Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

Highly time-resolved urban aerosol characteristics during 1 springtime in Yangtze River Delta, China: Insights from soot 2 particle aerosol mass spectrometry 3 4 Junfeng Wang, ¹ Xinlei Ge, ^{1,*} Yanfang Chen, ¹ Yafei Shen, ¹ Qi Zhang, ^{1,2} Yele Sun, ³ 5 Jianzhong Xu, ⁴ Huan Yu, ¹ Mindong Chen^{1,*} 6 7 ¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution 8 Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and 9 Equipment Technology (CIC-AEET), School of Environmental Science and 10 Engineering, Nanjing University of Information Science & Technology, Nanjing 11 210044, China 12 ²Department of Environmental Toxicology, University of California at Davis, Davis, 13 California 95616, United States 14 ³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric 15 Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 16 100029, China 17 ⁴State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions, 18 Environmental and Engineering Research Institute, Chinese Academy of Sciences, 19 Lanzhou 730000, China 20 21 *Corresponding author, Email: caxinra@163.com; chenmdnuist@163.com; che 22 23 Phone: +86-25-58731394 24 25 For Atmos. Chem. Phys. 26 27

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

28

© Author(s) 2016. CC-BY 3.0 License.

(SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, 29 a megacity in the Yangtze River Delta (YRD) of China, for online characterization of 30 the submicron aerosols (PM₁). The SP-AMS enables real-time and fast quantification 31 of refractory black carbon (rBC) simultaneously with other non-refractory species 32 (ammonium, sulfate, nitrate, chloride and organics). The average PM₁ concentration 33 was found to be 28.2 μ g m⁻³ (~54% of the PM_{2.5} mass), with organics (45%) as the 34 most abundant component, following by sulfate (19.3%), nitrate (13.6%), ammonium 35 (11.1%), rBC (9.7%) and chloride (1.3%). These PM₁ species together can reconstruct 36 ~44% of the light extinction during this campaign based on the IMPROVE method. 37 Chemically-resolved mass-based size distributions revealed that small particles 38 especially ultrafine ones (<100 nm vacuum aerodynamic diameter) were dominated 39 by organics and rBC, while large particles had significant contributions from 40 41 secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA 42 (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA 43 44 (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5%), but primary organic aerosol 45 (POA, equal to the sum of HOA and COA) can outweigh SOA in early morning and 46 evening due to enhanced human activities. High OA concentrations were often 47 associated with high mass fractions of POA and rBC, indicating the important role of 48 anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, 49 50 chloride and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and 51 gas-to-particle partitioning. On the other hand, in contrast to other species, sulfate and 52 LV-OOA concentrations increased during afternoon, and showed no positive 53 correlations with relative humidity (RH), indicating the significant role of 54 photochemical processing rather than aqueous-phase processing for their formations. 55 The bivariate polar plots show that the SV-OOA was formed locally, and the 56

Abstract: In this work, the Aerodyne soot particle – aerosol mass spectrometer

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

variations of hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios in the Van

58 Krevelen space further suggests an evolution pathway of SV-OOA to LV-OOA. Our

59 findings regarding springtime aerosol chemistry in Nanjing may have important

60 implications for the air quality remediation in the densely populated regions.

1. Introduction

In recent years, high concentrations of fine particulate matter (PM_{2.5}) have been frequently observed (Hu et al., 2015), in accompanying with the visibility impairment and occurrence of haze events across large parts of China. PM_{2.5} also affects human health (e.g., Pope and Dockery, 2006;Cao et al., 2012), regional and global climate (directly by absorbing and scattering solar radiation or indirectly by acting as cloud condensation nuclei and ice nuclei)(e.g.,Ghan and Schwartz, 2007;Pöschl, 2005), and the earth's ecosystem (Carslaw et al., 2010). These effects are predominantly dependent upon the physical and chemical characteristics of fine particles, such as mass concentration, chemical composition, size distribution, and hygroscopicity, all of which are influenced by the emission sources and transformation and evolution processes in the atmosphere.

The Yangtze River Delta (YRD) region is one of the most populated and economically developed areas in China, but it is also facing with severe air pollution lately. Nanjing, as one of the major megacities in this region, has a daily PM_{2.5} mass concentration varying between 33-234 μg m⁻³ during November 2011 - August 2012, with an mean value of 106 μg m⁻³, which is 4.2 times the WHO air quality standard of 25 μg m⁻³ (Shen et al., 2014). PM_{2.5} pollution is significantly elevated during hazy days, for example, a daily average of 282 μg m⁻³ was observed for a heavily polluted day (Fu et al., 2008). A number of studies regarding aerosol chemistry in Nanjing have been conducted, and identified various inorganic components (sulfate, nitrate, ammonium and heavy metals, etc.) (e.g., Wang et al., 2003;Hu et al., 2012) and hundreds of organic species (carboxylic/dicarboxylic acids, amines and amino acids, polycyclic aromatic hydrocarbons, etc.) (Wang et al., 2011;Wang et al., 2002;Yang et

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

86

© Author(s) 2016. CC-BY 3.0 License.

al., 2005; Wang et al., 2009) that contribute to the aerosol mass. However, past studies mostly employed filter-based sampling technique, which due to low time resolution (a 87 few hours to days), is often incapable of capturing details of the atmospheric 88 evolution processes during the typical lifecycle of aerosols (Wexler and Johnston, 89 2008). Subsequent offline analyses may also introduce artifacts as some semi-volatile 90 species can evaporate during sampling and storage (Dong et al., 2012). 91 On the other hand, in the past 15 years, the Aerodyne Aerosol Mass spectrometer 92 (AMS) (Canagaratna et al., 2007) has been widely used, and was proven to be 93 powerful for real-time online measurements of size-resolved chemical compositions 94 of submicron aerosols (PM₁) with very fine time resolution (seconds to minutes) 95 (Zhang et al., 2007a; Jimenez et al., 2009). The development of Aerodyne AMS began 96 with the invention of quadruple AMS (Q-AMS) (Jayne et al., 2000), following by the 97 compact time-of-flight AMS (C-ToF-AMS) (Drewnick et al., 2005), high resolution 98 99 time-of-flight AMS (HR-ToF-AMS) (DeCarlo et al., 2006) and the soot particle AMS (SP-AMS) (Onasch et al., 2012). There are also an aerosol chemical speciation 100 monitor (ACSM) (Ng et al., 2011) and its updated version of ToF-ACSM (Fröhlich et 101 102 al., 2013), which are in particular designed for long-term unattended aerosol measurements. SP-AMS is the most advanced version, which in principle incorporates 103 104 the single particle soot photometer (SP2) into the HR-ToF-AMS, and upgraded with a laser vaporizer for detecting refractory black carbon (rBC) and associated/coated 105 species that cannot be measured by other types of AMS. 106 Recently, the Aerodyne AMS has been deployed widely in China (particularly 107 108 Beijing) (e.g., Xu et al., 2014 and references therein; Sun et al., 2014; Yeung et al., 2014; Zhang et al., 2014; Li et al., 2015; Shen et al., 2015; Sun et al., 2015a; Sun et al., 109 2015b; Yan et al., 2015; Zhang et al., 2015; Tang et al., 2016; Zhang et al., 2016a; Jiang 110 et al., 2015; Chen et al., 2015; Xu et al., 2015; Du et al., 2015; Sun et al., 2016; Wang et 111 al., 2015; Han et al., 2015; Wang et al., 2016b). However, only a few field campaigns 112 were conducted in the YRD region. Huang et al. (2012b) deployed an HR-ToF-AMS 113 together with an SP2 in Shanghai during the 2010 Shanghai World Expo, and in 114

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

115 Jiaxing during summer and winter of 2010 (Huang et al., 2012a). In urban Nanjing, an ACSM was applied for characterizing PM₁ during summer and autumn harvest 116 seasons (Zhang et al., 2015), and during December 2013 to investigate a few heavy 117 haze events (Zhang et al., 2016b). In addition, a Q-AMS was deployed in Nanjing to 118 investigate the effects of PM₁ on visibility during January 2013 (Shen et al., 2015). 119 Furthermore, a recent study by Wang et al. (2016a) reported the observation of 120 fullerene soot in suburban Nanjing using an SP-AMS. Nevertheless, many questions 121 remain with regard to aerosol chemistry, sources, and processes in this region. 122 Moreover, none of the previous AMS measurements studied the aerosol 123 characteristics during springtime in Nanjing. For these reasons, we reports in this 124 work, for the first time, the real-time measurement results on urban fine aerosols in 125 Nanjing using the SP-AMS during spring in 2015. The rich high resolution mass 126 spectra (HRMS) data allow us to conduct in-depth analyses, and better understand the 127 128 characteristics, sources and relevant transformation processes of ambient aerosols in 129 Nanjing.

130131

132

140

141

142

143

2. Experiments

2.1 Sampling site and instrumentation

The field campaign was conducted in the environment monitoring station of Nanjing Olympic center (32°0′33.00″N, 118°44′9.53″E, Fig. S1) from April 13 to 29, 2015. Details of the sampling site are shown in Fig. S1. The site was surrounded by residential buildings, close to a few urban arterial roads (~ 85 m northwest of Huangshan Road, ~ 200 m northeast to Mengdu Street and ~425 m southwest of Xinglong Street). There are also a restaurant (~50 m), a student cafeteria (~300 m), and the Nanjing Cigarette Factory (~480 m southeast) around the site.

