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Abstract. Characterizing spatio-temporal irradiance variability is important for the successful grid integration of increasing

numbers of photovoltaic (PV) power systems. Using 1 Hz data recorded by as many as 99 pyranometers during the HD(CP)2

Observational Prototype Experiment HOPE, we analyze field variability of clearsky index k∗ (i.e. irradiance normalized to

clearsky conditions) and sub-minute k∗ increments (i.e. changes over specified intervals of time) for distances between tens of

meters and about ten kilometers. By means of a simple classification scheme based on k∗ statistics, we identify overcast, clear5

and mixed sky conditions, and demonstrate that the last of these is the most potentially problematic in terms of short-term PV

power fluctuations. Under mixed conditions, the probability of relatively strong k∗ increments of ±0.5 is approximately twice

as high compared to increment statistics computed without conditioning by sky type. As well, spatial autocorrelation structures

of k∗ increment fields differ considerably between sky types. While the profiles for overcast and clear skies mostly resemble

the predictions of a simple model published by Hoff and Perez (2012), this is not the case for mixed conditions. As a proxy for10

the smoothing effects of distributed PV, we finally show that spatial averaging mitigates variability in k∗ less effectively than

variability in k∗ increments, for a spatial sensor density of 2 km−2.

1 Introduction

The number of photovoltaic (PV) power systems has drastically increased in many regions of the world during the last decade,

reaching a total nominal capacity of more than 178 GW installed world wide at the end of 2014. The future global PV15

capacity is expected to continually increase further, with predictions for 2019 ranging from 396 through 540 GW (Solar Power

Europe (SPE), 2015). In consequence, the challenges associated with the inherent volatility of PV power production and its

fundamental cause, weather-induced heterogeneity in solar irradiance fields, will considerably increase as well (Stetz et al.,

2015). Variability in both irradiance and irradiance increments (changes over specified intervals of time) are of interest in

this context. On the one hand, variability in irradiance itself primarily affects the yield of a PV system and the dimensioning20

of battery storage. On the other hand, variability in irradiance increments impacts the balancing of generation and load, as

well as the maintenance of power quality such as voltage and frequency stability. Depending on the dimensions of the power

grid and the PV capacity in question, relevant variability in irradiance and its increments can span a broad range of spatio-

temporal scales, from seconds and meters up to days and hundreds of kilometers. There is a need to understand the biases

in representation of temporal variability resulting from temporally coarse-resolution observations (Yordanov et al., 2013b), as25

well as how spatial averaging (as would come from having distributed PV over a region) mitigates variability (Hoff and Perez,
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2010). Characterizing the spatio-temporal volatility of irradiance fields and their increments is key to the planning and reliable

operation of future power grids and their corresponding subsystems.

Recent studies of PV-related variability have analyzed power spectra of PV systems and solar irradiance (Calif et al., 2013;

Curtright and Apt, 2008; Klima and Apt, 2015; Lave and Kleissl, 2010; Marcos et al., 2011a; Tabar et al., 2014; Yordanov

et al., 2013b), compared power fluctuations from specific PV plants with corresponding irradiance measurements (Lave and5

Kleissl, 2013; Lave et al., 2013; Marcos et al., 2011a; van Haaren et al., 2014), and characterized power variability as a

function of PV plant size (Dyreson et al., 2014; Lave et al., 2012; Marcos et al., 2011b; van Haaren et al., 2014). Furthermore,

spatial autocorrelation structures and decorrelation length scales of increments in irradiance and clearsky index (i.e. irradiance

normalized to clearsky conditions), and PV power output have also been studied for a range of spatial scales and increment

values (Arias-Castro et al., 2014; Elsinga and van Sark, 2014; Hinkelman, 2013; Hoff and Perez, 2012; Lave and Kleissl, 2013;10

Mills, 2010; Perez et al., 2012; Perpiñán et al., 2013). For all quantities and methods considered, increment correlations at

different locations have been shown to decrease with increasing distance, with a smaller rate of decrease (longer decorrelation

distances) for larger time increments.

While satellite-derived irradiance data are convenient for the analysis of large spatio-temporal scales, comprehensive datasets

for local short-term variability are time-consuming and expensive to collect, and although needed have not previously been15

available (Hoff and Perez, 2012; Perez et al., 2012). Therefore, previous studies are either restricted to a limited spatial reso-

lution, a limited temporal resolution, or both. For example, the few studies that have been based on high-resolution 1 Hz PV

power observations only had measurements from a maximum of six PV systems (Marcos et al., 2011a, b) at their disposal.

Though irradiance measurements with this high temporal resolution have on occasion been conducted with more sensors, the

spatial coverage remains strongly confined (e.g. up to 45 sensors spread across∼ 2.5 km2; Dyreson et al., 2014). Some studies20

have used artificially generated data to overcome these restrictions, either by simulating simple cloud shapes (Arias-Castro

et al., 2014; Lave and Kleissl, 2013), or by constructing virtual networks based on time shifted single sensor measurements

(Perez et al., 2012). However, these simulated datasets do not necessarily coincide with reality.

To fill the gap in understanding of small-scale spatial and temporal variability in irradiance, we use an extensive experimental

dataset of global horizontal irradiance (GHI) field samples from two measurement campaigns to characterize sub-minute25

variability of clearsky index for distances between tens of meters and about ten kilometers. A high temporal resolution of

1 Hz and the use of up to 99 synchronized silicon photodiode pyranometers yields a robust basis for the analyses (these data

are described in detail in section 2). Based on this dataset with its unprecedentedly fine resolution in both space and time, we

study single-point statistics and two-point correlation coefficients of clearsky index, and develop a simple classification scheme

to identify overcast, clear and mixed skies (section 3). Conditioned on these three sky types, we then analyze the probability30

distributions of sub-minute increments in clearsky index for single sensors and large spatial averages of about 80 km2, as well

as their corresponding spatial autocorrelation structures (section 4). Finally, we spatially average randomly selected sensors

from the dataset, covering different area sizes but maintaining a fixed spatial density, as a proxy for the smoothing effects of

distributed PV power production (section 5). Discussions and conclusions follow in sections 6 and 7.
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2 Data

2.1 Measurement campaigns

The datasets on which this study’s analyses are based originate from two extensive measurement campaigns performed during

the HD(CP)2 Observational Prototype Experiment (HOPE) using a set of autonomous silicon photodiode pyranometers. These

instruments measure the downwelling shortwave radiation at the Earth’s surface in the range between 0.3 and 1.1 µm. Although5

this wavelength band does not span the entire solar irradiance spectrum, it corresponds well with the relevant bandwidths

of typical semiconductor materials used for photovoltaic applications (Pérez-López et al., 2007). In fact, the pyranometers

themselves may essentially be thought of as tiny PV systems, reduced in space to a single point. Equipped with a battery

power supply for up to 10 days, they store their data on-site with a temporal resolution of 10 Hz (averaged to 1 Hz during

post-processing). A GPS-based clocked control is used to ensure synchronization between sensors, and for proper positioning10

data.

