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Abstract. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual-

view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important 

parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both 20 

over land and ocean, taking advantage of the features of dual-view, which can help eliminate the contribution of Earth’s surface 

to top of atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the Climate Change Initiative (CCI), provides 

users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual 

view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The 

validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Level 2 product 25 

only) against the AERONET data in a round robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison 

between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in 

calculating AODs over mainland China, we introduce ground-based data from the CARSNET (China Aerosol Remote Sensing 

Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences 

in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more 30 

comprehensively. The validation results show different performances of these products in 2007, 2008 and 2010. The SU 

algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it 

slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging 
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from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over 

most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and 

applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou and Urmuchi, where the dominant 

land cover is grassland, with MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC 

algorithm has the ability to retrieve AOD at different ranges including high AOD (larger than 1.0); however, the stability 5 

deceases significantly with increasing AOD, especially when AOD > 1.0. In addition, the ORAC product is consistent with 

the CARSNET product in winter (December, January and February), whereas other validation results lack matches during 

winter. 

1. Introduction 

Aerosols play a major role in Earth’s climate system, including intervening in the radiation budget and cloud processes, and 10 

affecting air quality and human health (Remer et al., 2005; Samet et al., 2000; Tzanis and Varotsos, 2008; Kokhanovsky and 

de Leeuw, 2009). The particles suspended in the troposphere scatter solar radiation back to cool the atmosphere or absorb solar 

radiation, which warms the atmosphere, causing changes in the net effect of aerosols. These particles could also affect the 

formation and microphysical properties of clouds as cloud condensation nuclei (Andreae and Rosenfeld, 2008). The source of 

aerosols could be anthropogenic or natural (Varotsos et al. 2012). Particles from different sources are mixed into aerosol 15 

masses to influence AOD, reduce visibility (Kinne et al., 2003; Varotsos 2005; Remer et al., 2005) and cause spatial and 

temporal variability of AOD; therefore, the largest uncertainties in the estimation of radiative forcing are introduced by aerosols 

(IPCC, 2013). 

Over the past 35 years, different types of satellites have been used to obtain atmospheric information, especially aerosol 

properties (Griggs, 1979; Kokhanovsky and de Leeuw, 2009). Remote sensing provides a means to obtain global and long-20 

term observations of aerosols, especially in the widest ocean and remote regions where ground-based stations cannot be 

constructed. In addition, polar-orbiting satellites and geostationary satellites obtain daily global images, which helps to capture 

changes in aerosol patterns and properties (Prins et al., 1998; Torres et al., 2002). There are, however, many difficulties in 

observing aerosols by satellites because depending on the surface properties, the contribution to the signal received by the 

satellite can vary drastically; aerosol components and concentrations are constantly varying, and their sources cannot be 25 

precisely determined (Levy et al., 2007).  

The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual-view, of 

which one is nadir direction and the other is forward direction with a viewing angle of 55° from nadir view. The AATSR was 

designed to have seven spectral channels at wavelength of 0.55, 0.67, 0.87, 1.63, 10.7 and 12 μm. The nadir spatial resolution 

is 1	km ൈ 1	km with a swath width of 512 pixels. Furthermore, the AATSR instrument equipped two calibration targets, black-30 
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body calibration target for thermal channels and opal visible calibration target for visible and near-Infrared channels, aiming 

to implement self-calibration. The data from AATSR can be used to retrieve AOD both over land and ocean, which is important 

for the characterization of aerosol properties (Adhikary et al., 2008). In recent years, some aerosol retrieval algorithms have 

been established both over land and ocean, taking advantage of the features of dual-view, which can help eliminate the 

contribution of surface to top of atmosphere (TOA) reflectance. Aerosol_CCI, as part of the Climate Change Initiative (CCI) 5 

(http://www.esa-aerosol-cci.org/), provides users with three algorithms for AATSR data, including the Swansea algorithm (SU) 

(Bevan et al. 2012), the ATSR-2/AATSR dual-view aerosol retrieval algorithm (ADV) (Kolmonen et al. 2015) and the Oxford-

RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009). The aim of this work is to evaluate different 

performances of these algorithms in calculating AOD over different regions of China in 2007, 2008 and 2010.  

A ground-based sun-photometer has been used to take sun and sky measurements directly (Holben et al., 1998). The Aerosol 10 

Robotic NETwork (AERONET) has constructed hundreds of sites all over the world as of 2015. These stations, operated by 

the American National Aeronautics and Space Administration (NASA), are operational worldwide, providing multi-spectral 

channel validation data for satellite-retrieved data to complete synthetic measurements on a global scale.  

The China Aerosol Remote Sensing Network (CARSNET) is a ground-based aerosol monitoring system that uses CE-318 sun-

photometers, similar to AERONET, and has constructed 37 sites throughout China (Che et al., 2009). It has been validated 15 

that CARSNET AOD measurements are approximately 0.03, 0.01, 0.01 and 0.01 larger than measurements of AERONET at 

the 1020, 870, 670 and 440 nm channels, respectively (Che et al., 2009). In this paper, we combine two aerosol observation 

datasets from AERONET and CARSNET as reference data to validate these three AATSR AOD products over China more 

comprehensively.  

The basic method for assessment is to compare the retrieval results with data (AOD mainly) obtained by 20 

AERONET/CARSNET. However, this direct comparison of retrieval results with AERONET data is limited due to different 

cloud removal processes (de Leeuw et al., 2013), and such a limitation could influence the validation reliability to some extent. 

To make the validation more reliable, comparison of the retrieval results with high quality data from MODIS or MISR is also 

one effective method for validation (Kahn et al., 2009). However, AERONET or other ground-based networks provide accurate 

measurements without the influence of land surface reflection (Holben et al., 1998), which means that comparison of retrieved 25 

AOD with ground-based measurements is the basic method. The AATSR L2 products provided by Aerosol_CCI have been 

validated by the validation team via a round robin (RR) test (de Leeuw et al., 2013). On this basis, we focused on assessing 

the performances of AATSR aerosol L2 products in mainland China by comparing the retrieval results with AERONET and 

CARSNET data. 
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2. Reference data and validation statistics 

AOD is the most important parameter in terms of aerosol properties and is different from other retrieved parameters under the 

project of Aerosol_CCI. The Aerosol_CCI project adopts three aerosol retrieval algorithms for ATSR-2/AATSR instrument, 

including Swansea algorithm (SU) (Bevan et al. 2012), the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) 

(Kolmonen et al. 2015) and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009b). All of 5 

these three algorithms have ability in retrieval of aerosol properties both over land and ocean. ADV algorithm was originally 

developed for retrieving AOD properties over land at wavelength of 0.555, 0.659 and 1.61 μm (Veefkind et al. 1998). The 

main advantage of ADV is the introduction of k-ratio approach to eliminate contribution of reflection to TOA reflectance, 

which uses the ratio of the reflectance measured in the forward and nadir views (Flowerdew and Haigh, 1995). The ORAC 

algorithm is designed to retrieve AOD properties at each of four AATSR short-waves channels both over land and ocean, 10 

including AOD, effective radius and surface reflectance. The build of the forward model used in ORAC algorithm is based on 

radiative transfer code - DISORT. A parameterized model of surface reflectance distribution is used in retrieval and combines 

with the AATSR dual-view to make up shortage of the need of a priori of reflectance (North et al. 1999). An iterative 

optimization method is employed to determinate AOD, aerosol type and surface reflectance. 