The sampling inlet was installed outside the fifth floor of the building (\sim 12 m above the ground), with a PM_{2.5} cyclone (URG Corp., Chapel Hill, NC, USA) to remove coarse particles. Ambient particles were dried (RH <10%) via a diffusion dryer filled with silica gel before entering into the SP-AMS. The sampling line (\sim 2 m

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

144 long) was assembled using stainless steel tubing and proper fittings. Air flow was controlled at around ~5 L min⁻¹, with a flow rate into the SP-AMS at ~80 cm³ min⁻¹. 145 The SP-AMS can measure non-refractory (NR) PM₁ components including 146 ammonium, nitrate, sulfate, chloride and organics similar to other types of AMS via a 147 thermal tungsten heater. Moreover, it can also measure rBC and coated species as it is 148 equipped with an intracavity Nd:YAG laser vaporizer (1064 nm) (Onasch et al., 2012). 149 During this campaign, the instrument was switched between "laser on" and "laser off" 150 settings, and between V-mode (better for mass quantification) and W-mode (better 151 chemical resolution, ~5000 in this study), with one cycle including six menu settings 152 (M1: Laser on V-mode; M2: Laser off V-mode; M3: Laser on W-mode; M4: Laser off 153 W-mode; M7: Laser on PToF-mode; M8: Laser off PToF-mode). Each menu was set 154 to 2.5 min, thus a full running cycle lasted for 15 mins. The PToF-mode was under 155 V-mode, but was tuned in particular for measuring particle sizes. The tungsten heater 156 157 was always turned on and kept at $\sim 600^{\circ}$ C. The SP-AMS, in conjunction with a scanning mobility particle sizer (SMPS) (TSI 158 inc., Shoreview, MN, USA) was calibrated for mass quantification (e.g., ionization 159 160 efficiency) using size-selected (250 nm and 300 nm) monodisperse ammonium nitrate particles following the procedures detailed in Jimenez et al. (2003). Pure ammonium 161 sulfate was used to determine the relative ionization efficiency (RIE) of sulfate 162 (Setyan et al., 2012). Quantification of rBC was calibrated using Regal Black 163 (REGAL 400R pigment black, Cabot Corp.) particles according to the procedures 164 reported in Onasch et al. (2012). Note that the solution of Regal Black was sonicated 165 166 during calibration to maintain a relative stable aerosol flow. RIEs of ammonium, nitrate, sulfate, chloride, organics and rBC were determined to be 3.15, 1.05, 1.20, 1.3, 167 1.4 and 0.33, respectively. On the other hand, particle sizing was calibrated using 168 standard polystyrene latex (PSL) spheres (Duke Scientific Corp., Palo Alto, CA, USA) 169 across 100 - 700 nm range. Flow rate was also calibrated prior to the measurement. 170 Concentrations of gaseous species, e.g., carbon monoxide (CO) (Model T300, 171 Teledyne API, USA), ozone (O₃) (Model EC9810, Ecotech Pty Ltd, Australia), 172

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

200

201

© Author(s) 2016. CC-BY 3.0 License.

173 nitrogen dioxide (NO₂) and sulfur dioxide (SO₂) (Model LGH-01, Anhui Landun, China), and meteorological data including air temperature (T), relative humidity (RH), 174 visibility (km), wind speed (WS) and wind direction (WD) were acquired at the same 175 site. PM_{2.5} and PM₁₀ mass concentrations were also recorded (BAM-1020, Met One 176 Instruments, Inc., USA), in parallel with the SP-AMS measurement. 177 2.2 Data treatment and source analyses 178 The SP-AMS data were post-processed by using the Igor-based standard 179 ToF-AMS Analysis Toolkit SQUIRREL v1.56D and PIKA v1.15D, available at: 180 http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.htm 181 1. Note all mass concentrations reported here were calculated from the HR fitted 182 results on V-mode data. A constant collection efficiency (CE) of 0.5 was used for the 183 184 mass quantification, in consistent with many other AMS studies, as indeed the mass fraction of ammonium nitrate (mostly <40%), particle acidity (near neutral) and RH 185 186 (<10%) do not affect the CE significantly for this dataset (Middlebrook et al., 2012). Unless specified, the concentrations of ammonium, sulfate, nitrate, chloride and 187 organics are from M2 setting (tungsten vaporizer only), while the rBC data is from 188 189 M1 setting (dual-vaporizers: tungsten + laser) in this paper. The meteorological data (RH, T, WS, WD and visibility), concentrations of gas-phase species (CO, NO₂, SO₂ 190 191 and O₃) and PM_{2.5} were averaged into hourly data for comparisons with the SP-AMS data. The data reported are at local time, e.g., Beijing (BJ) Time. 192 Positive matrix factorization (PMF) (Paatero and Tapper, 1994) was applied on 193 the HRMS of organic aerosol (OA) obtained under laser off W-mode (M4 setting) to 194 195 elucidate the OA sources/processes. We used the PMF Evaluation Tool version 2.08A (downloaded from: 196 http://cires1.colorado.edu/jimenez-group/wiki/index.php/PMF-AMS Analysis Guide) 197 (Ulbrich et al., 2009) to investigate the PMF results by varying the number of factors 198 (from 2 to 8 factors) and rotations ("fpeak", from -1 to 1 with an increment of 0.1). 199

Only ions with m/z less than or equal to 180 were included in the analyses. Following

the instruction detailed by Zhang et al. (2011), the 4-factor solution (at fpeak = -0.1)

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

202 was chosen as the optimal solution, as the 3-factor solution cannot separate the hydrocarbon-like OA (HOA) and cooking OA (COA) (Fig. S2), and the 5-factor 203 solution clearly splits the semi-volatile oxygenated OA (SV-OOA) factor into two 204 OOA factors (Fig. S3). A summary of the key diagnostic plots are provided in Fig. S4. 205 Detailed discussion of the PMF results is presented in Section 3.5. Note we found no 206 significant differences between the PMF source apportionment results from the 207 HRMS of OA obtained with dual-vaporizers setting (M3 setting) and current results 208 (M4 setting, tungsten vaporizer only), as the OA HRMS acquired under these two 209 circumstances were overall very similar (details in Section 3.4). 210

211

212213

3. Results and discussion

3.1 Mass concentrations, chemical compositions and diurnal changes

The temporal variations of meteorological parameters, concentrations of the gas 214 215 pollutants, concentrations and mass fractions of different PM₁ components, and the PM_{2.5} mass loadings (from Met one BAM-1020) over the sampling period are 216 illustrated in Fig. 1. During this study, the mean temperature was 18.5 °C, RH on 217 218 average was 64%, and wind predominantly blew from southeast and southwest (Fig. S5). The SP-AMS PM₁ concentrations ranged from 5.1 to 97.9 µg m⁻³, with an 219 average of 28.2 µg m⁻³. Note this average PM₁ concentration is significantly lower 220 than those observed during summer (38.5 µg m⁻³), autumn (46.4 µg m⁻³) and winter 221 (89.3 μg m⁻³) (Zhang et al., 2015; Zhang et al., 2016b), showing that the air during 222 springtime in Nanjing is cleaner than in other seasons. The variations of PM₁ 223 concentrations also match very well with PM_{2.5} concentrations (Pearson's $r^2 = 0.72$), 224 and on average PM_1 accounts for $\sim 54\%$ of the $PM_{2.5}$ mass. 225 The average PM₁ composition is shown in Fig. 2a. The most abundant component 226 is found to be organics (45.0%), following by sulfate (19.3%), nitrate (13.6%), 227 ammonium (11.1%), rBC (9.7%) and chloride (1.3%). Fig. 2b further shows changes 228 of the PM₁ chemical compositions in different concentration bins. It can be seen that 229 although most PM₁ mass loadings are within 10 - 40 μg m⁻³, high loading periods tend 230

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

231 to have higher mass contributions from organics and rBC, and less contributions from secondary inorganic species, indicating that high PM events were influenced 232 significantly by local fresh emissions. 233 The molar ratio of inorganic anions (sulfate, nitrate and chloride) to cations 234 (ammonium) is 1.05 (Fig. 3a) (Zhang et al., 2007b). Considering that a small fraction 235 of sulfate, nitrate and chloride are possibly associated with metal cations, such as Na⁺, 236 K⁺ and Ca²⁺, etc., it can be concluded that the NR-PM₁ was overall neutral throughout 237 the study. On the other hand, the molar ratio of inorganic anions to ammonium is on 238 average 1.17 (Fig. 3b) when dual-vaporizers are on. This may be partially due to 239 variations of ionization/collection efficiencies of the measured species as the addition 240 of laser beam may change the distribution of vaporized species inside the ion chamber, 241 and also because of the detection of sulfate, nitrate and chloride bonded with metal 242 cations under the dual-vaporizers. These species don't evaporate on the tungsten 243 244 vaporizer under the laser-off mode. Indeed, more metal signals were observed with 245 the dual-vaporizers, as shown in Fig. S6. Fig. 2c shows the average diurnal changes of organics, sulfate, nitrate, chloride 246 247 and rBC. Sulfate concentrations are slightly higher during daytime than during nighttime, indicating a significant contribution from photochemical reactions. Sulfate 248 249 also shows the least variations among all species, reflecting its regional behavior. Except for sulfate, all other species present a dual-peak pattern, with one peak in early 250 morning and another one in early evening. The peaks of rBC and organics are likely 251 due to local traffic/cooking activities (see details in Section 3.5), while the behavior of 252 253 nitrate is likely driven by the thermodynamic gas-particle partitioning: $NH_4NO_3(p) \leftrightarrow$ NH₃(g) + HNO₃(g), as it shows good anti-correlations with the diurnal changes of 254 temperatures (r = -0.72 for nitrate vs. T). Furthermore, we calculated the diurnal 255 variations of the equilibrium constant of NH₄NO₃ (K_{p,AN}) (Young et al., 2015; Seinfeld 256 and Pandis, 2006) in Fig. 2c. The $K_{p,AN}$ displays a similar trend as nitrate (r = 0.68), 257 providing strong evidence that nitrate variations were governed mainly by the 258 thermodynamic equilibrium. Chloride shows similar behavior as nitrate, indicating it 259

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

264

265

266

267

268

269

270

271

272273

274

275276

277278

© Author(s) 2016. CC-BY 3.0 License.

is driven by the equilibrium $NH_4Cl(p) \leftrightarrow NH_3(g) + HCl(g)$, as well (r = -0.76 for chloride vs. T). Therefore, when temperature rises, more NH_4NO_3 and NH_4Cl can dissociate into gaseous NH_3 , HNO_3 and HCl, mass loadings of particle-phase nitrate and chloride decrease correspondingly, and *vice versa*.

In order to further elucidate the formation processes of nitrate and sulfate, we calculated the oxidation ratios of sulfur (f_S) and nitrogen (f_N) (Fig. 4a and 4b), defined as $f_S = nSO_4^{2-}/(nSO_4^{2-} + nSO_2)$ and $f_N = nNO_3^{-}/(nNO_3^{-} + nNO_2)$ (Xu et al., 2014), indicating the conversion of SO₂ and NO₂ to sulfate and nitrate, respectively. Here nSO₄²⁻, nNO₃⁻, nSO₂ and nNO₂ are the molar quantities of particle-phase sulfate and nitrate, gas-phase SO_2 and NO_2 , respectively. Diurnal variations of f_S , f_N and mass ratios of SO_4^{2-}/NO_3^- are presented in Fig. 4d-f, along with the diurnal cycle of RH. The f_S reaches a maximum around 3 pm; similarly, the SO_4^{2-}/NO_3^{-} ratios are elevated significantly during daytime, in particular during afternoon. These behaviors suggest the remarkable role of photochemical processing of SO₂ to sulfate. In addition, the diurnal profile of f_S shows a negative correlation with that of RH (r = -0.52), indicating somewhat insignificant influence of aqueous-phase production of sulfate during this campaign. Interestingly, during nighttime (7 pm - 6 am), variations of f_N follows the changes of RH, probably suggesting a nighttime formation pathway of nitrate, e.g., $N_2O_5 + H_2O = 2HNO_3$ and $HNO_3 + NH_3 = NH_4NO_3$; while the afternoon drop of f_N is likely due to evaporation of nitrate as the temperature increases.

