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Here we reply to Comments 4, 2, 2 and 4 of, respectively, Referees 1, 2, 3 and 4 that
pertain to our analysis of Laliberte et al. 2015. Specifically, Referee 3 suggested that
Laliberte et al. assumed no sources and sinks in the continuity equation. We thus
show that this suggestion contradicts what Laliberte et al. themselves state.

Referee 3 suggests we should omit our discussion of Laliberte et al. But given that
Laliberte et al. analyzed the same database and reached different conclusions – the
discrepancy requires clarification. We found that Laliberte et al. omitted a crucial term,
the global integral of the material derivative of enthalpy. Our analysis clarifies the scale
of this omission and can, we hope, reduce future confusion. Thus we believe this
contribution is constructive and is essential to placing our work in context.
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Below the referees’ comments are listed each followed by our reply. Then there is
revised and significantly shortened Section 3 (now Section 4), which contains our
analysis of Laliberté et al. (2015). We correct two misprints in our previous com-
ment [doi:10.5194/acp-2016-203-AC4, p. C10]: the third term in the right-hand side
of Eq. (28) is ρcw · g and the definition of K̇ in Eq. (29) misses the minus sign
(K̇ ≡ −(1/S)

∫
V Kρ̇dV).

Comment 4 of Referee 1 [doi:10.5194/acp-2016-203-RC1]: 4. The authors criticize
Laliberte et al. (2015)’s estimation of the integral of dh/dt, as they believe that it is not
dh/dt = 0 but should be ∂h/∂t = 0 for a stationary budget. However, my understanding
of Laliberte et al.’s study is that the total derivative that Laliberte et al used is in the
context of global integration. So if you define H =

∫
hdV , then dH/dt =

∫
∂h/∂tdV ,

since the total volume is fixed in time. As such, Laliberte et al.’s global stationary
approximation is consistent with your local stationary approximation.

Laliberté et al. (2015) aim to estimate the global mean value of atmospheric power
−(1/α)(dp/dt). They cannot therefore follow the above described procedure integrat-
ing the first law of thermodynamics first over massM, dM = ρdV, and then taking its
derivative over time. This procedure for −(1/α)(dp/dt) would yield −

∫
V ∂p/∂tdV = 0.

Indeed, Laliberté et al. (2015) explicitly define dh/dt as the material derivative of en-
thalpy [see p. 540, middle column, 7th line from top], not the partial derivative over
time. They state that they average the first law of thermodynamics taking the mass-
weighted annual and spatial mean of all the terms in the equation, including dh/dt [p.
540, middle column, 7th line from bottom]. They denoted this mean as {·}. The mass-
weighted spatial mean of the material derivative of h, which is enthalpy per unit wet
air mass, consists in taking its integral over total atmospheric mass and then dividing
by the planet surface area. This means that stating that {dh/dt} = 0 Laliberté et al.
(2015) meant Ih ≡ (1/S)

∫
M dh/dtdM = 0 and not ∂(

∫
M hdM)/∂t = 0.

We also note that, to support their statement that the expression for total atmospheric
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power does not contain the enthalpy term, Laliberté et al. (2015) refer to Eq. 4 of
Pauluis (2011) [p. 540, right column, 12th line from top]. This link does not recognize
that Eq. 4 of Pauluis (2011) [ref. 10 of Laliberté et al. (2015)] refers to atmospheric
power defined per unit dry air mass. As we note in the revised text, the material deriva-
tive of any variable integrated over total mass of atmospheric dry air is zero (because
of zero sources or sinks of dry air). In contrast, the material derivative of any variable
integrated over total atmospheric mass is in the general case not zero, because of the
non-zero sources and sinks in the continuity equation. This point, which follows from
the previous derivations in the paper, is essential for understanding the atmospheric
power budget and also for estimating it.

Comment 2 of Referee 2 [doi:10.5194/acp-2016-203-RC2]:

2. Section 3.1. This section is also way too complicated. After the first paragraph, one
can jump directly to the top of page 5. Now equation (15) is not wrong per se. ...

Following the referee’s suggestion, we revised the text to immediately obtain equa-
tion (15) for Ih (currently Eq. 32) after the first paragraph. The remaining part of
the referee’s comment was addressed separately in our second Author Comment
[doi:10.5194/acp-2016-203-AC2].

Comment 2 of Referee 3 [doi:10.5194/acp-2016-203-RC3] (note it comes in several
parts):

2. Discussion of Laliberte etal. (2015)

The discussion of Laliberte etal. (2015) is very esoteric and does not pertain much
to the rest of the discussion. Section 3.2 is a very minor point. It is fairly well-known
that the integral of dp/dt is only equal to the work performed for a steady system, an
assumption that is clearly stated in Laliberte etal.