AATSR L2 data (see Tab. 1) are daily products with a spatial resolution of 10 ൈ 10	݇݉ଶ, and contain a quality flag or a level 15 

of confidence for each pixel (de Leeuw et al., 2013). Compared to the Level 3 (L3) product with a spatial resolution of 1° ൈ 1°, 

daily L2 data have higher spatial resolution, which helps to capture greater detail of aerosol properties and is further explored 

in our follow-up study.  

Tab. 1. Details of AATSR AOD products. 

algorithm version sensor Main parameters Resolution coverage 

ADV/ASV 2.3 AATSR AOD,ANG 10 km, 1° global 

SU 4.21 AATSR AOD,ANG 10 km, 1° global 

ORAC 03.04 AATSR AOD, aerosol type 10 km, 1° global 

It has been demonstrated that the ground-based observation data from the AERONET have the ability and precision to be used 20 

as reference data when users validate AOD (Holben et al., 1998). There are eight AERONET sites in mainland China providing 

Level 2.0 (L2) data (cloud-screened and quality-assured) for 2007, 11 sites for 2008 and 10 sites for 2010, from which the 

AOD measurement data are available on the website. However, most of these sites are distributed in the eastern China coastal 

area, as shown in Fig. 1, which, however, does not meet the requirements of comprehensively validating the aerosol properties 

over all of China. Substantial hazardous aerosol pollution affects most regions of northern (Li, 2014) and eastern China in 25 
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winter, and heavy dust aerosols from the Taklimakan desert in western China can be transported long distances to eastern 

China, even to Japan (Takahashi, 2011), resulting in regional differences. 

 

Fig. 1. The distribution of selected AERONET&CARSNET sites in mainland China in 2007, 2008 and 2010.  The blue and red 

points represent AERONET and CARNET sites, respectively. 5 

The measurements from another network, the CARSNET, equipped with calibrated CE-318 instruments, have the same 

accuracy as AERONET. The CARSNET has more sites than the AERONET in mainland China, and the spatial distribution of 

the CARSNET sites is distributed more evenly. Therefore, for the purpose of assessing different performances of these three 

AATSR L2 AOD products, we selected ground-based measurements from both of these two networks as reference data. 
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The AERONET provides AOD data at three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 

2.0 (L2) (cloud-screened and quality-assured) (http://aeronet.gsfc.nasa.gov/new_web/index.html). Here, we selected 

AERONET L2 data that are screened and quality-assured. Because both the AERONET and CARSNET data are AATSR 

products without band-effective wavelengths, we interpolated the ground-based data to the 550-nm wavelength. The AOD of 

the L2 datasets were compared with AERONET&CARSNET observation data using scatter plots and linear-regression of the 5 

data. The comparisons were made for collocated satellite and ground-based observations (Ichoku et al., 2002), i.e., AOD pixels 

were selected within a spatial extent of +/−50 km of ground-based stations and a time range of +/−30 min of the AATSR 

overpass from the ground-based measurements. At least 5 AATSR AOD retrievals and 2 AERONET/CARSNET observations 

are required in each collocation (Levy et al., 2010).  

We conducted collocations according to year (2007, 2008 and 2010) and dataset (ADV, ORAC and SU). In total, 20 ground-10 

based observation sites, including 12 AERONET sites and 8 CARSNET sites, were in the Chinese territory in 2007, of which 

6 AERONET and 8 CARSNET inland sites were selected. For 2008, we selected 8 AERONET and 24 CARSNET inland sites, 

for a total of 32 sites, ignoring the island sites and those near the shoreline. For 2010, only 6 CARSNET sites are available for 

us, and a total of 14 inland sites were selected with 8 AERONET inland sites (see Table 2).  

Table 2. Selected ground-based sites in China. 15 

 Network inland near shoreline island Total 

2007 
AERONET 6 6 0 12 

CARSNET 8 0 0 8 

Total 14 6 0 20 

2008 
AERONET 8 7 0 15 

CARSNET 24 1 0 25 

Total 32 8 0 40 

2010 
AERONET 8 7 1 16 

CARSNET 6 0 0 6 

Total 14 7 1 20 

 

2.1 Statistical Metrics 

Collocated pairs are analysed using statistical methods. Bias describes the average difference between satellite retrievals and 20 

ground AOD. Then, to determine how well the satellite data match the ground-based observation data, the relationship between 
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them is explored. Some basic statistics are shown on the scatter plot, including the root mean square error (RMSE): 

 RMSE ൌ ඨ
1
݊
෍ ൫߬௦௔௧,௜ െ ߬௔௘௥௢,௜൯

ଶ௡

௜ୀଵ
 (1)

where τ௔௘௥௢,௜ represents the ground-based observation data and τ௦௔௧ represents the satellite retrievals. Mean satellite-retrieved 

AOD (MSA) and mean AERONET&CARSNET AOD (MAA) represent the central tendency of the data. Relative mean bias 

(RMB) is used to determine under- or overestimation of the AOD retrievals; it is the ratio of MSA to MAA: 

 RMB ൌ MSA/MAA (2)

Mean bias error (MBE) is the mean difference between the satellite retrievals and AATSR AODs, and the mean absolute error 5 

(MAE) is the absolute value of the mean bias error. Together with RMB, the MBE and MAE are used to determine the 

magnitude of the difference between the two datasets. 