279280

281 282

283

284

285

286

287

288

3.2 Chemically-resolved size distributions

The campaign-averaged mass-based size distributions, fractional contributions and diurnal size distributions (image plots) of the major PM₁ species are depicted in Fig. 5 (temporal variations of the mass-based size distributions of these PM₁ species over the whole measurement period are provided in Fig. S7). Note the size distribution of rBC in these plots were scaled from the size distribution of m/z 24 (C₂⁺), as other major rBC ion clusters may be heavily influenced by other ions, such as C⁺ signal but from organics at m/z 12 (C⁺), HCl⁺ signal at m/z 36 (C₃⁺), SO⁺ signal

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

at m/z 48 (C₄⁺), C₂H₄O₂⁺ signal at m/z 60 (C₅⁺). As can be expected, all inorganic species (sulfate, nitrate, chloride and ammonium) display a unimodal distribution with an accumulation mode peaking ~550 nm (vacuum aerodynamic diameter, D_{va} (DeCarlo et al., 2004)), since they were mainly formed from secondary reactions. The organics has a much broader size distribution across from ultrafine (<100 nm) to supermicron meter range, with a small sub-peak centering ~120 nm in addition to the major peak at ~440 nm, indicating influences from both primary and secondary emissions. On the contrary, size distribution of rBC behaves very differently from other components, which peaks at 90 - 200 nm range, reflecting clearly that it is mainly originated from primary emissions. Overall, the small particles are predominantly consisted of organics and rBC, which together account for more than 90% of the ultrafine particle mass. Mass contributions from inorganic species increase significantly with the increase of particle size, and they dominate masses of particles larger than 400 nm (Fig. 5b).

In line with the diurnal mass loadings of the PM_1 species shown in Fig. 2c, the diurnal size distribution of sulfate is generally stable, with masses concentrating in the 400 - 700 nm range throughout the day (Fig. 5c); while the size distributions of nitrate, chloride and organics present clear enhancements in the 300 - 700 nm range during early morning and early evening due to increased mass concentrations of these species during these two periods. The size distribution of rBC is also enhanced during the morning and evening hours, but it extends to a much smaller size range (<100 nm).

3.3 PM₁ contributions on visibility impairment

In order to figure out the major species that are responsible for the visibility degradation, here we employed the IMPROVE method to reconstruct the light extinction coefficients ($b_{\rm ext}$). $b_{\rm ext}$ values are derived from the measured visibility: $b_{\rm ext}$ =3.91/ V_s (Kong et al., 2015), where V_s stands for the visibility (in meter). The following IMPROVE formula (Yang et al., 2007) was used:

 $b_{\text{ext}} = 3f(\text{RH})\{[(\text{NH}_4)_2\text{SO}_4] + [\text{NH}_4\text{NO}_3] + [\text{NH}_4\text{Cl}]\} + 4[\text{OM}] + 10[\text{BC}] + 1[\text{soil}] + 10[\text{NH}_4\text{Cl}]\}$

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

318 Where f(RH) is a RH-dependent empirical coefficient which considers the effects of water uptake by inorganic salts on the light extinction; the f(RH) values used here 319 were taken from Malm and Day (2001), which were regressed from the Great Smoky 320 data set. [(NH₄)₂SO₄], [NH₄NO₃], [NH₄Cl], [OM], and [BC] represent the mass 321 concentrations of ammonium sulfate, ammonium nitrate, ammonium chloride, 322 organics and black carbon directly from the SP-AMS measurements (in µg m⁻³) 323 $([(NH_4)_2SO_4] = 1.375*[SO_4^{2-}], [NH_4NO_3]=1.29*[NO_3^{-}]$ and $[NH_4CI] = 1.51*[CI^{-}]).$ 324 Since the SP-AMS cannot accurately measure soil components (e.g., various 325 metals/metal oxides/metal salts), the term [soil] was set to zero during calculations. 326 By using this method, the reconstructed visibilities match reasonably well with 327 the measured values ($r^2 = 0.50$) as shown in Fig. 6a. Fig. 6b shows the time series of 328 the measured and reconstructed extinction coefficients throughout the whole sampling 329 period. It should be noted that, on average, the measured PM₁ species are only able to 330 331 explain ~44% of the light extinction. This is likely due to that: 1) as shown earlier, the SP-AMS measured PM₁ only occupies ~54% of the PM_{2.5} mass; 2) we didn't include 332 contributions from soil components, coarse particles and also some gas-phase species 333 334 (such as NO₂); 3) although the influences of water are included in part through f(RH) for inorganic salts, the water uptake by organic species are not considered explicitly, 335 which can be significant especially for the SOA under high RH conditions (Duplissy 336 337 et al., 2011; Denjean et al., 2015). Indeed, as shown in Fig. 6a, reconstructed visibilities appear to deviate more significantly from the measured visibilities under 338 high RH than ones under low RH conditions, suggesting the importance of 339 340 particle-bounded water on visibility degradation. The pie chart in Fig. 6b presents the average relative contributions of different components to the light extinction of PM₁. 341 The largest contributor is organics which accounts for 37.7%, followed by ammonium 342 sulfate (25.1%), rBC (20.7%), ammonium nitrate (15.1%) and a minor contributor of 343 ammonium chloride (1.4%). 344

345346

3.4 Chemical characteristics of OA

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362 363

364

365

366

367

368 369

370

371

372

373

374

375

© Author(s) 2016. CC-BY 3.0 License.

The unique laser vaporizer of SP-AMS allows it to detect rBC and species coated on the rBC core including both non-refractory and refractory organics, thus comparison between the OA mass spectra obtained with dual-vaporizers and tungsten vaporizer settings, can infer some information regarding the chemical features of refractory organics, that were unable to be determined by any other types of AMS. As shown in Fig. 7a and 7b, the OA obtained with dual-vaporizers setting have slightly higher oxygen-to-carbon (O/C) ratio (0.28 vs. 0.27), nitrogen-to-carbon (N/C) ratio (0.033 vs. 0.032) and lower hydrogen-to-carbon (H/C) ratio (1.50 vs. 1.52) than the corresponding elemental ratios of OA obtained with the tungsten vaporizer only. This result indicates that refractory organics are likely more oxygenated than the non-refractory organics, and for this dataset it is mainly due to a higher fractional contribution from C₂H₃O⁺ (see the inset of Fig. 7a). This is different from the results on laboratory-generated nascent soot, where larger fCO₂⁺ (i.e., the fraction of total organic signal contributed by CO₂⁺) was observed with the dual-vaporizers setting, indicating the variability of the chemical compositions of refractory organics. Note the elemental ratios shown throughout the paper were all calculated based on the method proposed by Aiken et al. (2008) (referred to as A-A method). Recently, Canagaratna et al. (2015) improved this methodology by using specific ion fragments as markers to calculate the O/C and H/C ratios (referred to as I-A method). The I-A method increased the O/C ratio, H/C ratio, and the OM/OC ratio higher than the values calculated from the A-A method, on average, by 28%, 10% and 8%, respectively (Fig. S8). In this work, we used the results from the A-A method for consistency and comparisons with previous AMS measurements. Overall, the O/C ratio (0.27) of OA in Nanjing during springtime is a bit lower than those observed at other urban locations in China - for instances, 0.30 in Shenzhen (He et al., 2011), 0.31 in Shanghai (Huang et al., 2012b), 0.33 in Lanzhou (Xu et al., 2014) and 0.34 in Beijing (Zhang et al., 2014), and much lower than those at rural sites - for instances, 0.47 in Kaiping (Huang et al., 2011) and 0.59 in Changdao (Hu et al., 2013). As O/C ratio is a good indicator of the aging degree of

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

OA, the relatively low O/C level indicates a significant contribution from fresh emissions in Nanjing aerosols during springtime. Accordingly, the non-refractory OA (pie chart in Fig. 7b) is dominated in hydrocarbon $C_xH_y^+$ ions (51.2%) rather than the oxygen-containing ion fragments (37.4% of $C_xH_yO_1^+$ and $C_xH_yO_2^+$).

The scatter plot of f44 (mass fraction of m/z 44 to the total OA) vs. f43 (mass fraction of m/z 43 to the total OA) (a.k.a., triangle plot) (Ng et al., 2010) was often used to investigate the oxidation degrees of OA. As presented in Fig. 8, most OA reside in the bottom end of the triangular region, again pointing out the less-oxygenated behavior of the OA. Since the HRMS can separate different ions at the nominal m/z, we also examined the $fCO_2^+ vs. fC_2H_3O^+$ space and illustrated it in Fig. S9 - many OA locate outside the triangular region, yet still close to the bottom. Moreover, m/z 60 (mainly $C_2H_4O_2^+$) is a significant fragment ion of levoglucosan, which is well known as the biomass burning aerosol tracer (Alfarra et al., 2007). However, as f60 (mass fraction of m/z 60 to the total OA) is very low in OA (average $\pm 1\sigma = 0.4 \pm 0.06$ %), indicating no biomass burning influences on the OA properties during springtime in Nanjing.

3.5 Sources and evolution processes of OA

In order to further elucidate the sources and evolution processes of OA, we performed PMF analyses and identified four OA components, including two primary OA (POA) factors – a traffic-related hydrocarbon-like OA (HOA) and a cooking-related OA (COA), and two secondary OA factors – a semi-volatile oxygenated OA (SV-OOA) and a low volatility OOA (LV-OOA). Details about their characteristics are discussed below.