Section 3.2 did not mention Laliberte et al. and did not question their steady state
assumption. This section drew attention to the ∂p/∂t term and made a reference to
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Appendix C where it is shown that this term may be considerable on a seasonal scale,
see Fig. 6a. As discussed later in the paper, this fact can account for the discrep-
ancy between the seasonal changes of global mean precipitation P and WP derived
from mean atmospheric dp/dt. We removed Section 3.2 from the revised paper but
extended the discussion of this matter in Section 5.

The referee continues: As for section 3.1, there are several problems with the authors
analysis. First, it should be clearly stated that the global integral of dh/dt is indeed zero
in the absence of mass source and sink in the continuity equation.

We see no problem here, as this statement immediately follows from the obtained
expression for Ih. We have included the suggested statement in the revised text.

The referee continues: First, it should be clearly stated that the global integral of dh/dt
is indeed zero in the absence of mass source and sink in the continuity equation. This
is the assumption made in Laliberte etal. It is also the continuity equation used in the
MERRA Reanalysis. Hence, the authors should explicitly acknowledge that the claim
that the integral of dh/dt is indeed correct within the assumptions made in the MERRA
Reanalysis.

The absence of mass source and sink in the continuity equation is equivalent to the
absence of a water cycle. Laliberté et al. (2015) focus was on thermodynamic aspects
of the atmospheric water cycle. They could not and did not assume the absence of
mass source and sink in the continuity equation.

Specifically, on p. 2 in their Supplementary Materials, Laliberté et al. (2015) state: "In
the atmosphere, the moist entropy s and the specific humidity qT satisfy ∂ts+v ·∇s = ṡ
and ∂tqT + v · ∇qT = ˙qT , where ṡ and ˙qT are their respective sources and sinks." (Note
that the latter equation is equivalent to dqT /dt = ˙qT .)

To make it clear that this statement is incompatible with the assumption of "absent
sources and sinks in the continuity equation", we consider the continuity equation for
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air as a whole
∂ρ

∂t
+∇ · (ρv) = ρ̇ (c1)

together with the continuity equation for water vapor

∂ρv

∂t
+∇ · (ρvv) = ρ̇. (c2)

Noting that qT ≡ ρv/ρ (Laliberté et al. (2015) neglect the tiny condensate content) we
find from Eqs. (c1) and (c2) that

˙qT =
ρ̇

ρ

(
1− ρv

ρ

)
. (c3)

Thus, if Laliberté et al. (2015) had assumed ρ̇ = 0, they would have omitted not only
the enthalpy term in their first law of thermodynamics but also the term proportional to
dqT /dt = ˙qT . The latter term was the focus of their analysis though. Thus, the referee’s
suggestion that Laliberté et al. (2015) assumed ρ̇ = 0 is not valid.

Neither is this assumption made in the MERRA database. What is assumed in the
MERRA database and could also be assumed by Laliberté et al. (2015), as explained
by Referee 2, see also Bosilovich et al. (2011), is that the vertically integrated continuity
equation has no sources or sinks, that is

∫
ρ̇dz = 0. However, as we discussed in detail

in a previous comment [doi:10.5194/acp-2016-203-AC2], this relationship does make
Ih equal to zero.

The referee continues: Second, it is perfectly valid to question the impact of mass
source and sink on the framework of Laliberte et al., but this should be done clearly.
In particular, The Bernoulli equation is an equality with 4 different terms. Changing the
mass conservation does not only affect the global integral of dh/dt, but also that of ds/dt
and dq/dt. The authors here assume -without proof- that the change in the enthalpy
integral would be reflected solely in the work output.
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If the referee’s assumption about absent sources and sinks in the analysis of Laliberté
et al. (2015) were correct, we would agree with this statement. For example, if Laliberte
et al. defined h as enthalpy per unit dry air mass, then, as shown in our revised
manuscript, the integral of dh/dt over total dry air mass would be zero. The other
terms in the first law of thermodynamics would look different, too, if taken per dry air
mass.

However, Laliberté et al. (2015) defined h as enthalpy per unit wet mass and, as is
clear from their approach, integrated it over the entire mass of the atmosphere in the
presence of mass sources and sinks. In this case the integral of dh/dt is not zero and
its omission is not justified.

The referee continues: The broader issue here is that the discussion of section 3.1.
and 3.2. is presented without context and incomplete. It could only be understood by
very few potential readers. It makes the paper unnecessarily confusing and should be
removed.

The work of Laliberte et al. 2015 is published in a journal aimed at a broad readership.
Their account is clear: the authors present the first law of thermodynamics and set out
to integrate it over atmospheric mass. All the terms in the corresponding equation are
explicitly defined. Then they state that the global integral of one of the terms is zero [p.
540, right column, 3rd line from top]. We evaluate this integral and show that it is not
zero and that its omission significantly impacts the paper’s quantitative conclusions.

