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Abstract. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual-
view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important
parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both
over land and ocean, taking advantage of the features of dual-view, which can help eliminate the contribution of Earth’s surface
to top of atmosphere (TOA) reflectance. The Aerosol cci project, as a part of the Climate Change Initiative (CCI), provides
users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual
view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The
validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Level 2 product
only) against the AERONET data in a round robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison
between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in
calculating AODs over mainland China, we introduce ground-based data from the CARSNET (China Aerosol Remote Sensing
Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences
in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more
comprehensively. The validation results show different performances of these products in 2007, 2008 and 2010. The SU
algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it

slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging
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from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over
most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and
applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou and Urmuchi, where the dominant
land cover is grassland, with MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC
algorithm has the ability to retrieve AOD at different ranges including high AOD (larger than 1.0); however, the stability
deceases significantly with increasing AOD, especially when AOD > 1.0. In addition, the ORAC product is consistent with
the CARSNET product in winter (December, January and February), whereas other validation results lack matches during

winter.

1. Introduction

Aerosols play a major role in Earth’s climate system, including intervening in the radiation budget and cloud processes, and
affecting air quality and human health (Remer et al., 2005; Samet et al., 2000; Tzanis and Varotsos, 2008; Kokhanovsky and
de Leeuw, 2009). The particles suspended in the troposphere scatter solar radiation back to cool the atmosphere or absorb solar
radiation, which warms the atmosphere, causing changes in the net effect of aerosols. These particles could also affect the
formation and microphysical properties of clouds as cloud condensation nuclei (Andreae and Rosenfeld, 2008). The source of
aerosols could be anthropogenic or natural (Varotsos et al. 2012). Particles from different sources are mixed into aerosol
masses to influence AOD, reduce visibility (Kinne et al., 2003; Varotsos 2005; Remer et al., 2005) and cause spatial and
temporal variability of AOD; therefore, the largest uncertainties in the estimation of radiative forcing are introduced by aerosols

(IPCC, 2013).

Over the past 35 years, different types of satellites have been used to obtain atmospheric information, especially aerosol
properties (Griggs, 1979; Kokhanovsky and de Leeuw, 2009). Remote sensing provides a means to obtain global and long-
term observations of aerosols, especially in the widest ocean and remote regions where ground-based stations cannot be
constructed. In addition, polar-orbiting satellites and geostationary satellites obtain daily global images, which helps to capture
changes in aerosol patterns and properties (Prins et al., 1998; Torres et al., 2002). There are, however, many difficulties in
observing aerosols by satellites because depending on the surface properties, the contribution to the signal received by the
satellite can vary drastically; aerosol components and concentrations are constantly varying, and their sources cannot be

precisely determined (Levy et al., 2007).

The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual-view, of
which one is nadir direction and the other is forward direction with a viewing angle of 55° from nadir view. The AATSR was
designed to have seven spectral channels at wavelength of 0.55, 0.67, 0.87, 1.63, 10.7 and 12 um. The nadir spatial resolution
is 1 km X 1 km with a swath width of 512 pixels. Furthermore, the AATSR instrument equipped two calibration targets, black-
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body calibration target for thermal channels and opal visible calibration target for visible and near-Infrared channels, aiming

to implement self-calibration. The data from AATSR can be used to retrieve AOD both over land and ocean, which is important

for the characterization of aerosol properties (Adhikary et al., 2008). In recent years, some aerosol retrieval algorithms have

been established both over land and ocean, taking advantage of the features of dual-view, which can help eliminate the

contribution of surface to top of atmosphere (TOA) reflectance. Aerosol CCI, as part of the Climate Change Initiative (CCI)

(http://www.esa-aerosol-cci.org/), provides users with three algorithms for AATSR data, including the Swansea algorithm (SU)
(Bevan et al. 2012), the ATSR-2/AATSR dual-view aerosol retrieval algorithm (ADV) (Kolmonen et al. 2015) and the Oxford-

RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009). The aim of this work is to evaluate different

performances of these algorithms in calculating AOD over different regions of China in 2007, 2008 and 2010.

A ground-based sun—photometer has been used to take sun and sky measurements directly (Holben et al., 1998). The Aerosol
Robotic NETwork (AERONET) has constructed hundreds of sites all over the world as of 2015. These stations, operated by
the American National Aeronautics and Space Administration (NASA), are operational worldwide, providing multi-spectral

channel validation data for satellite-retrieved data to complete synthetic measurements on a global scale.

The China Aerosol Remote Sensing Network (CARSNET) is a ground-based aerosol monitoring system that uses CE-318 sun-
photometers, similar to AERONET, and has constructed 37 sites throughout China (Che et al., 2009). It has been validated
that CARSNET AOD measurements are approximately 0.03, 0.01, 0.01 and 0.01 larger than measurements of AERONET at
the 1020, 870, 670 and 440 nm channels, respectively (Che et al., 2009). In this paper, we combine two aerosol observation
datasets from AERONET and CARSNET as reference data to validate these three AATSR AOD products over China more

comprehensively.

The basic method for assessment is to compare the retrieval results with data (AOD mainly) obtained by
AERONET/CARSNET. However, this direct comparison of retrieval results with AERONET data is limited due to different
cloud removal processes (de Leeuw et al., 2013), and such a limitation could influence the validation reliability to some extent.
To make the validation more reliable, comparison of the retrieval results with high quality data from MODIS or MISR is also
one effective method for validation (Kahn et al., 2009). However, AERONET or other ground-based networks provide accurate
measurements without the influence of land surface reflection (Holben et al., 1998), which means that comparison of retrieved
AOD with ground-based measurements is the basic method. The AATSR L2 products provided by Aerosol CCI have been
validated by the validation team via a round robin (RR) test (de Leeuw et al., 2013). On this basis, we focused on assessing
the performances of AATSR aerosol L2 products in mainland China by comparing the retrieval results with AERONET and
CARSNET data.
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2. Reference data and validation statistics

