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Here we reply to Comments 3, 1 and 3 of, respectively, Referees 1, 2 and 4 addressing
how the correct expression for atmospheric power W should look like. We note that the
referees disagree on that matter. Referee 1 (and implicitly Referee 3) agree with our
Eq. (7), which shows that W does not explicitly depend on the rate of phase transitions.

Meanwhile, Referees 2 and 4 opine, respectively, that our results either appear to be
wrong or are unrelated to the standard view suggesting two derivations of their own. As
shown below, both derivations assume that work per unit mass is equal to pdα, which is
not a valid assumption in the presence of phase transitions. The resulting expressions
contradict not only our Eq. (7) but also the identical Eq. (4) of Pauluis and Held (2002)
endorsed by Referee 3.
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The revised Section 2 below accounts for the above comments of the referees. It is
followed by the comments themselves and our specific replies to them. Following the
suggestion of Referee 1, we unburdened Section 2 of the longer derivation of Eq. (7)
from the continuity equation and the ideal gas law and derived the same result immedi-
ately from the consideration of the relative change of the air parcel’s volume. However,
this simpler derivation contains an implicit assumption, which, as discussed in the re-
vised text, necessitates our original longer derivation (in the revised text it is moved to
the Appendix).1

2 Atmospheric power in the presence of phase transitions

When going from a dry to a moist atmosphere, where, besides dry air, there is also
water vapor and the non-gaseous water (condensate) present, we need to accurately

1This section follows Section 1, the relevant revised portion of which can be found in our first comment
doi:10.5194/acp-2016-203-AC1. The relevant equations from the revised first section are
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define velocity and density (Pelkowski and Frisius, 2011). We consider an atmosphere
of total volume V as composed of n macroscopic air parcels each of volume Ṽi (m3)
such that V ≡ ∑n

i=1 Ṽi =
∫
V dV. Here V can be defined as the volume bounded by

the Earth’s surface and the surface corresponding to some fixed pressure level pT at
the top of the atmosphere, e.g. to pT = 0.1 hPa. This is the uppermost level in
many atmospheric datasets including those in the MERRA dataset. With m̃d, m̃v and
m̃c being mass of, respectively, dry air, water vapor and condensate in a considered
parcel, we define ρ ≡ m̃/Ṽ to be the air density, m̃ ≡ m̃d+m̃v, ρd ≡ m̃d/Ṽ , ρv ≡ m̃v/Ṽ ,
and ρc ≡ m̃c/Ṽ to be the condensate density.

Assuming the thermodynamic notion that work is performed due to expansion of a
macroscopic body and is the product of pressure and volume change, the work of an
air parcel per unit time per unit volume is

Wp ≡
p

Ṽ

dṼ

dt
. (7)

At this point, as suggested by our Referee 1, it is tempting to note, following, for exam-
ple, Batchelor (2000, p. 74), that the volume Ṽ of the air parcel changes as a result of
movement of each element of the bounding material surface with velocity v, such that
Wp becomes

Wp =
p

Ṽ

∫
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v · ndS̃ =

p

Ṽ

∫

Ṽ
∇ · vdṼ = p∇ · v, (8)

where n is the outward normal vector. The latter equality is valid in the limit of suf-
ficiently small Ṽ . Then, the global atmospheric power per unit surface area can be
defined and evaluated from the observed pressure and velocity of air as

W ≡ 1
S

n∑

i=1

WpiṼi =
1
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∫

V
p∇ · vdV. (9)
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Eq. (9) is equivalent to Eq. (4) of Pauluis and Held (2002), W = WIII , see Eq. (3)
above. Several essential comments are in order concerning the above derivation of
W (9) (note that Pauluis and Held (2002) listed this equation without a derivation or
reference). First, the above derivation considers the work of the expanding air that
have pressure p. Hence, v in (9) is the velocity of the gaseous constituents of the
atmosphere and not the mean velocity of gas and condensate.

Second, the derivation of Eq. (9) assumes the continuity of velocity at the parcels’
boundaries, but does not assume the continuity of pressure. Indeed, in agreement
with the thermodynamic definition of work (7), pressure is assumed to be the same
everywhere within the air parcel although it can vary from parcel to parcel. (If one
additionally requires the continuity of pressure (i.e. considers that pressure, too, varies
across the parcel as velocity does) and defines work of a parcel not as p

∫
S̃ v·ndS̃ but as∫

S̃ pv ·ndS̃, then the resulting expression for total work W would be (1/S)
∫
V ∇·(pv)dV,

which is always zero.) For this reason, W (9) can be considered as the definition of
macroscopic mechanical work per unit time (atmospheric power) that is consistent with
the thermodynamic definition of work (7). Therefore, W (9) is a function of the temporal
and spatial scale at which the macroscopic velocity v is defined.