3.5.1 Mass spectral features of the OA factors

The mass spectral profiles, time-dependent mass concentrations of the four OA factors and corresponding tracer ions are presented in Fig. 9. The HOA mass spectrum is overall dominated by the $C_xH_y^+$ ions (73.2%), such as $C_3H_7^+$, $C_4H_7^+$, $C_4H_9^+$, $C_5H_9^+$ etc., which are most likely produced from alkanes and cycloalkanes emitted from fuel

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

405 and lubricating oil burning (Canagaratna et al., 2004). This feature is in good agreement with the mass spectral features of POA directly from vehicle 406 emissions(Collier et al., 2015), and the HOA factors determined in many other 407 locations (e.g., Ge et al., 2012b; Huang et al., 2010; Sun et al., 2011). HOA has the 408 lowest O/C ratio (0.10) and highest H/C ratio (1.75) among all factors, representing its 409 behavior as primary fresh emissions. The COA mass spectrum is also rich in C_xH_y 410 ions (64.7%), but having more oxygenated ions ($C_xH_vO_z^+$) than the HOA (26.5% vs. 411 15.4%), especially $C_3H_3O^+$ and $C_3H_5O^+$ ions. The significant contributions of $C_3H_3O^+$ 412 and $C_3H_5O^+$ to m/z 55 and m/z 57 are a common feature of COA, that has been 413 reported in various urban locations around the world, for examples, Beijing (Sun et al., 414 2015a), London (Allan et al., 2010), Fresno (Ge et al., 2012b), New York City (Sun et 415 al., 2011) and Barcelona (Mohr et al., 2012; Mohr et al., 2015). These 416 oxygen-containing ions are in part generated from the fragmentation of fatty acids in 417 418 the cooking aerosols (Ge et al., 2012b). As a result, COA has a higher O/C ratio of 0.16 and a lower H/C ratio of 1.67 than those of HOA. The O/C and H/C levels of 419 COA in this work are also close to those identified in other locations aforementioned. 420 421 The consistency of the chemical characteristics of COA from such different locations suggests that ambient COA is more relevant to the cooking oil rather than the different 422 types of food, which was postulated earlier by Allan et al. (2010). 423 Unlike the two POA factors, SV-OOA and LV-OOA are both abundant in 424 oxygen-containing fragments (C_xH_yO_z⁺ ions), which are 46.4% and 54.8%, 425 respectively. The higher O/C ratio (0.55 vs. 0.32) and more $C_x H_v O_2^+$ ions (18.8% vs. 426 427 11.8%) in the LV-OOA mass spectrum than those of the SV-OOA, reflecting the fact that LV-OOA went through more aging/oxidation reactions than the SV-OOA. The 428 O/C ratio of SV-OOA is 0.32, which is within the O/C range of SV-OOA observed 429 worldwide (Jimenez et al., 2009). The LV-OOA O/C ratio of 0.55 is in the lower end 430 compared to the O/C levels of LV-OOA observed in other China sites, for examples, 431 0.64 in Kaiping (Huang et al., 2011), 0.65 in Shanghai (Huang et al., 2012b), 0.68 in 432 Lanzhou (Xu et al., 2014), 0.78 in Changdao (Hu et al., 2013) and 0.80 in Hong Kong 433

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

434 (Lee et al., 2013). Consistently, in the f44 vs. f43 space (Fig. 8), SV-OOA situates near the bottom 435 side while LV-OOA approaches to the upper part of the triangular region, because of a 436 much larger fractional contribution of CO₂⁺ in the LV-OOA mass spectrum. HOA and 437 COA, as POA factors, both reside in the bottom end of the plot, away from SV-OOA 438 and LV-OOA; while they locate outside the triangle in the fCO_2^+ vs. $fC_2H_3O^+$ space 439 (Fig. S9), indicating that the HRMS acquired by the SP-AMS is better in 440 differentiating POA factors from other SOA factors than the unit mass resolution 441 (UMR) data. 442 In order to justify the OA factors identified in this study, we compared the 443 spectral similarities of the OA factor spectral profiles (in both HR and UMR) with 444 those separated during wintertime in Beijing (Sun et al., 2015a), summertime in 445 Lanzhou (Xu et al., 2014), and wintertime in Fresno (Ge et al., 2012b; Ge et al., 446 447 2012a). The results are listed in Table 1. Indeed, the HOA, COA and LV-OOA mass spectra are highly similar to the corresponding factors identified in Bejing, Lanzhou 448 and Fresno ($r^2 > 0.87$); SV-OOA also correlates fairly well with Bejing and Lanzhou 449 SV-OOA too, but with relative low r^2 (0.68 – 0.75), mainly because of one or two ion 450 fragments, namely, higher CO⁺ and CO₂⁺ signals in Beijing SV-OOA and higher 451 C₂H₃O⁺ signal in Lanzhou SV-OOA than those in Nanjing SV-OOA. The SV-OOA on 452 the other hand, correlates very well with the Fresno OOA ($r^2 = 0.90$ and 0.91). 453 Moreover, as presented in Fig. 9a, the HOA mass spectrum contains relatively 454 higher fraction of ions with large m/z values (m/z > 100) than that of COA (14.0% vs. 455 8.2%), and most of these ions are C_xH_y⁺ ions, probably from fuel burning emitted 456 long-chain alkanes, etc. The SV-OOA also includes more large m/z ion fragments (m/z) 457 100) than those in the LV-OOA mass spectrum (10.5% vs. 5.3%), likely suggesting 458 that further oxidation of SOA species may lead to the fragmentation of high molecular 459 weight species and formation of small molecules – a mechanism verified by both 460 lab-scale experiments (e.g., Yu et al., 2014) and field measurements (e.g., Lee et al., 461 2012). 462

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

463

464

465

466

467

468

469

470

471

472

473

474

475 476

477

478 479

480

481

482

483

484 485

486

487

488

489

490

491

© Author(s) 2016. CC-BY 3.0 License.

3.5.2 Temporal variations, diurnal patterns and relative contributions of the OA

The temporal variations of different OA factors and their corresponding tracer

ions are displayed in Fig. 9b. C₄H₉⁺ ion, a.k.a., the HOA mass spectral tracer (Zhang

et al., 2005) indeed varies very closely to the HOA ($r^2 = 0.94$). Time series of the COA

factors

tracer ion $C_6H_{10}O^+$ (and also $C_5H_8O^+$, $C_7H_{12}O^+$) (Sun et al., 2011;Ge et al., 2012b) match very well with that of COA too ($r^2 = 0.90$). SV-OOA correlates better with $C_2H_3O^+(r^2=0.90)$ than with $CO_2^+(r^2=0.66)$. Although LV-OOA doesn't correlate very well with CO_2^+ ($r^2 = 0.12$) mainly due to the mismatch during April 23 - 26, the correlation is still much better than it with $C_2H_3O^+$ ($r^2 < 0.001$). In Table 2, we tabulate the correlation coefficients (r) of the four OA factors with the gas-phase species, BC and inorganic species. Note we used Pearson's r not r^2 here since some correlation coefficients are negative. From the table, it is clear that the traffic-related gaseous species, CO and NO₂, correlate best with HOA among all OA factors; SV-OOA correlates better with nitrate (r = 0.49) than it with sulfate (r = 0.11); LV-OOA correlate better with sulfate (r = 0.23) that it with nitrate (r = 0.11). All these results are consistent with the traffic origin of HOA, the semi-volatile and low-volatility behaviors of SV-OOA and LV-OOA. Accordingly, diurnal cycles of the OA factors are presented in Fig. 10a. Correlation coefficients (r) of the diurnal variations between OA factors with gas-phases and inorganic species are provided in Table 2, as well. HOA concentrations show an early morning peak, and it overall remains at high levels during nighttime. Besides the impacts of boundary layer height, this is also due to enhanced emissions from construction vehicles around the site, which were in fact much more active during nighttime than during daytime because of the restrictions of Nanjing government. Most of those vehicles used low-quality diesel fuel, and could emit a large amount of rBC particles. The rBC diurnal pattern is indeed almost identical to that of HOA (r = 0.99), indicating that the HOA during this campaign was apparently associated with the construction vehicle emissions. COA concentrations

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

492

493

494

495

496

497

498

499

500

501

502

503

504 505

506

507 508

509

© Author(s) 2016. CC-BY 3.0 License.

increase during noon (12 pm - 1 pm) and early evening, in response to the lunchtime and dinnertime cooking activities. SV-OOA concentrations decreases from 9 am, and reach a minimum during afternoon (3 pm - 4 pm), oppositely to the variation of temperatures (r = -0.85) but similar to that of nitrate (r = 0.53), corroborating its semi-volatile feature. Different from other factors, LV-OOA concentrations increase during daytime and shows positive correlation with temperature (r = 0.76); it also has negative correlation with the diurnal cycle of RH (r = -0.75). Both behaviors are similar to those of sulfate (r = 0.72 for the diurnal cycle of LV-OOA vs. sulfate), indicating the leading role of photochemical oxidation for LV-OOA formation as well. As shown in Fig. 10b, due to mainly the increase of LV-OOA mass loading, OA is overwhelmingly dominated by the SOA (SV-OOA + LV-OOA) during afternoon (80.2%) at 3 pm); POA (HOA + COA) only dominates the OA mass during morning (53.2% at 7 am) and early evening (56.9% at 8 pm) in response to the enhanced traffic and cooking emissions. On average, the OA is composed of 27.6% of HOA, 16.9% of COA, 27.4% of SV-OOA and 28.1% of LV-OOA (Fig. 10c), with SOA outweighing POA (55.5% vs. 44.5%). However, as shown in Fig. 10d, with the increase of OA mass loadings, the fractional contribution of POA increases, highlighting the important and direct influences of anthropogenic emissions on the heavy pollution

510511

512

513514

515

516

517

518

519

520

haze events.

3.5.3 Local/regional influences and evolution processes of the OA factors

Combining WS, WD and mass loadings, the bivariate polar plots of the four OA factors, *r*BC, and total PM₁ are shown in Fig. 11. These plots provide an effective graphical method for showing the potential influences of air masses from different directions with different wind speeds to the receptor site (Carslaw and Beevers, 2013). Clearly, high mass loadings of HOA and *r*BC mostly link with low WS (< 1 m s⁻¹), indicating they are mainly from local vehicle emissions. High COA concentrations occur mainly under low WS as well, but with some high concentrations accompanied with air masses from southeast under higher WS. SV-OOA appears to be formed

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

521

© Author(s) 2016. CC-BY 3.0 License.

from the tobacco factory that resides in that direction. High concentrations of 522 LV-OOA are distributed in all directions under higher WS, representing its regional 523 behaviors. Overall, high PM₁ mass loadings occur mainly under low WS, indicating 524 that the PM₁ is heavily affected by local emissions rather than pollutants in a regional 525 scale. 526 The aging of OA can be described in general by the increase of O/C and decrease 527 of H/C. In this regard, we plotted the Van Krevelen diagram (Heald et al., 2010) (Fig. 528 12a) to show the relationships between H/C and O/C ratios for all OA as well as the 529 four OA factors. Overall, in this study, the H/C and O/C ratios of OA data are 530 correlated linearly with a slope of -1.04 ($r^2 = 0.93$), indicating the propagation of OA 531 is similar to an aging process that is likely driven by the addition of carboxylic acid 532 (slope of -1). Interestingly, the two OOA factors lie very well on the fitted straight line. 533 534 This trend may suggest that the evolution of secondary OA during this campaign follows a transformation pathway of SV-OOA to LV-OOA through the addition of 535 carboxylic acid. The diurnal cycle of LV-OOA varies oppositely to that of SV-OOA (r 536 = -0.86), probably supporting this hypothesis. In addition, O/C ratios of OA show no 537 obvious correlation with the RH as shown in Fig. 12b, verifying that aqueous-phase 538

locally, except for a concentration hotspot in the southeast – likely due to emissions

541542

543

544

545

546

547

548

549

539

540

4. Conclusions

oxidation of OA.

