
Dear Editor and Reviewers, 

 

We highly appreciate the detailed valuable comments from the referees on our manuscript of “acp-2016-

195”. The suggestions are quite helpful and we have incorporated them in the new version of manuscript. 

We have referred to literatures and papers and re-analyzed the collected data and reconstructed the paper 

to improve the quality of our paper. 

 

As below, I would like to clarify some of the points raised by the Reviewers. And we hope that the 

reviewers and the editors will be satisfied with our responses to the ‘comments’ and the revisions for the 

original manuscript. 

 

Thanks so much. 

 

Yours Sincerely, 

 

Yong Xue 

 
 
  



In this study, authors validate three AATSR AOD products (ADV, ORAC and SU 
algorithm) provided by Aerosol_cci project over China in 2007, 2008 and 2010. It’s 
been widely validated (compared with AERONET AOD) that these three algorithms 
have ability in retrieving AOD over land with high precision till 3/23/2016. However, 
the AERONET data has limitations as reference data that there were not enough 
AERONET sites built and the distribution of AERONET sites were unevenly in 
mainland China in 2007, 2008 and 2010 caused by large territory of mainland China. 
Authors introduce CARSNET data to be combined with AERONET data, making up 
for these limitations and improving reliability of reference data. On this basis, authors 
not only select common evaluation metrics, but also introduce new metrics, for example, 
the improved KAPPA coefficient as comprehensive evaluation metric, the DR for 
determination of AOD retrieved “outliers”, the improved expected error envelope 
designed for characteristics of AATSR AOD products, etc. This study is a nice trial 
consisting many meaningful works and I would recommend publication if my 
following comments/suggestions can be adequately addressed. 
 
Many thanks for your positive comments. 
 
Major comments: 
1. The structure and composition of manuscript should follow the requests of official 

website of Atmospheric Chemistry and Physics (ACP). For example, keywords, 
team list, etc. should add to manuscript and team list exist in this manuscript.  

Response: All required structure and composition have been added in revised version 
of manuscript.  
 
2. Figures in the manuscript should be clear and easily understood. The main method 

of this study is to validate three AATSR AOD products year by year for reason of 
different reference data available for authors. Readers could distinguish which sites 
in the Fig. 1 is from AERONET or CARSNET, but may not pick out the space 
distribution of ground-based data sites in same year easily. I recommend authors 
replot Fig. 1 of “The distribution of selected AERONET&CARSNET sites in 
mainland China in 2007, 2008 and 2010”, using one same color or type for sites 
available in one year. 

Response: The figures have been revised with clear and easy understood symbols and 
text, as Fig. 1 we have revised the symbols of sites from different networks using 
different colors to make it clearer. 

 
3. Also I suggest that the paper never use the word “good” to describe the results. The 

coefficient of correlation (CC) as one of main evaluation metric, which indicates 
whether there is any linear relationship among the points. Authors could not claim 
which performances of products is “good” or not “good” by any values of CC or 
other evaluation metrics. For example, when CC is high, the performances could be 
viewed as “good”, when CC is low, the performance is also viewed “good”. The 
word “good” may confuse readers, leading misunderstanding of conclusions in this 



study. 
Response: The “good” or “well” terms have been replaced by quantitative description 
or comparative words. For example, in section 4 to section 6, we have refined our 
analysis using more detailed quantitative description to present readers easy understood 
analysis.  
 
Specific comments: 
 
Page 2 line 9, the influences of aerosol particles on cloud should cited the paper of 
Twomey published in 1974. 
Response: This reference will be added. 
 
Page 2 line 19, the word “because” should be replaced by other words like “including” 
Response: This sentence has been revised. 
 
Page 3 line 10, the word “more” should be removed 
Response: This word has been removed. 
 
Page 3 line 15-19, comparison of satellite retrievals with other high quality has 
limitations, could you illustrate it more clearly? 
Response: We have added necessary illustration and cross-validation with MODIS C6 
DT&SB merged datasets. 
 
Page 3 lin26, is “Aerosol_CCI” or “Aerosol_cci” formal?  
Response: The CCI official website uses “Aerosol_cci”, therefore, we’ll introduce 
“Aerosol_cci” in the following or revised paper. 
 
