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Here we reply to Comment 1 of Referee 3 who suggests that, contrary to our claims,
our main results and specifically Eqs. 20-22 are not original. Presumably there is some
misunderstanding involved so we have revised the text clarifying how our results relate
to previous work. In particular, we now show that Eqs. 20-22 could not in principle be
formulated by Pauluis et al. 2000, because their basic assumptions are not consistent
with either Eqs. 20-22 or with Eq. 4 of Pauluis and Held 2002. We acknowledge the
value in making this claim clear and explicit as it is precisely because Eqs. 20-22 were
not published previously that the global gravitational power of precipitation WP could
also not be estimated from re-analyses until now. Eqs. 20-22 are distinct in showing
that WP can be estimated directly from air velocity and pressure gradient without any
knowledge of the atmospheric moisture content or precipitation rates.
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The revised Section 4 (now Section 3) of our manuscript can be found below1, where
subsection 3.3 is devoted to comparing our results with those of Pauluis et al. This is
followed by the referee’s comment and our reply to it.

1In the revised manuscript this section follows the revised Section 2 published in our previous comment
[doi:10.5194/acp-2016-203-AC3]. The relevant equations from the previous sections are as follows:
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3 Revisiting the current understanding of the atmospheric power budget

3.1 The boundary condition for vertical velocity at the surface

Noting that p(∇ · v) = ∇ · (pv) − v · ∇p and using the divergence theorem (Gauss-
Ostrogradsky theorem) we can see that W = WIII (9) coincides with WI (1),

W = WIII =
1
S

∫

V
p(∇ · v)dV = − 1

S

∫

V
(v · ∇p)dV + IT + Is ≡WI + IT + Is, (12)

if the following integrals are zero:

IT ≡
pT

S

∫

z=z(pT )
(v · n)dS = 0, (13)

Is ≡
1
S

∫

S
ps(v · n)dS = 0. (14)

Integral (13) is taken over the upper boundary z = z(pT ), where z(pT ) is the altitude
of the pressure level p = pT defining the top of the atmosphere. Since the distribution
of pressure versus altitude is exponential and IT is proportional to pT , by choosing a
sufficiently small pT it is possible to ensure that IT (13) is arbitrarily small compared to
W . For pT = 0.1 hPa we estimate IT ∼ 10−4W (see Fig. 6d in Appendix C). So it is
safe to assume that IT = 0.

Integral (14) is taken over the Earth’s surface (ps is surface pressure). In a dry atmo-
sphere we have

v · n|z=0 = ws = 0. (15)

Here ws is the surface value of the vertical velocity of air w. As we discuss below, for a
moist atmosphere with surface evaporation Eq. (15) also holds, such that W = WIII =
WI , see Eqs. (9), (3), (1), (12).
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Evaporation from the Earth’s surface represents a flux of water vapor molecules. As
far as the relative humidity at the surface is always less than or equal to unity, the local
value of this flux at z = 0 is never negative. The evaporating water molecules may have
a mean vertical velocity wE > 0 of the order of sound velocity only until they collide with
the other air molecules at a distance of about one free path length lf ∼ 10−7 m from the
surface. Molecular collisions ensure that the mean velocity of evaporated molecules
rapidly approaches the parcel’s mean due to molecular collisions. Molar density NE of
evaporating molecules is obtained from evaporation rate E (kg m−2 s−1) as NEwE =
E/Mv, where Mv is molar mass of water. If lp is the linear size of this parcel, we have
for the mean vertical velocity of all molecules in the parcel ws = wENElf/(Nslp), where
Ns = ps/(RTs) is molar density of air at the surface, Ts is surface temperature. Then in
Eq. (14) we have psws = (lf/lp)ERTs/Mv.