We present for the first time the real-time measurement results using the SP-AMS on submicron aerosols in urban Nanjing during springtime (April 13 - 29, 2015). The SP-AMS determined PM₁ mass loadings, agreed well with the PM_{2.5} concentrations measured by the Met One PM_{2.5} analyzer. The average PM₁ concentration was 28.2 μg m⁻³, lower than previously ACSM-determined PM₁ concentrations during summer and winter in Nanjing. Organics on average comprised the largest fraction (45%) of PM₁, and its fractional contributions increased in case of high PM₁ mass loadings. The

processing is insignificant compared to the photochemical processing for the

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

550

© Author(s) 2016. CC-BY 3.0 License.

diurnal cycles of mass concentrations of organics, rBC, nitrate and chloride all presented a similar behavior, which was high in early morning and evening, but low 551 in the afternoon. Concentrations of sulfate, on the contrary, increased during afternoon. 552 Further investigations of f_S , f_N , SO_4^{2-}/NO_3 - and RH revealed that photochemical 553 processing contributed significantly to sulfate formation, while nitrate (and chloride) 554 formation was mainly governed by the thermodynamic equilibrium. The 555 chemically-resolved mass-based size distribution data showed that rBC occupied a 556 large fraction of ultrafine particles, while secondary inorganic species could dominate 557 the mass of particles larger than 400 nm (D_{va}). In addition, by using the IMPROVE 558 method, we found that the observed PM₁ components were able to reproduce ~44% of 559 the light extinction during this study. 560 PMF analyses resolved four OA factors, e.g., HOA, COA, SV-OOA and LV-OOA. 561 Mass spectral profiles of these factors agree very well with the corresponding factors 562 563 identified at other locations. The springtime OA showed no influences from biomass burning emissions. On average, the OA is dominated by SOA (55.5%), but POA 564 appeared to be more important when the OA mass loadings are high, and can be 565 566 dominant in early morning and evening. Diurnal cycle of SV-OOA varied similarly to that of nitrate, reflecting its semi-volatile behavior. Diurnal variations of LV-OOA 567 showed great resemblance to that of sulfate, indicating its formation was mainly from 568 photochemical oxidation, as well. The bivariate polar plots indicate that SV-OOA was 569 formed locally, and the Van Krevelen diagram further suggests a transformation 570 pathway of SV-OOA to LV-OOA probably via the addition of carboxylic acid. 571 572 Generally, our highly time-resolved SP-AMS measurement results may offer useful insights into the aerosol chemistry, and have important implications for the PM 573 control and reduction in this densely populated region. 574

575

576

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 577

21407079 and 91544220), the Jiangsu Natural Science Foundation (BK20150042), 578

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

- 579 the Jiangsu Provincial Specially-Appointed Professors Foundation, the Jiangsu
- 580 Innovation and Entrepreneurship Program, the Startup Foundation for Introducing
- Talent of NUIST (2014r064), and the LAPC Open Fund (LAPC-KF-2014-06). M.
- 582 Chen also acknowledges the support from the Natural Science Foundation of China
- 583 (Grant Nos. 21577065 and 91543115), the Commonweal Program of Environment
- Protection Department of China (201409027-05), and the International ST
- 585 Cooperation Program of China (2014DFA90780). The authors thank Nanjing
- Environmental Monitoring Center for the supporting data, and the help from Shun Ge,
- 587 Ling Li, Yanan He, Hui Chen and Yangzhou Wu during the campaign and preparation
- of the manuscript.

- 590 References
- 591 Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S.,
- 592 Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A.,
- Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S.
- 594 H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and
- 595 OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution
- 596 time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478-4485,
- 597 10.1021/Es703009q, 2008.
- 598 Alfarra, M. R., Prevot, A. S. H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. A., Schreiber,
- 599 D., Mohr, M., and Baltensperger, U.: Identification of the Mass Spectral Signature of Organic
- 600 Aerosols from Wood Burning Emissions, Environ. Sci. Technol., 41, 5770-5777,
- 601 10.1021/es062289b, 2007.
- 602 Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E.,
- 603 Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning
- and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647-668,
- 605 10.5194/acp-10-647-2010, 2010.
- 606 Canagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi, Q., Jimenez, J. L., Silva, P.
- J., Williams, P., Lanni, T., Drewnick, F., Demerjian, K. L., Kolb, C. E., and Worsnop, D. R.:
- 608 Chase studies of particulate emissions from in-use New York City vehicles, Aerosol Sci. Tech.,
- 609 38, 555-573, 10.1080/02786820490465504, 2004.
- 610 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q.,
- 611 Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn,
- 612 A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.:
- 613 Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol

Published: 21 March 2016

- 614 mass spectrometer, Mass Spectrom. Rev., 26, 185-222, 10.1002/Mas.20115, 2007.
- Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., 615
- Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. 616
- M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds 617
- 618 using aerosol mass spectrometry: characterization, improved calibration, and implications,
- Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015. 619
- Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter 620
- 621 Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ.
- Health Persp., 120, 373-378, 10.1289/ehp.1103671, 2012. 622
- 623 Carslaw, D. C., and Beevers, S. D.: Characterising and understanding emission sources using
- bivariate polar plots and k-means clustering, Environ. Model. Soft., 40, 325-329, 624
- 10.1016/j.envsoft.2012.09.005, 2013. 625
- Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., and 626
- Kulmala, M.: A review of natural aerosol interactions and feedbacks within the Earth system, 627
- Atmos. Chem. Phys., 10, 1701-1737, 10.5194/acp-10-1701-2010, 2010. 628
- 629 Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang,
- 630 Z. F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron
- aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, 631
- 632 Atmos. Chem. Phys., 15, 12879-12895, 10.5194/acp-15-12879-2015, 2015.
- 633 Collier, S., Zhou, S., Kuwayama, T., Forestieri, S., Brady, J., Zhang, M., Kleeman, M., Cappa,
- C., Bertram, T., and Zhang, Q.: Organic PM Emissions from Vehicles: Composition, O/C 634
- 635 Ratio, and Dependence on PM Concentration, Aerosol Sci. Tech., 49, 86-97,
- 636 10.1080/02786826.2014.1003364, 2015.
- DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle 637
- morphology and density characterization by combined mobility and aerodynamic diameter 638
- 639 measurements. Part 1: Theory, Aerosol Sci. Tech., 38. 1185-1205,
- 640 10.1080/02786820590928897, 2004.
- 641 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin,
- M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: 642
- 643 Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78,
- 644 8281-8289, 10.1021/Ac061249n, 2006.
- 645 Denjean, C., Formenti, P., Picquet-Varrault, B., Pangui, E., Zapf, P., Katrib, Y., Giorio, C.,
- 646 Tapparo, A., Monod, A., Temime-Roussel, B., Decorse, P., Mangeney, C., and Doussin, J. F.:
- Relating hygroscopicity and optical properties to chemical composition and structure of 647
- secondary organic aerosol particles generated from the ozonolysis of α -pinene, Atmos. Chem. 648
- Phys., 15, 3339-3358, 10.5194/acp-15-3339-2015, 2015. 649

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 650 Dong, H. B., Zeng, L. M., Hu, M., Wu, Y. S., Zhang, Y. H., Slanina, J., Zheng, M., Wang, Z.
- 651 F., and Jansen, R.: Technical Note: The application of an improved gas and aerosol collector
- 652 for ambient air pollutants in China, Atmos. Chem. Phys., 12, 10519-10533,
- 653 10.5194/acp-12-10519-2012, 2012.
- 654 Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer, K., Weimer, S.,
- 655 Jimenez, J. L., Demerjian, K. L., Borrmann, S., and Worsnop, D. R.: A new time-of-flight
- 656 aerosol mass spectrometer (TOF-AMS) Instrument description and first field deployment,
- 657 Aerosol Sci. Tech., 39, 637-658, 10.1080/02786820500182040, 2005.
- 658 Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q., Yang, W., Wang, F., Bai, Z. P., Zhao, X.
- 659 D., and Yang, Y. C.: Chemical characterization of submicron aerosol and particle growth
- events at a national background site (3295 m a.s.l.) on the Tibetan Plateau, Atmos. Chem.
- 661 Phys., 15, 10811-10824, 10.5194/acp-15-10811-2015, 2015.
- 662 Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot,
- 663 A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna,
- 664 M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Baltensperger, U.: Relating
- 665 hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11,
- 666 1155-1165, 10.5194/acp-11-1155-2011, 2011.
- 667 Fröhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Prévôt, A. S. H., Baltensperger,
- 668 U., Schneider, J., Kimmel, J. R., Gonin, M., Rohner, U., Worsnop, D. R., and Jayne, J. T.: The
- 669 ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection, Atmos.
- 670 Meas. Tech., 6, 3225-3241, 10.5194/amt-6-3225-2013, 2013.
- 671 Fu, Q. Y., Zhuang, G. S., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., and Streets, D.
- 672 G.: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze
- 673 River Delta, China, Atmos. Environ., 42, 2023-2036, 10.1016/j.atmosenv.2007.12.002, 2008.
- 674 Ge, X., Zhang, Q., Sun, Y., Ruehl, C. R., and Setyan, A.: Effect of aqueous-phase processing
- 675 on aerosol chemistry and size distributions in Fresno, California, during wintertime, Environ.
- 676 Chem., 9, 221-235, 10.1071/EN11168, 2012a.
- 677 Ge, X. L., Setyan, A., Sun, Y., and Zhang, Q.: Primary and secondary organic aerosols in
- 678 Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry,
- 679 J. Geophys. Res. Atmos., 117, D19301, 10.1029/2012jd018026, 2012b.
- 680 Ghan, S. J., and Schwartz, S. E.: Aerosol properties and processes: A path from field and
- laboratory measurements to global climate models, Bull. Am. Meteorol. Soc., 88, 1059-1083,
- 682 10.1175/bams-88-7-1059, 2007.
- 683 Han, T., Xu, W., Chen, C., Liu, X., Wang, Q., Li, J., Zhao, X., Du, W., Wang, Z., and Sun, Y.:
- 684 Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic
- 685 Cooperation summit in Beijing, China, J. Geophys. Res. Atmos., 120, 12,281-212,295,
- 686 10.1002/2015JD023918, 2015.