Page 4 Tab. 1 the bottom row are same with header row, what’s it useful? And in the 
title abbreviation “Tab.” should avoid. 
Response: Tab. 1 has been revised. 
 
Page 9 Tab. 4 these statistics should be up to two decimal point. 
Response: Relative statistics have been kept two places of decimal.  
 
Page 9 line 3, this sentence has syntax error. 
Response: This sentence has been revised in new version of manuscript. 
 
Fig. 8 – Fig. 16, the places of titles should be same. 
Response: The places of title in figures have been adjusted to the same. 
 
Page 19 Tab. 5 these statistics should be up to two decimal points. 
Response: Relative statistics have been kept two places of decimal as Tab. 4. 
 
Page 24 line 29, in part of acknowledgements, the numbers of sites are inconsistent 



with mentioned as above. 
Response: The numbers of ground-based sites have been corrected in revised version 
of manuscript.  



Dear Editor and Reviewers, 

 

We highly appreciate the detailed valuable comments from the referees on our manuscript of “acp-2016-195”. The suggestions are quite helpful and we have 

incorporated them in the revised paper. We have referred to literatures and papers and re-analyzed the collected data and reconstructed the paper to improve the 

quality of our paper. 

 

As below, I would like to clarify some of the points raised by the Reviewers. And we hope that the reviewers and the editors will be satisfied with our responses to 

the ‘comments’ and the revisions for the original manuscript. 

 

 

Yours truly, 

 

Yong Xue 

  



Interactive comment on “Inter-comparison of three AATSR Level 2 (L2) AOD products over China” by 

Y. Che et al. 

 

Anonymous Referee #2 

 

Received and published: 25 March 2016 

This paper validates 3 algorithms (SU, ADV, ORAC) for determining AOD from the European AATSR sensor against Sun photometer data in China (from 

AERONET and CARSNET). The topic is relevant to ACP. The work is important because these European products have not been as well-known as NASA 

ones, and have undergone a lot of development in the European CCI projects, so it is a good time to do some more thorough validation of these data sets. This is 

especially true for China since the aerosol loading is high and variable, and CARSNET has monitoring stations in some areas where AERONET is lacking. 

 

have read through the manuscript several times and, while it is promising, there are some things which are unclear/invalid or I think not useful, and some important 

things which should be added to make the analysis more complete and useful. The phrasing is odd in some places and there are a number of typos (e.g. AEROENT in 

some places instead of AERONET) so I think that the manuscript will need some copy editing by the production office. I appreciate that English is not the authors’ 

first language and the writing is not bad, it is just unclear in some cases. I therefore recommend some content revisions, to address the points below. I would like to 

review a revised version and think that another round of reviews will be necessary because the structure/content of the manuscript might change a lot. Here are my 

main points: 

 

Response: The English of the manuscript has been edited by the Elsevier's Language Services.  

 

1. Abstract: some of the sentences could probably be shortened (e.g. first and second can be combined, as can third and fourth). 

Response: The sentences have been shortened and refined in new version of abstract. 

 

2. Introduction and start of section 2: It would be good to add a bit more information about the AATSR sensor here, like launch/end dates, swath width. A brief 



discussion of the differences between the algorithms should be included, to help understand why they give different results. From the analysis, the performance and 

the spatial coverage are both different between the three algorithms, so some insight into what in the algorithms is responsible would be welcome. 

Response: More details and information about the AATSR instrument and retrieval algorithms have been added, furthermore, a brief analysis and discussion of the 

differences between the retrieval algorithms have also been added in the revised version of manuscript. These information will help readers to have a deep insight 

about the differences of validation result we have made in this study. 