AOD is the most important parameter in terms of aerosol properties and is different from other retrieved parameters under the
project of Aerosol CCI. The Aerosol CCI project adopts three aerosol retrieval algorithms for ATSR-2/AATSR instrument,
including Swansea algorithm (SU) (Bevan et al. 2012), the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV)
(Kolmonen et al. 2015) and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009b). All of
these three algorithms have ability in retrieval of aerosol properties both over land and ocean. ADV algorithm was originally
developed for retrieving AOD properties over land at wavelength of 0.555, 0.659 and 1.61 um (Veefkind et al. 1998). The
main advantage of ADV is the introduction of k-ratio approach to eliminate contribution of reflection to TOA reflectance,
which uses the ratio of the reflectance measured in the forward and nadir views (Flowerdew and Haigh, 1995). The ORAC
algorithm is designed to retrieve AOD properties at each of four AATSR short-waves channels both over land and ocean,
including AOD, effective radius and surface reflectance. The build of the forward model used in ORAC algorithm is based on
radiative transfer code - DISORT. A parameterized model of surface reflectance distribution is used in retrieval and combines
with the AATSR dual-view to make up shortage of the need of a priori of reflectance (North et al. 1999). An iterative

optimization method is employed to determinate AOD, aerosol type and surface reflectance.

AATSR L2 data (see Tab. 1) are daily products with a spatial resolution of 10 X 10 km?, and contain a quality flag or a level
of confidence for each pixel (de Leeuw et al., 2013). Compared to the Level 3 (L3) product with a spatial resolution of 1° X 1°,
daily L2 data have higher spatial resolution, which helps to capture greater detail of aerosol properties and is further explored

in our follow-up study.

Tab. 1. Details of AATSR AOD products.

algorithm version  sensor Main parameters Resolution coverage
ADV/ASV 23 AATSR AOD,ANG 10 km, 1° global
SU 4.21 AATSR AOD,ANG 10 km, 1° global
ORAC 03.04 AATSR AOD, aerosol type 10 km, 1° global

It has been demonstrated that the ground-based observation data from the AERONET have the ability and precision to be used
as reference data when users validate AOD (Holben et al., 1998). There are eight AERONET sites in mainland China providing
Level 2.0 (L2) data (cloud-screened and quality-assured) for 2007, 11 sites for 2008 and 10 sites for 2010, from which the
AOD measurement data are available on the website. However, most of these sites are distributed in the eastern China coastal
area, as shown in Fig. 1, which, however, does not meet the requirements of comprehensively validating the aerosol properties

over all of China. Substantial hazardous aerosol pollution affects most regions of northern (Li, 2014) and eastern China in



winter, and heavy dust aerosols from the Taklimakan desert in western China can be transported long distances to eastern

China, even to Japan (Takahashi, 2011), resulting in regional differences.
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Fig. 1. The distribution of selected AERONET&CARSNET sites in mainland China in 2007, 2008 and 2010. The blue and red
points represent AERONET and CARNET sites, respectively.

The measurements from another network, the CARSNET, equipped with calibrated CE-318 instruments, have the same
accuracy as AERONET. The CARSNET has more sites than the AERONET in mainland China, and the spatial distribution of
the CARSNET sites is distributed more evenly. Therefore, for the purpose of assessing different performances of these three

AATSR L2 AOD products, we selected ground-based measurements from both of these two networks as reference data.
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The AERONET provides AOD data at three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level
2.0 (L2) (cloud-screened and quality-assured) (http://acronet.gsfc.nasa.gov/new web/index.html). Here, we selected
AERONET L2 data that are screened and quality-assured. Because both the AERONET and CARSNET data are AATSR
products without band-effective wavelengths, we interpolated the ground-based data to the 550-nm wavelength. The AOD of
the L2 datasets were compared with AERONET&CARSNET observation data using scatter plots and linear-regression of the
data. The comparisons were made for collocated satellite and ground-based observations (Ichoku et al., 2002), i.e., AOD pixels
were selected within a spatial extent of +/—50 km of ground-based stations and a time range of +/—30 min of the AATSR
overpass from the ground-based measurements. At least 5 AATSR AOD retrievals and 2 AERONET/CARSNET observations

are required in each collocation (Levy et al., 2010).

We conducted collocations according to year (2007, 2008 and 2010) and dataset (ADV, ORAC and SU). In total, 20 ground-
based observation sites, including 12 AERONET sites and 8 CARSNET sites, were in the Chinese territory in 2007, of which
6 AERONET and 8 CARSNET inland sites were selected. For 2008, we selected 8 AERONET and 24 CARSNET inland sites,
for a total of 32 sites, ignoring the island sites and those near the shoreline. For 2010, only 6 CARSNET sites are available for
us, and a total of 14 inland sites were selected with 8 AERONET inland sites (see Table 2).

Table 2. Selected ground-based sites in China.

Network inland near shoreline island Total
AERONET 6 6 0 12
2007 CARSNET 8 0 0 8
Total 14 6 0 20
AERONET 8 7 0 15
2008 CARSNET 24 1 0 25
Total 32 8 0 40
AERONET 7 1 16
2010 CARSNET 6 0 0 6
Total 14 7 1 20

2.1 Statistical Metrics

20  Collocated pairs are analysed using statistical methods. Bias describes the average difference between satellite retrievals and

ground AOD. Then, to determine how well the satellite data match the ground-based observation data, the relationship between
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them is explored. Some basic statistics are shown on the scatter plot, including the root mean square error (RMSE):

1" 2 1
RMSE = —Z (Tsat,i - TaeTO.i) M
n i=1

where Ty, ; represents the ground-based observation data and T4, represents the satellite retrievals. Mean satellite-retrieved
AOD (MSA) and mean AERONET&CARSNET AOD (MAA) represent the central tendency of the data. Relative mean bias
(RMB) is used to determine under- or overestimation of the AOD retrievals; it is the ratio of MSA to MAA:

RMB = MSA/MAA (2

Mean bias error (MBE) is the mean difference between the satellite retrievals and AATSR AODs, and the mean absolute error
(MAE) is the absolute value of the mean bias error. Together with RMB, the MBE and MAE are used to determine the

magnitude of the difference between the two datasets.