If we submitted our present manuscript without discussing Laliberte et al., a referee
would rightly advise us to acquaint ourselves with the current literature and address
the discrepancy between our results and those of Laliberté et al. (2015) (who analyzed
the same MERRA database). We thus believe that our analysis of Laliberte et al. 2015
is an essential part of our study and have striven to present it as clearly as possible in
the revised manuscript.

Comment 4 of Referee 4 [doi:10.5194/acp-2016-203-RC4]
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4. Sections 2 and 3. The whole point of the exercise of this exercise seems to establish
that the term

∫
V dh/dtρdV assumed to be zero in Laliberte et al. is actually not zero,

and that it is too large to be neglected. I agree with this statement, but the result
obtained by the authors seems unphysical. The simplest way to show that the above
term is not zero is through using using standard integration by parts
∫

V

dh

dt
ρdV =

∫

V
∇ · (ρhv)dV −

∫

V
h∇ · (ρv)dV =

∫

∂V
ρhv · ndS −

∫

V
h∇ · (ρv)dV

How to estimate this term depends on how the velocity v, the density ρ and enthalpy
h are defined. If v is the fully barycentric velocity, and ρ the full density, then mass
conservation imposes ∇ · (ρv) = 0, and the term is controlled by boundary fluxes of
enthalpy and is equal to the difference between the enthalpy evaporated minus the
enthalpy precipitated. If ρv is the mass flux of the gaseous component of moist air,
then how to estimate this term is more complicated, since ∇ · (ρv) 6= 0. Physically, the
term h∇(ρv) is unphysical, since condensation or evaporation converts water vapour
enthalpy hv into liquid water enthalpy hl and conversely, so should only involve the
difference hv −hl = L, where L is latent heat, it should not involve the dry air enthalpy;
the formula h∇(ρv) involves the dry air enthalpy, however, which is part of the definition
of h.

As was stated in our manuscript (see Eq. 5 on p. 3) and is perhaps better emphasized
in our revision (p. C4, first paragraph in Author Comment 3 doi:10.5194/acp-2016-203-
AC3), velocity v is the velocity of the gaseous component of moist air (i.e. of the
substance that actually performs work). Enthalpy h is defined per unit mass of wet
air (i.e. dry air mass plus water vapor mass). There is thus nothing unphysical in the
resulting expression for the integral of dh/dt over total mass of dry air and water vapor
depending on parameters of both dry air and water vapor.

Revised Section 4 (former Section 3) follows1 .
1This section follows revised Section 3 from our previous comment doi:10.5194/acp-2016-203-AC4. The rele-
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4 Practical implications of the obtained relationships

In a recent effort to constrain the atmospheric power budget, Laliberté et al. (2015)
used the thermodynamic identity

T
ds

dt
≡ dh

dt
− αdp

dt
+ µ

dqT
dt

, (31)

where s is entropy, h is enthalpy, µ is chemical potential (all per unit mass of wet air), α
is specific air volume and qT is the mass fraction of total water2. Laliberté et al. (2015)
neglected, as we do, the atmospheric liquid and solid water content3 and approximated
qT = qv, where qv is the mass fraction of water vapor.

vant equations from the previous sections are as follows:

dX

dt
≡ ∂X

∂t
+ v · ∇X (5)

∂ρ

∂t
+∇ · (ρv) = ρ̇ (6)

Wp
Ṽ

m̃
= Wpα = p

„
dα

dt
+
α

m̃

dm̃

dt

«
= p

„
dα

dt
+ α2ρ̇

«
, (11)

W = WIII =
1

S

Z

V
p(∇ · v)dV = − 1

S

Z

V
(v · ∇p)dV + IT + Is ≡WI + IT + Is, (12)

IT ≡ pT

S

Z

z=z(pT )

(v · n)dS = 0, (13)

Is ≡ 1

S

Z

S
ps(v · n)dS = 0. (14)

2The unconventional sign at the chemical potential term follows from µ being defined in Eq. (31) relative to dry
air: hence, when the relative dry air content diminishes this term is negative. For details see p. 8 in the Supplementary
Materials of Laliberté et al. (2015).

