式的:图案:清除 358 variation Climatic variability may be the major factor leading to interannual variation of CH4 emission at 带格式的:图案:清除 359 the macroscopic scale (Cai et al., 2009), In this study we found that total winter rainfall had an important 带格式的:图案:清除 带格式的:图案:清除 360 effect on CH4 emission, and the. The higher the rainfall, the greater the CH4 emission throughout the 4 带格式的:图案:清除

361 winter fallow seasons (Table 4). And anAn exponential relationship was observed between mean CH4 362 emission and total rainfall in the winter fallow season (Fig. 3b). The importance of rainfall in controlling 363 CH4 emission in the winter fallow season, to some extent, was also could be demonstrated by the negative relationships between mean soil Eh and CH4 emission (Fig. 3d). According toIn different rice fields from 364 the 4 main rice growing regions in China, a similar correlation was found between rainfall in the winter 365 366 fallow season and CH4 emission in the rice growth season (Kang et al., 2002) (Kang et al., 2002). 367 NeverthelessHowever, we did not found anyno correlations between rainfall in the winter fallow season 368 and CH4 flux in early-or late-rice seasonseasons in this study, suggesting. This suggests that rainfall in the 369 winter fallow season just significantly regulated CH4 flux on-season, but didn'tnot off-season. In contrast, 370 a significant linear relationship was found (P < 0.01) between CH₄ emissions and corresponding yields 371 over the 4 late-rice seasons, demonstratingindicating that good crop growth benefited rice yield and

biomass and thus stimulated CH₄ emission. It is reported that seasonal Seasonal CH₄ emission
dependedcan depend greatly on the amount of rice biomass based on results from a long-term fertilizer
experiment (Shang et al., 2011). Furthermore, changes in temperature over the 4 winter fallow seasons
(Table 4) were supposed expected to play a key role in CH₄ emission, and the positive correlation had
demonstrated supported this wellexpectation (Fig. 3c). Many field measurements have
showndemonstrated the importance of temperature to CH₄ emission (Parashar et al., 1993; Cai et al., 2003;

378 Zhang et al., 2011).

379

380 4.2 Effect of soil drainage in winter fallow season on CH₄ emission

381 ConsiderableMany measurements of CH4 emission as affected by soil drainage induring the winter fallow 382 season have been reported from made in single-rice fields, and most. Most of which these were taken from 383 the permanently flooded fields. ObviouslyClearly, drainage significantly decreases CH₄ emission (Table 384 5). Draining the flooded fields inhibits CH₄ production and CH₄ emission in the winter fallow season 385 directly, and more importantly, it plays an important role in reducing CH4 production and its emission in 386 the subsequent rice-growing season (Zhang et al., 2011). Compared with non-drainage, drainage in this 387 study significantly decreased CH4 emission both in the previous winter fallow seasons and the following 388 early- and late-rice seasons (Table 1), and over). Over the 4 years-year study, mean annual CH4 emission 389 was reduced by 38-54 kg CH₄ ha⁻¹ (Table 3). Such changes were very likely due to the decrease of 390 methanogens in paddy soils throughout the winter, and early-rice season,- and late-rice seasonsseason by

【域代码已更改】 【域代码已更改

域代码已更改

域代码已更改

391	soil drainage (Fig. 4a) because drainage). Drainage increases soil aeration and hence effectively reduces
392	the survival rate and activity of methane-producing bacteria. According toln microcosm experiments, Ma
393	and Lu (2011) found that the total abundance of methanogenic archaeal populations decreased by 40%
394	after multiple drainages, and quantitative PCR analysis further revealedshowed that both mcrA gene copies
395	and mcrA transcripts significantly decreased after dry/_wet alternation (Ma et al., 2012).
396	

397 4.3 Effect of soil tillage in <u>the</u> winter fallow season on CH₄ emission

398 Although CH₄ emission in the winter fallow season was increased by soil tillage, it was highly 399 decreasedsignificantly reduced during the following early- and late-rice seasons (Table 1), and over the 4 400 years, on average, it was reduced by 17-33 kg CH₄ ha⁻¹ yr⁻¹ (Table 3). Compared to non-tillage, tillage 401 may promotepromotes the decomposition of rice residues, and thenwhich stimulates CH4 production and 402 emission in the winter fallow season. By contrast, as the readily decomposable partportion of the residues 403 has largely been decomposed after a wholean entire winter fallow season, the remaining hardlyless-404 decomposable part of organic matter doesn't have much has little effect on promoting CH4 emission next the 405 following year (Watanabe and Kimura, 1998), The total C content of total C in rice residues was generally lower in Treatments TND and TD than in Treatments NTND and NTD (Table 6) and has well demonstrated 406 407 thatand tillage decreased the carbon substrates necessary for methanogenesis. It therefore Tillage, relative 408 to non-tillage, significantly reduced CH4 emission (Table 3). In a rice-wheat rotation system, our 2-year 409 field measurements also showed that the carbon content of rice straw incorporated into the soil in the 410 winter fallow season was decreased sharply in comparisoncompared of thatstraw applied to the field just 411 prior to rice transplanting (Zhang et al., 2015). In addition, tillage highlysubstantially reduced the 412 abundance of methanogens throughout the winter fallow and early- and late-rice seasons (Fig. 4a) should 413 be a probable reason for the decrease of and this helps to explain the decreased CH4 emission. 414 415 4.4 N₂O emission from double-rice paddy fields

- 417 aeration and subsequent dry/_wet alternation in the rice-growing season_ and in the winter crop or winter
- fallow season (Cai et al., 1997; Yan et al., 2003; Zheng et al., 2004; Ma et al., 2013). It is estimated that
- 420 rice fields in China (Zhang et al., 2014). In China, field measurements of N₂O emission began in 1992

-{	带格式的:	图案:	清除
-{	带格式的:	图案:	清除
-{	带格式的:	图案:	清除
-{	带格式的:	图案:	清除
-(带格式的:	图案:	清除

域代码已更改

带格式的:	图案:	清除			
带格式的:	图案:	清除			
带格式的:	图案:	清除			
带格式的:	图案:	清除			
带格式的:	图案:	清除			
带格式的:	图案:	清除			
带格式的:	图案:	清除			
	帶格式的:帶格式的:帶格式的:帶格式的:帶格式的:帶格式的:	 带格式的:图案: 带格式的:图案: 带格式的:图案: 带格式的:图案: 带格式的:图案: 	带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除	带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除 带格式的:图案:清除	带格式的: 图案: 清除 带格式的: 图案: 清除 带格式的: 图案: 清除 带格式的: 图案: 清除