2.2 KAPPA Statistics 

In the scatter plot of the collocated pairs, the retrieved data and the corresponding collocated ground-based observation data 

could be considered as two arrays, and the main purpose of KAPPA is to explore how these two arrays match each other. For 10 

retrieval of aerosol properties, the performances of most algorithms decrease in effectiveness with increasing AOD, i.e., 

difficulties in retrieving AOD will be increased as AOD increases. Obviously, when only using |ܾ݅ܽݏ|, the absolute value of 

the difference between ground-based data and AATSR AOD data in each collocation pair, as an assessment standard for 

different AODs, is insufficient and lacks persuasion. Therefore, the combination of |ܾ݅ܽݏ| and |ܾ݅ܽ݀݊ݑ݋ݎܩ/|ݏ, i.e., the ratio 

of |ܾ݅ܽݏ| to the value of the reference data in each collocation pair, used in the KAPPA coefficient will account for this shortage 15 

and provide a new statistic for assessing the agreement between two arrays, taking advantage of the KAPPA coefficient. 

The KAPPA coefficient was originally proposed as a descriptive statistic indicating the degree of beyond-chance agreement 

between two ratings per subject in a dichotomous form (Bloch and Kraaemer, 1989). KAPPA coefficients with various forms 

also could be used to measure the accuracy of thematic classifications (Rosenfield and Fitzpatrick-Lins, 1986). KAPPA is, in 

short, a measure of “true” agreement (Cohen, 1960). The pairs collocated by matching ground-based data with AATSR L2 20 

AOD data could be regarded as two different arrays so that we introduced the KAPPA coefficient to assess agreement between 

these two arrays. Based on the concept of the KAPPA coefficient proposed by Cohen (1960), an appropriate modification with 

a two-category nominal scale is shown in Table 3. 
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Table 3. Design of the KAPPA coefficient. 

  Criterion 2 
Total 

 Relevant (highly) Relevant (low) 

Criterion 1 Relevant (highly) a b G1 

Relevant (low) c d G2 

Total F1 F2 n 

To estimate the KAPPA coefficient, one needs to determine which pairs are “true” or which pairs are “relevant”. However, if 

only given matched collocation pairs, we cannot determine which pair is relevant. Therefore, the design of criterion 1 and 

criterion 2 needs to be reasonable and fit for the purpose of validation. 

For criterion 1, if |ܾ݅ܽݏ| is greater than the mean of |ܾ݅ܽݏ|, then it is marked as “lowly relevance”, and if not, it is marked as 5 

“highly relevance”. Here, the bias was assessed from the first quartile to the third quartile for eliminating possible “outliers”. 

The |ܾ݅ܽݏ| only indicates the absolute error of the retrieved AOD, and it still needs another statistic for criterion 2, i.e., 

 is greater than 0.2 |݀݊ݑ݋ݎܩ/|ݏܾܽ݅| which indicates the relative error of AOD retrieval. For criterion 2, if ,݀݊ݑ݋ݎܩ/|ݏܾܽ݅|

(according to EE4), then it is marked as “lowly relevance”, and if not, it is marked as “highly relevance”. For the conventional 

formula of calculating the KAPPA coefficient: 10 

 Κ ൌ ଴ܲ െ ௖ܲ

1 െ ௖ܲ
 (3)

where Po is the proportion of observed agreement and P is the proportion of chance agreement. 

 ଴ܲ ൌ
ሺܽ ൅ ݀ሻ

݊
 (4)

 

௖ܲ ൌ
ቀ
ଵܨ ൈ ଵܩ

݊ ቁ ൅ ቀ
ଶܨ ൈ ଶܩ

݊ ቁ

݊
 (5)

Algorithms for AATSR AOD retrieval used to underestimate AOD over different regions in China include the ADV ORAC 

and SU algorithms. On this basis, the agreement between ground-based observation data and satellite retrievals is assessed 

based on the ADV and SU algorithms (Che et al., 2015). The main aim of this new KAPPA coefficient is to evaluate the 

comprehensive performance of these algorithms. Its function is to represent not only the degree of underestimation but also 15 

the level of agreement between different datasets. 
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3. Validation results and analysis 

We collected different validation reference data of AERONET and CASNET in 2007, 2008 and 2010. Only 14 ground-based 

observation sites are available in 2007, of which some are located close to each other. Most are located in different provinces; 

however, the total number of sites is small and the space distribution is not uniform. Therefore, the number of matches is 

relatively small for all of the algorithms. More AERONET/CARSNET data are available in 2008, with a total of 32 sites 5 

including 8 AERONET sites and 24 CARSNET sites. There are 14 AERO&CARS sites providing data for validation in 

2010.The focus of this paper is to determine the differences between the ADV, ORAC, and SU L2 AOD products (see Tab. 4 

and Figure 1). 

Table 4. Main statistics of the validation results. 

      N MSA MAA MBE MAE RMSE RMB KAPPA 

AATSR ADV 

2007 94 0.25 0.36 -0.11 0.12 0.15 0.70 0.49  

2008 327 0.22 0.36 -0.14 0.15 0.20 0.61 0.37  

2010 147 0.17 0.31 -0.14 0.14 0.22 0.55 0.23  

3Years 568 0.21 0.35 -0.13 0.14 0.20 0.61 0.38  

AATSR ORAC 

2007 145 0.35 0.28 0.06 0.14 0.23 1.23 0.50  

2008 648 0.29 0.33 -0.04 0.16 0.27 0.87 0.45  

2010 298 0.26 0.27 -0.01 0.14 0.23 0.96 0.37  

3Years 1091 0.29 0.31 0.02 0.15 0.25 0.93 0.44  

AATSR  2007 98 0.33 0.41 -0.07 0.09 0.16 0.83 0.43  

SU 2008 446 0.29 0.41 -0.12 0.13 0.21 0.72 0.50  

 2010 171 0.27 0.37 -0.10 0.12 0.21 0.73 0.53  

  3Years 715 0.29 0.40 -0.11 0.12 0.20 0.73 0.50  

 10 

3.1 Validation results 

3.1.1 The ADV algorithm 

For 2007, the RMS error is 0.095 and the RMB is 0.704, which reflects the tendency of underestimation. This type of 

underestimation is more severe with increasing AOD. Low dispersion and slight underestimation make the KAPPA coefficient 

high (0.473), demonstrating that the ADV algorithm performs well in calculating the AOD over China in 2007. The ADV 15 

algorithm is appropriate for the retrieval of low AODs, especially for those less than 1.0; thus, the MSA for 2007 is 0.244. For 

2008, the lower RMB (0.621) suggests more severe underestimation, and higher RSE (0.130) indicate lower accuracy. Similar 
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with 2007, the MSA of the ADV is 0.211. Therefore, the KAAPA coefficient, which measures the overall performance, is 

0.329, lower than that of 2007. For 2010, the lowest RMS (0.089) with the lowest accidental error of the three years. However, 

the KAPPA coefficient is 0.180, also the lowest of the three years. The most obvious feature of the ADV algorithm is 

underestimation with the highest MSA is 0.250 in 2007, and the lowest is 0.173 in 2010. The ADV algorithm can retrieve low 

AOD values with high accuracy. This “ability” is systematic for either high AODs or low AODs. This also limits the range of 5 

application of the ADV algorithm, especially in calculating AODs in high value ranges.  