2.2 KAPPA Statistics

In the scatter plot of the collocated pairs, the retrieved data and the corresponding collocated ground-based observation data
could be considered as two arrays, and the main purpose of KAPPA is to explore how these two arrays match each other. For
retrieval of aerosol properties, the performances of most algorithms decrease in effectiveness with increasing AOD, i.e.,
difficulties in retrieving AOD will be increased as AOD increases. Obviously, when only using |bias|, the absolute value of
the difference between ground-based data and AATSR AOD data in each collocation pair, as an assessment standard for
different AODs, is insufficient and lacks persuasion. Therefore, the combination of |bias| and |bias|/Ground, i.e., the ratio
of |bias| to the value of the reference data in each collocation pair, used in the KAPPA coefficient will account for this shortage

and provide a new statistic for assessing the agreement between two arrays, taking advantage of the KAPPA coefficient.

The KAPPA coefficient was originally proposed as a descriptive statistic indicating the degree of beyond-chance agreement
between two ratings per subject in a dichotomous form (Bloch and Kraaemer, 1989). KAPPA coefficients with various forms
also could be used to measure the accuracy of thematic classifications (Rosenfield and Fitzpatrick-Lins, 1986). KAPPA is, in
short, a measure of “true” agreement (Cohen, 1960). The pairs collocated by matching ground-based data with AATSR L2
AOD data could be regarded as two different arrays so that we introduced the KAPPA coefficient to assess agreement between
these two arrays. Based on the concept of the KAPPA coefficient proposed by Cohen (1960), an appropriate modification with

a two-category nominal scale is shown in Table 3.
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Table 3. Design of the KAPPA coefficient.

Criterion 2

Relevant (highly) Relevant (low) Total
Criterion 1 Relevant (highly) a b Gl
Relevant (low) c d G2
Total F1 F2 n

To estimate the KAPPA coefficient, one needs to determine which pairs are “true” or which pairs are “relevant”. However, if
only given matched collocation pairs, we cannot determine which pair is relevant. Therefore, the design of criterion 1 and

criterion 2 needs to be reasonable and fit for the purpose of validation.

For criterion 1, if |bias| is greater than the mean of |bias|, then it is marked as “lowly relevance”, and if not, it is marked as
“highly relevance”. Here, the bias was assessed from the first quartile to the third quartile for eliminating possible “outliers”.
The |bias| only indicates the absolute error of the retrieved AOD, and it still needs another statistic for criterion 2, i.e.,
|bias|/Ground, which indicates the relative error of AOD retrieval. For criterion 2, if |bias|/Ground]| is greater than 0.2
(according to EE4), then it is marked as “lowly relevance”, and if not, it is marked as “highly relevance”. For the conventional

formula of calculating the KAPPA coefficient:

K=—"_° 3)

where P, is the proportion of observed agreement and P is the proportion of chance agreement.

%:m:@ 4)
P = (A + (5) (5)
n

Algorithms for AATSR AOD retrieval used to underestimate AOD over different regions in China include the ADV ORAC
and SU algorithms. On this basis, the agreement between ground-based observation data and satellite retrievals is assessed
based on the ADV and SU algorithms (Che et al., 2015). The main aim of this new KAPPA coefficient is to evaluate the
comprehensive performance of these algorithms. Its function is to represent not only the degree of underestimation but also

the level of agreement between different datasets.
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3. Validation results and analysis

We collected different validation reference data of AERONET and CASNET in 2007, 2008 and 2010. Only 14 ground-based
observation sites are available in 2007, of which some are located close to each other. Most are located in different provinces;
however, the total number of sites is small and the space distribution is not uniform. Therefore, the number of matches is
relatively small for all of the algorithms. More AERONET/CARSNET data are available in 2008, with a total of 32 sites
including 8 AERONET sites and 24 CARSNET sites. There are 14 AERO&CARS sites providing data for validation in
2010.The focus of this paper is to determine the differences between the ADV, ORAC, and SU L2 AOD products (see Tab. 4
and Figure 1).

Table 4. Main statistics of the validation results.

N MSA MAA MBE MAE RMSE RMB KAPPA

2007 94 0.25 036  -0.11 0.12 0.15 0.70 0.49
2008 327 0.22 036  -0.14  0.15 0.20 0.61 0.37

AATSR ADV
2010 147 0.17 0.31 -0.14  0.14 0.22 0.55 0.23
3Years 568 0.21 0.35 -0.13  0.14 0.20 0.61 0.38
2007 145 0.35 0.28 0.06  0.14 0.23 1.23 0.50
2008 648 0.29 0.33 -0.04  0.16 0.27 0.87 0.45

AATSR ORAC
2010 298 0.26 027  -0.01 0.14 0.23 0.96 0.37
3Years 1091  0.29 0.31 0.02 0.15 0.25 0.93 0.44
AATSR 2007 98 0.33 0.41 -0.07  0.09 0.16 0.83 0.43
SU 2008 446 0.29 0.41 -0.12  0.13 0.21 0.72 0.50

2010 171 0.27 037 -0.10  0.12 0.21 0.73 0.53
3Years 715 0.29 040  -0.11 0.12 0.20 0.73 0.50

3.1 Validation results

3.1.1 The ADV algorithm

For 2007, the RMS error is 0.095 and the RMB is 0.704, which reflects the tendency of underestimation. This type of
underestimation is more severe with increasing AOD. Low dispersion and slight underestimation make the KAPPA coefficient
high (0.473), demonstrating that the ADV algorithm performs well in calculating the AOD over China in 2007. The ADV
algorithm is appropriate for the retrieval of low AODs, especially for those less than 1.0; thus, the MSA for 2007 is 0.244. For
2008, the lower RMB (0.621) suggests more severe underestimation, and higher RSE (0.130) indicate lower accuracy. Similar

9
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with 2007, the MSA of the ADV is 0.211. Therefore, the KAAPA coefficient, which measures the overall performance, is
0.329, lower than that of 2007. For 2010, the lowest RMS (0.089) with the lowest accidental error of the three years. However,
the KAPPA coefficient is 0.180, also the lowest of the three years. The most obvious feature of the ADV algorithm is
underestimation with the highest MSA is 0.250 in 2007, and the lowest is 0.173 in 2010. The ADV algorithm can retrieve low
AOD values with high accuracy. This “ability” is systematic for either high AODs or low AODs. This also limits the range of
application of the ADV algorithm, especially in calculating AODs in high value ranges.