 

3. Statistics. Some of the metrics presented here are questionable in their relevance and I think that there are simpler and clearer alternatives. Specifically, the EE 

envelopes quoted here for Equations 1, 2 are for the MODIS instrument, not AATSR. AATSR is quite different (two views, fewer wavelengths) so there is no 

reason to expect that an AOD retrieval for AATSR would have the same type of behavior. One might expect that the error formulation would be closer to that of 

MISR. Further, Equations 3 and 4 are basically expressing a confidence envelope around a regression line. This is not really useful since it is just the noise around the 

relationship and not so dependent on the actual error in the retrievals. So comparing this between algorithms does not really make sense. A well-correlated but 

very biased retrieval would appear ‘better’ by this metric than a poorer-correlated but unbiased one, while for an actual scientific application, the unbiased one may 

in some cases be more useful. 

Further, least-squares linear regression is invalid for AOD retrievals because aerosol data violate the assumptions of this technique (see e.g. 

http://people.duke.edu/∼rnau/testing.htm ; the AOD data validate assumptions 3 and 4 that linear least-squares regression makes, possibly 1 and 2 as well, and as a 

result the results obtained are not statistically valid). I know that a lot of people do least-squares linear regression because it is easy, but it is still wrong for this 

application. 

So, a better alternative is just to present statistics of bias and RMS error as a function of AOD, similar to what is shown in e.g. Figure 5 and the magenta bins in 

Figure 2. So I suggest that the EE discussion here and linear regressions be discarded entirely, and more prominence should be given to statistics subset into 

different regimes (e.g. low AOD, moderate AOD, high AOD; perhaps also splits based on Angstrom exponent for the high-AOD regime）, as retrieval errors are 

often type-dependent as well). The kappa coefficient is probably fine. So, accounting for this comment would somewhat streamline and improve sections 2 and 3. 

Finally, presenting statistics to 3 significant figures is overkill and paints a picture of them being more robust than they probably are; 2 significant figures 

is probably enough. 

Response: One objective of this manuscript is to evaluate different statistical metric for the validation of quantitative remote sensing. Different statistical metric 

shows different meaning and is used for different purpose. Linear regression is the most basic and commonly used statistical method that allows us to summarize 

and study relationships between two quantitative variables. Pearson correlation coefficient (CC) measures the fraction of the total variability in the response that is 



accounted for by the retrieval and is only a measure of linear association between ground truth measurements and satellite retrieval values. Bias describes the 

average difference between satellite retrievals and ground AOD. For the consistency of the metric among different aerosol products, it is better to show the percent 

of retrievals falling within the expected error (EE) range.  

 

4. Retrieval errors. As I understand it, the CCI project means that the data products also provide their own estimates of the uncertainty in the AOD retrieval for every 

pixel. This is an important point, since pixel-level uncertainties are very useful for many applications. However, it is not discussed in the paper. How do these 

uncertainty estimates compare to the retrieval errors observed? 

Response: The satellite retrieved AOD in each collocated pair are means of retrievals in 5 × 5 sampling frame. On this basis, we calculate means of uncertainty 

estimates in sampling area for each collocated pair as sizes of circles in scatter plot. In section 4 and 5, we reanalyze validation results of different algorithms, 

including comparison of uncertainty estimates and retrievals error observed. 

 

5. Figures 2-4 and discussion in Section 3. I don’t see any advantage to splitting out the points by year. It would be easier to combine all points from one algorithm 

into one panel, not 3. This would also let you combine Figures 2-4 into one figure for a side- by-side comparison of the three algorithms. Also, as discussed 

before, I would delete the regression and EE lines here since they are not very meaningful. The magenta symbols and lines for the binned data are enough here. 

Also, the color scales used in these figures are not mentioned and can probably be removed (either show individual points without a color scale or a density plot with 

a color scale). 

I also don’t see any good reason to split the discussion of statistics out by year either. The data volume is not very large, so year to year differences are probably 

resulting from sampling and not statistically meaningful. Looking at the bigger picture of all data together is more statistically robust and gives a clearer picture. I 

don’t believe any insight is gained by splitting the analysis up year by year. 

Response: All points from one algorithm have been combined to make results more statistically robust and remove unnecessary plots. The colors of points in new 

scatter plot represent standard deviation of retrievals in sampling area for the purpose of finding influence on retrieving performance of sampling. We also keep the 

comparisons for each year as we would like to see the differences for each year. We added one section on the analysis of seasonal behaves of three algorithms. 