Since, as we will see in Sections 5 and 6, global atmospheric power is of the order of
PRTs/Mv, where P = E is global mean precipitation and evaporation, the surface term
psws = (lf/lp)ERTs/Mv can be neglected in Eq. (12) if lf/lp � 1, i.e. on any macro-
scopic scale. This reflects the fact that the atmosphere does not circulate because of
being "pushed upwards" by surface evaporation. Notably, Eq. (15) is not in contradic-
tion with the existence of an inflow of water vapor into the atmosphere at z = 0. It
just means that water vapor should be considered as arising by evaporation within the
surface air parcels, the latter having zero vertical velocity at their lower boundary.

We emphasize that the boundary condition (15) is vital for the equality between
W = WIII (9), (3) derived from the thermodynamic definition of work and WI (1) of
Lorenz (1967). In the last decades WI was used by various researchers to evalu-
ate the atmospheric energy cycle. For example, Laliberté et al. (2015) used WI as
their thermodynamic definition of atmospheric work output thus assuming that Eq. (15)
holds. If one ignored Eq. (15) and defined ws > 0 for z = 0 from the upward flux of
water vapor as ρvsws = E, where ρvs is water vapor density at the surface (see, e.g.,
Eq. 3 of Pauluis et al., 2000, to be discussed below), one would have obtained un-
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physical results. With E ∼ 103 kg m−2 year−1 and ρvs ∼ 10−2 kg m−3 we would have
ws ∼ 3 × 10−3 m s−1 and Is = psws = 3 × 102 W m−2. Then from Eq. (12) we would
conclude that total power of atmospheric circulation W = WI + Is > Is exceeds the
incoming flux of solar radiation.

3.2 Kinetic power and the gravitational power of precipitation

We now show how total atmospheric power (12) is comprised of three distinct terms.
In hydrostatic equilibrium we have

∇zp = ρg. (16)

In the real atmosphere due to the presence of non-gaseous water the distribution of air
deviates from Eq. (16) such that we instead have

∇zp = (ρ+ ρc)g. (17)

Using (17) we have in (12) −v · ∇p = −u · ∇p−w · ∇p = −u · ∇p− (ρ+ ρc)w · g. Here
−ρw · g represents the vertical flux of air: it is positive (negative) for the ascending
(descending) air. Recalling that

g = −g∇z (18)

and using the divergence theorem and the stationary continuity equation (6) we have
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1
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∫
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ρ(w · g)dV =

g

S
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g
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n · (vρz)dS − 1

S

∫

V
gzρ̇dV. (19)

The surface integral in (19) is taken at the Earth’s surface (here it is zero because
z = 0) and z = z(pT ) (here it is also zero, because ρn · v = 0).

It is natural to call WP the "gravitational power of precipitation". Indeed, in the last
integral in (19) gz represents potential energy of a unit mass in the Earth’s gravitational
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field. Therefore, when evaporation occurs at the surface z = 0 and the condensate
falls from height z where it originated, it is clear from Eq. (19) that WP (19) is equal to
PgHP , where HP is the global mean height of condensation.

The stationary power budget for a hydrostatic atmosphere can be written as

W = − 1
S

∫

V
v · ∇pdV ≡WK +WP , (20)

WK ≡ − 1
S

∫

V
(u · ∇p)dV +Wc ≈ −

1
S

∫

V
u · ∇pdV, Wc ≡ −

1
S

∫

V
ρc(w · g)dV,(21)

WP ≡ − 1
S

∫

V
ρw · gdV = − 1

S

∫

V
gzρ̇dV = PgHP , P ≡ − 1

S

∫

z>0
ρ̇dV. (22)

Equations (20)-(22) and their derivation have not been previously published (see the
next section). These equations clarify the physical meaning of the atmospheric power
budget.