AATSR ADV AOD AATSR ORAC AOD AATSR SU AOD
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Fig. 1 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China for three year of 2007,
2008 and 2010. The black solid line represents 1-1 line. The magenta points are means for specific range of AERO&CARS AOD
and the magenta lines are mean + 20 of retrievals at certain range. The areas and colours are determined by means of
uncertainty (MU) dataset in AATSR L2 products and standard deviation of retrievals (Std_S) in collocation frame of 50 km X

50 km respectively.

3.1.2 The ORAC algorithm

The ORAC algorithm performed well for 2007, achieving a KAPPA coefficient of 0.474. However, the distribution of matches
is dispersed implying high RMSE (0.206). In terms of the degree of fitness, its performance is not effective. However, there is
no obvious trend of underestimation or overestimation, and accidental errors influence the accuracy of the ORAC algorithm.
The MSA of the ORAC is 0.324. ORAC has the most matches of the three algorithms. Different from 2008, no obvious
underestimation occurs in the results of 2007 and 2010. For 2008, the RMB is 0.829, suggesting a slight underestimation trend.
The applicability of ORAC is high, with MSA of 0.271. The collocated pairs are relatively dispersed, influencing the RMSE.
For 2010, the same dispersion of points in the scatter plot and low KAPPA coefficient are observed. Overall, the ORAC
algorithm tends to retrieve AODs unstably for either high AODs or low AODs and with slight underestimation in 2007. The

results of 2008 and 2010 share common features, indicating that accidental error is larger than systematic error.

10
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3.1.3 The SU algorithm

The SU algorithm performed well for all three years, achieving KAPPA coefficients of 0.409, 0.484 and 0.520, respectively.
The RMBs are 0.816, 0.713 and 0.720 for 2007, 2008 and 2010, respectively, demonstrating the underestimation of the SU
product. The applicability of SU is high, with MSA of 0.293 for 2008. The most obvious feature of the SU algorithm is its
stability in retrieving AOD for different years or different regions (Fig. 4). The MSA ranges from 0.270 for 2010 to 0.330 for
2007, and the KAPPA coefficient is from 0.520 to 0.409, which suggests that the SU algorithm performed better in retrieving
low AODs. The SU algorithm has the best performance in terms of AOD retrieval, as it has the highest KAPPA coefficient
(0.520). Overall, the SU algorithm can be applied to retrieve AOD in different ranges with high precision. Factors influencing

the performance of the SU algorithm include small systematic error and even smaller accidental error.

3.2 Uncertainty analysis based on aerosol loading

In the previous section, we validated all three AOD products over mainland China in 2007, 2008 and 2010, discovering that
all three products tend to exhibit underestimation to some extent. For the purpose of ascertaining the causes of the
underestimation, in this section, we focus on analysing the AOD uncertainties leading to differences between retrieved AODs
and ground-based AODs in special conditions. Collocated pairs are divided into three groups according to aerosol loading,
including light loading (t < 0.15), heavy loading (t > 0,4), and moderate loading (Levy et al., 2010). It is obvious that the
AOD bias increases with increasing AOD for all three products. These products have one feature in common, that is, the AOD
bias tends to be negative, which indicates that the underestimation becomes more significant with increasing aerosol loading.
The ADV and SU algorithms perform well in estimating AOD, i.e., with little underestimation (lower MBEs of -0.04 and -
0.02 respectively as shown in Tab. 5), when aerosol loading is low (light loading) (Fig. 2).

Under complex conditions, the ORAC overestimates AOD in regions of light loading and moderate loading compared with
the AERONET and CARSNET, as shown in Fig. 2. ADV tends to underestimate AOD more severe with MBE = -0.11 in
moderate aerosol loading region. Similar with ADV, the underestimation of SU in moderate aerosol loading becomes more
severe with MBE = -0.07. ORAC performs the best in retrieving in moderate aerosol loading region without underestimation
or overestimation, even though the bubbles distribute discrete with Std of 0.18 (see in Tab. 5). The performances of all three

algorithms are at same level with close MBEs, Stds and RMSEs in heavy aerosol loading region.

The top and bottom borders of the box we draw represent the interval of [—2a,20], which contains most of the data
(approximately 95%) for a given group. The data outside the box are “possible outliers” based on the largest error contained
in each group. Those “possible outliers” have one feature in common in that the corresponding points in the bias scatter plot

are far away from other points. Otherwise, the points below or above the box are different. If a point is above the box, which
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indicates that the satellite-retrieved AOD is larger than the ground-based observed AOD, this “outlier” tends to be caused by
a residual cloud. The ground-based network measures AOD from only one point; however, the satellite-retrieved AODs in
each collocated pairs are an average of 25 pixels. Any one of these 25 pixels with a cloud residual will lead to an increased
AOD in a collocated pair. Therefore, we conclude that the “outliers” above the box are possibly caused by a cloud residual.
From this view, there are 6, 6 and 2 bubbles above the each box for the ADV product for light, moderate and heavy aerosol
loading respectively. However, these bubbles are not “possible outlier” due to the MUs and Std_Ss are relative small shown
in Fig. 2. Similarly, the bubbles from SU product above each box are not “possible outliers”. For the ORAC product, most of
bubbles above each box are “possible outliers” due to larger Std_S (>0.2). Most of “possible outliers” are concentrated in light
(13 bubbles) and moderate (14 bubbles) acrosol loading regions as shown in Tab. 5, influencing ORAC’s performance on
estimating AOD. The bubbles below the box are different from those above the box. Most of them are only below the boxes
of moderate and heavy aerosol loading, indicating that all these algorithms have limitations of underestimation on estimating

AOD in moderate and heavy aerosol loading regions, especially when AOD loading increase.
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Fig. 2. Scatter plot of AERONET&CARSNET AODs with ADV AOD bias or uncertainties in China in 2007, 2008 and 2010. The
areas and colours of bubbles represent MU and Std_S sampling area of 50km X 50km respectively. Colours represent different
groups: blue denotes light loading, green denotes moderate loading, and red denotes heavy loading. Each group has one box, the
bottom and top borders of which represent MBE + 26 and MBE — 20, respectively, containing 96% of scattered points from each

group. The centre line of each box represents the MBE of each group.