The first field campaign with these instruments took place near Jülich, Germany (50.9° N, 6.4° E), from April 2 through

July 24, 2013. It featured a total of 99 pyranometers deployed over an area of about 80 km2. The second was conducted near

Melpitz, Germany (51.5◦ N, 12.9◦ E), and lasted from September 3 until October 14, 2013. During this time, 50 pyranome-

ters, all of which had previously been used in the Jülich campaign, were deployed over an area of about 4 km2. During the15

measurement campaigns each instrument was subject to regular weekly maintenance. This maintenance included data transfer,

battery replacement, thorough cleaning of the glass dome, and re-leveling of the mounting platform (if necessary). As part of

this process, the states of cleanliness and orientation were recorded, in order to facilitate identification of periods of bad data.

For each observation of tilt or fouling, that week’s worth of data was flagged accordingly, even though the specific problem did

not necessarily last for the entire preceding week.20

The geometry of the pyranometer locations for the Melpitz and Jülich campaigns, as well as a histogram of all sensor pair

distances dij is presented in Fig. 1. The sensor layout of the Melpitz campaign, with many sensors concentrated in the center

and fewer towards the edge of the domain, is more structured than that of the Jülich campaign. This difference is due to the

much larger spatial domain in the Jülich case, which entailed external restrictions on the instrument locations, such as road

access, setup permission, and agricultural land use. Consequently most of the very short sensor pair distances (dij < 1 km),25

and some intermediate distances (1 km< dij < 2 km) are attributed to the Melpitz campaign, while sensor pair counts with

dij > 3 km are all associated with the Jülich campaign (Fig. 1c).

Taking into account the final datasets’ high temporal resolution of 1 Hz, along with the corresponding dense spatial cover-

ages, the two field campaigns provide the basis for unique analyses of irradiance variability, particularly regarding potential PV

power fluctuations. At the same time, the limited durations of the campaigns result in a dataset that extends from mid-spring to30

mid-autumn, and may not be representative of other times of the year. Schmidt et al. (2016) use data from the Jülich campaign

for a performance evaluation of sky imager based solar irradiance forecasts, and Madhavan et al. (2016) present a more detailed

discussion of the campaign and the instrumentation. To the best knowledge of the authors, no other PV-related studies based

on comparably dense and high-frequency irradiance sensor networks have been published to date.
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Figure 1. Panels (a) and (b) show maps of the coordinates (UTM projection, grid zone 32U) of all pyranometers deployed during the two

field campaigns in (a) Melpitz and (b) Jülich. Panel (c) displays a histogram of the combined station pair distances from both data sets.

2.2 Clearsky index

The available global horizontal irradiance (GHI) at any given point on the Earth’s surface is subject to influences from both

astronomical and atmospheric processes. As for the former, the apparent movement of the sun relative to Earth gives rise

to diurnal and seasonal variations in GHI. These variations are accurately predictable and not large on short time scales of

seconds or minutes. On the other hand, weather-related contributions to irradiance variability are manifold and complex, and5

present on all time scales. For instance, the growth, motion, and decay of clouds can affect the seasonal cycle in GHI (e.g.

winter tends to be cloudier than summer in mid-latitude low-lying land), and the rapid succession of sunlight exposure and

cloud shadow in conditions dominated by fair-weather cumulus generates stochastic variability on short time scales (seconds

– minutes) (Woyte et al., 2007). The presence of different kinds of cloud (e.g. layer vs. convective) at different altitudes and

of different composition (e.g. high-albedo small cloud droplets vs. low-albedo large droplets in rainclouds) result in a complex10

set of influences on GHI over a broad range of timescales.

In order to distinguish the cloud-induced fluctuations from the slowly-evolving, astronomically-determined apparent motion

of the sun, a GHI time series G at a particular location may be related to either the extraterrestrial solar radiation Gextra

(i.e. irradiance on Earth if there were no atmosphere), or the clearsky radiation Gclear (i.e. irradiance on Earth with a cloud-

free atmosphere). Knowing these, we can define the clearness index15

k =
G

Gextra
, (1)
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and clearsky index

k∗ =
G

Gclear
, (2)

respectively. The extraterrestrial solar radiation Gextra depends only on astronomical relationships, whereas a calculation

of clearsky radiation Gclear requires parameters of atmospheric conditions, such as typical water vapor concentration and

aerosol load. As the exact characteristics of Gclear are model dependent, there is no single unique clearsky index. The use5

of any clearsky model thus introduces new uncertainties to the k∗ time series which are absent from the original irradiance

measurements. In spite of these uncertainties, use of the clearsky index is convenient because of the pronounced non-stationarity

of the irradiance time series.