Published: 21 March 2016

- 687 He, L. Y., Huang, X.-F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., and Zhang, Y.-H.:
- 688 Submicron aerosol analysis and organic source apportionment in an urban atmosphere in
- Pearl River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res.
- 690 Atmos., 116, D12304, 10.1029/2010jd014566, 2011.
- 691 Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F., Aiken, A. C., Chen,
- 692 Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A simplified description of the evolution of
- 693 organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803,
- 694 10.1029/2010gl042737, 2010.
- 695 Hu, J., Ying, Q., Wang, Y., and Zhang, H.: Characterizing multi-pollutant air pollution in
- 696 China: Comparison of three air quality indices, Environ. Int., 84, 17-25,
- 697 10.1016/j.envint.2015.06.014, 2015.
- 698 Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang,
- 699 M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic
- 700 aerosol aging and the influence of coal combustion at a regional receptor site of central
- 701 eastern China, Atmos. Chem. Phys., 13, 10095-10112, 10.5194/acp-13-10095-2013, 2013.
- 702 Hu, X., Zhang, Y., Ding, Z. H., Wang, T. J., Lian, H. Z., Sun, Y. Y., and Wu, J. C.:
- 703 Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and
- 704 Mn) in TSP and PM_{2.5} in Nanjing, China, Atmos. Environ., 57, 146-152,
- 705 10.1016/j.atmosenv.2012.04.056, 2012.
- 706 Huang, X.-F., Xue, L., Tian, X.-D., Shao, W.-W., Sun, T.-L., Gong, Z.-H., Ju, W.-W., Jiang, B.,
- 707 Hu, M., and He, L.-Y.: Highly time-resolved carbonaceous aerosol characterization in Yangtze
- 708 River Delta of China: composition, mixing state and secondary formation, Atmos. Environ.,
- 709 10.1016/j.atmosenv.2012.09.059, 2012a.
- 710 Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L.,
- 711 Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly
- 712 time-resolved chemical characterization of atmospheric submicron particles during 2008
- 713 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer,
- 714 Atmos. Chem. Phys., 10, 8933-8945, 10.5194/acp-10-8933-2010, 2010.
- 715 Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Kroll, J. H., Ng, N. L., Zhang, Y. H., Lin,
- 716 Y., Xue, L., Sun, T. L., Liu, X. G., Shao, M., Jayne, J. T., and Worsnop, D. R.:
- 717 Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an
- 718 Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 11, 1865-1877,
- 719 10.5194/acp-11-1865-2011, 2011.
- 720 Huang, X. F., He, L. Y., Xue, L., Sun, T. L., Zeng, L. W., Gong, Z. H., Hu, M., and Zhu, T.:
- 721 Highly time-resolved chemical characterization of atmospheric fine particles during 2010
- 722 Shanghai World Expo, Atmos. Chem. Phys., 12, 4897-4907, 10.5194/acp-12-4897-2012,
- 723 2012b.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 724 Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop,
- 725 D. R.: Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of
- 726 Submicron Particles, Aerosol Sci. Tech., 33, 49 70, 10.1016/S0021-8502(98)00158-X, 2000.
- 727 Jiang, O., Sun, Y. L., Wang, Z., and Yin, Y.: Aerosol composition and sources during the
- 728 Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects, Atmos. Chem.
- 729 Phys., 15, 6023-6034, 10.5194/acp-15-6023-2015, 2015.
- 730 Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H.,
- 731 Flagan, R. C., Zhang, X. F., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol
- 732 sampling using the Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res. Atmos., 108,
- 733 8425, 10.1029/2001jd001213, 2003.
- 734 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
- 735 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
- 736 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A.,
- 737 Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P.,
- 738 Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J.,
- 739 Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider,
- J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin,
- 741 R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
- 742 K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R.,
- Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.:
- 744 Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529,
- 745 10.1126/science.1180353, 2009.
- 746 Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., Yuan, L., Zhang, Y. J., Shan, Y. P.,
- 747 and Ji, Y. Q.: The impacts of firework burning at the Chinese Spring Festival on air quality:
- 748 insights of tracers, source evolution and aging processes, Atmos. Chem. Phys., 15, 2167-2184,
- 749 10.5194/acp-15-2167-2015, 2015.
- 750 Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M., and
- 751 Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS
- 752 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem.
- 753 Phys., 12, 7103-7116, 10.5194/acp-12-7103-2012, 2012.
- 754 Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K. K., and Chan, C. K.: Physical and chemical
- 755 characterization of ambient aerosol by HR-ToF-AMS at a suburban site in Hong Kong during
- 756 springtime 2011, J. Geophys. Res. Atmos., n/a-n/a, 10.1002/jgrd.50658, 2013.
- 757 Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine
- 758 particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric
- 759 (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys.,
- 760 15, 37-53, 10.5194/acp-15-37-2015, 2015.
- 761 Malm, W. C., and Day, D. E.: Estimates of aerosol species scattering characteristics as a

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 762 function of relative humidity, Atmos. Environ., 35, 2845-2860,
- 763 10.1016/S1352-2310(01)00077-2, 2001.
- 764 Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of
- 765 Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer
- 766 using Field Data, Aerosol Sci. Tech., 46, 258-271, 10.1080/02786826.2011.620041, 2012.
- 767 Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C.,
- 768 Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R.,
- 769 Baltensperger, U., and Prévôt, A. S. H.: Identification and quantification of organic aerosol
- 770 from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos.
- 771 Chem. Phys., 12, 1649-1665, 10.5194/acp-12-1649-2012, 2012.
- 772 Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Richter, R., Crippa, M., Querol, X.,
- 773 Baltensperger, U., and Prévôt, A. S. H.: Spatial Variation of Aerosol Chemical Composition
- and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region,
- 775 Environ. Sci. Technol., 49, 10421-10430, 10.1021/acs.est.5b02149, 2015.
- 776 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H.,
- 777 Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L.,
- 778 Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prevot, A. S. H., Dinar, E., Rudich, Y., and
- 779 Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets
- 780 from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625-4641,
- 781 10.5194/acp-10-4625-2010, 2010.
- 782 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B.,
- 783 Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical
- 784 Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass
- 785 Concentrations of Ambient Aerosol, Aerosol Sci. Tech., 45, 770-784,
- 786 10.1080/02786826.2011.560211, 2011.
- 787 Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L., Williams, L. R.,
- 788 Davidovits, P., and Worsnop, D. R.: Soot particle aerosol mass spectrometer: Development,
- 789 validation, and initial application, Aerosol Sci. Tech., 46, 804-817,
- 790 10.1080/02786826.2012.663948, 2012.
- 791 Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor model with
- 792 optimal utilization of error estimates of data values, Environmetrics, 5, 111-126,
- 793 10.1002/env.3170050203, 1994.
- 794 Pope, C. A., and Dockery, D. W.: Health Effects of Fine Particulate Air Pollution: Lines that
- 795 Connect, J. Air Waste Manage., 56, 709-742, 10.1080/10473289.2006.10464485, 2006.
- 796 Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects,
- 797 Angewandte Chemie International Edition, 44, 7520-7540, 10.1002/anie.200501122, 2005.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 798 Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to
- 799 Climate Change, John Wiley & Sons, New York, 2006.
- 800 Setyan, A., Zhang, Q., Merkel, M., Knighton, W. B., Sun, Y., Song, C., Shilling, J. E., Onasch,
- 801 T. B., Herndon, S. C., Worsnop, D. R., Fast, J. D., Zaveri, R. A., Berg, L. K., Wiedensohler, A.,
- 802 Flowers, B. A., Dubey, M. K., and Subramanian, R.: Characterization of submicron particles
- 803 influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol
- 804 mass spectrometry: results from CARES, Atmos. Chem. Phys., 12, 8131-8156,
- 805 10.5194/acp-12-8131-2012, 2012.
- 806 Shen, G. F., Yuan, S. Y., Xie, Y. N., Xia, S. J., Li, L., Yao, Y. K., Qiao, Y. Z., Zhang, J., Zhao,
- 807 Q. Y., Ding, A. J., Li, B., and Wu, H. S.: Ambient levels and temporal variations of PM_{2.5} and
- 808 PM₁₀ at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China,
- 809 J. Environ. Sci. Health., Part A, 49, 171-178, 10.1080/10934529.2013.838851, 2014.
- 810 Shen, X. J., Sun, J. Y., Zhang, X. Y., Zhang, Y. M., Zhang, L., Che, H. C., Ma, Q. L., Yu, X.
- 811 M., Yue, Y., and Zhang, Y. W.: Characterization of submicron aerosols and effect on visibility
- 812 during a severe haze-fog episode in Yangtze River Delta, China, Atmos. Environ., 120,
- 813 307-316, 10.1016/j.atmosenv.2015.09.011, 2015.
- 814 Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.: Investigation of the Sources
- 815 and Evolution Processes of Severe Haze Pollution in Beijing in January 2013, J. Geophys.
- 816 Res. Atmos., 2014JD021641, 10.1002/2014JD021641, 2014.
- 817 Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M.,
- 818 Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization of the sources and
- 819 processes of organic and inorganic aerosols in New York city with a high-resolution
- 820 time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581-1602,
- 821 10.5194/acp-11-1581-2011, 2011.
- 822 Sun, Y. L., Du, W., Wang, Q., Zhang, Q., Chen, C., Chen, Y., Chen, Z., Fu, P., Wang, Z., Gao,
- 823 Z., and Worsnop, D. R.: Real-Time Characterization of Aerosol Particle Composition above
- 824 the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric
- 825 Boundary Layer and Aerosol Chemistry, Environ. Sci. Technol., 49, 11340-11347,
- 826 10.1021/acs.est.5b02373, 2015a.
- 827 Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J.,
- 828 and Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in
- 829 Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmos. Chem.
- 830 Phys., 15, 10149-10165, 10.5194/acp-15-10149-2015, 2015b.
- 831 Sun, Y. L., Wang, Z., Wild, O., Xu, W., Chen, C., Fu, P., Du, W., Zhou, L., Zhang, Q., Han, T.,
- 832 Wang, Q., Pan, X., Zheng, H., Li, J., Guo, X., Liu, J., and Worsnop, D. R.: "APEC Blue":
- 833 Secondary Aerosol Reductions from Emission Controls in Beijing, Sci. Rep., 6, 20668,
- 834 10.1038/srep20668, 2016.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 835 Tang, L., Yu, H., Ding, A., Zhang, Y., Qin, W., Wang, Z., Chen, W., Hua, Y., and Yang, X.:
- 836 Regional contribution to PM1 pollution during winter haze in Yangtze River Delta, China, Sci.
- 837 Total Environ., 541, 161-166, 10.1016/j.scitotenv.2015.05.058, 2016.
- 838 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
- 839 Interpretation of organic components from Positive Matrix Factorization of aerosol mass
- 840 spectrometric data, Atmos. Chem. Phys., 9, 2891-2918, 10.5194/acp-9-2891-2009, 2009.
- Wang, G. H., Niu, S. L., Liu, C., and Wang, L. S.: Identification of dicarboxylic acids and
- aldehyde of PM₁₀ and PM_{2.5} aerosols in Nanjing, China, Atmos. Environ., 36, 1941-1950,
- 843 10.1016/s1352-2310(02)00180-2, 2002.
- 844 Wang, G. H., Wang, H., Yu, Y. J., Gao, S. X., Feng, J. F., Gao, S. T., and Wang, L. S.:
- 845 Chemical characterization of water-soluble components of PM₁₀ and PM_{2.5} atmospheric
- 846 aerosols in five locations of Nanjing, China, Atmos. Environ., 37, 2893-2902,
- 847 10.1016/s1352-2310(03)00271-1, 2003.
- 848 Wang, G. H., Kawamura, K., Xie, M. J., Hu, S. Y., Cao, J. J., An, Z. S., Waston, J. G., and
- 849 Chow, J. C.: Organic molecular compositions and size distributions of Chinese summer and
- 850 autumn aerosols from Nanjing: Characteristic haze event caused by wheat straw burning,
- 851 Environ. Sci. Technol., 43, 6493-6499, 10.1021/es803086g, 2009.
- 852 Wang, G. H., Chen, C. L., Li, J. J., Zhou, B. H., Xie, M. J., Hu, S. Y., Kawamura, K., and
- 853 Chen, Y.: Molecular composition and size distribution of sugars, sugar-alcohols and
- 854 carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw
- burning, Atmos. Environ., 45, 2473-2479, 10.1016/j.atmosenv.2011.02.045, 2011.
- Wang, J., Onasch, T. B., Ge, X., Collier, S., Zhang, Q., Sun, Y., Yu, H., Chen, M., Prévôt, A. S.
- 857 H., and Worsnop, D. R.: Observation of Fullerene Soot in Eastern China, Environ. Sci.
- 858 Technol. Lett., 10.1021/acs.estlett.6b00044, 2016a.
- Wang, Q., Sun, Y., Jiang, Q., Du, W., Sun, C., Fu, P., and Wang, Z.: Chemical composition of
- 860 aerosol particles and light extinction apportionment before and during the heating season in
- 861 Beijing, China, J. Geophys. Res. Atmos., 120, 2015JD023871, 10.1002/2015JD023871,
- 862 2015.
- 863 Wang, Q., Zhao, J., Du, W., Ana, G., Wang, Z., Sun, L., Wang, Y., Zhang, F., Li, Z., Ye, X.,
- and Sun, Y.: Characterization of submicron aerosols at a suburban site in central China, Atmos
- 865 Environ, 131, 115-123, http://dx.doi.org/10.1016/j.atmosenv.2016.01.054, 2016b.
- 866 Wexler, A. S., and Johnston, M. V.: What have we learned from highly time-resolved
- measurements during EPA's Supersites program, and related studies?, J. Air Waste Manage.,
- 868 58, 303-319, 10.3155/1047-3289.58.2.303, 2008.
- 869 Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and
- 870 processes of urban aerosols during summertime in northwest China: insights from