We make these groups because aerosols exhibit different behaviours with different loading conditions. In general, the bias or
uncertainty of satellite-retrieved AOD will increase with increasing AOD or aerosol loading. As discussed above, all of these
algorithms underestimate AOD at different levels; similarly, it is worth noting that underestimation becomes more severe with

increasing AOD or aerosol loading.
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Table 5. Statistics of comparison between AOD bias and ground-based measurements. Proportion is the ratio of numbers of bubbles
falling in each box to total. RMSE1 and RMSE?2 are RMSEs of AOD bias with ground-based measurement and AOD uncertainty

respectively.

Algorithm Class N Proportion MBE RMSE_~ Std Above Below RMSE2
Total 568  100.0%  -0.13 020 0.5 14 14 027
AATSR Light 126 222%  -0.04 003 004 6 0 0.07
ADV Moderate 259 45.6%  -0.11  0.10 009 6 6 0.22
Heavy 183 322%  -023 017 020 2 8 035
Total 1091  100.0% 002 025 025 32 8 3.65
AATSR Light 347  31.8% 005 010 017 13 0 0.13
ORAC  Moderate 468 42.9% 0 011 018 14 2 0.28
Heavy 276  253%  -0.16 020 036 5 6 5.56
Total 715  100.0%  -0.11 020 0.7 8 2 024
AATSR Light 147 206%  -0.02 002 004 3 1 0.08
SU Moderate 306  42.8%  -0.07 007  0.08 5 12 0.16
Heavy 262 36.6% 02 019 023 0 9 034

Additionally, we make comparison of AOD bias, which is retrieval errors observed, with AOD uncertainty in AOD retrieval
5 for each pixel from AATSR L2 dataset. AOD retrieval error observed (AOD bias) and AOD uncertainty in retrieval are
different as evaluating merits. The range of SU AOD uncertainty is from 0.025 to 0.3, smaller than others, even in heavy
aerosol loading region. Most of bubbles of ADV product in Fig.3. are from 0 to 0.4 of AOD uncertainty. The AOD bias and
uncertainty are small in light aerosol loading and moderate for ADV and SU products as shown in Fig. 3. For ORAC product,
there is no obvious regularity between AOD bias with AOD uncertainty in three aerosol loading regions especially those

10  bubbles with high Std_S.

3.3 Uncertainty analysis of individual ground measurement sites

For the purpose of further evaluating the different performances of these three algorithms in estimating AOD over mainland
China, we validate these products on a site-by-site basis. It is significant to explore the roles of different factors in estimating
AOD. There are several factors that may have impacts on AOD calculation, including land cover, acrosol type, elevation, etc.

15 Therefore, we analyse different validation results of each site to study how these factors work (see Table 6).
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Fig. 3. Scatter plots of ADV, ORAC and SU AOD uncertainty with AOD bias over China for three years of 2007, 2008 and 2010.
The area and colours of bubbles represent Std_S and AOD respectively.

Table 6. Statistics of validation results of different products over different sites.

Site Algorithm N MSA MAA MBE MAE RMSE RMB KAPPA
ADV 33 0.346 0.462 -0.116 0.122 0.088 0.748 0.341
Linan ORAC 48 0.426 0.470 -0.044 0.131 0.144 0.906 0.668
SU 40 0.430 0.484 -0.054 0.082 0.093 0.889 0.650
ADV 46 0.156 0.285 -0.129 0.132 0.068 0.547 0.283
SACOL ORAC 74 0.286 0.314 -0.028 0.102 0.170 0.910 0.595
SU 49 0.265 0.291 -0.027 0.062 0.072 0.908 0.878
ADV 52 0.172 0.297 -0.125 0.131 0.087 0.578 0.339
Shangdianzi ORAC 66 0.267 0.304 -0.037 0.107 0.134 0.879 0.407
SU 46 0.285 0.402 -0.117 0.128 0.101 0.710 0.457
ADV 33 0.184 0.284 -0.100 0.102 0.070 0.649 0.169
XiangHe ORAC 34 0.227 0.240 -0.013 0.091 0.096 0.946 0.577
SU 36 0.368 0.392 -0.024 0.058 0.077 0.939 0.444
ADV 49 0.082 0.198 -0.116 0.117 0.046 0.414 0.148
Xilinhot ORAC 110 0.190 0.182 0.008 0.109 0.166 1.043 0.389
SU 61 0.140 0.220 -0.081 0.085 0.063 0.634 0.444
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3.3.1 Inter-comparison of algorithms site by site

In this section, we select five representative AERONET&CARSNET sites with more than 30 successful matches in 2007,
2008 and 2010 to guarantee an appropriate statistical sample size. These selected sites are located in different regions where
the land cover and climatic pattern are different and representative of mainland China. Two AERONET sites and three
CARSNET sites were selected, including SACOL and XiangHe from AERONET, and Linan, Shangdianzi and Xilinhot from
CARSNET. Most matches of ADV and SU products collocated with ground-based data occurred in March to October in 2007,
2008 and 2010, as shown in Fig. 4 to Fig. 8. The matches of the ORAC product were distributed in each month over most sites.

Linan is located at 30.3°N, 119.73°E, northwest of Zhejiang province. A total of 80% of the 50 km X 50 km surrounding area
is covered by green vegetation, and the other 20% is covered with urban land. The ADV and ORAC algorithm underestimated
AOD, with MBE = 0.13 and 0.12 in 2010, respectively. The SU performed well in Linan, with slight underestimation. The
underestimation of the ADV algorithm is more severe than that of SU and ORAC. Although the ORAC algorithm has the most

matches in Linan, its performance was unstable, which means that the level of underestimation was different in different years.
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Fig. 4. Time series comparison of AATSR AOD with CARSNET AOD at Linan in 2008 and 2010.

SACOL is situated along the southern bank of the Yellow River in Lanzhou city, Gansu province. Lanzhou city has a temperate
continental climate with four clearly distinctive seasons. The dominant land cover is grassland, covering approximately 95%
of the spatial extent of the 50 km X 50 km area from the MODIS MCD12CI1 land cover data. A total of 30% of the surface is
arid and semi-arid areas, which can be a source of dust aerosols. SU performs well in retrieving AOD over SACOL, with a
low RMSE (0.072). The accidental error in the retrievals using the ORAC algorithm is obvious, leading to a high RMSE
(0.170). However, as discussed above, the ADV algorithm severely underestimated AOD in SACOL. The ADV algorithm
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tended to severely underestimate the AOD of different ranges, except for a small number of high quality matches. The matches
of the SU product are of high quality for the three years. The ORAC has collocated matches in January, February, November
and December (winter time), unlike the ADV and SU products. However, the accuracy of ORAC in winter is highly uncertain,

as shown in Fig. 5.
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Fig. 5. Time series comparison of AATSR AOD with AERONET AOD at SACOL in 2007, 2008 and 2010.