 

6. Figures 5-7: Similar to the last comment: are the different panels the different years? It doesn’t say anywhere but I infer that is the case. Again, these figures 

could be streamlined into one because clearly the biases are similar between years, this will be more robust, and will allow for a more direct comparison of 

the 3 algorithms. Additionally, I don’t think the histograms (bottom panels) here are useful since they don’t provide any information which is not seen clearly in 



the top panels, so these could be deleted. Also, for the same reason as before, the linear regressions are invalid and should be deleted, just showing the binned values is 

enough. 

Response: New scatter plots have been made, combining all points from one algorithm. 

 

7. A similar plot to the bias plots could be created for RMSE. This would be a clearer way to show and compare the AOD-dependence of the retrieval error than the 

EE3/EE4 metrics. 

Response: RMS error has been added in plot and statistic table. 

 

8. In the discussion of the results, a lot of the time terms like “good” and “well” are used to describe performance. These are “weasel words” and should be avoided. 

What is “good” is only really relevant relative to a specific application (e.g. good enough to do X) or compared to the state of the art. I suggest rewording to 

avoid these words and be more quantitative where possible, or else stick to comparative terms (e.g. say when the data sets are similar to or better than each other). 

Also, some discussion of results compared to validation of other sensors (the main ones being MODIS/MISR) could be included, as these all have published 

validation for their aerosol products, and this would give a sense of how the AATSR data perform relative to the other available data products. Right now the paper 

more or less reads like AATSR is the only satellite option. 

Response: The “weasel words” like “good” or “well” have been replaced by details of RMSE and KAPPA coefficient or comparative words. We compare and 

analyze AATSR AOD with “Deep Blue” and “Dark Target” 10km×10km AOD data from MODIS Collection 6 datasets which has been widely validated. 

 

9. Do the retrievals provide other information like Angstrom exponent? From other references, I believe so. This quantity is commonly compared with AERONET 

measurements, so it should be easy to extend the analysis to look at this as well using the same basic approaches. This might provide more insight for the 

differences between the data sets, if the algorithms are making very different assumptions about what sort of aerosol is present. This would help overcome one of 

the weaknesses of the paper, i.e. that the comparison is presented without any sort of discussion about why the three data sets are different and how to improve 

them (which would be very useful information). 

Response: The CARSNET dataset provides AOD and angstrom exponent (440-870) only, otherwise the ADV provides angstrom exponent (550-670) only, ORAC 

provides angstrom exponent (550-870) only and SU provides angstrom exponent (550-870) only. Comparison between these data may be invalid. 

 

10. There are at least two more AERONET sites in China which provided data in the study period, but which were not used in the analysis. These are both 



in Hong Kong: Hong_Kong_Hok_Tsui and Hong_Kong_PolyU. Why were these not used? If the objective (as stated) is to provide coverage over broad areas 

of China, then it would make sense to include them, since the data are freely available and there are no other sites used in this part of China. These sites are 

very close to the coast so also provide an additional type of environment to analyze, compared to the other sites presently included in the study. Additionally, it will 

boost the data volume. I suggest adding these sites to the analysis. There may be more, these were the main ones which sprang to mind. On a related note, Figure 

1 can probably be simplified for clarity by using one symbol/color for all AERONET sites, and another for all CARSNET sites. Splitting by year isn’t necessary, in 

my view, and just complicates things. 

Response: The AERONET sites are added, including those in HongKong.  

 

11. The title of the manuscript suggests a broader scope than the analysis, since the analysis only performs an inter-comparison in the context of 

AERONET/CARSNET measurements. There are various other things which could be added, at least briefly. For example, climatologies of seasonal AOD from all 

three algorithms (from the 1 degree products), and maps showing the available data volume (e.g. number of days per season with data), since this is another feature 

which is important for many applications. Otherwise, the title should be amended to reflect the scope. However I would prefer that the analysis be extended 

because I think that this would be quite useful (and new, to my knowledge). 