3This assumption corresponds to an instantaneous removal of the non-gaseous water from the atmosphere by
precipitation.
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When integrating Eq. (31) over atmospheric mass, Laliberté et al. (2015) assumed
that the enthalpy term vanishes,

∫
M(dh/dt)dM = 0. This assumption was justified

by noting that the atmosphere is approximately in a steady state. However, using
the definition of material derivative (5), the steady-state continuity equation (6), the
divergence theorem and the boundary conditions (13), (14) and noting that ρv · ∇h =
∇ · (hρv)− h∇ · (ρv) and dM = ρdV, we obtain

Ih ≡
1
S

∫

M

dh

dt
dM = − 1

S

∫

V
hρ̇dV 6= 0. (32)

We can see that Ih is zero if only there are no sources and sinks of water vapor in the
atmosphere, i.e. when ρ̇ = 0.

The physical meaning of this result is as follows. Enthalpy change per unit time in all
air parcels (material elements) in a steady-state atmosphere is indeed zero. However,
dh/dt is not equal to enthalpy change per unit mass of a given air parcel. (Likewise
pdα/dt is not equal to work per unit time per unit mass, see Eq. (11) above.) Indeed,
for an air parcel of mass m̃ total enthalpy of the parcel is hp ≡ hm̃; its change per unit
mass is (dhp/dt)/m̃ = dh/dt + (h/m̃)dm̃/dt 6= dh/dt. Therefore, the integral of dh/dt
over total atmospheric mass is not zero. The same reasoning shows that if enthalpy
were defined per unit dry air mass, such that hp ≡ hm̃d, then the integral of dh/dt
per total dry air mass would be zero. Thus, we note the following general relationship.
For any scalar quantity X in the view of the steady-state continuity equation (6) and
Eqs. (13), (14) we have ∫

V

dX

dt
ρdV = −

∫

V
Xρ̇dV. (33)

∫

V

dX

dt
ρddV = 0. (34)

Equation (34) follows from the continuity equation for dry air ∇ · (ρdv) = 0.
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The magnitude of Ih (32) can be roughly estimated assuming that evaporation and
condensation are localized at, respectively, the surface z = 0 and the mean condensa-
tion height z = HP . This approximation allows one to explicitly specify ρ̇ in (32) via the
Dirac delta function δ(z):

ρ̇ = E(x, y)δ(z)− P (x, y)δ(z −HP ),
∫
ρ̇dz = E(x, y)− P (x, y). (35)

Here E(x, y) and P (x, y) are local evaporation and precipitation at the surface
(kg m−2 s−1) with global averages E = P .

From (35) we have

Ih ≈ −Ehs + Ph(HP ) ≡ −P∆hc, ∆hc ≡ hs − h(HP ), h = cpT + Lqv. (36)

Here cp = 103 J kg−1 K−1 is heat capacity of air at constant pressure, L = 2.5 ×
106 J kg−1 is latent heat of vaporization. We can see that Ih is proportional not to
the difference between evaporation and precipitation (which can be locally arbitrarily
small), but to the intensity of the water cycle E = P multiplied by the difference in air
enthalpy between z = 0 and z = HP .

For HP ≈ 2.5 km (Makarieva et al., 2013) and qv(HP ) � qvs we have −P∆hc =
−P (cpHP Γ + Lqvs) ≈ −1 W m−2. Here qvs = 0.0083 corresponds to global mean
surface temperature Ts = 288 K and relative humidity 80%; mean tropospheric lapse
rate is Γ = 6.5 K km−1. Global mean precipitation P (measured in a system of units
where liquid water density ρw = 103 kg m−3 is set to unity) is equal to P ∼ 1 m year−1,
which in SI units corresponds to P = 3.2 × 10−5 kg m−2 s−1. A more sophisticated
estimate of Ih (36) presented in Appendix B yields −1.6 W m−2 with an accuracy of
about 30%.

These estimates show that the enthalpy term cannot be neglected in Eq. (31) on either
theoretical or quantitative grounds. By absolute magnitude the integral (36) is greater
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than one third of the total atmospheric powerW ≈ 4 W m−2 estimated by Laliberté et al.
(2015) for the MERRA re-analysis (3.66 W m−2) and the CESM model (4.01 W m−2).

Laliberté et al. (2015) appear to have first calculated the mass integral of Tds/dt from
the right-hand side of Eq. (31), then calculated µdqT /dt from atmospheric data and then
used the obtained values and again Eq. (31) to estimate the total atmospheric power
as −(1/S)

∫
M α(dp/dt)dM. In such a procedure, putting

∫
M(dh/dt)dM = 0 should

have overestimated W by about 1.6 W m−2. Since the omitted term is proportional
to the global precipitation rate, it is crucial not only for a correct estimate of the mean
value of W , but also for the determination of any trends related to precipitation.

Note also that even in the correct form, with the enthalpy term retained, Eq. (31) does
not provide a theoretical constraint on W . This equation is an identity: it essentially
defines ds/dt in terms of measurable atmospheric data. As is clear from Eq. (12), W
can be estimated from the same data directly without involving entropy, as we discuss
in the next section.
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