 

Fig. 1 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China for three year of 2007, 

2008 and 2010. The black solid line represents 1-1 line. The magenta points are means for specific range of AERO&CARS AOD 

and the magenta lines are ܖ܉܍ܕ േ ૛ો of retrievals at certain range. The areas and colours are determined by means of 10 

uncertainty (MU) dataset in AATSR L2 products and standard deviation of retrievals (Std_S) in collocation frame of ૞૙	ܕܓ ൈ

૞૙	ܕܓ respectively. 

3.1.2 The ORAC algorithm 

The ORAC algorithm performed well for 2007, achieving a KAPPA coefficient of 0.474. However, the distribution of matches 

is dispersed implying high RMSE (0.206). In terms of the degree of fitness, its performance is not effective. However, there is 15 

no obvious trend of underestimation or overestimation, and accidental errors influence the accuracy of the ORAC algorithm. 

The MSA of the ORAC is 0.324. ORAC has the most matches of the three algorithms. Different from 2008, no obvious 

underestimation occurs in the results of 2007 and 2010. For 2008, the RMB is 0.829, suggesting a slight underestimation trend. 

The applicability of ORAC is high, with MSA of 0.271. The collocated pairs are relatively dispersed, influencing the RMSE. 

For 2010, the same dispersion of points in the scatter plot and low KAPPA coefficient are observed. Overall, the ORAC 20 

algorithm tends to retrieve AODs unstably for either high AODs or low AODs and with slight underestimation in 2007. The 

results of 2008 and 2010 share common features, indicating that accidental error is larger than systematic error. 
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3.1.3 The SU algorithm 

The SU algorithm performed well for all three years, achieving KAPPA coefficients of 0.409, 0.484 and 0.520, respectively. 

The RMBs are 0.816, 0.713 and 0.720 for 2007, 2008 and 2010, respectively, demonstrating the underestimation of the SU 

product. The applicability of SU is high, with MSA of 0.293 for 2008. The most obvious feature of the SU algorithm is its 

stability in retrieving AOD for different years or different regions (Fig. 4). The MSA ranges from 0.270 for 2010 to 0.330 for 5 

2007, and the KAPPA coefficient is from 0.520 to 0.409, which suggests that the SU algorithm performed better in retrieving 

low AODs. The SU algorithm has the best performance in terms of AOD retrieval, as it has the highest KAPPA coefficient 

(0.520). Overall, the SU algorithm can be applied to retrieve AOD in different ranges with high precision. Factors influencing 

the performance of the SU algorithm include small systematic error and even smaller accidental error. 

3.2 Uncertainty analysis based on aerosol loading 10 

In the previous section, we validated all three AOD products over mainland China in 2007, 2008 and 2010, discovering that 

all three products tend to exhibit underestimation to some extent. For the purpose of ascertaining the causes of the 

underestimation, in this section, we focus on analysing the AOD uncertainties leading to differences between retrieved AODs 

and ground-based AODs in special conditions. Collocated pairs are divided into three groups according to aerosol loading, 

including light loading (τ ൏ 0.15), heavy loading (τ ൐ 0,4), and moderate loading (Levy et al., 2010). It is obvious that the 15 

AOD bias increases with increasing AOD for all three products. These products have one feature in common, that is, the AOD 

bias tends to be negative, which indicates that the underestimation becomes more significant with increasing aerosol loading. 

The ADV and SU algorithms perform well in estimating AOD, i.e., with little underestimation (lower MBEs of -0.04 and -

0.02 respectively as shown in Tab. 5), when aerosol loading is low (light loading) (Fig. 2).  

Under complex conditions, the ORAC overestimates AOD in regions of light loading and moderate loading compared with 20 

the AERONET and CARSNET, as shown in Fig. 2. ADV tends to underestimate AOD more severe with MBE = -0.11 in 

moderate aerosol loading region. Similar with ADV, the underestimation of SU in moderate aerosol loading becomes more 

severe with MBE = -0.07. ORAC performs the best in retrieving in moderate aerosol loading region without underestimation 

or overestimation, even though the bubbles distribute discrete with Std of 0.18 (see in Tab. 5). The performances of all three 

algorithms are at same level with close MBEs, Stds and RMSEs in heavy aerosol loading region. 25 

The top and bottom borders of the box we draw represent the interval of ሾെ2ߪ, ሿߪ2 , which contains most of the data 

(approximately 95%) for a given group. The data outside the box are “possible outliers” based on the largest error contained 

in each group. Those “possible outliers” have one feature in common in that the corresponding points in the bias scatter plot 

are far away from other points. Otherwise, the points below or above the box are different. If a point is above the box, which 
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indicates that the satellite-retrieved AOD is larger than the ground-based observed AOD, this “outlier” tends to be caused by 

a residual cloud. The ground-based network measures AOD from only one point; however, the satellite-retrieved AODs in 

each collocated pairs are an average of 25 pixels. Any one of these 25 pixels with a cloud residual will lead to an increased 

AOD in a collocated pair. Therefore, we conclude that the “outliers” above the box are possibly caused by a cloud residual. 

From this view, there are 6, 6 and 2 bubbles above the each box for the ADV product for light, moderate and heavy aerosol 5 

loading respectively. However, these bubbles are not “possible outlier” due to the MUs and Std_Ss are relative small shown 

in Fig. 2. Similarly, the bubbles from SU product above each box are not “possible outliers”. For the ORAC product, most of 

bubbles above each box are “possible outliers” due to larger Std_S (>0.2). Most of “possible outliers” are concentrated in light 

(13 bubbles) and moderate (14 bubbles) aerosol loading regions as shown in Tab. 5, influencing ORAC’s performance on 

estimating AOD. The bubbles below the box are different from those above the box. Most of them are only below the boxes 10 

of moderate and heavy aerosol loading, indicating that all these algorithms have limitations of underestimation on estimating 

AOD in moderate and heavy aerosol loading regions, especially when AOD loading increase.  

   

Fig. 2. Scatter plot of AERONET&CARSNET AODs with ADV AOD bias or uncertainties in China in 2007, 2008 and 2010. The 

areas and colours of bubbles represent MU and Std_S sampling area of ૞૙ܕܓ	 ൈ ૞૙ܕܓ respectively. Colours represent different 15 

groups: blue denotes light loading, green denotes moderate loading, and red denotes heavy loading. Each group has one box, the 

bottom and top borders of which represent ۰۳ۻ ൅ ૛ો and ۰۳ۻ െ ૛ો, respectively, containing 96% of scattered points from each 

group. The centre line of each box represents the MBE of each group.  