Response: The seasonal validation and analysis has been added, and we also take insight into more analysis to make the scope broader. 
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Abstract. The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT is used to observe the Earth by 

in dual-view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an 20 

important merit parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been 

developed both over land and ocean have been developed, taking advantages of the features of dual-view, which can help 

eliminate the contribution of Earth’s surface to top of atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the 

Climate Change Initiative (CCI), provides users with three AOD retrieval algorithms for AATSR data, including the Swansea 

algorithm (SU), the ATSR-2ATSR dual view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol 25 

and Cloud algorithm (ORAC). The vValidation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 

3 products) and AE (Level 2 product only) against the AERONET data in a round robin evaluation using the validation tool 

of the AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different 

performances of these three algorithms on in calculating AODs over mainland China, we introduce ground-based data from 

the CARSNET (the China Aerosol Remote Sensing Network), which is was designed for aerosol observations in China. 30 

Because China is vast in territory and of has great differences in terms of land surfaces, the combination of the AEROENT 

and the CATRNET data can validate the L2 AOD products more comprehensively. The validation results show different 

performances of these products in 2007, 2008 and 2010. The SU algorithm has very good performanceperforms very well over 

sites with different surface conditions in mainland China from March to October, but however, but it slightly underestimates 
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AOD over barren or sparsely vegetated surfaces in western China, slightly with varying mean bias error (MBE) ranging from 

0.05 to 0.10 over surface of barren or sparsely vegetation in western China. The ADV product has the same precision with a 

high correlation coefficient (CC)) larger than 0.90 over most of sites and the same error distribution as the SU product. The 

main limits of the ADV algorithm are underestimation and applicability;, especially it occurs obvious underestimation is 

particularly obvious over the sites of Datong, Lanzhou and Urmuchi, where the dominated dominant land cover is grassland, 5 

with MBE larger than 0.2, and the main source of aerosol sources is are coal combustion and dust. The ORAC algorithm has 

the ability of retrievingto retrieve AOD at different ranges including high AOD (larger than 1.0);, however, the stability will 

deceases significantly as with increasing AOD grows, especially when AOD > 1.0. In addition, the ORAC product get matches 

successfully collocatedis consistent with the CARSNET product in winter (December, January and February), whereas other 

validation results lack matches during winter. 10 

1. Introduction 

Aerosols plays a major role on in Earth’s climate system, including intervening in the radiation budget and cloud processes, 

and further to affecting air quality and human health (Remer et al., 2005; Samet et al., 2000; Tzanis and Varotsos 2008; 

Kokhanovsky and de Leeuw, 2009). The particles suspended in the troposphere will scatter solar radiation back to cool the 

atmosphere or absorb solar radiation, which warms the atmosphere, causing changes in the net effect of aerosols. These 15 

particles also could also affect the formation and microphysical properties of clouds as cloud condensation nuclei (Andreae 

and Rosenfeld, 2008). The source of aerosols could be anthropogenic or natural (Varotsos et al. 2012). Particles forom different 

sources are mixed into aerosol masses to influence AOD, reduce visibility (Kinne et al., 2003; Remer et al., 2005) and cause 

spatial and temporal variability of AOD;, therefore, the largest uncertainties in the estimation of radiative forcing are introduced 

by aerosols (IPCC, 2013). 20 

Over the past 35 years, different types of satellites have been used to obtain atmospheric information, especially on aerosol 

properties with development of techniques and science (Griggs, 1979; Kokhanovsky and de Leeuw, 2009). Remote sensing 

provides a means to obtain global and long-term observations of aerosols, especially in the widest ocean and remote regions 

where ground-based stations cannot’t be constructed. BesidesIn addition, polar-orbiting satellites and geostationary satellites 

obtain daily globale images, which helps to capture changes ofin aerosol patterns and properties (Prins et al., 1998; Torres et 25 

al., 2002). There are, however, many difficulties in observation ofobserving aerosols by satellites, because contribution 

depending on the surface properties, the contribution to the signal received by the satellite could be varying strikinglycan vary 

drastically;, aerosol components and concentrations are varying constantly in situationsvarying, and their sources can’t cannot 

be precisely determined exactly (Levy et al., 2007).  