Shangdianzi is situated at 40.15°N, 94.68°E, with complex land cover of approximately 45% cropland, 30% mixed forest, 18%
closed shrub land, 5% grassland, 1% water and 1% evergreen needle leaf forest. The SU algorithm has high precision of AOD

calculation over this site from March to October, when most of the land cover is green. The ADV algorithm also performs well
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in calculating AOD over these three sites, with slight underestimation. The performance of the ORAC algorithm in Shangdianzi
is unstable, with strong agreement with ground-based data from March to October and severe underestimation in winter, as

shown in Fig. 6.
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5 Fig. 6. Time series comparison of AATSR AOD with CARSNET AOD at Shangdianzi in 2007, 2008 and 2010.
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Xianghe is located to the southeast of Beijing and has the same climatic conditions as Beijing. Approximately 98% of the
surface is covered with urban land according to the MCD12C1 data of a 50 km X 50 km area. The performances of these three
algorithms are at the same high quality level. However, the ADV algorithm still underestimated AOD at a level of MBE =
0.12 in 2007 and 0.10 in 2008.
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Fig. 7. Time series comparison of AATSR AOD with AERONET AOD at XiangHe in 2007, 2008 and 2010.
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Xilinhot is situated at 43.95°N, 116.07°E, at the centre of the Xilinguole grassland. The main land cover is grassland (100%)

based on the MODIS MCD12C1 data, with a spatial extent of 50 km X 50 km. The surface and climate features of Xilinhot

are similar to those of SACOL, and the performance of the SU algorithm at these two sites is the same, i.e., both with low

RMSE. The ADV algorithm slightly underestimated AOD with MBE 0f 0.10 ~ 0.13. The ORAC AOD showed weak agreement

with the Xilinhot data, mainly because possible “outliers” exist in March to June 2008 and March 2010.
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Fig. 8. Comparison of SU AOD with CARSNET AOD at Xilinhot in 2008 and 2010.

To guarantee statistical reliability, there must be more than 30 collocated pairs at one site. The determination of the surface

cover at each site is based on the proportion (> 80% for one land type) of each land cover type from the MCD12Cl1 data at a

spatial extent of 50 km X 50 km. If no land cover type accounts for a proportion larger than 80% at a given site, it will be

identified as mixed; then, we select two or more (sum > 80%) land types with the largest proportions as the main land cover.
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3.3.2 Analysis of algorithm performances in western China

Because sufficient ground-based data in western China are lacking for the AERONET measurements, only data from
CARSNET sites are used in 2008. We selected six CARSNET sites located in western China in which there are more than 25

matches.

Urumchi, situated at 43.78°N, 87.62°E, serves as the provincial capital of Xinjiang Uyghur Autonomous Region and is the
most remote city in China in terms of distance to any sea. The dominant land cover at the spatial extent of 50 km X 50 km is
grassland, which accounts for approximately 85%. The ADV, ORAC and SU algorithms all severely underestimated AOD,
with MBE = 0.22, 0.12 and 0.17, respectively. The MBE is lowest mainly because of the “outlier” in April, which decreases
the MBE.
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Fig. 9. Time series comparison of AATSR AOD with CARSENT AOD at Urmchi in 2008.

Ejina is situated at 41.95°N, 101.07°E, and its main land cover is barren ground (84%). The performances of ORAC and SU
are at the same high quality level, with MBEs of 0.02 and 0.09, respectively. Another reason why we chose this site is that
there are no matches of ADV products successfully collocated with ground-based data. Based on Fig. 10, the ORAC algorithm
has strong applicability in Ejina and high accuracy in retrieving AOD. The SU algorithm also performed well. This
demonstrates that another limitation of the ADV algorithm is its applicability in calculating AOD in China. Dunhuang is
situated at 40.15°N, 94.68°E and is surrounded by barren ground (85%). The same situation is true for Ejina, which causes
slight underestimation at each point but high R and low RMSE for the ORAC algorithm (Figure 11). The performance of the
SU algorithm was not as good as that of the ORAC because of its underestimation with MBE = 0.10. The limits of
underestimation and applicability of the ADV were more obvious at this site, as it only had 6 matches and showed severe

underestimation with MBE = 0.17. Tazhong is situated at 39°N, 83.67°E and is surrounded by barren or sparsely vegetated
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surface. Almost all land cover is barren ground according to the MODIS MCD12C1 data. Similar to the former two sites, the
ADYV product did not have any successful matches at this site (Figure 12). Both the ORAC and SU algorithms exhibited severe
underestimation of retrievals, with MBE = 0.17 and 0.20, respectively. The outliers of the ORAC product in February are

much higher than the observation data, causing the lower MBE.
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Fig. 10. Time series comparison of AATSR AOD with CARSENT AOD at Ejina in 2008.
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Fig. 11. Time series comparison of AATSR AOD with CARSENT AOD at Dunhuang in 2008.
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10  Fig. 12. Time series comparison of AATSR AOD with CARSENT AOD over the site of Tazhong in 2008.

21



10

15

20

25

The prevailing climatic pattern in western China is a temperate continental climate with four distinct seasons and less
precipitation in winter and spring. In conclusion, compared to eastern China, the applicability of the ADV algorithm is not
strong, and the underestimation is more severe. In the four selected sites in western China, the performance of the ORAC
algorithm is best, even though severe underestimation occurs at some sites. The accuracy of the SU algorithm is not as high as

the ORAC product, with more severe underestimation and lower applicability.

3.3.3 Inter-comparison

In conclusion, the SU algorithm performs well in calculating AOD over different land covers from March to October. Slight
underestimation occurs over barren ground or sparse vegetation at different times, and there are no obvious features in terms
of precision in the time series over grasslands. For complex land surfaces where the dominant land cover is vegetation, the SU
algorithm is extremely effective in estimating AOD. In the last section, we draw a conclusion that the SU algorithm
underestimates AOD over mainland China in 2008 probably because the dominant land cover in western China is barren or

sparse vegetation, over which the SU algorithm underestimates AOD more severely.