We make these groups because aerosols exhibit different behaviours with different loading conditions. In general, the bias or 

uncertainty of satellite-retrieved AOD will increase with increasing AOD or aerosol loading. As discussed above, all of these 20 

algorithms underestimate AOD at different levels; similarly, it is worth noting that underestimation becomes more severe with 

increasing AOD or aerosol loading. 
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Table 5. Statistics of comparison between AOD bias and ground-based measurements. Proportion is the ratio of numbers of bubbles 

falling in each box to total. RMSE1 and RMSE2 are RMSEs of AOD bias with ground-based measurement and AOD uncertainty 

respectively.  

Algorithm Class N Proportion MBE RMSE_ Std Above Below RMSE2 

AATSR 
ADV 

Total 568 100.0% -0.13 0.20  0.15 14 14 0.27  

Light 126 22.2% -0.04 0.03  0.04 6 0 0.07  

Moderate 259 45.6% -0.11 0.10  0.09 6 6 0.22  

Heavy 183 32.2% -0.23 0.17  0.20 2 8 0.35  

AATSR 
ORAC 

Total 1091 100.0% 0.02 0.25  0.25 32 8 3.65  

Light 347 31.8% 0.059 0.10  0.17 13 0 0.13  

Moderate 468 42.9% 0 0.11  0.18 14 2 0.28  

Heavy 276 25.3% -0.16 0.20  0.36 5 6 5.56  

AATSR 
SU 

Total 715 100.0% -0.11 0.20  0.17 8 22 0.24  

Light 147 20.6% -0.02 0.02  0.04 3 1 0.08  

Moderate 306 42.8% -0.07 0.07  0.08 5 12 0.16  

Heavy 262 36.6% -0.2 0.19  0.23 0 9 0.34  

Additionally, we make comparison of AOD bias, which is retrieval errors observed, with AOD uncertainty in AOD retrieval 

for each pixel from AATSR L2 dataset. AOD retrieval error observed (AOD bias) and AOD uncertainty in retrieval are 5 

different as evaluating merits. The range of SU AOD uncertainty is from 0.025 to 0.3, smaller than others, even in heavy 

aerosol loading region. Most of bubbles of ADV product in Fig.3. are from 0 to 0.4 of AOD uncertainty. The AOD bias and 

uncertainty are small in light aerosol loading and moderate for ADV and SU products as shown in Fig. 3. For ORAC product, 

there is no obvious regularity between AOD bias with AOD uncertainty in three aerosol loading regions especially those 

bubbles with high Std_S.  10 

3.3 Uncertainty analysis of individual ground measurement sites 

For the purpose of further evaluating the different performances of these three algorithms in estimating AOD over mainland 

China, we validate these products on a site-by-site basis. It is significant to explore the roles of different factors in estimating 

AOD. There are several factors that may have impacts on AOD calculation, including land cover, aerosol type, elevation, etc. 

Therefore, we analyse different validation results of each site to study how these factors work (see Table 6). 15 
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Fig. 3. Scatter plots of ADV, ORAC and SU AOD uncertainty with AOD bias over China for three years of 2007, 2008 and 2010. 

The area and colours of bubbles represent Std_S and AOD respectively. 

Table 6. Statistics of validation results of different products over different sites.  

Site Algorithm N MSA  MAA MBE MAE RMSE RMB KAPPA 

Linan 

ADV 33 0.346  0.462 -0.116 0.122 0.088 0.748 0.341 

ORAC 48 0.426  0.470 -0.044 0.131 0.144 0.906 0.668 

SU 40 0.430  0.484 -0.054 0.082 0.093 0.889 0.650 

SACOL 

ADV 46 0.156  0.285 -0.129 0.132 0.068 0.547 0.283 

ORAC 74 0.286  0.314 -0.028 0.102 0.170 0.910 0.595 

SU 49 0.265  0.291 -0.027 0.062 0.072 0.908 0.878 

Shangdianzi 

ADV 52 0.172  0.297 -0.125 0.131 0.087 0.578 0.339 

ORAC 66 0.267  0.304 -0.037 0.107 0.134 0.879 0.407 

SU 46 0.285  0.402 -0.117 0.128 0.101 0.710 0.457 

XiangHe 

ADV 33 0.184  0.284 -0.100 0.102 0.070 0.649 0.169 

ORAC 34 0.227  0.240 -0.013 0.091 0.096 0.946 0.577 

SU 36 0.368  0.392 -0.024 0.058 0.077 0.939 0.444 

Xilinhot 

ADV 49 0.082  0.198 -0.116 0.117 0.046 0.414 0.148 

ORAC 110 0.190  0.182 0.008 0.109 0.166 1.043 0.389 

SU 61 0.140  0.220 -0.081 0.085 0.063 0.634 0.444 

 5 
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3.3.1 Inter-comparison of algorithms site by site 

In this section, we select five representative AERONET&CARSNET sites with more than 30 successful matches in 2007, 

2008 and 2010 to guarantee an appropriate statistical sample size. These selected sites are located in different regions where 

the land cover and climatic pattern are different and representative of mainland China. Two AERONET sites and three 

CARSNET sites were selected, including SACOL and XiangHe from AERONET, and Linan, Shangdianzi and Xilinhot from 5 

CARSNET. Most matches of ADV and SU products collocated with ground-based data occurred in March to October in 2007, 

2008 and 2010, as shown in Fig. 4 to Fig. 8. The matches of the ORAC product were distributed in each month over most sites. 

Linan is located at 30.3°N, 119.73°E,	northwest of Zhejiang province. A total of 80% of the 50	km ൈ 50	km	surrounding area 

is covered by green vegetation, and the other 20% is covered with urban land. The ADV and ORAC algorithm underestimated 

AOD, with MBE = 0.13 and 0.12 in 2010, respectively. The SU performed well in Linan, with slight underestimation. The 10 

underestimation of the ADV algorithm is more severe than that of SU and ORAC. Although the ORAC algorithm has the most 

matches in Linan, its performance was unstable, which means that the level of underestimation was different in different years. 

Fig. 4. Time series comparison of AATSR AOD with CARSNET AOD at Linan in 2008 and 2010. 