带格式的:	图案:	清除
IN THE WHAT	P4 / K ·	1111/4

域代码已更改

421	from a single-rice field in Liaoning province (Chen et al., 1995), and considerable. Considerable
422	observations have since been made from double-rice fields had been performed Xu et al., 1997; Shang et
423	al., 2011; Zhang et al., 2013). The total N ₂ O emission of early- and late-rice seasons in this study, on
424	average, <u>varied between ranged from</u> 70.6 and 114.7 g N_2 O-N ha ⁻¹ yr ⁻¹ over the 4 years (Table 1), <u>being and</u>
425	these data were significantly lower than those values reported by Shang et al. (2011) and Zhang et al. (2013)
426	but similar to our previous measurements (Ma et al. (2013). Furthermore, over 1/333% of annual N2O
427	emission came from the winter fallow season (Table 1), indicating that N_2O emission from paddy fields in
428	the winter fallow season wasis very important. EarlyEarlier field observations even showed that as high
429	as 60–90% of N ₂ O annual emission occurred in the winter fallow season (Shang et al., 2011). On a national
430	scale, it is found that in China, 41 Gg N ₂ O-N yr ⁻¹ is emitted in the non-rice growth period, contributingand
431	this constitutes 45% of the total N2O emission from rice-based ecosystems (Zheng et al., 2004). Although
432	N2O emission from rice fields was significantly affected by year (Table 2), reasons for the
433	interannualbetween-year variation were still not wellare poorly known. In order to specify rules for
434	interannual changeunderstand yearly changes in N2O emission, it is essential to maintain all-the-year-
435	round long-term stationary field observations of N2O emission from the double-rice fields.
436	
437	4.5 Effect of soil drainage in winter fallow season on N2O emission
438	The production of soil N_2O is mainly <u>achieved</u> by the microbial processes of <u>nitrification and</u>
439	denitrification while soil water content determines the general direction of thesoil nitrogen transformation
440	of soil nitrogen Soil drainage can cut downreduce the soil water content and accelerate soil dry/-wet
441	alternation, thus promoting N2O emission from paddy fields (Davidson, 1992; Cai et al., 1997). It is
442	because that The soil dry/-wet alternation stimulates the transformation of C and N in the soil, in particular
443	on the microbial biomass C and N turnover (Potthoff et al., 2001), Expectedly, drainage usually Drainage
444	typically decreased the soil water content in this study (Fig. 3a) and then increased N ₂ O emission, on
445	average, by 42% relative to non-drainage in the winter fallow season (Table 1). Noted that drainage
446	Drainage in the previous winter fallow season also had an important positive effect on N2O emission from
447	paddy fields during the following rice seasons, namely, it. Drainage increased N ₂ O emission both in early-

and late-rice seasons (Table 1). It was possibly attributed to is possible that drainage in the winter fallow 449 season would createcreated soil moisture more beneficial to N_2O production in the subsequent rice-

448

450 growing seasons. Early report had wellreports demonstrated that the production and emission of soil N2O

域代码已更改	
域代码已更改	

1	域代码已更改
-	域代码已更改
-	域代码已更改

域代码已更改		

带格式的:	图案:	清除		
带格式的:	图案:	清除		
带格式的:	图案:	清除		

带格式的:图案:清除

域代码已更	〔 改
带格式的: 案:清除	默认段落字体,字体: Calibri, 五号, 图
带格式的:	图案:清除
带格式的:	图案:清除
带格式的:	图案: 清除

1	带格式的:	图案:	清除
-	带格式的:	图案:	清除

451	was not only related to the soil moisture regime at the time, but and also strongly affected by the previous
452	soil moisture regime (Groffman and Tiedje, 1988), Regardless of how the water conditions were at thatan
453	earlier time, the previous soil moisture conditions affected the concentration of reductase or synthetic
454	ability of the enzymes, thus affecting denitrification (Dendooven and Anderson, 1995; Dendooven et al.,
455	1996). Totally. The annual total N2O emission was increased by 37-48% in drainage treatments compared
456	drainage withto non-drainage treatments though there was no significant difference among the 4 treatments
457	(Table 3).
458	
459	4.6 Effect of soil tillage in winter fallow season on N2O emission
460	Compared to non-tillage, tillage <u>usuallytreatments</u> increased N ₂ O emission in <u>the</u> winter fallow season <u>, on</u>
461	by an average, by of 39% over the 4 years (Table 1), which might be ascribed to). At least two
462	reasonsfactors help explain this. First, tillage increases soil aeration, which possibly promotes the process
463	of nitrification process. A soil column experiment has well demonstrated that moderate O2 concentration
464	is conducive to N2O production (Khdyer and Cho, 1983), Second, tillage accelerates rainwater percolation
465	from the plowplowed layer percolating into the subsoil layer, stimulating the processes of soil dry/wet
466	alternation and thenthus promoting the transformation of N and production of N ₂ O in the soil (Cai et al.,
467	1997; Potthoff et al., 2001), Tillage usually decreased soil water content (Fig. 3a) could validate), and this
468	to some extent.supports the second point. In contrast, ittillage had negative effects on N2O emission during
469	the following early- and late-rice seasons, and mean N2O emission over the 4 years was reduced by 12%
470	and 13%, respectively (Table 1). Compared to non-tillage, tillage decreased the contentlevel of total N in
471	rice residues, which probably reduced the substrates needed for nitrification and denitrification. More
472	importantly, the ratio of C/N in rice residues was increased by tillage (Table 6). Because the The
473	decomposition of rice residues with a high C/N ratio probably resulted in more N immobilization in the
474	soil and less N available tofor nitrification and denitrification for N ₂ O production Huang et al., 2004; Zou
475	et al., 2005), As a whole, however, soil tillage played a slightrelatively minor role in annual N ₂ O emission
476	over the 4 years (Table 3).
477	
478	4.7 Effect of soil drainage and tillage on GWPs and GHGI

	带格式的:			
-	带格式的:	图案:	清除	
1	带格式的:	图案:	清除	

1	带格式的:	图案:	清除	
	带格式的:	图案:	清除	
-	带格式的:	图案:	清除	
\neg	带格式的:	图案:	清除	
Y	带格式的:	图案:	清除	
-	带格式的:	图案:	清除	
1	带格式的:	图案:	清除	
1	带格式的:	图案:	清除	
1	带格式的:	图案:	清除	
1	带格式的:	图案:	清除	

-{	带格式的:	图案:	清除
-{	带格式的:	图案:	清除
-(带格式的:	图案:	清除

 $\label{eq:2.1} 479 \qquad \mbox{Although drainage increased N_2O emission throughout the winter fallow, and early- and late-rice seasons,}$

480 it significantly decreased CH₄ emission from paddy fields (Table 1). As a consequence, it highlygreatly

481 reduced GWPs, with a decrease of 1.49 t CO2-eq ha⁻¹ annually (Table 3). ConsiderableMany studies have 482 showeddemonstrated that drainage results in a trade-off between CH4 and N2O emissions from rice fields 483 (Table 5), and itbut drainage is widely considered to be an effective mitigation option. Annually, the 484 mitigation potential of GWPs from paddy fields byusing drainage in the winter fallow season is over> 485 50%. However, these measurements are mostly related to the single-rice fields with continuous flooding 486 (Table 5), and fewlittle information areis available about the effect on GWPs from double rice-cropping 487 systems. In this study, we found that as high as 21-30% of the GWPs were reduced by drainage in the 488 winter fallow season throughout the previous winter fallow and following early- and late-rice seasons, and 489 withthere is a 24% of annual mitigation potential annually (Table 3).

490 In contrast, tillage obviouslyclearly increased both CH4 and N2O emissions, thus and highly increased 491 GWPs in the winter fallow season (Table 1). Indeed, in a single-rice field, Liang et al. (2007) found that it 492 increased the GWPs of CH₄, N₂O and CO₂ emissions in the winter fallow season (Table 5). Fortunately, 493 ittillage significantly decreased CH4 and N2O emissions both in early-and late-rice seasons, and, as a result, 494 with a reduction ofit reduced GWPs by 17% and 15%, respectively (Table 1). Annually, the GWPs were 495 reduced by 0.92 t CO2-eq ha-1, with 15% of mitigation potential (Table 3). As expected, the integrated 496 effects of soil drainage and tillage decreased GWPs much more, with a further reduction by 1.04 t CO2-eq 497 ha⁻¹ yr⁻¹. Moreover, the annual mitigation potential (as high as 32%) of soil drainage combined with tillage 498 in this study was in the rangesrange of previous results reported by Zhang et al. (2012) and Zhang et al. 499 (2015) in single-rice fields (Table 5). It is obvious that the soil drainage together with tillage 500 simultaneously in the winter fallow season might beis an effective option for mitigating the GWPs of CH4 501 and N2O emissions from the double rice-cropping systems. 502

More importantly, noNo significant differencedifferences in rice grain yields waswere observed among 503 the 4 treatments over the 4 years (Tables 1 and 3). It suggests that we would not This indicates a low risk 504 of rice yield loss when we try to decrease the GWPs of CH4 and N2O emissions are decreased by means 505 of soil drainage or tillage in the winter fallow season. So, soilSoil drainage and tillage significantly 506 decreased GHGI by 22.4% and 18.4%, separately, and the GHGI was decreased much more by combining 507 drainage with tillage, with a <u>yield</u> reduction of 0.17 t CO₂-eq t⁻¹ yield (Table 3). <u>Based on a long-term</u> 508 fertilizer experiment, balanced Balanced fertilizer management, in particular on P fertilizer supplement, 509 was suggested to beas an available strategy infor double rice-cropping systems (Shang et al., 2011). In this 510 study, the effective mitigation option in double-rice fields we proposedpropose is that soil drainage

域代码已更改

511 combined with tillage in the winter fallow season.