While all atmospheric influences on GHI variability are included in k, variations in the clearsky index are dominated by

changes in cloud cover. Other sub-daily variations, especially those caused by changes in light scattering with solar angle α,10

are ideally removed entirely from k∗ (although depending on how accurately the atmospheric conditions and their variability

are actually estimated, such changes with α may still affect the clearsky index to a minor degree). With k∗ thus being better

suited to remove trends in GHI variability, the focus of this analysis will be clearsky irradiance time series computed for the

respective locations of both field campaigns, using the clearsky model described by Fontoynont et al. (1998). A limitation

of this model is that it is based on climatological means and does not account for all variations in scattering or absorption15

properties. Moreover, relatively low values of GHI occurring shortly after sunrise and just before sunset, coupled with path

prolongation and corresponding higher uncertainties in clearsky irradiance calculations at these times, can result in unrealistic

values of k∗ (Lave et al., 2012). In consequence, we only consider data associated with α > 15° throughout the study. While

the resulting clearsky index remains an approximate model-based quantity, rather than a direct measurement, it allows us to

focus directly on weather-related variations in surface irradiance.20

The lowest values of k∗ are typically not zero, because even the darkest of clouds do not attenuate all irradiance. As well, the

upper limit can exceed one, primarily due to short-term reflections from the sides of clouds (and also to a secondary degree due

to the limitations of the clear sky model). Under broken cloud conditions this phenomenon, known as cloud enhancement, can

cause single-point GHI to exceed its corresponding clearsky irradiance value by more than 50 % on short time scales (Luoma

et al., 2012; Piacentini et al., 2011; Yordanov et al., 2013a).25

To characterize the modulation of k∗ variability by the prevailing sky type (e.g. overcast vs. clear sky), we divide the time

series at each sensor into non-overlapping 15-minute windows. This sub-hourly timescale is short enough that it is typically

dominated by a single sky type, but long enough that there is enough variability to make statistical analyses meaningful. We

will use differences in the statistics of k∗ within these 15-minute windows to define different sky type categories.

To illustrate the wide range of cloud influences on k∗ statistics in these 15-minute windows, Fig. 2 presents three distinct30

examples of spatio-temporal variability in k∗. These representative subsets have been manually selected from a pool of random

windows sampled from the entire duration of the Jülich campaign. Each panel includes summary statistics for all sensors in the

domain for the period (represented as box plots), as well as the variability of a single randomly-selected sensor. The boxplots

each consist of a lower "whisker" wlow, the first quartile Q1, the median Q2, the third quartile Q3, and an upper "whisker" wup
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Figure 2. Examples of different spatio-temporal variability in clearsky index k∗ for three distinct cases of sky types: (a) mostly overcast, (b)

mostly clear, and (c) mixed. These representative subsets have been manually selected from the Jülich campaign and span 15 minutes each.

The time series of randomly selected sensors (red curves) are contrasted with summary statistics of field variability, represented as box plots

(Table 1).

(summarized in Table 1). Following common practice when presenting box plots, wlow (wup) is defined as the lowest (highest)

data point that still falls within the range of Q1− 1.5 · IQR and Q3 + 1.5 · IQR, with IQR denoting the interquartile range

IQR=Q3−Q1 (Devore, 2015). Any data below wlow or above wup are considered outliers.

The 15-minute window in panel 2(a) features very little spatial variability and a continually low range of k∗ values, cor-

responding to a time of overcast conditions during which a fairly homogeneous cloud layer spanned the entire domain. In5

contrast, the majority of sensors in panel 2(b) show a continually high range of k∗ with little spatial variability, with the excep-

tion of some pronounced rapid and short-lived decreases in k∗. Clear sky conditions dominated the domain at this time, with

occasional short-duration shadows cast on single sensors (although not the single example sensor). Finally, the data shown in

panel 2(c) display considerable variability throughout the domain at all times, with a consistent IQR value of∼ 0.5. The trace

of the example sensor clearly illustrates the predominant condition of mixed skies in this case, with an alternation between10

cloud coverage and clear sky exposure. The characteristic differences in the temporal average and variability of k∗ evident in
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Table 1. Summary statistics used to visualize data spread throughout this study.

Name Symbol Definition

First quartile Q1 75 % of the data >Q1, and 25 % <Q1

Median (second quartile) Q2 50 % of the data >Q2, and 50 % <Q2

Third quartile Q3 25 % of the data >Q3, and 75 % <Q3

Interquartile range IQR Q3 −Q1 (interval containing half of the data)

Lower whisker wlow lowest value >Q1 − 1.5 · IQR

Upper whisker wup highest value <Q3 + 1.5 · IQR

Outliers - any data points <wlow or >wup

these example datasets indicate that a natural classification scheme for sky type within 15 minutes can be developed in terms

of the statistics of k∗.

3 Sky type variability

3.1 Single-point statistics of clearsky index

In order to assess the character of irradiance variability conditioned on sky type, we group subsets of similar sky conditions by5

means of two simple statistics. Specifically, we compute the sample arithmetic mean

k∗i =
1

N

N∑
t=1

k∗i (t), (3)

and the sample standard deviation

σk
∗
i =

√√√√ 1

N − 1

N∑
t=1

(k∗i (t)− k∗i )2 (4)

of k∗i (the clearsky index of the ith sensor) for each sensor for all 15-minute periods, using non-overlapping windows of width10

T = 900 s (resulting in a sample number N = 900 for the 1 Hz data).

These two statistical measures allow an intuitive characterization of the prevailing sky type that a sensor has been subjected

to for a limited time, by quantifying the average and spread of the respective 15-minute window in its timeseries. A kernel

density estimate (KDE) of the joint probability density function (PDF) of k∗i and σk
∗
i using data for all individual sensors and

all available days from both measurement campaigns is presented in Fig. 3. The estimated PDF is overlaid with a regular grid15

that we will use to define particular sky type classes.

In the low variability range σk
∗
i < 0.09, the two peaks in the joint PDF (located in A1/B1, and D1/E1 of Fig. 3, respectively)

clearly represent the cases of predominant overcast (low k∗i and low σk
∗
i ), and clear sky (high k∗i and low σk

∗
i ) conditions. In

addition to these two well-defined end members, intermediate sky conditions were also recorded by the single sensors. While
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Figure 3. Kernel density estimate (KDE) of the joint probability density function (PDF) of mean k∗i and standard deviation σk
∗
i of clearsky

index, based on all available single sensor data from both measurement campaigns. The overlaid regular grid is used to define particular sky

type classes.

these span the entire ranges of k∗i and σk
∗
i , they are not uniformly distributed. In fact, a separation between relatively clear sky

and overcast conditions (i.e. high and low k∗i ) can be observed for most values of σk
∗
i , though the distinction becomes less

pronounced with increasing σk
∗
i .