The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT is used to observe the Earth by in dual-30 

view. The data from AATSR can be used to retrieve AOD both over land and ocean, which is an important merit in theimportant 
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for the characterization of aerosol properties (Adhikary et al., 2008). In recent years, it has established some aerosol retrieval 

algorithms have been established both over land and ocean, taking advantage of the features of dual-view, which can help 

eliminate the contribution of surface to top of atmosphere (TOA) reflectance. Aerosol_CCI, as part of the Climate Change 

Initiative (CCI) (http://www.esa-aerosol-cci.org/), provides users with three algorithms for AATSR data, including the 

Swansea algorithm (SU) (Bevan et al. 2012), the ATSR-2/AATSR dual- view aerosol retrieval algorithm (ADV) (Kolmonen 5 

et al. 2015) and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009). The aim of this 

work is to evaluate different performances of these algorithms on in calculating AOD over different regions of China in 2007, 

2008 and 2010.  

A gGround-based sun-photometer has been used to take sun and sky measurements directly (Holben et al., 1998). The Aerosol 

Robotic NETwork (AERONET) has already constructed hundreds of sites all over the world till as of 2015. These stations, 10 

found operated by the American National Aeronautics and Space Administration (NASA), are operational worldwide, 

providing multi-spectral channels validation data for satellite- retrieved data to complete synthetical measurements on a global 

scale.  

The China Aerosol Remote Sensing Network (CARSNET) is a ground-based aerosol monitoring system using that uses CE-

318 sun-photometers, same assimilar to AERONET, and has constructed 37 sites throughout China (Che et al., 2009). It has 15 

been validated that CARSNET AOD measurements has same accuracy as the AERONET/PHOTONSare about approximately 

0.03, 0.01, 0.01 and 0.01 larger than measurements of AERONET at the 1020, 870, 670 and 440nm 440 nm channels, 

respectively (Che et al., 2009). In this paper, we combine two aerosol observation datasets from AERONET and CARSNET 

as reference data to validate these three AATSR AOD products over China more comprehensively.  

The basic method for assessment is to compare the retrieval results with data (AOD mainly) given obtained by AERONET 20 

/CARSNET. However, tThis direct comparison of retrieval results with AERONET data exists is limitation limited due to 

different cloud removal processes (de Leeuw et al., 2013), and such a limitation could influence the validation reliability to 

some extent. To make the validation more reliable, comparison of the validated retrieval results with high quality data from 

MODIS or MISR is also one effective method for validation (Kahn et al., 2009). However, AERONET or other ground-based 

networks provides accurate measurements without the influence of land surface reflection (Holben et al., 1998), which means 25 

that comparison of retrieved AOD with ground-based measurements is the basic method. The AATSR L2 products provided 

by Aerosol_CCI have beens validated by the validation team via a round robin (RR) test (de Leeuw et al., 2013)., Oon this 

basis, we focused on assessing the performances of AATSR aerosol L2 products in mainland China, using the way ofby 

comparison comparing of the retrieval results with AERONET and &CARSNET data. 
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2. Reference data and validation statistics 

AOD is the most important parameter in terms of aerosol properties and is different from other retrieved parameters under the 

project of Aerosol_CCI. The Aerosol_CCI project adopts three aerosol retrieval algorithms for ATSR-2/AATSR instrument, 

including Swansea algorithm (SU) (Bevan et al. 2012), the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) 

(Kolmonen et al. 2015) and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas et al. 2009b). All of 5 

these three algorithms have ability in retrieval of aerosol properties both over land and ocean. ADV algorithm was originally 

developed for retrieving AOD properties over land at wavelength of 0.555, 0.659 and 1.61 μm (Veefkind et al. 1998). The 

main advantage of ADV is the introduction of k-ratio approach to eliminate contribution of reflection to TOA reflectance, 

which uses the ratio of the reflectance measured in the forward and nadir views (Flowerdew and Haigh, 1995). The ORAC 

algorithm is designed to retrieve AOD properties at each of four AATSR short-waves channels both over land and ocean, 10 

including AOD, effective radius and surface reflectance. The build of the forward model used in ORAC algorithm is based on 

radiative transfer code - DISORT. A parameterized model of surface reflectance distribution is used in retrieval and combines 

with the AATSR dual-view to make up shortage of the need of a priori of reflectance (North et al. 1999). An iterative 

optimization method is employed to determinate AOD, aerosol type and surface reflectance. 