512 In Conclusion, the conclusion, this study demonstrated that in the winter fallow season large differences 513 in CH4 emissions wereare probably due to the changesvariation in total precipitation and temperature. Soil 514 drainage and tillage in , either separately or in combination, during the winter fallow season separately, in 515 particular on combining both of them, significantly decreased CH4 emission and thenthe GWPs of CH4 516 and N2O emissions from the double-rice field. OneA possible explanation for this phenomenon is that 517 drainage and tillage decreased the abundance of methanogens in the paddy soil. Moreover, low Low total 518 C content in rice residues due to tillage wasand subsequent decomposition is a potential reason for the 519 decrease of reduced CH4 emission in the following early- and late-rice seasons. Finally, tillage reduced the 520 total N content but increased the C/N ratio in rice residues and this would be important to thehelp decrease 521 of N2O emissionemissions. For both achieving both high rice grain yield and low GWPs in double-rice 522 fields, land management strategies in this study we proposed, includingwe propose that the fields werebe 523 drained immediately after late-rice harvest, and meanwhile, the fields were tilled with rice residues 524 incorporated into the soil. The results would benefitThese practices can aid in the development of optimal 525 management strategies in thefor double-rice systems and the interpretation of the corresponding 526 mechanisms.

527

528 Acknowledgements

- 529 This work was financially supported by the "Strategic Priority Research Program" of
 530 the_Chinese_Academy_of_Sciences (XDB15020103), the National Key Technology Research and
 531 Development Program (2013BAD11B02), the National Natural Sciences Foundation of China (41571232,
- 532 41271259), Foundation of the State Key Laboratory of Soil and Sustainable Agriculture (Y412010003),
- 533 and the Knowledge Innovation Program of Institute of Soil Science, Chinese Academy of Sciences
- 534 (ISSASIP1654). We sincerely thank the Red Soil Ecological Experiment Station, Chinese Academy of
- 535 Sciences for providing climate information. <u>Deep appreciation Appreciation</u> also goes to the anonymous

536 reviewers for their helpful comments. We also thank LetPub (www.letpub.com) for its linguistic assistance

537 <u>during the preparation of this manuscript.</u>

538

539

带格式的:要点,字体: Calibri, 五号

1	带格式的:	图案:	清除
	带格式的:	图案:	清除
-	带格式的:	图案:	清除

540	Reference	域代码	记更改	
541	Bateman, E. J., and Baggs, E. M.: Contributions of nitrification and denitrification to N ₂ O emissions from	域代码	已更改	_
542	soils at different water-filled pore space, Biol. Fertil. Soils, 41, 379-388, 2005.			
543	Bayer, C., Zschornack, T., Pedroso, G. M., Rosa, C. M. D., Camargo, E. S., Boeni, M., Elio Marcolin b,			
544	Reis, C. E. S. d., and Santos, D. C. d.: A seven-year study on the effects of fall soil tillage on yield-scaled			
545	greenhouse gas emission from flood irrigated rice in a humid subtropical climate, Soil Till. Res., 145, 118-			
546	125, 2015.			
547	Cai, Z. C., Xing, G. X., Yan, X. Y., Xu, H., Tsuruta, H., Yagi, K., and Minami, K.: Methane and nitrous			
548	oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management, Plant			
549	Soil, 196, 7-14, 1997.			
550	Cai, Z. C., Xu, H., Lu, W. S., Liao, Z. W., Wei, C. F., and Xie, D. T.: Influence of water management in			
551	winter crop season on CH ₄ emission during the rice growing seaosn, Chinese Journal of Applied Ecology,			
552	9, 171-175 (In Chinese), 1998.			
553	Cai, Z. C., Tsuruta, H., Rong, X. M., Xu, H., and Yuan, Z. P.: CH ₄ emissions from rice paddies managed			
554	according to farmer's practice in Hunan, China, Biogeochemistry, 56, 75-91, 2001.			
555	Cai, Z. C., Tsuruta, H., Gao, M., Xu, H., and Wei, C. F.: Options for mitigating methane emission from a			
556	permanently flooded rice field, Glob. Change Biol., 9, 37-45, 2003.			
557	Cai, Z. C., Xu, H., and Ma, J.: Methane and nitrous oxide emissions from rice-based ecosystems (In			
558	Chinese), Science and Technology University of China Press, Hefei, China, 2009.			
559	Chen, G. X., Huang, G. H., Huang, B., Wu, J., Yu, K. W., Xu, H., Xue, X. H., and Wang, Z. P.: CH ₄ and			
560	N ₂ O emission from a rice field and effect of Azolla and fertilization on them, Chinese Journal of Applied			
561	Ecology (In Chinese), 6, 378-382, 1995.			
562	Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Jiang, H., Xiang, W. H., Chang, J.,			
563	Deng, X. W., and Yu, G. R.: Methane emissions from rice paddies natural wetlands, lakes in China:			
564	synthesis new estimate, Glob. Change Biol., 19, 19-32, 2013.			
565	Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., Deng,			
566	X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J.,			
567	He, M., Zhu, Y., Xue, J., Wang, G., Wu, L., An, N., Ma, L., and Zhang, F.: Producing more grain with			
568	lower environmental costs, Nature, 514, 486-489, 2014.			

569	Costello, A. M., and Lidstrom, M. E.: Molecular characterization of functional and phylogenetic genes
570	from natural populations of methanotrophs in lake sediments, Appl. Environ. Microb., 65, 5066-5074,
571	<u>1999.</u>
572	Davidson, E. A.: Sources of nitric oxide and nitrous oxide following wetting of dry soil, Soil Sci. Soc. Am.
573	<u>J., 56, 95-102, 1992.</u>
574	Dendooven, L., and Anderson, J. M.: Maintenance of denitrification potential in pasture soil following
575	anaerobic events, Soil Biol. Biochem., 27, 1251-1260, 1995.
576	Dendooven, L., Duchateau, L., and Anderson, J. M.: Gaseous products of the denitrification process as
577	affected by the antecedent water regime of the soil, Soil Biol. Biochem., 28, 239-245, 1996.
578	Fan, X., Yu, H., Wu, Q., Ma, J., Xu, H., Yang, J., and Zhuang, Y.: Effects of fertilization on microbial
579	abundance and emissions of greenhouse gases (CH ₄ and N ₂ O) in rice paddy fields, Ecol. Evol., 6, 1054-
580	<u>1063, 2016.</u>
581	Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT):
582	http://faostat3.fao.org/download/Q/QC/E, 2014. (accessed on 19 July, 2016)
583	Groffman, P. M., and Tiedje, J. M.: Denitrification hysteresis during wetting and drying cycles in soil, Soil
584	<u>Sci. Soc. Am. J., 52, 1626-1629, 1988.</u>
585	Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., and Saunders, J. R.: Isolation and
586	identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence
587	analysis, Appl. Environ. Microb., 62, 668-675, 1996.
588	Huang, Y., Zou, J. W., Zheng, X. H., Wang, Y. S., and Xu, X. K.: Nitrous oxide emissions as influenced
589	by amendment of plant residues with different C : N ratios, Soil Biol. Biochem., 36, 973-981, 2004.
590	Hussain, S., Peng, S. B., Fahad, S., Khaliq, A., Huang, J. L., Cui, K. H., and Nie, L. X.: Rice management
591	interventions to mitigate greenhouse gas emissions: a review, Environ. Sci. Pollut. R, 22, 3342-3360, 2015.
592	Jiang, C. S., Huang, Y. S., Zheng, X. H., Zhu, B., and Huang, Y.: Effects of tillage-cropping systems on
593	methane and nitrous oxide emissions from permanently flooded rice fields in a cen tral Sichuan hilly area
594	of south west China, Environmental Science, 27, 207-213 (In Chinese), 2006.
595	Kang, G. D., Cai, Z. C., and Feng, Z. H.: Importance of water regime during the non-rice growing period
596	in winter in regional variation of CH4 emissions from rice fields during following rice growing period in
597	China, Nutr. Cycl. Agroecosys., 64, 95-100, 2002.