3.2 Two-point correlations of clearsky index

The quantities k∗i and σk
∗
i provide single-point temporal statistical information about variability in k∗. As a first characteriza-5

tion of the spatial structure of the k∗ field, we compute the spatial two-point correlation coefficients between sensors i and j

ρk
∗
ij =

N∑
t=1

(k∗i (t)− k∗i )(k∗j (t)− k∗j )√√√√ N∑
t=1

(k∗i (t)− k∗i )2
N∑
t=1

(k∗j (t)− k∗j )2

(5)

conditioned on the 15-minute intervals falling within individual boxes in Fig. 3. That is, all 15-minute time windows, during

which both sensors in a pair are simultaneously associated with the same sky type, are used to calculate a single ρk
∗
ij value10

for the respective pair of sensors. In Eq. (5), k∗i (t) and k∗j (t) are the two individual time series of the pair of sensors for those

time periods in which the statistics of both sensors are in the same grid box, while k∗i and k∗j are the corresponding arithmetic

means. The quantityN denotes the number of data points in the two time series. Note that the meaning of the overbar, denoting

the arithmetic mean, is different than that in Eq. (3) and 4, as the averaging time increases from 900 s in Eq. (3) to the total

time of simultaneously available 1 Hz data of i and j in Eq. (5).15
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The resulting distributions of spatial autocorrelation functions ρk
∗
ij are shown as functions of sensor pair distance dij in

Fig. 4 for each of the grid boxes from Fig. 3. The same box plot statistics listed in Table 1 are computed for 10 logarithmically

spaced bins of dij . A pair of sensors is only included in these calculations if its members share the same sky type for at least

60 minutes over the observational period. The number of pairs used to derive the box plot information is given in each panel.

Pairs of sensors with very high σk
∗
i and very low k∗i (panels A3 through A5), are found to be virtually non-existent, although5

these ranges are occupied by individual sensors (cf. Fig. 3). Similarly, combinations with relatively high σk
∗
i and moderate or

large k∗i (panels B4/5 and E4/5) also lack a high number of available sensor pairs. The remaining well sampled grid boxes all

show spatial autocorrelation functions ρk
∗
ij that decrease with increasing dij , as expected. However, the rates of decrease vary

considerably across the different grid boxes. The differences in autocorrelation structure between two adjacent grid boxes (e.g.

A1 and B1) are generally small, but become more pronounced when comparing those farther apart (e.g. A1 and D4).10

For further analyses, and consistent with the manually selected exemplary periods previously shown in Fig. 2, we consider

a classification of three distinct sky types based on the grid boxes:

1. overcast (A1 and B1),

2. clear (D1 and E1), and

3. mixed (A3 through E5).15

This classification is based upon the subjective identification of different grid boxes in Fig. 3 and 4 with characteristic statis-

tical properties. Although some data corresponding to intermediate sky conditions (panels A2 through E2, as well as C1) are

neglected using this classification scheme, the structure of ρk
∗
ij is appreciably distinct for all three identified sky types.

Under overcast conditions, correlation coefficients remain ρk
∗
ij ≈ 1 for dij . 1 km, while clear conditions deviate from

ρk
∗
ij ≈ 1 even for relatively small separations dij . 0.05 km. Correlation values ρk

∗
ij ≈ 1 appear under mixed sky conditions20

only for very small dij . 0.05 km. With increasing distances, the three sky types’ spatial autocorrelation structures also differ

in their rates of decay. For example, the characteristic distance to reach ρk
∗
ij ≈ 0.5 is about 10 km for clear sky and overcast

conditions, while it is an order of magnitude smaller (∼ 1 km) for the mixed sky type.

The k∗ autocorrelation structures within the different sky types are consistent with the associated cloud patterns. The results

for overcast and clear sky conditions both suggest fairly large and homogeneous structures (cf. 10 km to reach ρk
∗
ij ≈ 0.5), cor-25

responding to large stratus-type cloud layers in the former case, and homogeneously clear skies (with infrequent and localized

shadowing of the sensors) in the latter. During times classified as mixed, the structure of ρk
∗
ij indicates that heterogeneous cloud

fields dominate, with much smaller length scales than those under overcast conditions. The decay length scale of correlations

under mixed skies corresponds well with typical cloud length scales . 2 km of cumulus-type clouds (Neggers et al., 2003).

4 Variability in clearsky index increments30

The previously discussed properties of the observed k∗ fields are independent of their ordering in time, i.e. randomly shuffling

all sensor-pair data in time (within the 15-minute windows) will result in the same spatial autocorrelation structures. While
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Figure 4. Spatial two-point correlation coefficients ρk
∗
ij of clearsky index k∗ as functions of sensor pair distance dij for each of the grid

boxes from Fig. 3, based on data from both field campaigns. The summary statistics (cf. Table 1) are based on 10 logarithmically scaled bins

of dij , and include only those sensor pairs whose members simultaneously correspond to the same grid box for at least 60 minutes. The total

number of pairs used to derive the statistics is given in each panel. Grid boxes to be subsequently grouped as similar sky types are indicated

by colored boxes.

this overall variability is of some interest (e.g. when considering long-term yield of PV systems), it does not characterize how

rapidly k∗ fields can change. A useful measure of intermittency in the clearsky index is the statistics of k∗ increments

∆k∗τ (t) = k∗(t+ τ)− k∗(t) (6)

for different time lags τ .
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deviation σ∆k∗τ around their means ∆k∗τ (dashed black lines), and contrasted to the much narrower distributions of the spatially smoothed

average of all pyranometers (solid gray lines). The respective average probabilities P(∆k∗τ = ±0.5) of single sensors to fluctuate by ±0.5

are quoted in each panel.

4.1 Increment statistics

PDFs of ∆k∗τ estimated from data from the Jülich campaign for three short-term time lags τ = (1, 10, 60) s are presented in

Fig. 5. The results are first conditioned on the sky type classification (first three columns) and then shown again for all sky

types together (rightmost column). As a first illustration of the effect of spatial averaging on fluctuation statistics, the PDF of

area-averaged increments is also included in each panel.5

All PDFs are characterized by a narrow central peak - corresponding to a high probability of very small increments -

surrounded by broad tails in which the PDF decreases slowly. With increasing τ , these tails become flatter and the probability

of very large excursions increases. While the PDFs of single sensor observations all exhibit such tails, these features are much

less prominent for the spatially-averaged k∗ increment distributions. This result is consistent with previous findings of e.g. Lave

and Kleissl (2010), Marcos et al. (2011b), Dyreson et al. (2014), and van Haaren et al. (2014). Comparing the distributions of10

increments from multiple pyranometers and PV plants of different capacities for various temporal resolutions, these previous
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studies all showed high magnitude changes with increasing time lag, and fewer high magnitude changes with increasing PV

plant size (or numbers of sensors).