SACOL is situated along the southern bank of the Yellow River in Lanzhou city, Gansu province. Lanzhou city has a temperate 

continental climate with four clearly distinctive seasons. The dominant land cover is grassland, covering approximately 95% 15 

of the spatial extent of the 50	km ൈ 50	km	area from the MODIS MCD12C1 land cover data. A total of 30% of the surface is 

arid and semi-arid areas, which can be a source of dust aerosols. SU performs well in retrieving AOD over SACOL, with a 

low RMSE (0.072). The accidental error in the retrievals using the ORAC algorithm is obvious, leading to a high RMSE 

(0.170). However, as discussed above, the ADV algorithm severely underestimated AOD in SACOL. The ADV algorithm 
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tended to severely underestimate the AOD of different ranges, except for a small number of high quality matches. The matches 

of the SU product are of high quality for the three years. The ORAC has collocated matches in January, February, November 

and December (winter time), unlike the ADV and SU products. However, the accuracy of ORAC in winter is highly uncertain, 

as shown in Fig. 5. 

 Fig. 5. Time series comparison of AATSR AOD with AERONET AOD at SACOL in 2007, 2008 and 2010. 5 

Shangdianzi is situated at 40.15°N, 94.68°E, with complex land cover of approximately 45% cropland, 30% mixed forest, 18% 

closed shrub land, 5% grassland, 1% water and 1% evergreen needle leaf forest. The SU algorithm has high precision of AOD 

calculation over this site from March to October, when most of the land cover is green. The ADV algorithm also performs well 
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in calculating AOD over these three sites, with slight underestimation. The performance of the ORAC algorithm in Shangdianzi 

is unstable, with strong agreement with ground-based data from March to October and severe underestimation in winter, as 

shown in Fig. 6. 

 

Fig. 6. Time series comparison of AATSR AOD with CARSNET AOD at Shangdianzi in 2007, 2008 and 2010. 5 
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Xianghe is located to the southeast of Beijing and has the same climatic conditions as Beijing. Approximately 98% of the 

surface is covered with urban land according to the MCD12C1 data of a 50	km ൈ 50	km	area. The performances of these three 

algorithms are at the same high quality level. However, the ADV algorithm still underestimated AOD at a level of MBE = 

0.12 in 2007 and 0.10 in 2008. 

 5 

Fig. 7. Time series comparison of AATSR AOD with AERONET AOD at XiangHe in 2007, 2008 and 2010. 
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Xilinhot is situated at 43.95°N, 116.07°E, at the centre of the Xilinguole grassland. The main land cover is grassland (100%) 

based on the MODIS MCD12C1 data, with a spatial extent of 50	km ൈ 50	km. The surface and climate features of Xilinhot 

are similar to those of SACOL, and the performance of the SU algorithm at these two sites is the same, i.e., both with low 

RMSE. The ADV algorithm slightly underestimated AOD with MBE of 0.10 ~ 0.13. The ORAC AOD showed weak agreement 

with the Xilinhot data, mainly because possible “outliers” exist in March to June 2008 and March 2010.  5 

 

Fig. 8. Comparison of SU AOD with CARSNET AOD at Xilinhot in 2008 and 2010. 

To guarantee statistical reliability, there must be more than 30 collocated pairs at one site. The determination of the surface 

cover at each site is based on the proportion (> 80% for one land type) of each land cover type from the MCD12C1 data at a 10 

spatial extent of 50	km ൈ 50	km. If no land cover type accounts for a proportion larger than 80% at a given site, it will be 

identified as mixed; then, we select two or more (sum > 80%) land types with the largest proportions as the main land cover. 
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3.3.2 Analysis of algorithm performances in western China 

Because sufficient ground-based data in western China are lacking for the AERONET measurements, only data from 

CARSNET sites are used in 2008. We selected six CARSNET sites located in western China in which there are more than 25 

matches.  

Urumchi, situated at 43.78°N, 87.62°E, serves as the provincial capital of Xinjiang Uyghur Autonomous Region and is the 5 

most remote city in China in terms of distance to any sea. The dominant land cover at the spatial extent of 50	km ൈ 50	km	is 

grassland, which accounts for approximately 85%. The ADV, ORAC and SU algorithms all severely underestimated AOD, 

with MBE = 0.22, 0.12 and 0.17, respectively. The MBE is lowest mainly because of the “outlier” in April, which decreases 

the MBE. 

 10 

Fig. 9. Time series comparison of AATSR AOD with CARSENT AOD at Urmchi in 2008. 

Ejina is situated at 41.95°N, 101.07°E, and its main land cover is barren ground (84%). The performances of ORAC and SU 

are at the same high quality level, with MBEs of 0.02 and 0.09, respectively. Another reason why we chose this site is that 

there are no matches of ADV products successfully collocated with ground-based data. Based on Fig. 10, the ORAC algorithm 

has strong applicability in Ejina and high accuracy in retrieving AOD. The SU algorithm also performed well. This 15 

demonstrates that another limitation of the ADV algorithm is its applicability in calculating AOD in China. Dunhuang is 

situated at 40.15°N, 94.68°E and is surrounded by barren ground (85%). The same situation is true for Ejina, which causes 

slight underestimation at each point but high R and low RMSE for the ORAC algorithm (Figure 11). The performance of the 

SU algorithm was not as good as that of the ORAC because of its underestimation with MBE = 0.10. The limits of 

underestimation and applicability of the ADV were more obvious at this site, as it only had 6 matches and showed severe 20 

underestimation with MBE = 0.17. Tazhong is situated at 39°N, 83.67°E and is surrounded by barren or sparsely vegetated 
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surface. Almost all land cover is barren ground according to the MODIS MCD12C1 data. Similar to the former two sites, the 

ADV product did not have any successful matches at this site (Figure 12). Both the ORAC and SU algorithms exhibited severe 

underestimation of retrievals, with MBE = 0.17 and 0.20, respectively. The outliers of the ORAC product in February are 

much higher than the observation data, causing the lower MBE. 

 5 

Fig. 10. Time series comparison of AATSR AOD with CARSENT AOD at Ejina in 2008. 

 

Fig. 11. Time series comparison of AATSR AOD with CARSENT AOD at Dunhuang in 2008. 

 

Fig. 12. Time series comparison of AATSR AOD with CARSENT AOD over the site of Tazhong in 2008. 10 
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The prevailing climatic pattern in western China is a temperate continental climate with four distinct seasons and less 

precipitation in winter and spring. In conclusion, compared to eastern China, the applicability of the ADV algorithm is not 

strong, and the underestimation is more severe. In the four selected sites in western China, the performance of the ORAC 

algorithm is best, even though severe underestimation occurs at some sites. The accuracy of the SU algorithm is not as high as 

the ORAC product, with more severe underestimation and lower applicability. 5 

3.3.3 Inter-comparison 

In conclusion, the SU algorithm performs well in calculating AOD over different land covers from March to October. Slight 

underestimation occurs over barren ground or sparse vegetation at different times, and there are no obvious features in terms 

of precision in the time series over grasslands. For complex land surfaces where the dominant land cover is vegetation, the SU 

algorithm is extremely effective in estimating AOD. In the last section, we draw a conclusion that the SU algorithm 10 

underestimates AOD over mainland China in 2008 probably because the dominant land cover in western China is barren or 

sparse vegetation, over which the SU algorithm underestimates AOD more severely. 