598 Khdyer, I. I., and Cho, C. M.: Nitrification and denitrification of nitrogen fertilizers in a soil column, Soil

599 <u>Sci. Soc. Am. J., 47, 1134-1139, 1983.</u>

600	Lan, T., Han, Y., Roelcke, M., Nieder, R., and Cai, Z. C.: Processes leading to N2O and NO emissions from
601	two different Chinese soils under different soil moisture contents, Plant Soil, 371, 611-627, 2013.
602	Li, C. S., Salas, W., DeAngelo, B., and Rose, S.: Assessing alternatives for mitigating net greenhouse gas
603	emissions and increasing yields from rice production in china over the next twenty years, J. Environ. Qual.,
604	<u>35, 1554-1565, 2006.</u>
605	Liang, W., Shi, Y., Zhang, H., Yue, J., and Huang, G. H.: Greenhouse gas emissions from northeast China
606	rice fields in fallow season, Pedosphere, 17, 630-638, 2007.
607	Linquist, B. A., Anders, M. M., Adviento-Borbe, M. A. A., Chaney, R. L., Nalley, L. L., da Rosa, E. F. F.,
608	and van Kessel, C .: Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems,
609	Glob. Change Biol., 21, 407-417, 2015.
610	Lu, R.: Soil agro-chemical analyses (In Chinese), Agricultural Technical Press, Beijing, 2000.
611	Ma, E., Zhang, G., Ma, J., Xu, H., Cai, Z., and Yagi, K.: Effects of rice straw returning methods on N2O
612	emission during wheat-growing season, Nutr. Cycl. Agroecosys., 88, 463-469, 2010.
613	Ma, J., Ji, Y., Zhang, G. B., Xu, H., and Yagi, K.: Timing of midseason aeration to reduce CH4 and N2O
614	emissions from double rice cultivation in China, Soil Sci. Plant Nutr., 59, 35-45, 2013.
615	Ma, K., Qiu, Q. F., and Lu, Y. H.: Microbial mechanism for rice variety control on methane emission from
616	rice field soil, Glob. Change Biol., 16, 3085-3095, 2010.
617	Ma, K., and Lu, Y. H.: Regulation of microbial methane production and oxidation by intermittent drainage
618	in rice field soil, FEMS Microbiol. Ecol., 75, 446-456, 2011.
619	Ma, K., Conrad, R., and Lu, Y.: Responses of Methanogen mcrA Genes and Their Transcripts to an
620	Alternate Dry/Wet Cycle of Paddy Field Soil, Appl. Environ. Microb., 78, 445-454, 2012.
621	McCarl, B. A., and Schneider, U. A.: Climate change-Greenhouse gas mitigation in US agriculture and
622	forestry, Science, 294, 2481-2482, 2001.
623	Mutegi, J. K., Munkholm, L. J., Petersen, B. M., Hansen, E. M., and Petersen, S. O.: Nitrous oxide
624	emissions and controls as influenced by tillage and crop residue management strategy, Soil Biol. Biochem.,
625	<u>42, 1701-1711, 2010.</u>
626	Myhre, G., D. Shindell, F. M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. F. Lamarque, D.
627	Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, and Zhang, T. T. a. H.: Anthropogenic and
628	Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis, Contribution of

- 629 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- 630 Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and
- 631 P.M. Midgley ed., edited by: Change, I. P. o. C., Cambridge University Press, Cambridge, United Kingdom
- 632 and New York, NY, USA, 659-740 pp., 2013.
- 633 Pandey, D., Agrawal, M., and Bohra, J. S.: Greenhouse gas emissions from rice crop with different tillage
- 634 permutations in rice-wheat system, Agr. Ecosyst. Environ., 159, 133-144, 2012.
- 635 Parashar, D. C., Gupta, P. K., Rai, J., Sharma, R. C., and Singh, N.: Effect of soil temperature on methane
- 636 emission from paddy fields, Chemosphere, 26, 247-250, 1993.
- 637 Potthoff, M., Joergensen, R. G., and Wolters, V.: Short-term effects of earthworm activity and straw
- 638 amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil
- 639 <u>Biol. Biochem., 33, 583-591, 2001.</u>
- 640 Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., and Guo, S.: Net annual global
- 641 warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field
- 642 measurement in long-term fertilizer experiments, Glob. Change Biol., 17, 2196-2210, 2011.
- 643 Shangguan, X. J., Wang, M. X., Chen, D. Z., and Shen, R. X.: Methane production in rice paddy fields,
- 644 Advance in Earth Sciences (In Chinese), 8, 1-12, 1993a.
- 645 Shangguan, X. J., Wang, M. X., and Shen, R. X.: Regularity of methane emission from rice paddy fields,
- 646 Advance in Earth Sciences (In Chinese), 8, 23-36, 1993b.
- 647 Shiratori, Y., Watanabe, H., Furukawa, Y., Tsuruta, H., and Inubushi, K.: Effectiveness of a subsurface
- 648 drainage system in poorly drained paddy fields on reduction of methane emissions, Soil Sci. Plant Nutr.,
- <u>649</u> <u>53, 387-400, 2007.</u>
- 650 Soil Survey Staff: Soil taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil
- 651 Surveys, in, U.S. Government Printing Office, Handbook No. 436. Washington, DC, 1975.
- 652 Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., Schnurer,
- <u>A., and Sun, C.: Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice,</u>
 <u>Nature, 523, 602-606, 2015.</u>
- 55 Tang, S., Cheng, W., Hu, R., Guigue, J., Kimani, S. M., Tawaraya, K., and Xu, X.: Simulating the effects
- 656 of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH₄
- production during the growth season in a paddy soil, Biol. Fertil. Soils, 52, 739-748, 2016.
- **658** Watanabe, A., and Kimura, M.: Effect of rice straw application on CH₄ emission from paddy fields IV.