Term Wc in Eq. (21) describes the impact of condensate loading. It represents kinetic
energy generation on the vertical scale of the order of the atmospheric scale height
H ≡ −p/(∂p/∂z) = RT/(Mg) ∼ 10 km. This energy is generated because the vertical
air distribution deviates from the hydrostatic equilibrium (16). Hydrometeors falling
at terminal velocity exert a force on the air equal to their weight. The condensate thus
acts as resistance preventing the pressure difference ∆p ∼ ρcgH from converting to the
kinetic energy of a vertical wind. In the atmosphere on average ρc/ρ ∼ 10−5 (Makarieva
et al., 2013). Without hydrometeors, the non-equilibrium pressure difference ∆p ∼
10−5ρgH ∼ 1 Pa would produce maximum vertical velocity of about wm ∼ 1 m s−1

(ρw2
m/2 = ∆p). This is two orders of magnitude larger than the characteristic vertical

velocitiesw ∼ 10−2 m s−1 of large-scale air motions. (Hydrometeors thus inhibit vertical
motion in a similar way to how turbulent friction at the surface inhibits horizontal air
motion. For example, the observed meridional surface pressure differences of the order
of ∆ph ∼ 10 hPa in the tropics, if friction were absent, could have produced maximum

C6



horizontal air velocities of about um ∼ 40 m s−1 (ρu2
m/2 = ∆ph).) Quantitatively, −ρcw ·

g is less than 1% of W and can be neglected: its volume integral taken per unit surface
area is less than ρcgHw ∼ 10−5pw ∼ 10−2 W m−2, where p = ρgH = 105 Pa is air
pressure at the surface.

In contrast, the gravitational power of precipitation WP does not depend on air-
condensate interactions. (For example, this term would be present in the atmospheric
power budget even if the condensate disappeared immediately upon condensation or
experienced free fall not interacting with the air at all.) This is because WP (19) re-
flects the net work of water vapor as it travels from the level where evaporation occurs
(where water vapor arises) to the level where condensation occurs (where water vapor
disappears). When condensation occurs above where evaporation occurs, the water
vapor expands as it moves upwards towards condensation, and the work is positive
irrespective of what happens to the condensate. For a dry atmosphere where ρ̇ = 0,
the last volume integral in Eq. (19) is zero and WP = 0: indeed, in this case at any
height z there is as much air going upwards as there is going downwards.

Next, Eqs. (20)-(22) clarify the relationship between the two formulations of atmo-
spheric power WI (1) and WII (2): WII ≈ WK coincides with W = WI in the absence
of phase transitions only, i.e. when WP = 0. This resolves some confusion in the
literature, whereby in some publications it is total atmospheric power W = WI that is
referred to as generation of kinetic energy (e.g., Robertson et al., 2011, their Eq. 1),
while in others the same term is applied to WK , which is estimated from horizontal
velocities (see, e.g., Boville and Bretherton, 2003; Huang and McElroy, 2015). At the
same time, in such studies WK is confused with the total atmospheric power W : i.e. in
the total power budget the gravitational power of precipitation, WP , is overlooked (e.g.,
Huang and McElroy, 2015, their Fig. 10). We also note that the gravitational power of
precipitation WP has not been explicitly identified in past studies assessing the Lorenz
energy cycle (see, e.g., Kim and Kim, 2013, and references therein).

Finally, Eqs. (20)-(22) show that the gravitational power of precipitation can be esti-
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mated from air velocity and pressure gradient alone as WP = W −WK without any
knowledge of the atmospheric moisture content or precipitation rates. This allows
global WP to be estimated from re-analyses data, see Section 6. So far, the only global
estimate of WP was that of Makarieva et al. (2013) based on WP = PgHP . Pauluis
et al. (2000) used PgHP to estimate precipitation-related dissipation in the tropics.

3.3 Our results compared to Pauluis et al. 2000

Our assessment of the atmospheric power budget started from the thermodynamic
definition of work (7). Integrated over atmospheric volume Eq. (7) yielded total atmo-
spheric power W = WIII (9), (3). The boundary condition (15) turned WIII into the
commonly used WI (12). Then we used the continuity equation (6) and hydrostatic
equilibrium (17) to separate the kinetic energy generation WK from the gravitational
power of precipitation WP , W = WK +WP , in Eqs. (20)-(22).