Third, quite remarkably, the above derivation of (9) appears to be invariant with respect
to the presence or absence of phase transitions that change the amount of gas. That
is, when deriving Eq. (9) we did not use the equality

Wp =
p

Ṽ

(
m̃
dα

dt
+ α

dm̃

dt

)
, (10)

where α ≡ 1/ρ = Ṽ /m̃ is the volume occupied by unit air mass.

This is because Eq. (8) is based on an implicit assumption that the volume of the air
parcel can change only when ∇ · v 6= 0, i.e. when the parcel boundaries move at
different velocities at the considered scale.
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Indeed, the standard thermodynamic interpretation of Eq. (9) is that if a certain par-
cel expands (positive work), the rest of the atmosphere contracts by the same amount
(negative work), since the total atmospheric volume V is constant. Thus, the expand-
ing air parcels perform work on the compressing air parcels. When expansion and
compression occur at different pressures, the resulting difference can be converted to
mechanical work producing kinetic energy of wind which then dissipates to heat.

However, in the presence of phase transitions the situation is different. Consider for
simplicity a parcel of water vapor in a still atmosphere composed of pure water vapor.
Let it suddenly condense into a droplet. Despite the gas parcel has compressed into
the negligible volume of the droplet, it did so not because some other parcel had ex-
panded. In fact, no other air parcel performed any work on the condensing gas that
suddenly reduced its volume. Instead, this reduction in volume dṼ /dt < 0 occurred at
the expense of the work of the intermolecular forces that ensured condensation. As
condensation may occur nearly instantaneously (governed by velocities of the order
of sound velocity), this type of volume change is generally not accounted for by the
velocity divergence ∇ · v defined at an arbitrary scale. The question therefore arises
whether the above derivation and the resulting expression W = WIII (9) can be gen-
erally reconciled with Eq. (10) for Wp in the presence of phase transitions.

We show in Appendix A that if we use the continuity equation and the ideal gas equa-
tion of state, the integration of Wp (10) yields Eq. (9). This is because the require-
ment of continuity postulates that any void space produced by condensation must be
immediately filled by the expanding adjacent air parcels. This nearly instantaneous
non-equilibrium expansion and the associated positive work of the air parcels precisely
cancels the negative work of the intermolecular forces that make the air compress be-
cause of condensation. The requirement of continuity at a given spatial and temporal
scale masks the two processes that occur at a different scale specified by the conden-
sation process.

As we discuss in Section 6, since condensation is not spatially uniform, it is during
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such condensation-induced instantaneous expansion of the neigboring air parcels that
the macroscopic pressure gradients may form to ultimately drive the atmospheric cir-
culation and determine the value of atmospheric power W (9). In the conventional view
the circulation arises when some air parcels aquire an opportunity to expand as they
are receiving more heat (and thus warming more) than the others. The condensation-
driven circulation arises when some air parcels acquire an opportunity to expand as
the adjacent space is suddenly freed from the condensed gas. Notably, Eq. (9) does
not carry information about the causes of circulation. It just gives the definition of
macroscopic mechanical work per unit time (power) that is compatible with the thermo-
dynamic definition (7).

Forth, Eq. (10) makes it clear that in the presence of phase transitions work done per
unit mass is not equal to pdα/dt (cf. Vallis, 2006, Eq. 1.65) but to

Wp
Ṽ

m̃
= Wpα = p

(
dα

dt
+
α

m̃

dm̃

dt

)
= p

(
dα

dt
+ α2ρ̇

)
, (11)

where ρ̇ ≡ (dm̃/dt)/Ṽ (kg m−3 s−1) is the source term from the continuity equation
(6). It describes the local rate of phase transitions. The global integral of this additional
term is not zero,

∫
M pα2ρ̇dM =

∫
V pαρ̇dV 6= 0. Therefore, expression WIV (4) that

neglects this term is incorrect, WIV 6= WIII = W . It cannot be used for evaluation of
atmospheric power when the atmosphere has a water cycle.

Finally, we note that Eq. (9) does not assume stationarity. In the next section we con-
sider how W can be decomposed into several terms with different physical meaning.
This will clarify how W = WIII relates to WI (1) and WII (2).