- 659 Influence of rice straw incorporated during the previous cropping period, Soil Sci. Plant Nutr., 44, 507-
- 660 <u>512, 1998.</u>
- 661 Weller, S., Janz, B., Jörg, L., Kraus, D., Racela, H. S. U., Wassmann, R., Butterbach-Bahl, K., and Kiese,
- 662 R.: Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice
- 663 rotation systems, Glob. Change Biol., 22, 432-448, 2016.
- 664 World Meteorological Organization (WMO): The State of Greenhouse Gases in the Atmosphere Based on
- 665 <u>Global Observations through 2014, Greenhouse Gas Bulletin, 1-4, 2015.</u>
- 666 Xu, H., Guangxi, X., Cai, Z. C., and Tsuruta, H.: Nitrous oxide emissions from three rice paddy fields in
- 667 <u>China, Nutr. Cycl. Agroecosys.</u>, 49, 23-28, 1997.
- 668 Xu, H., Cai, Z. C., and Tsuruta, H.: Soil moisture between rice-growing seasons affects methane emission,
- 669 production, and oxidation, Soil Sci. Soc. Am. J., 67, 1147-1157, 2003.
- 670 Yan, X. Y., Akimoto, H., and Ohara, T.: Estimation of nitrous oxide, nitric oxide and ammonia emissions
- 671 from croplands in East, Southeast and South Asia, Glob. Change Biol., 9, 1080-1096, 2003.
- 672 Yan, X. Y., Yagi, K., Akiyama, H., and Akimoto, H.: Statistical analysis of the major variables controlling
- 673 methane emission from rice fields, Glob. Change Biol., 11, 1131-1141, 2005.
- 474 Yao, Z. S., Zheng, X. H., Wang, R., Xie, B. H., Butterbach-Bahl, K., and Zhu, J. G.: Nitrous oxide and
- 675 methane fluxes from a riceewheat crop rotation under wheat residue incorporation and no-tillage practices,
- 676 <u>Atmos. Environ., 79, 641-649, 2013.</u>
- Yearbook, E. B. o. C. A.: China Agriculture Yearbook 2014 (In Chinese), China Agriculture Press, Beijing,
 2014.
- 679 Zhang, G. B., Zhang, X. Y., Ma, J., Xu, H., and Cai, Z. C.: Effect of drainage in the fallow season on
- f80 reduction of CH₄ production and emission from permanently flooded rice fields, Nutr. Cycl. Agroecosys.,
- 681 <u>89, 81-91, 2011.</u>
- 682 Zhang, H. L., Bai, X. L., Xue, J. F., Chen, Z. D., Tang, H. M., and Chen, F.: Emissions of CH₄ and N₂O
- 683 under different tillage systems from double-cropped paddy fields in southern China, Plos One, 8, 2013.
- 684 Zhang, J. K., Jiang, C. S., Hao, Q. J., Tang, Q. W., Cheng, B. H., Li, H., and Chen, L. H.: Effects of tillage-
- 685 cropping systems on methane and nitrous oxide emissions from ago-ecosystems in a purple paddy soil,
- 686 Environmental Science (In Chinese), 33, 1979-1986, 2012.
- 687 Zhang, W., Yu, Y. Q., Huang, Y., Li, T. T., and Wang, P.: Modeling methane emissions from irrigated rice
- 688 cultivation in China from 1960 to 2050, Glob. Change Biol., 17, 3511-3523, 2011.

- 689 Zhang, W., Yu, Y., Li, T., Sun, W., and Huang, Y.: Net greenhouse gas balance in China's croplands over
- 690 the last three decades and its mitigation potential, Environ. Sci. Technol., 48, 2589-2597, 2014.
- 691 Zhang, W. F., Dou, Z. X., He, P., Ju, X. T., Powlson, D., Chadwick, D., Norse, D., Lu, Y. L., Zhang, Y.,
- 692 and Wu, L.: New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China,
- 693 Proceedings of the National Academy of Sciences, 110, 8375-8380, 2013.
- 694 Zhang, Y. F., Sheng, J., Wang, Z. C., Chen, L. G., and Zheng, J. C.: Nitrous oxide and methane emissions
- <u>from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing</u>
 <u>season, Soil Till. Res., 146 261-269, 2015.</u>
- 697 Zhao, X., Liu, S.-L., Pu, C., Zhang, X.-Q., Xue, J.-F., Zhang, R., Wang, Y.-Q., Lal, R., Zhang, H.-L., and
- 698 Chen, F.: Methane and nitrous oxide emissions under no-till farming in China: a meta-analysis, Glob.
- 699 Change Biol., 22, 1372-1384, 2016.
- 700 Zheng, X. H., Han, S. H., Huang, Y., Wang, Y. S., and Wang, M. X.: Re-quantifying the emission factors
- 701 based on field measurements and estimating the direct N₂O emission from Chinese croplands, Glob.
- 702 Biogeochem. Cycle, 18, 2004.
- 703 Zou, J. W., Huang, Y., Jiang, J. Y., Zheng, X. H., and Sass, R. L.: A 3-year field measurement of methane
- 704 and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer
- 705 application, Glob. Biogeochem. Cycle, 19, 2005.
- 706
- 707

708	
709	
710	
711	Figure captions:
712	
713	Figure 1 Seasonal variation of CH ₄ emission from 2010 to 2014.
714	
715	
716	Figure 2 Seasonal variation of N ₂ O emission from 2010 to 2014.
717	
718	
719	Figure 3 Soil water content in the 2010 winter fallow season (a) and the relationships
720	between mean CH ₄ emission and total winter precipitation (b), and mean daily air
721	temperature (c) and soil Eh (d) over the 4 winter fallow seasons (Data from Table 4).
722	
723	
724	Figure 4 The abundance of <u>methanogensmethanogen</u> and <u>methanotrophsmethanotroph</u>
725	populations in paddy soil from 2013 to 2014, WS, ES, and LS means winter fallow
726	season, early-rice season, and late-rice season, respectively.
727	
728	
729	
730	
731	
732	
733	
734	
735	
736	
737	