Manuscript under review for journal Atmos. Chem. Phys.

Published: 21 March 2016

- 871 high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593-12611,
- 872 10.5194/acp-14-12593-2014, 2014.
- 873 Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao,
- 874 X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation
- 875 properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation
- 876 summit study, Atmos. Chem. Phys., 15, 13681-13698, 10.5194/acp-15-13681-2015, 2015.
- 877 Yan, J., Chen, L., Lin, Q., Li, Z., Chen, H., and Zhao, S.: Chemical characteristics of
- 878 submicron aerosol particles during a long-lasting haze episode in Xiamen, China, Atmos.
- 879 Environ., 113, 118-126, 10.1016/j.atmosenv.2015.05.003, 2015.
- 880 Yang, H., Yu, J. Z., Ho, S. S. H., Xu, J. H., Wu, W. S., Wan, C. H., Wang, X. D., Wang, X. R.,
- and Wang, L. S.: The chemical composition of inorganic and carbonaceous materials in PM_{2.5}
- 882 in Nanjing, China, Atmos. Environ., 39, 3735-3749, 10.1016/j.atmosenv.2005.03.010, 2005.
- Yang, L.-X., Wang, D.-c., Cheng, S.-h., Wang, Z., Zhou, Y., Zhou, X.-h., and Wang, W.-x.:
- 884 Influence of meteorological conditions and particulate matter on visual range impairment in
- Jinan, China, Sci. Total Environ., 383, 164-173, 10.1016/j.scitotenv.2007.04.042, 2007.
- 886 Yeung, M. C., Lee, B. P., Li, Y. J., and Chan, C. K.: Simultaneous HTDMA and
- 887 HR-ToF-AMS measurements at the HKUST Supersite in Hong Kong in 2011, J. Geophys.
- 888 Res. Atmos., 2013JD021146, 10.1002/2013JD021146, 2014.
- 889 Young, D. E., Kim, H., Parworth, C., Zhou, S., Zhang, X., Cappa, C. D., Seco, R., Kim, S.,
- and Zhang, Q.: Influences of emission sources and meteorology on aerosol chemistry in a
- 891 polluted urban environment: results from DISCOVER-AQ California, Atmos. Chem. Phys.
- 892 Discuss., 2015, 35057-35115, 10.5194/acpd-15-35057-2015, 2015.
- 893 Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical
- 894 characterization of SOA formed from aqueous-phase reactions of phenols with the triplet
- 895 excited state of carbonyl and hydroxyl radical, Atmos. Chem. Phys., 14, 13801-13816,
- 896 10.5194/acp-14-13801-2014, 2014.
- Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization
- 898 of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem.
- 899 Phys., 14, 2887-2903, 10.5194/acp-14-2887-2014, 2014.
- 900 Zhang, J. K., Wang, L. L., Wang, Y. H., and Wang, Y. S.: Submicron aerosols during the
- 901 Beijing Asia-Pacific Economic Cooperation conference in 2014, Atmos. Environ., 124, Part
- 902 B, 224-231, 10.1016/j.scitotenv.2007.04.042, 2016a.
- 903 Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., and
- 904 Jimenez, J. L.: Deconvolution and quantification of hydrocarbon-like and oxygenated organic
- aerosols based on aerosol mass spectrometry, Environ. Sci. Technol., 39, 4938-4952,
- 906 10.1021/Es0485681, 2005.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

- 907 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
- 908 Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo,
- 909 P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S.,
- 910 Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
- 911 K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y.,
- 212 Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic
- 913 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
- 914 Lett., 34, L13801, 10.1029/2007gl029979, 2007a.
- 915 Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A case study of urban
- 916 particle acidity and its influence on secondary organic aerosol, Environ. Sci. Technol., 41,
- 917 3213-3219, 10.1021/Es061812j, 2007b.
- 918 Zhang, Q., Jimenez, J., Canagaratna, M., Ulbrich, I., Ng, N., Worsnop, D., and Sun, Y.:
- 919 Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry:
- 920 a review, Anal. Bioanal. Chem., 401, 3045-3067, 10.1007/s00216-011-5355-y, 2011.
- 921 Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Sun, Y. L., Liu, D., Qin, W., Canonaco, F.,
- 922 Prévôt, A. S. H., Zhang, H. L., and Zhou, H. C.: Insights into characteristics, sources, and
- 923 evolution of submicron aerosols during harvest seasons in the Yangtze River delta region,
- 924 China, Atmos. Chem. Phys., 15, 1331-1349, 10.5194/acp-15-1331-2015, 2015.
- 25 Zhang, Y. J., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding, A., Wu,
- 926 J., Ge, S., Chen, C., and Zhou, H.-c.: Chemical composition, sources and evolution processes
- 927 of aerosol at an urban site in Yangtze River Delta, China during wintertime, Atmos. Environ.,
- 928 10.1016/j.atmosenv.2015.08.017, 2016b.

929

930

© Author(s) 2016. CC-BY 3.0 License.

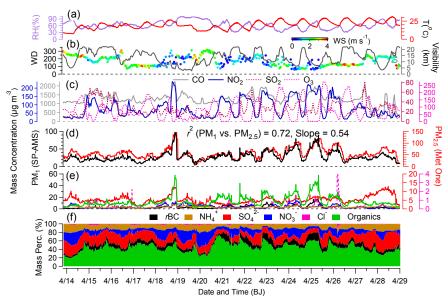


Figure 1. Time series of (a) relative humidity (RH) and temperature (T), (b) wind direction (WD) colored by wind speed (WS, m s⁻¹) and visibility (km), (c) mass concentrations of CO, NO₂, SO₂ and O₃ (hourly data), (d) mass concentrations of PM₁ measured by the SP-AMS, and PM_{2.5} measured by the co-located Met One PM_{2.5} analyzer, (e) mass concentrations of *r*BC, ammonium, sulfate, nitrate, chloride and organics, and (f) mass contributions (%) of the six PM₁ components (BJ, Beijing).

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

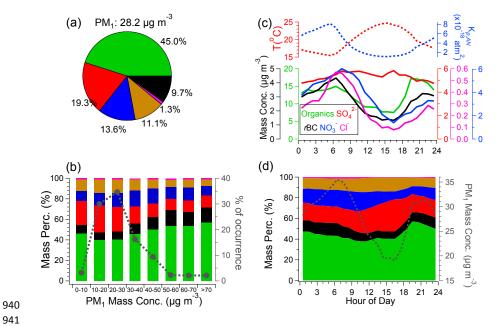


Figure 2. (a) Campaign-averaged mass contributions of organics, sulfate, nitrate, ammonium, chloride and rBC to the total PM_1 , (b) mass percentages of the six PM_1 species (left y-axis) and, fractions of the number of data points to the total number of data points for PM_1 at different concentration bins (right y-axis), (c) diurnal patterns of mass concentrations of the major PM_1 species (bottom panel), temperature (top panel, left y-axis), and the equilibrium constant $(K_{p,AN})$ of NH_4NO_3 (top panel, right y-axis) $(K_{p,AN} = K_{p,AN}(298)exp\left\{a\left(\frac{298}{T} - 1\right) + b\left[1 + ln\left(\frac{298}{T}\right) - \frac{298}{T}\right]\right\}$, for reaction $NH_3(g) + HNO_3(g) \leftrightarrow NH_4NO_3(p)$. $K_{p,AN}(298)$ is the equilibrium constant at 298 K $(3.36 \times 10^{-16} \text{ atm}^2)$, a = 75.11, and b = -13.5 (Seinfeld and Pandis, 2006)), (d) diurnal variations of mass fractional contributions of the six PM_1 species (left y-axis), and the PM_1 mass concentrations (right y-axis).

© Author(s) 2016. CC-BY 3.0 License.