Here we compare our results with those of Pauluis et al. (2000) who likewise identified
two distinct terms in the atmospheric power budget. Pauluis et al. (2000) were presum-
ably aware of the fact that total atmospheric power is equal to WIII , since Eq. (3) was
listed by Pauluis and Held (2002). However, as we show below, several inconsistencies
in their basic assumptions did not permit obtaining results equivalent to Eqs. (20)-(22).

Noting that condensate is falling at terminal velocity vT experiencing resistance force
ρcg, Pauluis et al. (2000) defined the precipitation-related frictional dissipation as fol-
lows (we added factor 1/S to enable comparison with our results):

W ∗P ≡
1
S

∫

V
ρcgvTdV. (23)

Here vT ≡ w − wc is the difference between the vertical velocities air and condensate.
Assuming that at any level z = z0 in the atmosphere the upward flux of water wapor is
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balanced by the downward flux of condensate,
∫

z=z0

ρcwcdS +
∫

z=z0

ρvwdS = 0, (24)

Pauluis et al. (2000, see their Eq. 3) obtained2

W ∗P =
1
S

∫

V
(ρc + ρv)wgdV ≡WP +Wc, (25)

where WP and Wc are defined in Eqs. (22) and (21). Thus, W ∗P lumps together two
terms with distinct meaning, with Wc depending on the interaction between the con-
densate and air and WP independent of it.

Rather than using Eq. (18) and the continuity equation for water vapor similar to
what was done in Eq. (19), Pauluis et al. (2000) further assumed that W ∗P is propor-
tional to the precipitation rate P at the surface, which is given by the surface integral
(1/S)

∫
z=0 ρcvTdS. This formulation of surface precipitation via vT yielded

W ∗P = PgHP (26)

for the case when no re-evaporation occurs in the atmosphere. In reality, however,
P = −(1/S)

∫
z=0 ρcwcdS, so Eq. (26) is not consistent with Eq. (25).

The two integrals coincide, −
∫
z=0 ρcwcdS =

∫
z=0 ρcvTdS, only if w|z=0 ≡ ws = 0. But

this is inconsistent with the key assumption (24), since for ws = 0 and wcs 6= 0 Eq. (24)
does not hold for z = 0. Indeed, for z = 0 Eq. (24) contradicts the boundary condition
(15) ws = 0. In particular, for the case when local evaporation equals local precipitation,
Eq. (24) gives ws = −ρcswcs/ρvs > 0.

2Using the continuity equations for dry air∇ · (ρdv) = 0 and water vapor∇ · (ρvv) = ρ̇, where ρd and ρv are
densities of dry air and water vapor, we find from Eq. (19) that WP = −(1/S)

R
V ρvw · gdV .
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This inconsistency between Eq. (24) for z = 0 and the equality WI = WIII , see
Eq. (12), precludes a straightforward derivation of W (9) from WIII (3) of Pauluis and
Held (2002). Instead, Pauluis et al. (2000) assumed that total mechanical work by
resolved eddies Wtot is equal to the sum of the frictional dissipation associated with
convective and boundary-layer turbulence WD and the total dissipation rate due to pre-
cipitation W ∗P :

Wtot = WD +W ∗P . (27)

Since no general specification for turbulent processes exists, this formulation per se,
unlike Eqs. (20)-(22), cannot guide an assessment ofWtot from observations. However,
WD can be retrieved from the equation of motion as the volume integral of−F·v, where
F is turbulent friction force (cf. Lorenz, 1967, Eq. 101).