		Winter fallow se	eason		Early-rice seaso	n			Late-rice seasor	1		_
Year	Treatment	CH ₄ emission (kg CH ₄ ha ⁻¹)	N2O emission (g N2O-N ha ⁻¹)	<mark>GWPs</mark> (t CO ₂ -eq ha ⁻¹)	CH ₄ emission (kg CH ₄ ha ⁻¹)	N ₂ O emission (g N ₂ O-N ha ⁻¹)	GWPs (t CO2-eq ha ⁻¹)	Yield (t ha ⁻¹)	CH4 emission (kg CH4 ha ⁻¹)	N ₂ O emission (g N ₂ O-N ha ⁻¹)	<mark>GWPs</mark> (t CO ₂ -eq ha ⁻¹)	Yield (t ha ⁻¹)
	TD	0.46 ± 0.02	46. 4 ±1.5	0.03 ±0.01	<mark>61.3 ±12.5</mark>	<mark>49.0 ±7.2</mark>	1.74 ±0.39	6.44 ±0.82	133.9 ±18.6	98.5 ±4.3	3.79 ±0.17	7.13 ±0.07
<mark>2010–2011</mark>	TND	1.05 ±0.13	30.4 ±3.1	0.04 ± 0.02	80.6 ±2.4	46.6 ± 7.1	2.28 ± 0.06	6.29 ±0.20	158.5 ±28.3	67.4 ±2.1	4.46 ± 0.40	7.33 ±0.09
	NTD	0.11 ±0.19	42.7 ±5.3	0.02 ± 0.02	70.6 ±6.1	45.3 ±11.1	2.00 ± 0.16	6.08 ±0.60	147.0 ±15.6	62.8 ±5.1	4.14 ± 0.02	6.72 ±0.22
	NTND	0.38 ± 0.07	32.2 ± 5.1	0.02 ± 0.01	84.9 ±14.3	38.9 ±12.3	2.38 ±0.29	5.82 ±0.34	179.6 ±26.2	44.5 ± 11.0	5.05 ± 0.15	6.83 ±0.84
	TD	5.06 ±1.18	42.0 ±1.8	0.16 ±0.04	64.0 ±12.5	17.7 ±7.9	1.80 ±0.35	6.67 ±0.08	79.6 ±8.8	45.2 ±7.8	2.25 ±0.24	6.63 ±0.09
2011–2012	TND	11.1 ±2.51	35.1 ±2.7	0.33 ±0.07	90.6 ±8.2	16.2 ±7.2	2.54 ±0.23	7.03 ± 0.50	103.1 ± 6.0	35.4 ±8.0	2.90 ±0.16	6.70 ±0.21
	NTD	4.54 ±0.32	27.3 ±11.3	0.14 ± 0.04	68.1 ±11.8	28.2 ± 6.1	1.92 ±0.22	6.36 ±0.36	81.0 ±4.3	63.0 ±9.6	2.30 ± 0.80	6.57 ±0.35
	NTND	7.09 ±1.08	14.1 ± 4.4	0.20 ± 0.05	107.1 ±9.9	23.4 ±4.8	3.01 ± 0.27	6.67 ± 0.47	126.4 ±12.2	47.2 ±11.0	3.56 ± 0.66	6.53 ± 0.14
	TD	1.40 ±0.21	88.2 ±14.7	0.08 ± 0.02	79.7 ±15.2	27.5 ±4.1	2.24 ±0.49	6.33 ±0.50	44.3 ±2.1	32.3 ±3.7	1.25 ± 0.07	6.46 ±0.41
2012-2013	TND	3.75 ±0.21	59.7 ±18.0	0.13 ±0.02	101.1 ±14.8	17.7 ±15.0	2.84 ± 0.42	6.48 ±0.78	52.7 ±11.1	15.3 ±3.5	1.48 ±0.31	6.30 ±0.23
2012-2013	NTD	0.73 ±0.22	52.0 ±9.1	0.04 ± 0.01	80.6 ±9.6	36.4 ±13.1	2.27 ± 0.27	6.05 ± 0.47	60.8 ±11.8	38.1 ±2.4	1.72 ±0.34	6.27 ±0.50
	NTND	2.11 ±0.23	56.5 ±13.0	0.08 ± 0.00	108.7 ±5.8	24.1 ±14.9	3.05 ± 0.15	6.38 ±0.73	65.9 ±12.9	32.3 ± 6.7	1.86 ±0.36	6.08 ±0.24
	TD	2.94 ±0.78	96.1 ±22.9	0.12 ± 0.04	68.1 ±7.0	76.0 ±15.1	1.94 ±0.29	7.07 ±0.34	62.6 ±4.7	49.5 ±2.8	1.77 ±0.14	6.64 ±0.31
2013-2014	TND	3.73 ± 0.85	44.7 ± 26.0	0.12 ± 0.08	76.2 ±5.0	42.1 ±8.0	2.15 ± 0.11	6.43 ±0.60	72.1 ±9.2	42.1 ±12.9	2.04 ±0.25	6.38 ±0.47
2013-2014	NTD	1.52 ±0.48	52.0 ±28.4	0.06 ± 0.02	88.4 ±6.3	85.4 ±10.9	2.51 ±0.21	6.19 ±0.23	70.6 ±13.6	99.7 ±7.5	2.02 ±0.39	<mark>6.46 ±0.61</mark>
	NTND	2.01 ±0.09	42.9 ±10.6	0.07 ± 0.04	119.7 ±10.8	49.4 ±13.6	3.37 ±0.33	6.16 ±0.36	82.2 ±3.1	54.4 ±9.5	2.32 ± 0.08	6.16 ±0.12
	TD	2.47 ± 0.10 bc	68.2 ±16.4 a	$0.10 \pm 0.02 \text{ b}$	68.3 ±11.4 b	42.5 ±11.2 a	1.93 ±0.32 b	6.62 ±0.25 a	$80.1 \pm 2.7 c$	56.4 ±17.4 ab	$2.27 \pm 0.08 c$	6.71 ±0.14
Maan*	TND	4.91 ±0.43 a	42.5 ±12.3 ab	0.16 ±0.02 a	87.2 ±13 ab	30.6 ±15.0 a	2.45 ±0.37 ab	<mark>6.56 ±0.49 a</mark>	<mark>96.6 ±8.3 b</mark>	40.0 ±4.3 b	2.72 ±0.23 b	6.68 ±0.24
Mean*	NTD	1.73 ±0.37 c	43.5 ±18.4 ab	$0.07 \pm 0.00 c$	76.2 ±6.9 b	48.8 ±18.1 a	$2.15 \pm 0.19 \text{ b}$	<mark>6.17 ±0.27 a</mark>	89.9 ±1.2 bc	<mark>65.9 ±6.6 a</mark>	$2.54 \pm 0.03 \text{ bc}$	6.51 ±0.39
	NTND	<mark>2.90 ±0.21 b</mark>	<mark>36.4 ±13.5 b</mark>	0.10 ±0.02 b	105.1 ±15.5 a	<mark>34.0 ±6.9 a</mark>	<mark>2.96 ±0.44 a</mark>	<mark>6.26 ±0.33 a</mark>	<mark>113.5 ±8.0 a</mark>	<mark>44.6 ±8.0 b</mark>	<mark>3.20 ±0.22 a</mark>	6.40 ± 0.20

Table 1 Seasonal CH₄ and N₂O emissions, global warming potentials (GWPs), and rice grain yields over the 4 years from 2010 to 2014.

739 Mean* \pm SD, different letters within the same column indicate statistical differences in variables mean among treatments over the 4 years by LSD's multiple range test (P < 0.05).

741

742

Table 2 <u>A twoTwo</u>-way ANOVA for the effects of land management (L) and year (Y)

on CH_4 and, N_2O emissions, and <u>rice</u> grain yields in the rice field.

			CH4 (kg C	CH4 ha ⁻¹)		N ₂ O (g N	l₂O-N ha⁻¹)	Yield (t	ha ⁻¹)	
Season	Factors	<mark>df</mark>	<mark>SS</mark>	F	P	<mark>55</mark>	F	P	<mark>55</mark>	F	P
Early-rice	L	<mark>3</mark>	<mark>3052.7</mark>	<mark>5.196</mark>	0.005	820.1	1.007	<mark>0.403</mark>	<mark>0.603</mark>	<mark>2.361</mark>	<mark>0.090</mark>
	Y	<mark>3</mark>	<mark>692.3</mark>	1.178	<mark>0.333</mark>	<mark>4357.4</mark>	<mark>5.349</mark>	<mark>0.004</mark>	<mark>0.598</mark>	<mark>3.340</mark>	<mark>0.092</mark>
	$L \times Y$	<mark>9</mark>	<mark>254.2</mark>	<mark>0.433</mark>	<mark>0.907</mark>	<mark>267.0</mark>	<mark>0.328</mark>	<mark>0.959</mark>	<mark>0.161</mark>	<mark>0.631</mark>	<mark>0.762</mark>
	Model	<mark>15</mark>	<mark>901.5</mark>	1.535	<mark>0.151</mark>	<mark>1195.7</mark>	<mark>1.468</mark>	<mark>0.176</mark>	<mark>0.337</mark>	1.319	<mark>0.248</mark>
	Error	<mark>32</mark>	<mark>587.5</mark>			<mark>814.7</mark>			<mark>0.256</mark>		
Late-rice	L	<mark>3</mark>	<mark>2379.4</mark>	<mark>4.700</mark>	<mark>0.008</mark>	1635.2	1.528	<mark>0.226</mark>	<mark>0.259</mark>	1.522	<mark>0.228</mark>
	Y	<mark>3</mark>	<mark>22545.7</mark>	<mark>44.534</mark>	<mark>0.000</mark>	<mark>3515.8</mark>	<mark>3.286</mark>	<mark>0.033</mark>	<mark>1.193</mark>	7.015	<mark>0.001</mark>
	$L \times Y$	<mark>9</mark>	<mark>223.0</mark>	<mark>0.440</mark>	<mark>0.903</mark>	<mark>826.9</mark>	<mark>0.806</mark>	<mark>0.614</mark>	0.057	<mark>0.338</mark>	<mark>0.955</mark>
	Model	<mark>15</mark>	<mark>5118.8</mark>	10.111	<mark>0.000</mark>	1547.9	<mark>1.447</mark>	<mark>0.185</mark>	0.325	<mark>1.910</mark>	<mark>0.061</mark>
	Error	<mark>32</mark>	<mark>506.3</mark>			1070.0			<mark>0.170</mark>		
Winter	L	<mark>3</mark>	<mark>21.582</mark>	<mark>5.215</mark>	0.005	<mark>2367.6</mark>	<mark>4.537</mark>	<mark>0.009</mark>			
	Y	<mark>3</mark>	<mark>86.036</mark>	<mark>20.788</mark>	<mark>0.000</mark>	<mark>3265.9</mark>	<mark>6.259</mark>	0.002			
	$L \times Y$	<mark>9</mark>	<mark>4.020</mark>	<mark>0.971</mark>	<mark>0.481</mark>	<mark>314.4</mark>	<mark>0.603</mark>	<mark>0.785</mark>			
	Model	<mark>15</mark>	<mark>23.935</mark>	<mark>5.783</mark>	<mark>0.000</mark>	<mark>1315.4</mark>	<mark>2.521</mark>	<mark>0.014</mark>			
	Error	<mark>32</mark>	<mark>4.139</mark>			<mark>521.8</mark>					