AATSR L2 data (see Tab. 1) are daily products with a spatial resolution of 10 ൈ 10	݇݉ଶ, and contain a quality flag or a level 15 

of confidence for each pixel (de Leeuw et al., 2013). Compared to the Level 3 (L3) product with a spatial resolution of 1° ൈ

1° , daily L2 data haves higher spatial resolution, that which helps to capture more greater details of aerosol properties and 

more related tois further explored in our follow-up study.  

AOD is the most important parameter in characteristic ofterms of aerosol properties, and is  and is different from other retrieved 

parameters under the project of Aerosol_CCI. It has been proved demonstrated that the ground-based observation data from 20 

the AERONET have the ability and precision to be used as reference data when users validate AOD (Holben et al., 1998). 

There are’re 12 AEROENT sites in China providing Level 2.0 (L2) data (cloud- screened and quality-assured) for 2008, 15 

sites for 2009,8 and 16 sites for 2010, from which the AOD measurement data are available on the website. However, most of 

these sites are distributed at in the eastern China coastal area, as shown in Fig. 1, that can’twhich, however, does not be meet 

the requirements of comprehensively validating the aerosol properties over whole all of China comprehensively. Substantial 25 

hHazardous dense aerosol pollutions affects most regions of northern (Li, 2014) and eastern China in winter, and heavy dust 

aerosols from the Taklimakan desert in western China could can be transported a long distances to eastern China, and even to 

Japan (Takahashi, 2011), showing resulting in regional characteristicsdifferences. 

Tab. 1. Details of AATSR AOD products. 
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algorithm version sensor Main parameters Resolution coverage 

ADV/ASV 2.3 AATSR AOD,ANG 10 km, 1° global 

SU 4.21 AATSR AOD,ANG 10 km, 1° global 

ORAC 03.04 AATSR AOD, aerosol type 10 km, 1° global 

algorithm version sensor Main parameters Resolution coverage 

ADV/ASV 2.3 AATSR AOD,ANG 10km,10 km, 1° global 

SU 4.21 AATSR AOD,ANG 10km,10 km, 1° global 

ORAC 03.04 AATSR AOD, aerosol type 10km,10 km, 1° global 

algorithm version sensor Main parameters Resolution coverage 
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Fig. 1. The distribution of selected AERONET&CARSNET sites in mainland China in 2007, 2008 and 2010.  The blue and red points 

represent AERONET and CARNET sites, respectively. 

Fig. 1. The distribution of selected AERONET&CARSNET sites in mainland China in 2007, 2008 and 2010.  

The measurements from another network, the CARSNET, equipped with calibrated CE-318 instruments, have the same 5 

accuracy as AERONET, equipping same calibrated CE-318 instruments. The CARSNET has more sites than the the 

AERONENT’s in mainland China, and the spatial distribution of the CARSNET sites are is distributed more evenly. Therefore, 

for the purpose of assessing different performances of these three AATSR L2 AOD products, we selected ground-based 

measurements from both of these two networks as reference data. 
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The AEROENET provides AOD data at three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and 

Level 2.0 (L2) (cloud- screened and quality-assured) (http://aeronet.gsfc.nasa.gov/new_web/index.html). Here, we selected 

AERONET L2 data which that are screened and quality-assured. Because both of the AERONEENT and CARSNET data 

haven’t are AATSR products without band-effective wavelengths, we interpolated the ground-based data to the 550nm 550-

nm wavelength. Then AOD of the L2 data sets were compared with AEROENT&CARSNET observation data using scatter 5 

plots and linear-regression to of the data. The comparisons were made for collocating collocated satellite and ground-based 

observations (Ichoku et al., 2002), i.e., AOD pixels were selected within a spatial extent of +/−50 km with of ground-based 

stations in the middle and a time range of +/−30 min of the AATSR overpass from the ground-based measurements. At least 