Under overcast conditions, the central peaks of the distributions are generally prominent and the tails are not particularly

pronounced. The PDFs of clear skies also have a strong central peak but display broad flat tails (higher than for overcast

conditions), representing the rare large excursions evident in Fig. 2. The central peak is wider under mixed conditions, and5

the flanks are flatter than for clear skies. Under mixed conditions, probabilities of large excursions are enhanced by the rapid

changes associated with passing cloud edges. This distribution of increments is consistent with the individual time series shown

in Fig. 2. The statistics obtained when all sky types are taken together feature the same shapes in the tails as those of the mixed

sky type, because the extreme fluctuations in k∗ are most common under mixed conditions.

A measure of the extent of the tails of the PDF is the probability P(∆k∗τ =±0.5) of a single sensor to fluctuate by ± 0.5.10

The values for this quantity, quoted in each panel of Fig. 5, take different orders of magnitude among the different sky types.

These probabilities increase from overcast to clear and then to mixed sky conditions, while the values associated with the

overall statistics of all sky types are located somewhere in between the last two classifications. Compared to the statistics of

all sky types, and independent of τ , P(∆k∗τ =±0.5) is more than twice as high under conditions classified as mixed. Thus, for

applications such as the maintenance of grid stability, where worst case scenarios (in terms of strong short-term PV fluctuations)15

are of interest, the conditioning of ∆k∗τ statistics on different sky types demonstrates the strong dependence on specific sky

conditions of the likelihood of severe fluctuations occurring shortly one after another.

While changes in increment variability are reflected by changes of σ∆k∗τ (dashed lines in Fig. 5), the standard deviation is

not an appropriate measure of the size of extreme fluctuations due to the non-Gaussian character of k∗ increment statistics. In

consequence, the widely used three-sigma rule of thumb, according to which a range of ∆k∗τ ± 3σ∆k∗τ would cover 99.73 %20

of the values if ∆k∗τ were normally distributed (M.S. Nikulin (originator), 2002), can be misleading when applied to k∗

fluctuations. For example, only about 95 % of the empirical single sensor data is included in this range for the most variable

subset of τ = 60 s and mixed skies (Fig. 5k). This result is in line with previous findings of the 99.7th percentile of one minute

increments in clearsky index being about seven standard deviations away from the mean (Mills, 2010).

4.2 Two-point correlations of increments25

The differences between the single sensor increment statistics and the distributions of areal averages in Fig. 5 are of interest,

because the spatial averaging clearly results in a substantial reduction in the probability of high-magnitude k∗ fluctuations.

In order to specify the underlying spatio-temporal field characteristics, we analyze two point correlation coefficients of k∗

increments ρ∆k∗τ
ij (computed as in Eq. 5), based on data from both field campaigns. Various models have previously been

proposed to predict the behavior of increment correlation as a function of distance for specific temporal scales, either by using30

empirical fits to measured data (Hoff and Perez, 2012; Lave and Kleissl, 2013; Lonij et al., 2013; Mills, 2010; Perpiñán et al.,

2013) or by modeling simplified cloud shapes (Arias-Castro et al., 2014). While the empirical fits are based on datasets of

limited spatio-temporal resolutions, the more theoretical model does not account for the complexity encountered in real cloud

shapes. Our dataset permits a direct empirical assessment of the spatial correlation structure of increments.
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Figure 6. Spatial two-point correlation coefficients ρ∆k∗τ
ij of clearsky index increments ∆k∗τ as functions of sensor pair distance dij for

different time lags τ (a – i), as well as sensor pair distance divided by time lag (j – l). The results are conditioned on different sky types and

based on data from both field campaigns. The summary statistics (cf. Table 1) are computed with 10 logarithmically scaled dij bins, and

include only those sensor pairs whose members simultaneously correspond to the same sky type for a total of at least 60 minutes. The colored

regions correspond to the model ρ∆k∗τ
ij = (1+

dij
τ ·v )−1 (Hoff and Perez, 2012), using a range of relative cloud speeds 2 ms−1 < v < 10 ms−1.

Note the different scales on the vertical axes.

Conditioned on the previously defined classification scheme of sky types, summary statistics of ρ∆k∗τ
ij (cf. Table 1) are

presented as functions of sensor pair distance for different time lags in Fig. 6, using 10 logarithmically scaled dij bins. Also

shown in Fig. 6 are the autocorrelation structures as functions of sensor pair distance divided by increment size, obtained

using ∆k∗τ time series of all three increments τ = (1, 10, 60) s. The plots only include those sensor pairs whose members

simultaneously correspond to the same sky type for a total of at least 60 minutes.5

A useful measure of increment correlation structure is the decorrelation length scale d0, which we define to be the minimum

distance at which ρ∆k∗τ
ij = 0.05. These distances generally increase with increasing time lags, and they decrease from overcast

to clear skies, and then to mixed conditions. As an exception to the latter statement, under overcast and clear conditions k∗

increments associated with very short time lags τ = 1 s (panels a and b) are uncorrelated even for very small dij . The mixed
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Table 2. Increment decorrelation length scales d0 and effective decorrelation length scales d′0 = d̂0 · τ (for which ρ∆k∗τ
ij = 0.05) estimated

from Fig. 6. Scaled decorrelation distances d̂0 used to derive d′0 are obtained from the generalized analysis in said figure’s panels (j) – (l).

overcast clear mixed d= τ · v( 1
ρ
− 1)

τ [s] d0 d′0 d0 d′0 d0 d′0 dv=2ms−1

0 dv=10ms−1

0 [km]

1 < 0.05 0.161 < 0.05 0.028 0.092 0.016 0.038 0.190

10 2.171 1.611 0.231 0.285 0.201 0.163 0.380 1.900

60 7.169 9.664 1.541 1.708 1.077 0.977 2.280 11.400

sky type features a measurable decorrelation length scale d0 ≈ 90 m for τ = 1 s. For τ = 10 s (τ = 60 s), this distance increases

to 2.2 km (7.2 km) under overcast, 0.2 km (1.5 km) under clear sky, and 0.2 km (1.1 km) under mixed sky conditions. These

decorrelation distances estimated from Fig. 6 are all summarized in Table 2.