745

....

带格式的:字体: Calibri,小四 **带格式的:**行距:单倍行距

- 746 Table 3 Mean annual CH₄ and N₂O emissions, global warming potentials (GWPs) of
- 747 CH₄ and N₂O emissions, rice grain yields, and greenhouse gas intensity (GHGI) over

```
748 the 4 years from 2010 to 2014.
```

The second	CH_4 emission	N_2O emission	GWPs	Rice yields	GHGI
Treatment TD	$\frac{(\text{kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1})}{151 \pm 10 \text{ d}}$	(g N ₂ O-N ha ⁻¹ yr ⁻¹) 167 ±28 a	$\frac{(t \text{ CO}_2 - \text{eq ha}^{-1} \text{ yr}^{-1})}{4.29 \pm 0.27 \text{ d}}$	$\frac{(t ha^{-1} yr^{-1})}{13.3 \pm 0.3 a}$	$(t CO_2 - eq t^{-1} yield)$ 0.32 ±0.02 c
TND	$189 \pm 15 \text{ b}$	$113 \pm 13 a$	5.33 ± 0.41 b	$13.2 \pm 0.6 a$	$0.40 \pm 0.05 \text{ b}$
NTD	$168 \pm 6 \text{ cd}$	158 ± 27 a	$4.76 \pm 0.17 \text{ cd}$	$12.7 \pm 0.6 a$	$0.38 \pm 0.02 \text{ b}$
NTND	$222 \pm 9 a$	$115 \pm 38 a$	$6.25 \pm 0.26 a$	$12.7 \pm 0.1 a$	$0.49 \pm 0.02 a$

Note: different letters within the same column indicate statistical differences among treatments at P < 0.05 level by LSD's test.

Table 4 Total precipitation, mean daily temperature, <u>a meanamean</u> soil Eh, CH₄, and

779 N_2O fluxes over the 4 winter fallow seasons.

	Winter fallow season	Precipitation (mm)	Temperature (℃)	<mark>Soil Eh</mark> (mV)	<mark>CH4 flux</mark> (mg CH4 m ⁻² h ⁻¹)	N2O flux (μg N2O-N m ⁻² h ⁻¹)
	2010 (December 2, 2010 to April 15, 2011)	<mark>404</mark>	<mark>9.1</mark>	152 ±11	0.02 ± 0.01	5.01 ±0.26
	2011 (November 3, 2011 to April 19, 2012)	<mark>754</mark>	10.0	102 ± 13	0.18 ± 0.08	3.11 ±0.31
	2012 (December 5, 2012 to April 15, 2013)	<mark>574</mark>	<mark>9.7</mark>	141 ± 34	0.07 ± 0.04	8.41 ±0.54
	2013 (November 11, 2013 to April 5, 2014)	661	<mark>9.4</mark>	92 ±12	0.08 ±0.03	7.06 ±0.38
780	Note: a mean soil Eh, CH4,	and N_2O flu	ixes were t	he avera	ge of 4 treatme	nts.
781						
782						
783						
784						
785						
786						
787						
788						
789						
790						
791						
792						
793						
794						
795						
796						
797						
798						
799						
800						
801						
802						
803						
804						
805						
806						
807						
808						
809						

810 Table 5 Relative mitigating GWPs of GHGs emissions from paddy fields with various

811 land management practices as compared to traditional <u>managementsmanagement</u> in the

812 winter crop season.

I

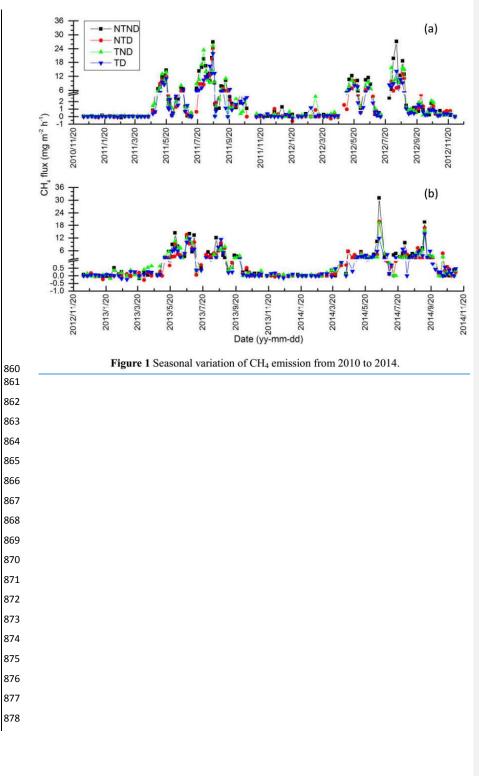
	Traditional	Suggested		^a Mitigation potential (%)				
Туре	management	practice	GHGs	<mark>WS</mark>	<mark>ES</mark>	<mark>LS</mark>	Annual	Reference
Double rice	Winter fallow without drainage nor tillage	Drainage	CH ₄ and N ₂ O	<mark>30</mark>	<mark>27</mark>	<mark>21</mark>	<mark>24</mark>	This study
		Tillage	CH ₄ and N ₂ O	<mark>-60</mark>	17	<mark>15</mark>	<mark>15</mark>	
		Drainage combined with tillage	CH ₄ and N ₂ O	<mark>0</mark>	<mark>35</mark>	<mark>29</mark>	<mark>32</mark>	
Single rice	Winter wheat with drainage	Tillage	CH ₄ and N ₂ O	21	<mark>14</mark>		<mark>15</mark>	(Zhang et al., 2015)
rice Single rice	Winter ryegrass with drainage	Tillage	N ₂ O	^b N.m.	<mark>22</mark>		N.m.	(Bayer et al., 2015)
Single rice	Winter wheat with drainage	Tillage	CH4 and N2O	<mark>38</mark>	<mark>N.m.</mark>		<mark>N.m.</mark>	(Yao et al., 2013)
Single rice	Winter fallow and continuous flooding	Oil-seed rape with drainage and tillage	CH ₄ and N ₂ O	<mark>4</mark>	<mark>57</mark>		<mark>43</mark>	(Zhang et al., 2012)
Single rice	Winter fallow without drainage nor tillage	Drainage	CH4	N.m.	<mark>71</mark>		<mark>>71</mark>	(Shiratori et al., 2007)
Single rice	Winter fallow with drainage but non-tillage	tillage	CH4, N2O, and CO2	-21	<mark>N.m.</mark>		N.m.	(Liang et al., 2007)
Single rice	Winter fallow and continuous flooding	Wheat with drainage	CH ₄ and N ₂ O	<mark>59</mark>	<mark>55</mark>		<mark>56</mark>	(Jiang et al., 2006)
		Oil-seed rape with drainage	CH ₄ and N ₂ O	<mark>53</mark>	<mark>57</mark>		<mark>56</mark>	
Single rice	Winter fallow and continuous flooding	Wheat with drainage	CH ₄	100	<mark>30</mark>		<mark>59</mark>	(Cai et al., 2003)
Single rice	Winter fallow and continuous flooding	Wheat with drainage	CH4	<mark>N.m.</mark>	<mark>68</mark>		<mark>>68</mark>	(Cai et al., 1998)