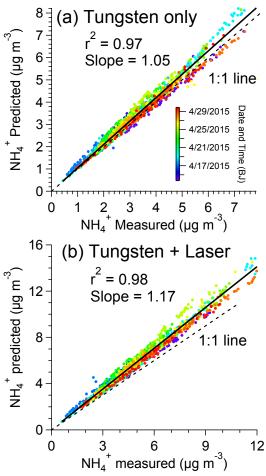


Figure 3. Scatter plots of the predicted $NH_4^+ vs$. measured NH_4^+ concentrations (colored by time), in the case of (a) tungsten vaporizer only, and (b) dual-vaporizers (tungsten + laser). The predicted values were calculated according to the formula: NH_4^+ predicted = $18 \times (2 \times SO_4^{2-}/96 + NO_3^{-}/62 + CI^{-}/35.5)$ (Zhang et al., 2007b).

© Author(s) 2016. CC-BY 3.0 License.

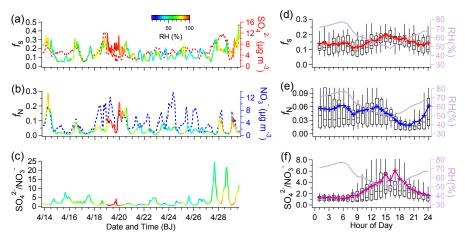


Figure 4. Time series of (a) sulfur oxidation ratio, $f_S = nSO_4^{2-}/(nSO_4^{2-} + nSO_2)$, and sulfate, (b) nitrogen oxidation ratio, $f_N = nNO_3^{-}/(nNO_3^{-} + nNO_2)$, and nitrate, and (c) mass ratios of sulfate to nitrate (f_S , f_N and SO_4^{2-}/NO_3^{-} are colored by the relative humidity (RH) values), diurnal variations of (d) f_S , (e) f_N , and (f) SO_4^{2-}/NO_3^{-} and RH (the lines and cross symbols indicate the mean values, the lines in the boxes indicate the median values, the upper and lower boundaries of the boxes indicate the 75th and 25th percentiles, and the whiskers above and below the boxes indicate the 90th and 10th percentiles).

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

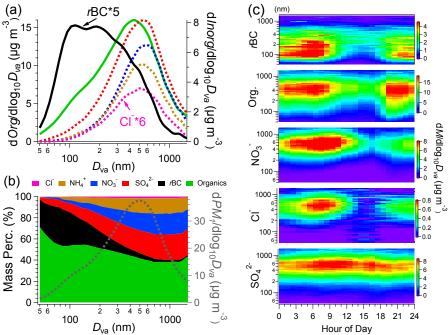


Figure 5. (a) Mass-based average size distributions of organics, rBC (left y-axis), sulfate, nitrate, chloride and ammonium (right y-axis) (D_{va} , vacuum aerodynamic diameter), (b) fractional contributions of the six PM_1 species as a function of particle size (left y-axis), and size distribution of total PM_1 (right y-axis), (c) diurnal profiles of the size distributions of rBC, organics, nitrate, chloride and sulfate.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

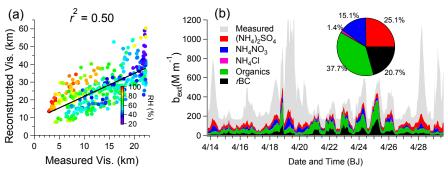


Figure 6. (a) Scatter plot of reconstructed vs. measured visibility (colored by RH), (b) light extinction coefficients derived from measured visibility (grey), and reconstructed from SP-AMS measured ammonium sulfate, ammonium nitrate, ammonium chloride, organics and rBC using the IMPROVE method. The inset pie shows the relative contributions of the five species to the light extinction of PM₁.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

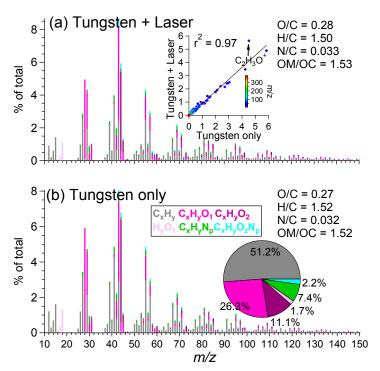


Figure 7. Campaign-averaged high resolution mass spectra of OA colored by six ion categories, in the case of (a) dual-vaporizers (tungsten + laser) (the inset scatter plot compares the spectral similarity between (a) and (b)), and (b) tungsten vaporizer only (the inset pie shows the relative contributions of six ion categories to the total OA).

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

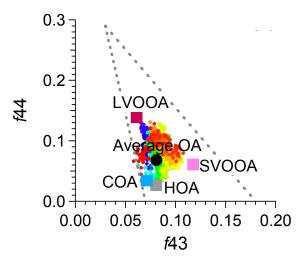


Figure 8. Triangle plot of f44 vs. f43 for all OA (colored by time), and the four OA factors identified by the PMF analyses.

997 998 999

995

996

1001 1002

© Author(s) 2016. CC-BY 3.0 License.

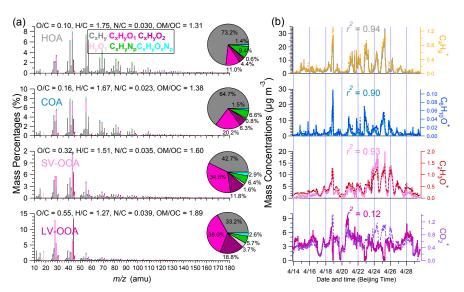
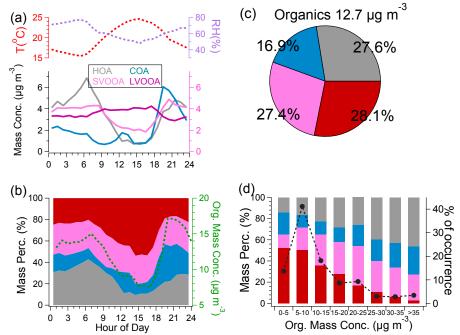



Figure 9. (a) High resolution mass spectra of hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low volatility oxygenated OA (LV-OOA) colored by six ion categories (the four inset pies show the relative contributions of the six ion categories to the four OA factors, respectively), (b) time series of the four OA factors and corresponding tracer ions.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

1011

1012 1013

1014

1015 1016

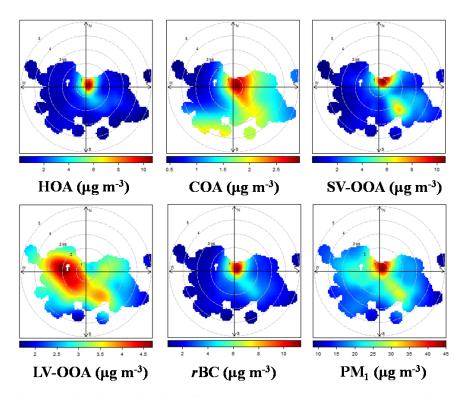

1017 1018

Figure 10. (a) Diurnal cycles of mass concentrations of the four OA factors (bottom panel), temperature (top panel, left y-axis) and RH (top panel, right y-axis), (b) diurnal variations of mass contributions of the four OA factors (left y-axis), and the total OA mass concentrations (right y-axis), (c) campaign-averaged mass contributions of the four OA factors to the total OA mass, and (d) mass contributions of the four OA factors (left y-axis), and the fractions of the number of data points to the total number of data points for the OA at different concentration ranges (right y-axis).

© Author(s) 2016. CC-BY 3.0 License.

1023 1024 1025

Figure 11. Bivariate polar plots of HOA, COA, SV-OOA, LV-OOA, rBC and PM1 (the color scale shows the concentration of each species, and the radical scale shows the wind speed that increases outward from the center).

1027 1028

© Author(s) 2016. CC-BY 3.0 License.

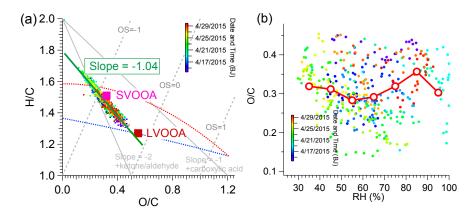


Figure 12. (a) Van Krevelen diagram of H/C vs. O/C ratios for all OA data colored by time, the blue and red dashed lines correspond to the right and left grey dashed lines in the f44 vs. f43 triangle plot of Fig. 8, the grey lines represents the addition of a particular functional group to an aliphatic carbon (Heald et al., 2010), (b) scatter plot of O/C vs. RH (colored by time), the circles represents the average O/C values of the RH bins (10% increment).

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

Table 1. Correlation coefficients (Pearson's r^2) between the mass spectral profiles of the OA factors identified in this work with the corresponding factors identified in Beijing (2013 Winter) (Sun et al., 2015a), Lanzhou (2014 Summer) ((Xu et al., 2014)), and Fresno (2010 Winter) (Ge et al., 2012b).

1041
1042

1043

1044

1038

10391040

Nanjing	High resolution MS (r^2)								
(2015 Spring)	Beijing	Lanzhou	Fresno						
	(2013 Winter)	(2012 Summer)	(2010 Winter)*						
HOA	0.92	0.90	0.98						
COA	0.93	0.94	0.93						
SV-OOA	0.68	0.75	0.90						
LV-OOA	0.91	0.98	0.87						
	Unit mass resolution MS (r^2)								
HOA	0.92	0.91	0.99						
COA	0.96	0.96	0.95						
SV-OOA	0.70	0.74	0.91						
LV-OOA	0.90	0.98	0.89						

*Note the Fresno (2010 Winter) study only identified one OOA factor, we thus compared both SV-OOA and LV-OOA in this study with it.

Published: 21 March 2016

© Author(s) 2016. CC-BY 3.0 License.

Table 2. Correlation coefficients (Pearson's *r*) between the time series of the four OA factors with the gas-phase species (hourly data) and other PM₁ components (15-min data), and the correlation coefficients between the diurnal data.

Pearson's r	Temp.(T)	CO	NO ₂	SO_2	O_3	SO_4^{2-}	NO ₃	Cl ⁻	rBC	
	Hourly data					15-min data				
HOA	-0.14	0.71	0.77	0.13	-0.54	0.15	0.26	0.45	0.92	
COA	0.11	0.50	0.58	-0.06	-0.22	0.19	0.07	0.08	0.61	
SVOOA	0.19	0.41	0.70	0.14	-0.21	0.11	0.49	0.25	0.70	
LVOOA	0.069	-0.2	-0.18	0.06	0.14	0.23	0.11	0.01	-0.22	
	Diurnal data									
HOA	-0.94	0.86	0.86	0.66	-0.96	-0.35	0.72	0.82	0.99	
COA	-0.15	0.28	0.59	-0.24	-0.24	-0.57	-0.33	-0.25	0.19	
SVOOA	<u>-0.85</u>	0.86	0.94	0.58	-0.90	-0.51	0.53	0.61	0.89	
LVOOA	0.76	-0.58	-0.83	-0.27	0.77	0.72	-0.26	-0.33	-0.75	

1049