The ADV algorithm underestimates AOD at most of the selected sites. We categorize these sites into four classes according 

to the MBEs of different sites: Class 1 (MBE<0.1), Class 2 (0.2>MBE>0.1), Class 3 (0.3>MBE>0.2), and Class 4 (MBE>0.3). 

The ADV algorithm underestimates AOD over all selected sites, leading to all selected MBEs being larger than 0. We make 15 

such categories for the purpose of assessing the contribution of different surfaces to AOD estimation. Only XiangHe of 2008 

belongs to Class 1, and Linan, Shangdianzi, and SACOL are classified into Class 2. Only Urumchi is in Class 3. Note that 

even though Lanzhou and Datong were not selected due their location, they should be classified in Class 4.  

Overall, the ADV algorithm underestimates AODs at all sites but at different levels, as demonstrated by the above categories. 

Serious underestimation occurs over the sites in Class 3 and Class 4 in western China, where the dominant land cover is a 20 

mixing of urban area and a large portion of grasslands. For the sites in Class 2, differences exist between Beijing and SACOL. 

SACOL is similar to the sites in Class 3 and Class 4, the main land cover of which is grassland. Over the sites in Class 1, the 

algorithm performs well with high R and low MBE, but there are no common features in terms of surface conditions. 

The ORAC product collocates most pairs of all of these products. Most collocated pairs of the SU product and ADV product 

occur in March to October, but the collocated pairs of the ORAC product occur during each month over some sites in 2008. 25 

Because more matches suggest greater errors for the determination of the “outlier” contribution to the overall performance of 

the ORAC algorithm, we introduce the ratio of the individual difference to average the differences for each site: 
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where DR<1 indicates a “relatively good” match, 3 >DR >1 indicates a “relatively poor” match, and DR >3 is an “outlier” 

(see Table 7). 

There are no obvious “possible outliers” in Ejina shown in Fig. 10. Most of the DRs are in the range of 0 to 3, only two DRs 

are larger than 3, and the maximum (overestimation) is 5.112. The retrieved AOD in March is a possible “outlier” because it 

is overestimated, whereas most are underestimated. Another two sites dominated by barren or sparsely vegetated land cover 5 

are Dunhang (approximately 85%) and Tazhong (100%). The conditions in Tazhong are complex, and there is no obvious 

relationship between the CARSNET data and the ORAC AODs. Most of the DRs are less than 3, and a total of eight DRs are 

larger than 3. The DR in February is an “outlier” because the varying tendencies are different between the ORAC product and 

the ground-based data, indicative of overestimation. 

Table 7. DR distribution of specific sites.  10 

Site DR<1 1<DR<3 3<DR<5 5<DR Total 

Urumchi 47 40 2 1 90 

Ejina 51 43 1 1 96 

Tazhong 63 17 5 3 88 

Dunhuang 57 31 1 2 91 

The ORAC product has the largest coverage at the expense of accuracy, especially in the presence of “outliers”, and only the 

ORAC product has collocated validation pairs over some sites during each month in all three years. The ORAC algorithm 

underestimates AODs over Ejina, Tazhong and Dunhuang, but the “possible outliers” reduce the differences between the 

CARSNET data and the ORAC product. Xilinhot, Urumchi and SACOL share the same main land cover of grassland. The 

problem is that the underestimations over these sites are not at the same level.  15 

It is worth noting that the ORAC algorithm has the ability to calculate high AOD; however, most of the AODs have DRs larger 

than 3, indicating that the estimation of high AOD is unstable and has large error, reducing the overall precision. 

3.4 Seasonal characteristics of three algorithms 
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The mainland China, cross about 60 degree of longitude and 30 degree of latitude, is dominated by monsoon-driven climate. 

In such vast territory, there are big differences in climate pattern from western to eastern China. The main climate type in 

eastern and eastern coastal China is monsoon climate. For western China far from the ocean, the climate type is hybrid of 

monsoon and continental climate. In dry seasons (winter, first half of spring, and last half of autumn), poor vegetation coverage, 

loosen surface and winds in most northern China regions make coarse particles (sea salt and desert dust) into aerosol. Fine 5 

particles from coal combustion in winter and soot from straw burning in autumn is also important source of aerosol.  In rainy 

seasons (mainly in summer), high vegetation blocks dust blowing into aerosol and reduce surface reflectance at visible 

wavelength. Table 8 shows the seasonal distribution of validation results of three algorithms. For the mainland China which is 

located in Northern Hemisphere from 20°N to 55°N, the spring time starts from about March to May, the summer time starts 

from about June to August, the autumn time starts from about September to November and the winter time is about from 10 

December to February in next year. 

Table 8. Seasonal distribution of validation results of three algorithms.  

    N MSA MAA MBE MAE RMSE RMB KAPPA 

AATSR Spring 186 0.26 0.41 -0.16 0.16 0.23 0.62 0.4 

ADV Summer 164 0.16 0.29 -0.13 0.14 0.19 0.54 0.26 

 Autumn 190 0.2 0.32 -0.12 0.13 0.17 0.62 0.36 

AATSR Spring 294 0.35 0.37 -0.02 0.18 0.3 0.95 0.5 

ORAC Summer 296 0.28 0.35 -0.07 0.17 0.26 0.79 0.4 

 Autumn 265 0.23 0.22 0.01 0.1 0.16 1.04 0.43 

 Winter 230 0.29 0.28 0.01 0.15 0.25 1.03 0.38 

AATSR Spring 222 0.3 0.42 -0.12 0.14 0.24 0.72 0.53 

SU Summer 241 0.32 0.43 -0.11 0.13 0.2 0.74 0.49 

 Autumn 237 0.26 0.35 -0.09 0.11 0.16 0.74 0.49 

Low mean of uncertainty (MUs) at 550nm means these retrievals are of high quality in Fig. 1. Most of Std_S are below 0.08, 

indicating high uniformity of ADV products (see Fig. 1). Most of collocated pairs of ADV AODs are concentrated below the 

1-1 line and the RMB is 0.61, showing a tendency of underestimation. This kind of underestimation has an impact on ADV 15 

algorithm performances, for example, the RMS error is 0.19 in summer time, otherwise, the corresponding RMB is 0.54, which 

makes the KAPPA coefficient the smallest (0.26) than other seasons. The MBEs is from -0.12 in autumn to -0.16 in spring in 

Table 8, which means that the ADV algorithm tends to underestimate AOD in all seasons (except winter) over mainland China 

(See Figure 13). For monsoon climate, the main aerosol types in many parts of China are influenced by coarse particles (dust 

from Western China and sea salt from eastern coastal China) in spring time. The performance on calculating aerosol properties 20 

of mixture of coarse particles is best in spring time with highest KAPPA coefficient, even though there are some samples with 

high MUs and the RMS error is 0.23.  
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Fig. 13 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China in the spring, summer, 

autumn and winter time of 2007, 2008 and 2010. 