For the moist air (gas) moving under the action of a pressure gradient force, gravity,
condensate loading and turbulent friction force, the scalar product of the equation of
motion with velocity v reads (see, e.g., Huang and McElroy, 2015, for more details):

ρ
dK

dt
= −v · ∇p+ ρw · g + ρw · g + F · v. (28)

Here K ≡ v2/2 is the kinetic energy of air per unit air mass. By virtue of relationship
(17) the sum of the first three terms in the right-hand side of (28) is equal to −u · ∇p.
So, integrating (28) over volume, using the divergence theorem, continuity equation
(6), boundary condition (19) and Eq. (21), we obtain

WD ≡ −
1
S

∫

V
(F · v)dV = WK −Wc − K̇, K̇ ≡ 1

S

∫

V
Kρ̇dV. (29)

Now, if we assume that Wtot = WI as in Eq. (20) and use WD (29), the correct formu-
lation for the atmospheric power budget in terms of Pauluis et al. (2000) would be

Wtot = WD +W ∗P + K̇, W ∗P = PgHP +Wc. (30)
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The underlined terms differentiate the correct equations (30) from the formulations
(26) and (27) of Pauluis et al. (2000). Term K̇ describes the sink of the kinetic energy
of air caused by condensation. For example, if condensation occurs in the middle
troposphere where air velocity is of the order of 25 m s−1, the magnitude of this term
estimates as Pv2/2 ∼ 10−2 W m−2. This is of the same order as the condensate
loading term Wc, which was retained by Pauluis et al. (2000) in the definition of W ∗P
(25).

If the condensate does not interact with the air but experiences free fall, then, de-
spite ρc 6= 0, the condensate loading (i.e. terms proportional to ρc) is absent from the
equation of motion as well as from Eqs. (17), (21) and (28). However, since Wc is
present in the definition of W ∗P (23), in this case the correct equation for Wtot becomes
Wtot = WD +W ∗P −Wc + K̇, i.e. Eqs. (23) and (27) additionally overestimate the actual
Wtot by the term equal to condensate loading. Thus, the formulations of Pauluis et al.
(2000) are generally consistent with Eqs. (20)-(22) if only the condensate loading term
and K̇ are neglected. Nevertheless, even in this case there remains a discrepancy
between Wtot = WI of Pauluis et al. (2000) and Wtot = WIII (3) of Pauluis and Held
(2002), both representing the total atmospheric power, see Eq. (12). Since Eq. (24)
of Pauluis et al. (2000) assumes ws > 0 and Is > 0, it follows from the divergence
theorem that Wtot = WI + Is 6= WIII . In other words, Pauluis et al. (2000) could not
demonstrate that their Wtot defined by Eq. (27) is equivalent to the thermodynamic def-
inition of work WIII (3) (see discussion in the end of Section 3.1). The derivation of
Eqs. (20)-(22) is free from this contradiction.

Reply to the Referee

Comment 1 of Referee 3 [doi:10.5194/acp-2016-203-RC3]:
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1. Appropriation in the main result:

The manuscript states pretty explicitly that the main contribution here is

“Starting from the definition of mechanical work for an ideal gas, we present a novel derivation
linking global wind power to measurable atmospheric parameters. The resulting expression
distinguishes three components: the kinetic power associated with horizontal motion, the kinetic
power associated with vertical motion and the gravitational power of precipitation.”

as it is stated in the abstract. This claim is repeated on multiple occasions. I assume
that this specifically refer to the equation (20-22), which the authors claim that “Equa-
tions Eqs. (20)-(22) and their derivation have not been previously published.”

These equations are presented in Pauluis etal. (2000) (See equations (2), (4), (8) and
(10). See also equations (4) and equation (6) of Pauluis and Held (JAS, 2002)). It is
very troublesome that the authors fail to mention that equations (20-22) are presented
in Pauluis etal. (2000) despite the fact that this pa

[the referee’s comment continues below after our reply]

We revised the text having added a separate "Section 3.3 Our results compared to
Pauluis et al. 2000". Right below Eqs. (20)-(22) we explain why in our view these
equations are original. Furthermore, we also explicitly refer the readers to Section 3.3
where these results are compared with Pauluis et al. 2000 by noting: "Equations (20)-
(22) and their derivation have not been previously published (see the next section)."
Readers can judge our claims for themselves.