In accord with previous studies published by Mills (2010) and Hoff and Perez (2012), increasing time lags are accompanied

with increasing correlation coefficients for any given dij < d0. As well, ρ∆k∗τ
ij decreases with increasing dij for any fixed τ ,5

converging to zero. Both of these earlier studies analyzed lags on distances between tens and hundreds of kilometers. Mills’

analysis uses one minute averages of k∗ from 23 pyranometers, while Hoff and Perez derive their results from hourly satellite

data. As anticipated by Perez et al. (2012), the presence of negative correlation extrema found during their single-sensor virtual

network study are not observed in our analysis of observationally-based ρ∆k∗τ
ij . The transitions of the spatial autocorrelation

structures of ∆k∗ between sky types and time scales shown in Fig. 6 in part resemble those presented by Perpiñán et al.10

(2013), who analyzed the relationship between correlation, distance and time scale of PV power fluctuations, using data from

70 DC/AC inverters in a multi-megawatt PV plant.

In addition to the statistics of the measured data, each panel of Fig. 6 also includes colored regions corresponding to the

model of spatial correlation coefficients

ρ
∆k∗τ
ij = (1 +

dij
τ · v )−1 (7)15

proposed by Hoff and Perez (2012), using a range of cloud speeds 2 ms−1 < v < 10 ms−1. These speed values corre-

spond approximately to the range of mean vector winds at 850 hPa v850 for Germany from the ERA-40 re-analysis atlas

(2 ms−1 . v850 . 8 ms−1; Uppala et al., 2005; ECMWF). While Hoff and Perez (2012) obtained Eq. (7) as a curve fit from

data with hourly resolution and pair distances up to several hundred kilometers, they also considered an initial assessment of

its applicability to higher spatio-temporal resolutions. Compared to other models, Lave and Kleissl (2013) showed Eq. (7) to20

yield relatively high correlation coefficients and relatively long decorrelation length scales. Of the models considered by Lave

and Kleissl, the selected one provides the best fit to our data. As the model makes no distinction between sky types, its output

in Fig. 6 is the same for each row of panels and the quantity v cannot be interpreted as the actual speed of the clouds. Rather,

it represents a quantity with the units of speed that combines information about cloud type and motion.
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The ranges of the model results are in broad agreement with the summary statistics of the two field campaigns and the

general decrease of spatial correlation with increasing distance is reproduced well. However, differences between overcast and

clear sky conditions are evident, as the former tends to coincide with the upper region of the model range (corresponding to

high v), while the latter rather agrees with the lower end of the range (low v). Overcast conditions for τ = 1 s again are an

exception to this general rule. For the mixed sky type, and for all values of τ , the correlation values coincide with the upper5

region of the model for very small dij , but they decrease more rapidly with increasing distances and thus feature decorrelation

distances that are consistently much smaller than the modeled ones.

Finally, the bottom panels (j) – (l) bring the above results together by presenting the correlation coefficients of different

sky types as functions of distance over time lag. Again, overcast conditions coincide with model outputs for high values of v

almost entirely, while results for clear skies mostly overlap with modeled correlation coefficients for low v. Mixed conditions10

are highly correlated for short scaled distances (corresponding to the upper region of the model), but de-correlate rapidly with

increasing dij · τ−1. If the range of v values considered was broadened, the correlation structures would fall within the model

envelope for all sky types. However, while the profiles for overcast and clear skies look similar to the model prediction for

some specific v, this is not the case for the mixed cloud case. For short scaled distances the correlation decay corresponds to

an intermediate value of v in the model - but after that, the correlations drop off much faster. This result demonstrates that the15

model is not able to capture the correlation structure for mixed sky conditions.

5 Variability in spatial averages

Averaging clearsky index increments from different sensors provides an estimate of the output variability of an ensemble of PV

installations at multiple locations. In order to assess the effect of area averaging on variability as a function of averaging areaA,

we employ the following random circle sampling method. First, the borders of the domain corresponding to each field campaign20

were determined by a convex hull encircling the instruments’ coordinates, using the mean minimum distance between sensors

as a circumferential padding. Within each of these domains, a number of circles of specified area was randomly placed. Area

averages of k∗ and its increments in a circle were taken if at least 75 % of the circle area was in the domain and the circle

included a number of pyranometers specified to maintain a constant sensor density. If there was an excess of pyranometers

within a randomly-chosen circle, a subset was randomly selected to maintain the specified density. This sampling method was25

adopted because of the irregular distribution of sensors in the two campaigns. Three representative circles are illustrated for

the Jülich campaign in Fig. 7, using circle radii of 1.25 km and a fixed sensor density of 2 km−2.

The timeseries of k∗ and ∆k∗τ were then spatially averaged over the sensors within each circle for an ensemble of 500

different circles within each of ten logarithmically spaced area bins, using a constant sensor density of 2 km−2. Samples were

drawn from both field campaigns, with the Melpitz campaign only allowing the use of circles up to about 4.5 km2, and the30

Jülich campaign covering the entire spatial range. Using the median standard deviations of k∗ and ∆k∗τ over all sensors as
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Figure 7. Three representative realizations of randomly selected circles falling within the study domain, using circle radii of 1.25 km, and

a fixed sensor density of 2 km−2. The coordinates (UTM projection, grid zone 32U) of all pyranometers of the Jülich campaign are shown,

along with their corresponding convex hull, using a circumferential padding amounting to the mean minimum distance between sensors

(about 440 m). Valid circles used to compute area-averaged quantities must overlap the domain by at least 75 % and include a specified

number of pyranometers. If there is an excess of pyranometers within a randomly-chosen circle, random subset selection will ensure the

adherence to a constant sensor density.

normalizing factors, we define the normalized variability of area-averaged quantities as the relative standard deviations

σ̂k
∗

=
σk

∗
area

σk
∗

0

(8)

and

σ̂∆k∗τ =
σ

∆k∗τ
area

σ
∆k∗τ
0

. (9)

Conditioned on the previously described sky types and time lags, summary statistics (cf. Table 1) of these relative variabilities5

are presented as a function of averaging area in Fig. 8. As circles with areas below 0.5 km2 contain only single sensors, no

averaging occurs in these circles and the median relative variability for this area is one. Although the standard deviation is not

a good measure for extreme fluctuations (due to the non-Gaussian character of k∗ increment statistics), it offers a convenient

way of characterizing “typical excursions from the mean” and has previously been used in similar contexts, for example by
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Figure 8. Normalized standard deviations σ̂k
∗

and σ̂∆k∗τ in clearsky index k∗ (panels a – c) and its increments ∆k∗τ (panels d – l) as

functions of averaging area A for different short-term time lags τ , and conditioned on different sky types. The summary statistics (cf.