C6



Appendix A. Deriving W (9) from Wp (10) for ideal gas

The equation of state for ideal gas is

p = NRT. (A1)

Here T is temperature, N is air molar density (mol m−3), V ≡ N−1 is the atmospheric
volume occupied by one mole of air, p is air pressure and R = 8.3 J mol−1 K−1 is the
universal gas constant.

Using (A1) we can now write Wp (10) as Wp = p

Ṽ
dṼ
dt = p

Ṽ

(
Ñ dV

dt + V dÑ
dt

)
= −dp

dt +

RN dT
dt + RT

Ṽ
dÑ
dt

= RT
(
−dN

dt + 1
Ṽ
dÑ
dt

)
. Here Ñ is the number of moles of gas within volume Ṽ , Ṽ =

ÑV .

The number of molecules (moles) Ñ in each air parcel can only change via an inflow
(outflow) of molecules through the parcel’s boundary. This change results from either
diffusion of molecules between the adjacent parcels or from phase transitions or from
both. Since in the case of diffusion any molecule leaving one parcel, dÑ1/dt < 0,
arrives to some other parcel, dÑ2/dt = −dÑ1/dt > 0, all the diffusion terms cancel in
the global sum of the last term in Eq. (2) over all parcels. What remains corresponds
to phase transitions:

n∑

i=1

dÑi

dt
=
∫

V

1
Ṽ

dÑ

dt
dV =

∫

V
ṄdV, (A2)

where Ṅ is the molar rate of phase transitions per unit volume (mol m−3 s−1). Its
integral over volume V is equal to the total rate of phase transitions in all the n air
parcels. By virtue of the conservation relationship (A2) Ṅ includes the inflow (outflow)
into all the air parcels from all liquid or solid surfaces (droplet surface in the atmospheric
interior or the Earth’s surface).
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Using Eqs. (2) and (A2) we can write total power W of the n air parcels composing the
atmosphere as

W ≡ 1
S

∫

V
WpdV =

1
S

∫

V
RT

(
Ṅ − dN

dt

)
dV. (A3)

Here dN/dt ≡ ∂N/∂t + v · ∇N is the material derivative of N with v being the gas
velocity.

On the other hand, the continuity equation can be written as

Ṅ − dN

dt
≡ Ṅ − ∂N

∂t
− v · ∇N = N∇ · v. (A4)

Note that the left-hand side of the continuity equation is identical to the term in braces
in Eq. (A3), the latter based on the equation of state (A1). Multiplying Eq. (A4) by RT
and noting that p = NRT , we find that Eq. (A3) turns into Eq. (9).

The physical meaning of Eq. (A3) becomes clear from consideration of an atmosphere
that is motionless on a large scale, such that v = 0 and ∇ · v = 0. Then condensation
that occurs instantaneously on a smaller scale is described by the source term Ṅ < 0
that represents the large-scale mean. The compensatory expansion of the adjacent air
is described by the large-scale mean ∂N/∂t < 0 showing that the molar concentration
of air diminishes. As is clear from Eqs. (A3) and (A4), since Ṅ−∂N/∂t = 0, no resulting
work is performed on the considered scale: W = 0.

Reply to the referees

We thank our referees for their comments.

Comment 3 of Referee 1 [doi:10.5194/acp-2016-203-RC1]: 3. The derivation of the
total atmospheric power given by Eq. (7)-(8) is unnecessarily complicated. I can di-
rectly obtain Eq. (7) from Eq. (2) by noting simply that

∫
pdV/dt =

∫
pd(δxδyδz)/dt =
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∫
p(∇ · v)dV . Not sure why the authors present their argument in such a lengthy and

confusing way. The referee also noted in his general comments that the presentation of
this work is somewhat confusing, and can be simplified substantially to make it clearer.

We followed the referee’s suggestion to directly derive W from the definition of relative
volume change. As we discuss in the revised Section 2, this derivation contains an
implicit assumption that any volume change occurs at the expense of the divergence
of velocity ∇ · v defined at an arbitrary scale. Since phase transitions involve gas ve-
locities that are scale-specific, the plausibility of this assumption for this case requires
a discussion, which is presented in the revised text.