As a separate point, we note that Eqs. (20)-(22) make it clear that WP can be esti-
mated from the data on air velocity and pressure gradient with no information required
about moist processes. As can easily be verified by examining the texts in question,
this message is absent from the works cited by the referee (or indeed in any previous
publications of which we are aware). To facilitate this comparison we list the equa-
tions mentioned by the referee below together with our Eqs. 20-22 from the submitted
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manuscript.

Pauluis et al (2000), Eqs. (2), (4), (8) and (10), respectively:

Wp =
∫

Ω
gρcvT, (c1)

Wp =
∫

Ω
gρtw, (c2)

WD =
∫
ρgw

[
Θ′

Θ
+
(
Rv

Rd
− 1
)
ρv

ρ
− ρc

ρ

]
, (c3)

Wtot =
∫
wg

[
ρ

Θ′

Θ
+ ρv

Rv

Rd

]
, (c4)

where ρt = ρc + ρv.

Pauluis and Held (2002), Eqs. (4) and (6), respectively:

W =
∫

Ω
p∂iVi, (c5)

Dp =
∫

Ω
gρcVT =

∫

Ω
ρqtgw, (c6)

where Vi is the ith component of the velocity, ∂i = ∂/∂xi is the partial derivative in the
i direction, ρc is the mass of falling hydrometeors per unit volume, qt is mass of total
water per unit mass of moist air, VT is the terminal velocity of the falling hydrometeors,
and w is the vertical velocity of the air.

Equations (20)-(22):

W = − 1
S

∫

V
v · ∇pdV ≡WK +WP , (c7)
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WK ≡ − 1
S

∫

V
(u · ∇p)dV +Wc ≈ −

1
S

∫

V
u · ∇pdV, Wc ≡ −

1
S

∫

V
ρc(w · g)dV,(c8)

WP ≡ − 1
S

∫

V
ρw · gdV = − 1

S

∫

V
gzρ̇dV = PgHP , P ≡ − 1

S

∫

z>0
ρ̇dV. (c9)

Note that ρ = ρd + ρv 6= ρqt; v = u + w is air velocity (horizontal and vertical).

The referee continues:

The appropriation is not limited to the equations, but extends to some of the arguments
presented. For instance, the authors relate the claim

“The meaning is that hydrometeors perform work at the expense of their potential energy. To
acquire this energy, a corresponding amount of water vapor must be raised by air parcels. We
can also see that WP does not depend on the interaction between the air and the falling hydrom-
eteors. This term would be present in the atmospheric power budget even if hydrometeors were
experiencing free fall and did not interact with the air at all (such that no frictional dissipation
on hydrometeors occurred).”

This points is made previously ( and more clearly) in Pauluis etal. JAS (2000, p. 991):

“The dissipation by precipitation can be thought as proceeding in two steps. First, water is lifted
by the atmospheric circulation, increasing its potential energy. Then, during precipitation, the
potential energy of condensed water is transferred to the ambient air where it is dissipated by
molecular viscosity in the microscopic shear zone around the hydrometeors.”

To put it bluntly, the authors are presenting as their own an analysis that was done by
others, and in doing so, are misleading their reader.

We show in the revised text (see the last paragraph in Section 3.3) that the above state-
ment of Pauluis et al. (2000, p. 991) is not consistent with their own analysis, because
their definition of precipitation-related dissipation hinges on the interaction between the
condensate and the air. This definition, besides the gravitational power of precipitation
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to which the above comment correctly refers, also includes the condensate loading
term Wc which has a different meaning. As demonstrated by our Eqs. 20-22 and the
text below them, this term (but not WP ) does depend on the interaction between the
condensate and the air3.
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