The ADV algorithm underestimates AOD at most of the selected sites. We categorize these sites into four classes according
to the MBEs of different sites: Class 1 (MBE<O0.1), Class 2 (0.2>MBE>0.1), Class 3 (0.3>MBE>0.2), and Class 4 (MBE>0.3).
The ADV algorithm underestimates AOD over all selected sites, leading to all selected MBEs being larger than 0. We make
such categories for the purpose of assessing the contribution of different surfaces to AOD estimation. Only XiangHe of 2008
belongs to Class 1, and Linan, Shangdianzi, and SACOL are classified into Class 2. Only Urumchi is in Class 3. Note that

even though Lanzhou and Datong were not selected due their location, they should be classified in Class 4.

Overall, the ADV algorithm underestimates AODs at all sites but at different levels, as demonstrated by the above categories.
Serious underestimation occurs over the sites in Class 3 and Class 4 in western China, where the dominant land cover is a
mixing of urban area and a large portion of grasslands. For the sites in Class 2, differences exist between Beijing and SACOL.
SACOL is similar to the sites in Class 3 and Class 4, the main land cover of which is grassland. Over the sites in Class 1, the

algorithm performs well with high R and low MBE, but there are no common features in terms of surface conditions.

The ORAC product collocates most pairs of all of these products. Most collocated pairs of the SU product and ADV product
occur in March to October, but the collocated pairs of the ORAC product occur during each month over some sites in 2008.
Because more matches suggest greater errors for the determination of the “outlier” contribution to the overall performance of

the ORAC algorithm, we introduce the ratio of the individual difference to average the differences for each site:
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where DR<1 indicates a “relatively good” match, 3 >DR >1 indicates a “relatively poor” match, and DR >3 is an “outlier”

(see Table 7).

There are no obvious “possible outliers” in Ejina shown in Fig. 10. Most of the DRs are in the range of 0 to 3, only two DRs
are larger than 3, and the maximum (overestimation) is 5.112. The retrieved AOD in March is a possible “outlier” because it
is overestimated, whereas most are underestimated. Another two sites dominated by barren or sparsely vegetated land cover
are Dunhang (approximately 85%) and Tazhong (100%). The conditions in Tazhong are complex, and there is no obvious
relationship between the CARSNET data and the ORAC AODs. Most of the DRs are less than 3, and a total of eight DRs are
larger than 3. The DR in February is an “outlier” because the varying tendencies are different between the ORAC product and

the ground-based data, indicative of overestimation.

Table 7. DR distribution of specific sites.

Site DR<1 1<DR<3 3<DR<5 5<DR Total
Urumchi 47 40 2 1 90
Ejina 51 43 1 1 96
Tazhong 63 17 5 3 88
Dunhuang 57 31 1 2 91

The ORAC product has the largest coverage at the expense of accuracy, especially in the presence of “outliers”, and only the
ORAC product has collocated validation pairs over some sites during each month in all three years. The ORAC algorithm
underestimates AODs over Ejina, Tazhong and Dunhuang, but the “possible outliers” reduce the differences between the
CARSNET data and the ORAC product. Xilinhot, Urumchi and SACOL share the same main land cover of grassland. The

problem is that the underestimations over these sites are not at the same level.

It is worth noting that the ORAC algorithm has the ability to calculate high AOD; however, most of the AODs have DRs larger

than 3, indicating that the estimation of high AOD is unstable and has large error, reducing the overall precision.

3.4 Seasonal characteristics of three algorithms
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The mainland China, cross about 60 degree of longitude and 30 degree of latitude, is dominated by monsoon-driven climate.
In such vast territory, there are big differences in climate pattern from western to eastern China. The main climate type in
eastern and eastern coastal China is monsoon climate. For western China far from the ocean, the climate type is hybrid of
monsoon and continental climate. In dry seasons (winter, first half of spring, and last half of autumn), poor vegetation coverage,
loosen surface and winds in most northern China regions make coarse particles (sea salt and desert dust) into aerosol. Fine
particles from coal combustion in winter and soot from straw burning in autumn is also important source of aerosol. In rainy
seasons (mainly in summer), high vegetation blocks dust blowing into aerosol and reduce surface reflectance at visible
wavelength. Table 8 shows the seasonal distribution of validation results of three algorithms. For the mainland China which is
located in Northern Hemisphere from 20°N to 55°N, the spring time starts from about March to May, the summer time starts
from about June to August, the autumn time starts from about September to November and the winter time is about from

December to February in next year.

Table 8. Seasonal distribution of validation results of three algorithms.

N MSA MAA MBE MAE RMSE RMB KAPPA
AATSR Spring 186 0.26 0.41 -0.16 0.16 0.23 0.62 0.4
ADV Summer 164 0.16 0.29 -0.13 0.14 0.19 0.54 0.26
Autumn 190 0.2 0.32 -0.12 0.13 0.17 0.62 0.36
AATSR Spring 294 0.35 0.37 -0.02 0.18 0.3 0.95 0.5
ORAC Summer 296 0.28 0.35 -0.07 0.17 0.26 0.79 0.4
Autumn 265 0.23 0.22 0.01 0.1 0.16 1.04 0.43
Winter 230 0.29 0.28 0.01 0.15 0.25 1.03 0.38
AATSR Spring 222 0.3 0.42 -0.12 0.14 0.24 0.72 0.53
SU Summer 241 0.32 0.43 -0.11 0.13 0.2 0.74 0.49
Autumn 237 0.26 0.35 -0.09 0.11 0.16 0.74 0.49

Low mean of uncertainty (MUs) at 550nm means these retrievals are of high quality in Fig. 1. Most of Std_S are below 0.08,
indicating high uniformity of ADV products (see Fig. 1). Most of collocated pairs of ADV AODs are concentrated below the
1-1 line and the RMB is 0.61, showing a tendency of underestimation. This kind of underestimation has an impact on ADV
algorithm performances, for example, the RMS error is 0.19 in summer time, otherwise, the corresponding RMB is 0.54, which
makes the KAPPA coefficient the smallest (0.26) than other seasons. The MBEs is from -0.12 in autumn to -0.16 in spring in
Table 8, which means that the ADV algorithm tends to underestimate AOD in all seasons (except winter) over mainland China
(See Figure 13). For monsoon climate, the main aerosol types in many parts of China are influenced by coarse particles (dust
from Western China and sea salt from eastern coastal China) in spring time. The performance on calculating acrosol properties
of mixture of coarse particles is best in spring time with highest KAPPA coefficient, even though there are some samples with

high MUs and the RMS error is 0.23.
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Fig. 13 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China in the spring, summer,
autumn and winter time of 2007, 2008 and 2010.