Comment 2 of Referee 2 [doi:10.5194/acp-2016-203-RC2]: 1. Section 2 is both way
too complicated and appears to be wrong. Following Vallis’ (2006) notation:

W =
∫

V
p
dα

dt
ρdV =

∫

V
p(∂t(ρα) +∇ · (ραv)− αSρ)dV,

where Sρ = ∂t(ρ) +∇ · (ρv) is the local sources and sinks of mass. Now, αρ = 1 so

W =
∫

V
p(∇ · (v)− αSρ)dV =

∫

V
(∇ · (pv)− v · ∇p− αpSρ)dV.

This is the same form as in equation (8). But it depends explicitly on Sρ, contrary to
the authors’ claim. Why this contradiction? The problem in the authors’ derivation
comes in part from equation (3). While it is true that

∑
i dÑi/dt = 0, it is not true that∑

i TidÑi/dt = 0, unless the atmosphere is isothermal. But it is exactly what’s used
to convert the last term in equation (2) to the last term in equation (4). Ṽ = Ñ/N has
units of m3 (parcel−1). To compute work, however, we need the specific volume with
units of m3 (kg−1). So we have to introduce a new quantity, the mass per parcel m̃ so
that the specific volume is Ṽ /m̃. Then the expression for work (equation 4) with the
same units as in Vallis (2006) reads:

W =
1
S

∫

V
p
m̃

Ṽ

d(Ṽ /m̃)
dt

dV.
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But the continuity equation (6) also requires fixing. Since, N has units of mol m−3

then equation (6) is an equation for mass conservation only if the molar mass m̃/Ñ is
constant. But here the authors are, among other things, concerned about the effect
of moisture on the work and moist air, unlike dry air, has an inhomogeneous in molar
mass. The continuity equation (6) should then read:

∂t((m̃/Ṽ )) +∇ · (v(m̃/Ṽ )) = ˙̃m(N/Ñ) + m̃/ÑṄ − (m̃N/Ñ2) ˙̃N

where the right hand side is the local sources and sinks of mass. With these fixes, the
expression for work will look exactly like in Vallis (2006) and will depend on the sources
and sinks of mass.

The discrepancy between our Eq. (7) and the referee’s derivation results from the in-
correct definition of work. It is not pdα as clarified in our revised text, see Eq. (11)
above. Therefore, W 6= WIV ≡ (1/S)

∫
V p(dα/dt)ρdV.

We also note that in our derivation we did not assume either
∑

i dÑi/dt = 0 or∑
iRTdÑi/dt = 0. This misunderstanding might have arisen because the derivation

was presented in a very compact form. The revised more detailed text (new Appendix
A) makes it clear that the resulting expression for work does not depend on the tem-
perature term discussed by the referee.

Comment 3 of Referee 4 [doi:10.5194/acp-2016-203-RC4]: Remarks on the methodol-
ogy. Physically, the atmospheric energy budget is best understood by introducing some
kind of available enthalpy ape = h(η, qt, p)− hr(η, qt), where h is the moist specific en-
thalpy, η is some suitable definition of moist specific entropy, and qt the total specific
humidity, p is pressure, where hr(η, qt) representing the part of the total enthalpy that
is not available for adiabatic conversions into kinetic energy, so that

dh = (T − Tr)dη + (µ− µr)dqt + αdp
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As a result, it is possible to express the total power term as
∫

V
p
Dα

Dt
ρdV =

∫

V

D(pα)
Dt

ρdV

︸ ︷︷ ︸
=0

−
∫

V
α
Dp

Dt
ρdV =

∫

V

T − Tr
T

q̇dm+
∫

V
(µ− µr)

Dqt
Dt

dm

where q̇ represents diabatic heating terms by all manner of conduction of radiation.
This neglects the integral of dh/dt, but this term could be retained if desired. The
passage from the first term to the second term requires ∇(ρv) = 0, and ρv to the
total mass flux, in order to be able to claim that the integral of D(pα)/Dt vanishes,
so the authors should clarify this point, as well as boundary conditions assumed by
the different velocities entering the definition of v. In any case, the above formalism is
usually what constitutes the starting point for linking the atmospheric power budget to a
Carnot-like theory and for constraining the atmospheric power budget to solar heating,
sensible heat fluxes, and condensation/evaporation process. The approach proposed
by the authors seem to be quite unrelated to this standard view.

The referee uses the same incorrect expression for work as Referee 2 above, with the
same resulting discrepancies from our derivation. Total power is not equal to WIV ≡
(1/S)

∫
V p(dα/dt)ρdV, see Eq. (11) above. Moreover, since ∇ · (ρv) = ρ̇ 6= 0, the

second equation of the referee contradicts the first one.
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