Table 1) are computed for ten discrete areas that are logarithmically increasing in size, and contrasted with the uncorrelated decrease of

variability following n−0.5. The random circle method is used to sample these areas, using 500 different circles for each area bin, and a

constant sensor density of 2 km−2. Samples are drawn from both field campaigns, with the Melpitz campaign only allowing for circles up

to about 4.5 km2 of area, and the Jülich campaign covering the entire spatial range.

Hoff and Perez (2010, 2012). The standard deviation is also convenient to use because irrespective of the distribution of the

data the relative variability will change as n−0.5 if the sensors are uncorrelated, where n is the number of sensors in the circle.

The curve for the relative variability of uncorrelated sensors is included in Fig. 8.

Variability in averaged clearsky index decreases much more slowly with averaging area than does variability in increments.

The decrease of variability with averaging area is also more rapid for shorter increment times than longer increments, and5

less rapid for overcast conditions than other sky types. For both τ = 1 s and τ = 10 s, the decrease of σ̂∆k∗τ closely follows

the n−0.5 curve corresponding to uncorrelated sensors. This is also generally true for clear and mixed conditions, but not for

τ = 60 s under overcast conditions. This behavior is in agreement with the correlation structures presented in Fig. 4 and 6. As
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the standard deviation of the sum x+ y of two random variables with correlation coefficient ρxy is

σx+y =
√
σx2 +σy2 + 2ρxyσxσy, (10)

the standard deviation of the sum (or mean) of n positively correlated variables is always larger than that of n uncorrelated

variables. For quantities with relatively long decorrelation distances, e.g. k∗ under overcast conditions (cf. panels A1 and B1 in

Fig. 4), the effect of area averaging on fluctuations is reduced accordingly. The shorter the decorrelation distance becomes, the5

closer σ̂ follows n−0.5. Except for the aforementioned 60 s increments under overcast conditions, the decorrelation scales of

increments are small compared to the radii of the circles used to compute the area averages. For example, averages for circles

of diameter 1 km (A' 0.8 km2) and larger will be influenced when the decorrelation scale is about 1 km or smaller.

Marcos et al. (2011b) present a similar figure of the 90th percentile of power fluctuations as a function of PV plant area,

based on data from eight different power systems. They find that the smoothing effect follows S−0.5 for small increments of 110

and 2 s, with S denoting the PV plant extension, while variability decreases less rapidly with increasing increment time lags

for τ > 5 s. As the areas of PV power plants are typically densely covered by PV modules, the effect of longer decorrelation

distances (e.g. due to increased τ ) and higher spatial correlation coefficients are much stronger in a centralized PV plant than in

the distributed scenario represented by our study. Hoff and Perez (2010) have introduced the concept of the Dispersion Factor

to describe these differences in the spatial smoothing effect as a function of the along-wind extension of a set of PV systems,15

the cloud transit rate and the increment time lag considered.

6 Discussion

When considering the implications of clearsky index variability for PV power, the short-term sky type classifications used

throughout this study can be linked to distinct PV power fluctuation levels as in Perpiñán et al. (2013): overcast, clear, and

mixed conditions correspond respectively to low, intermediate, and high PV fluctuation levels. While overcast conditions may20

necessitate other power sources to substitute the momentary lack of PV generation, clear and mixed conditions can negatively

impact the electrical grid. Under clear conditions, high PV power feedback (i.e. reverse power flow from the distribution grid

to the transmission grid) can occur and needs to be managed in areas of high PV penetration (Wirth et al., 2014), whereas

mixed conditions may endanger the grid’s reliability due to the frequent power ramping of PV systems (van Haaren et al.,

2014). In the context of sub-minute variability, we illustrate the event risk of k∗ fluctuations by means of increment PDFs in25

Fig. 5, which quantifies how mixed conditions feature flatter tails and higher probabilities of strong fluctuations than overcast

and clear skies. As the variability of the effective irradiance incident on an inclined plane has been reported to be higher on a

daily basis than that on the horizontal plane (Suri et al., 2007; Perpiñan, 2009), these strong k∗ fluctuations may be even higher

when considering tilted PV panels.

The relationship between measured irradiance and PV power also includes a smoothing effect, because the area of a pyra-30

nometer is very small compared to that covered by a PV system’s panels. Thus, the larger the spatial footprint of a considered

set of PV systems, the more pronounced the smoothing effect will be, and the lower the necessary temporal resolution of the
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data may become. When considering very many inter-connected PV systems in a very large area, e.g. all of Europe, spatial

smoothing appreciably reduces the necessary temporal resolution of data (the European Energy Exchange, for example, uses

15 minute time steps for electricity trading). At the other end of scale, Marcos et al. (2011b) find power fluctuations of e.g. up

to± 50 % from one second to the next (and changes of more than 90 % for a time lag of 20 s) in 1 Hz power data from a single,

relatively small, 48 kWp PV plant. Yordanov et al. (2013b) even argue that the optimal temporal resolution of single point5

irradiance measurements should be around 10 Hz, in order not to miss extremely short but relatively high magnitude changes.

Thus, a high temporal resolution may not be necessary for large-scale analyses, but it is key to characterize local short-term

variability in solar irradiance on the spatio-temporal scales that we investigated.

There are substantial differences between the variability characteristics of single utility scale PV plants covering relatively

small areas, and fleets of distributed systems with similar total capacities, but spanning relatively large areas (Hoff and Perez,10

2010). The spatial scales covered by our datasets are representative of both distributed generation and utility scale power

systems, and the spatial autocorrelation structures of k∗ and ∆k∗ fields presented in Fig. 4 and 6, as well as the area averaged

results of Fig. 8 quantify the smoothing effects. For a scenario of low-penetration distributed generation (two systems per km2),

the area-averaged variability in k∗ accordingly remained under the influence of positively correlated sensors (especially under

overcast conditions). In contrast, variability in area-averaged sub-minute ∆k∗τ was shown to vary as one over the square root15

of the number of sensors as this quantity is only weakly correlated for the sampled area sizes in Fig. 8.