The matches of the ORAC product collocated with reference data are distributed discretely at two sides of 1-1 line in Fig. 1. 

The best performance with high KAPPA coefficient of 0.5 is in spring with no underestimation, even though the RMS error is 

high about 0.30. The KAPPA coefficient in the autumn time is lower than in the spring time, even though most of evaluation 5 

metrics are better in the autumn. Note that, only ORAC product of these three products has been collocated enough matches 

(more than 30) with reference data in the winter time. The performance of ORAC in winter is between that in spring and 

autumn without obvious underestimation or overestimation. The limitation of ORAC algorithm is the stability in retrieve 

aerosol properties, as shown in Fig. 13, the magenta mean േ 2σ lines for each season at each range are longer than those for 

other two products. 10 

The SU algorithm has better performances in three years, getting KAPPA coefficients of 0.50. Most retrievals in matches are 

of high quality collocated with reference data and most Std_S are lower than 0.08, i.e. the sample quality is high and this 

coincides with assumption of aerosol properties uniformity in 50km ൈ 50km area. The best performance on retrieval is in the 

autumn, lowest RMS error of 0.16 and largest RMB of 0.74 in three seasons shown in Fig. 13. The magenta lines are similar 

with those of ADV product in corresponding seasons, showing same level of stability in retrieving AOD. The SU algorithm 15 

has no obvious differences in retrieving AOD in three seasons. One limitation of SU and ADV algorithms is less than 30 

collocated matches in the winter time so that we can’t evaluate its performance during that time. 

The latest MODIS Moderate Resolution Imaging Spectroradimeter (MODIS) Collection 6 (C6) product were released in 2013, 

including aerosol datasets produced by two “Dark Target” (DT) algorithms (one is for retrieving over ocean and the other is 

for retrieving over land) and “Deep Blue” algorithm for retrieving over bright or semi-arid surface (Levy et al., 2013). For 20 

over land, the DT algorithm uses an updated cloud mask to allow retrieval of heavy aerosol compared to algorithm employed 

in MODIS Collection 5. It is reported that MODIS C6 products (produced by three algorithms) are of high quality (Sayer at 

el., 2014). Here, we select both MODIC C6 DT and DB 10km ൈ 10km merged dataset as reference data for cross-validation 

of AATSR L2 AOD products. The matches in Fig. 14 are randomly chosen from MODIS and AATSR collocated AOD datasets. 

The ADV AOD has lowest RMSE of 0.11. The SU algorithm has same performance with ORAC (similar RMSE and KAPPA) 25 

but with a little underestimation as the magenta line in Fig. 14.  

Aerosol Angstrom Exponent is an exponent that expresses the spectral dependence of aerosol optical thickness with the 

wavelength of incident light (http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/aerosol_angstrom_exponent.shtml). The 

Ångström exponent is inversely related to the average size of the particles in the aerosol: the smaller the particles, the larger 
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the exponent. Thus, Ångström exponent is a useful quantity to assess the particle size of atmospheric aerosols or clouds, and 

the wavelength dependence of the aerosol/cloud optical properties. 

   

Fig. 14 Scatter plot of AATSR AOD and DT&DB AOD 

The ORAC product provides Ångström exponent for 550-870μm only and SU product provides Ångström exponent for 550-5 

870μm only. The CARSNET dataset provides Ångström exponent for 440-870μm only. As the ADV product provides 

Ångström exponent for 550-670μm only, we couldn’t do comparison for ADV Ångström exponent. We compared Ångström 

exponent using both CARSNET and AERONET datasets for SU and ORAC products. Figure 15 shows the comparisons of 

Ångström exponent. In general, both SU and ORAC algorithms generate similar quality of Ångström exponent values. There 

is no any pattern of Ångström exponent with AOD values and uncertainty. 10 

 

 

Fig. 15 Comparisons of Ångström exponent of ORAC and SU products. The area and colours of bubbles represent AOD 

uncertainty and AOD values, respectively. 
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4. Conclusions 

These three algorithms (the SU algorithm, the ADV algorithm and the ORAC algorithm) display different performances in 

estimating AOD over mainland China in 2007, 2008 and 2010. However, none of the algorithms show an explicitly better 

performance than the other two. The SU and ADV products have higher accuracy over most selected sites but less coverage, 

whereas the ORAC product has greater coverage at the cost of accuracy. 5 

All of these algorithms tend to underestimate AOD to some degree. The underestimation becomes more severe with increasing 

AOD or aerosol loading. The method of grouping helps to identify “possible outliers” in different regions of aerosol loading.  

The precision of the SU and ADV algorithms is at the same level over different surfaces. However, the SU product has more 

strict quality control than the ADV product, and it eliminates AODs to make the MBE less than 0.10 over different sites (de 

Leeuw et al. 2013). Over grassland and barren vegetation, the SU displays a strong performance with slight underestimation 10 

(MBE < 0.10). The limitations of underestimation and applicability of the ADV are more obvious over such sites. For complex 

surfaces with two or more land cover types, the performances of these three algorithms are at the same level. Note that Lanzhou 

and Datong are different from other sites, even though the main land cover type is grassland. All of these algorithms 

underestimated AOD at a high level, perhaps because these algorithms are not sensitive to absorptive aerosols. 

Only the ORAC product shows “possible outliers” identified by equation (2), which substantially decreases its accuracy. The 15 

most obvious feature of the “possible outliers” is that the retrieved AODs are higher than the ground-based measurements.  

As reference data, AERONET L2 data have some limitations, including the distribution and number of sites in mainland China. 

Most sites of AERONET are distributed in eastern China and the coastal region of China for special experimental use; as a 

result, sufficient reference data cannot be obtained to validate the AOD product. The CARSNET data make up for this shortage 

because there are more CARSNET sites in China, especially in western China, where few AERONET sites have been 20 

constructed. Limited both by reference data and satellite retrievals, most co-allocated pairs occur in March to November, and 

few occur in winter (December, January and February). 
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