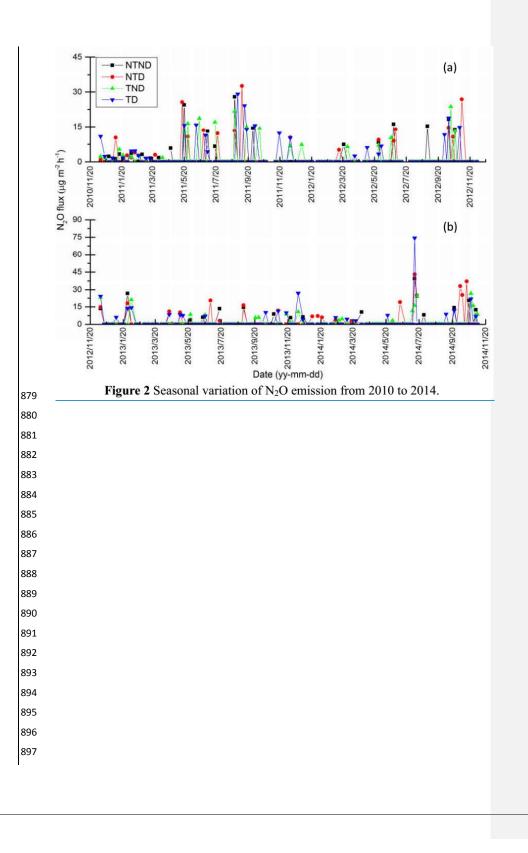
813 Note: WS, ES, and LS means winter fallow season, early-rice season and late-rice season,

814 respectively; annual is the total of winter and rice seasons; ^a Mitigation potential of combined gases

 $\label{eq:states} \text{was calculated on the basis of CO}_2 \text{ equivalents by assuming GWPs for CH}_4 \text{ and } N_2 O \text{ as } 28 \text{ and } 265$

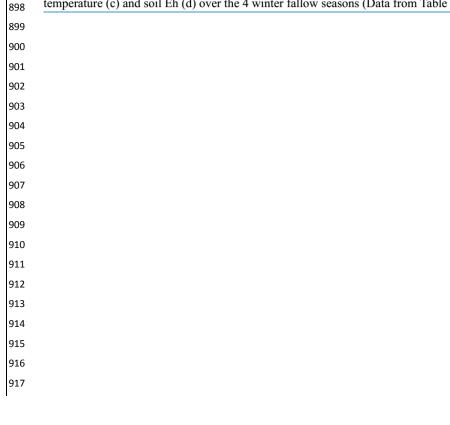
times the equivalent mass of CO_2 over a 100-year period (Myhre et al., 2013): GWPs (CH₄ + N₂O

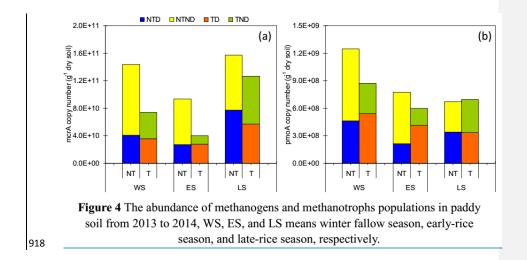

```
817 + CO<sub>2</sub>) = (CH<sub>4</sub> × 28) + (N<sub>2</sub>O × 265) + (CO<sub>2</sub> × 1); <sup>b</sup> N.m. indicates no measurements.
```

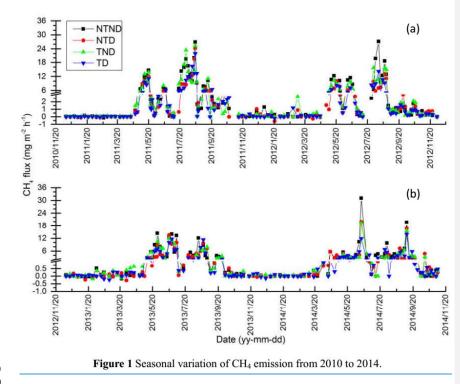

834 Table 6 Measurements of totalTotal C (g kg⁻¹) and total N (g kg⁻¹) contents in rice

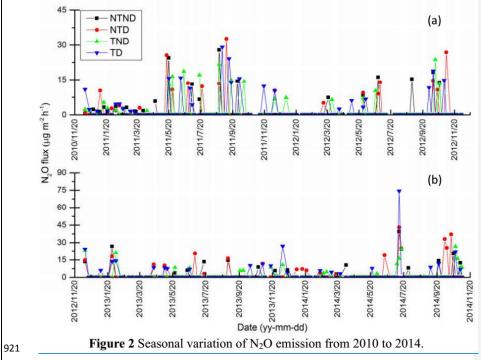
Year	Treatment	Total C	Total N	C/N
<mark>2012</mark>	TD	<mark>338</mark>	<mark>6.9</mark>	<mark>49</mark>
	TND	<mark>314</mark>	<mark>7.8</mark>	<mark>40</mark>
	NTD	<mark>356</mark>	12.7	<mark>28</mark>
	NTND	<mark>374</mark>	<mark>10.4</mark>	<mark>36</mark>
<mark>2013</mark>	TD	<mark>368</mark>	<mark>8.7</mark>	<mark>42</mark>
	TND	<mark>364</mark>	<mark>7.1</mark>	<mark>51</mark>
	NTD	<mark>404</mark>	<mark>12.8</mark>	<mark>32</mark>
	NTND	<mark>397</mark>	<mark>13.4</mark>	<mark>30</mark>

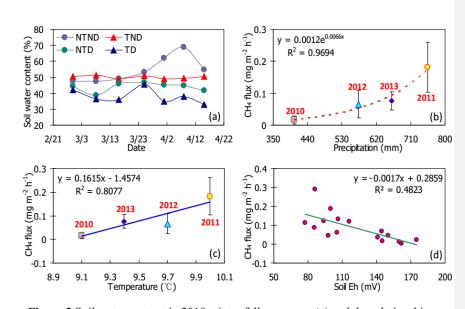
stubble before early-rice transplanting in 2012 and 2013.


带格式的:在相同样式的段落间不添加空格,行距:单 倍行距






Figure 3 Soil water content in 2010 winter fallow season (a) and the relationships between mean CH_4 emission and total winter precipitation (b), and mean daily air temperature (c) and soil Eh (d) over the 4 winter fallow seasons (Data from Table 4).



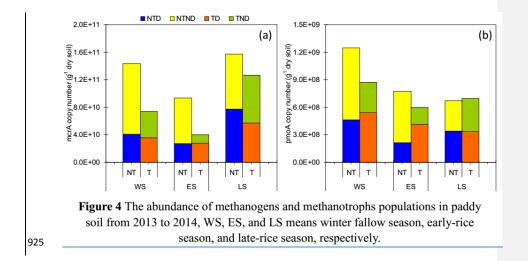


Figure 3 Soil water content in 2010 winter fallow season (a) and the relationships between mean CH_4 emission and total winter precipitation (b), and mean daily air temperature (c) and soil Eh (d) over the 4 winter fallow seasons (Data from Table 4).