Hoff and Perez (2012) have used hourly satellite-derived irradiance data from three different locations in the United States

to analyze two-point correlations of k∗ increments as a function of pair distance, with samples being separated between 10

and 300 km. Taking relative cloud speed and increment time lag (1 h≤ τ ≤ 4 h) into account, they proposed a model for

ρ
∆k∗τ
ij (cf. Eq. 7) that implies a linear relationship between distance and time lag for fixed values of the correlation coefficient.20

Hoff and Perez (2012) provide evidence for this relationship by presenting a linear scaling of station pair distances and time

lags for fixed correlation coefficients, based on satellite-derived data (their Fig. 7). Perez et al. (2012) show similar results

for decorrelation distances below 10 km and time lags below 15 minutes, based on virtual pyranometer networks (i.e. single

sensor measurements shifted in time) with temporal resolutions of the single-point measurements being as low as 20 s (their

Fig. 5). Our findings indicate that this linear scaling of distance and time lag may not necessarily hold for observed multi-point25

samples of k∗ fields at very high spatio-temporal resolutions. Along with the decorrelation distances d0, Table 2 also quotes

effective decorrelation length scales d′0 = d̂0 · τ for each time lag. These are derived using scaled decorrelation distances d̂0

obtained from the generalized analysis of correlation coefficients as functions of distance over time lag (Fig. 6 j – l). While

the values of d0 agree reasonably well with d′0 for τ = 10 s and τ = 60 s, the results differ substantially for τ = 1 s. When

analyzing correlation coefficients as functions of distance over time lag, as in Fig. 6 (j) – (l), the curves associated with the30

different sub-minute τ do not collapse on top of each other when plotted separately (not shown). Instead, high-τ data yield

systematically lower correlation coefficients than low-τ data, and scaled decorrelation distances d̂0 are sorted in descending

order along the 1 s, 10 s, and 60 s time lags. This sequencing has also been observed, but not discussed, by Hinkelman (2013)

(her Fig. 9) for 10 s< τ < 600 s, which again suggests that the linear relationship between distance and time lag clearly shown

by Hoff and Perez (2012) to govern large scales may not be applicable on very small scales.35
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7 Conclusions

With the continual global increase of PV power systems and the inherent weather-induced volatility of their power output,

characterizing the underlying irradiance variability in both space and time is important for the planning and reliable operation

of future power grids. In the present study, we analyzed spatio-temporal field characteristics of clearsky index and sub-minute

k∗ increment variability during the HD(CP)2 Observational Prototype Experiment HOPE for distances between tens of meters5

and about ten kilometers. The use of up to 99 synchronized silicon photodiode pyranometers operating at a temporal resolution

of 1 Hz allowed characterization of variability in the lower ranges of the relevant space and time scales with unprecedentedly

fine resolution (although the experimental time series span mid-spring to mid-autumn and may not be representative of other

times of the year).

By means of a simple classification scheme based on clearsky index statistics, we identified overcast, clear and mixed sky10

conditions, and subsequently analyzed sub-minute k∗ increments conditioned on these sky types. Mixed sky conditions, char-

acterized by relatively high spread and intermediate averages of clearsky index, were shown to feature sub-minute increment

PDFs with flatter tails and higher probabilities of strong fluctuations relative to overcast and clear skies. Of the three cloud

types, mixed conditions are the most potentially problematic in terms of short-term PV power fluctuations. Compared to in-

crement statistics computed without conditioning by sky type, the probability of relatively strong k∗ increments of ±0.5 was15

approximately twice as high under mixed conditions.

The corresponding spatial autocorrelation structures of ∆k∗τ revealed very low correlation coefficients for τ = 1 s, even for

short distances. With the smallest inter-sensor separation bin ranging from 28 m to 51 m, and typical cloud speeds between

2 ms−1 and 10 ms−1, cloud-induced shadows are not fast enough to cover even the shortest of the analyzed sensor pair

distances within a second. For a more robust characterization of the decrease of ρ∆k∗τ
ij from 1 to 0 for τ = 1 s, the pyranometer20

network would thus have to be reconfigured to feature much shorter inter-sensor distances.

As a proxy for the smoothing effects of distributed PV, spatial averaging was shown to effectively mitigate relative variability

in k∗ increments with increasing areas. While, for example, averaging areas required to reduce σ̂∆k∗τ in half were nearly the

same for τ = 1 s (1.9 km2, 1.7 km2, and 1.5 km2 respectively for overcast, clear, and mixed skies), they differed more between

overcast conditions on the one hand, and clear or mixed skies on the other hand, with increasing τ (for τ = 10 s: 3.6 km2,25

1.8 km2, and 1.6 km2; for τ = 60 s: 9.1 km2, 2.9 km2, and 2.8 km2 respectively for overcast, clear, and mixed skies). Spatial

averaging on the scales under consideration was less effective at mitigating variability in k∗.

These initial characterizations of PV-related clearsky index variability during HOPE can be extended to consider other

issues of relevance to solar PV power generation. For example, a more refined analysis of the two-point spatial autocorrelation

structures of k∗ increments could be carried out using actual cloud speed information, and the linear scaling of distance and30

time lag discussed in section 6 could be investigated in detail. Combining these data with coarser resolution ones, for example

satellite-derived, could thereby appreciably extend the spatial domain of the analysis. An evaluation of short-term variability

reduction due to temporal averaging could also be a direction of future study, taking advantage of the unusually high temporal

resolution of the original data acquisition unit (10 Hz) to critically assess the common practice of using longer temporal
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averages when measuring irradiance (Ohmura et al., 1998). Moreover, the simple increment procedure used to compute the

fluctuations of k∗ in Eq. 6 could be improved by using a wavelet-based approach, as discussed by e.g. Gallego et al. (2013).

Data availability

The pyranometer network measurements are hosted on the HD(CP)2 data portal, which is accessible via the project website

(http://www.hdcp2.eu).5
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