The matches of the ORAC product collocated with reference data are distributed discretely at two sides of 1-1 line in Fig. 1.
The best performance with high KAPPA coefficient of 0.5 is in spring with no underestimation, even though the RMS error is
high about 0.30. The KAPPA coefficient in the autumn time is lower than in the spring time, even though most of evaluation
metrics are better in the autumn. Note that, only ORAC product of these three products has been collocated enough matches
(more than 30) with reference data in the winter time. The performance of ORAC in winter is between that in spring and
autumn without obvious underestimation or overestimation. The limitation of ORAC algorithm is the stability in retrieve
aerosol properties, as shown in Fig. 13, the magenta mean * 2o lines for each season at each range are longer than those for

other two products.

The SU algorithm has better performances in three years, getting KAPPA coefficients of 0.50. Most retrievals in matches are
of high quality collocated with reference data and most Std S are lower than 0.08, i.e. the sample quality is high and this
coincides with assumption of aerosol properties uniformity in 50km X 50km area. The best performance on retrieval is in the
autumn, lowest RMS error of 0.16 and largest RMB of 0.74 in three seasons shown in Fig. 13. The magenta lines are similar
with those of ADV product in corresponding seasons, showing same level of stability in retrieving AOD. The SU algorithm
has no obvious differences in retrieving AOD in three seasons. One limitation of SU and ADV algorithms is less than 30

collocated matches in the winter time so that we can’t evaluate its performance during that time.

The latest MODIS Moderate Resolution Imaging Spectroradimeter (MODIS) Collection 6 (C6) product were released in 2013,
including aerosol datasets produced by two “Dark Target” (DT) algorithms (one is for retrieving over ocean and the other is
for retrieving over land) and “Deep Blue” algorithm for retrieving over bright or semi-arid surface (Levy et al., 2013). For
over land, the DT algorithm uses an updated cloud mask to allow retrieval of heavy aerosol compared to algorithm employed
in MODIS Collection 5. It is reported that MODIS C6 products (produced by three algorithms) are of high quality (Sayer at
el., 2014). Here, we select both MODIC C6 DT and DB 10km x 10km merged dataset as reference data for cross-validation
of AATSR L2 AOD products. The matches in Fig. 14 are randomly chosen from MODIS and AATSR collocated AOD datasets.
The ADV AOD has lowest RMSE of 0.11. The SU algorithm has same performance with ORAC (similar RMSE and KAPPA)

but with a little underestimation as the magenta line in Fig. 14.

Aerosol Angstrom Exponent is an exponent that expresses the spectral dependence of aerosol optical thickness with the
wavelength of incident light (http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/aerosol angstrom exponent.shtml). The

Angstrém exponent is inversely related to the average size of the particles in the aerosol: the smaller the particles, the larger
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the exponent. Thus, Angstrém exponent is a useful quantity to assess the particle size of atmospheric aerosols or clouds, and

the wavelength dependence of the aerosol/cloud optical properties.
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Fig. 14 Scatter plot of AATSR AOD and DT&DB AOD

The ORAC product provides Angstrém exponent for 550-870um only and SU product provides Angstrém exponent for 550-
870pm only. The CARSNET dataset provides Angstrdm exponent for 440-870um only. As the ADV product provides
Angstrom exponent for 550-670pm only, we couldn’t do comparison for ADV Angstrém exponent. We compared Angstrom
exponent using both CARSNET and AERONET datasets for SU and ORAC products. Figure 15 shows the comparisons of
Angstrom exponent. In general, both SU and ORAC algorithms generate similar quality of Angstrém exponent values. There

is no any pattern of Angstrém exponent with AOD values and uncertainty.
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Fig. 15 Comparisons of Angstrém exponent of ORAC and SU products. The area and colours of bubbles represent AOD

uncertainty and AOD values, respectively.
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4. Conclusions

These three algorithms (the SU algorithm, the ADV algorithm and the ORAC algorithm) display different performances in
estimating AOD over mainland China in 2007, 2008 and 2010. However, none of the algorithms show an explicitly better
performance than the other two. The SU and ADV products have higher accuracy over most selected sites but less coverage,

whereas the ORAC product has greater coverage at the cost of accuracy.

All of these algorithms tend to underestimate AOD to some degree. The underestimation becomes more severe with increasing

AOD or aerosol loading. The method of grouping helps to identify “possible outliers” in different regions of aerosol loading.

The precision of the SU and ADV algorithms is at the same level over different surfaces. However, the SU product has more
strict quality control than the ADV product, and it eliminates AODs to make the MBE less than 0.10 over different sites (de
Leeuw et al. 2013). Over grassland and barren vegetation, the SU displays a strong performance with slight underestimation
(MBE < 0.10). The limitations of underestimation and applicability of the ADV are more obvious over such sites. For complex
surfaces with two or more land cover types, the performances of these three algorithms are at the same level. Note that Lanzhou
and Datong are different from other sites, even though the main land cover type is grassland. All of these algorithms

underestimated AOD at a high level, perhaps because these algorithms are not sensitive to absorptive aerosols.

Only the ORAC product shows “possible outliers” identified by equation (2), which substantially decreases its accuracy. The

most obvious feature of the “possible outliers” is that the retrieved AODs are higher than the ground-based measurements.

As reference data, AERONET L2 data have some limitations, including the distribution and number of sites in mainland China.
Most sites of AERONET are distributed in eastern China and the coastal region of China for special experimental use; as a
result, sufficient reference data cannot be obtained to validate the AOD product. The CARSNET data make up for this shortage
because there are more CARSNET sites in China, especially in western China, where few AERONET sites have been
constructed. Limited both by reference data and satellite retrievals, most co-allocated pairs occur in March to November, and

few occur in winter (December, January and February).
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