5 AATSR AOD retrievals and 2 AERONET/CARSNET observations are required in each collocation (Levy et al., 2010).  

We made conducted collocations according to years (2007 2008 and 2010) and datasets (ADV ORAC and SU). Totally In 10 

total, twenty 20 ground-based observation sites, including 12 AERONET sites and 8 CARSNET sites, were on in the Chinese 

territory in 2007, of which 6 AERONET and 8 CARSNET inland sites were selected. For 2008, we selected 8 AERONET and 

24 CARSNET inland sites, for a total of 32 sites, ignoring the island sites and those near the shoreline. For 2010, only 6 

CARSNET sites are available for us, and a total of 14 inland sites were selected with 8 AERONET inland sites (see Table 2).  

Table 2. Selected ground-based sites in China. 15 

 Network inland near shoreline island Total 

2007 
AERONET 6 6 0 12 

CARSNET 8 0 0 8 

Total 14 6 0 20 

2008 
AERONET 8 7 0 15 

CARSNET 24 1 0 25 

Total 32 8 0 40 

2010 
AERONET 8 7 1 16 

CARSNET 6 0 0 6 

Total 14 7 1 20 
 

2.1 Statistics Metrics 

Collocated pairs are analyszed using statistical methods. For the consistency of the metrics among different aerosol products, 

strong matches are determined using the expected error (EE) which shows the percent of retrievals falling within the expected 

error (EE) range.Then, good strong matches are determined using the expected error (EE). An EE envelope was put 20 

forwardintroduced for retrieval of MODIS AOD (Kaufman et al., 1997; Chu et al., 2002) by means of sensitivity studies, as 

demonstrated by Eq. (1) and Eq. (2): 
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 EE1 ൌ േሺ0.05 ൅ 0.15߬ሻ (1)

 EE2 ൌ േሺ0.05 ൅ 0.20߬ሻ (2)

where, τ represents the satellite-retrieved AOD. AATSR AOD retrievals are different from the MODIS AOD datasets., Iin this 

paper, we introduced the EE envelope according tobased on the features of AOD underestimation and formation of the MODIS 

EE envelope, as demonstrated by Eq. (3) and Eq. (4): 

 EE3 ൌ േሺ0.05 ൅ ݂2 ൅ ሺ݂1 ൅ 0.15ሻ߬ሻ (3)

 EE4 ൌ േሺ0.05 ൅ ݂2 ൅ ሺ݂1 ൅ 0.20ሻ߬ሻ (4)

where, ݂1 is the slope of the regression line of scatter points and ݂2 is the correspondent intercept. In the process of retrieving 

AOD, underestimation tends to be caused by systematic error. Therefore, the EE envelopes suggested by Kaufman et al. or 5 

Chu et al. are not fit for validation of the AATSR AOD. In sSuch design of EE design, i.e.,s as with Eq. (3) and Eq. (4), was 

to take consideration ofthe underestimation was taken into consideration by, regarding the regression line as the centere, not 

the 1-1 line, for determining the accidental error. 

Linear regression is the most basic and commonly used statistical method that allows us to summarize and study relationships 

between two quantitative variables. Pearson correlation coefficient (CC) measures the fraction of the total variability in the 10 

response that is accounted for by the retrieval and is only a measure of linear association between ground truth measurements 

and satellite retrieval values. Bias describes the average difference between satellite retrievals and ground AOD. After thatThen, 

to determine how well the satellite data match the ground-based observation data, exploring whatthe relationship between them 

is explored. A rRegression equation and some basic statistics are put onshown on the scatter plot, including the correlation 

coefficient (CC) and, root mean square error (RMSE):. 15 

 
CC ൌ

∑ ൫߬௔௘௥௢,௜ െ ߬௔௘௥௢തതതതതതത൯൫߬௦௔௧,௜ െ ߬௦௔௧തതതതത൯௡
௜ୀଵ

ඨ∑ ൫߬௔௘௥௢,௜ െ ߬௔௘௥௢തതതതതതത൯
ଶ௡

௜ୀଵ
ට∑ ൫߬௦௔௧,௜ െ ߬௦௔௧തതതതത൯

ଶ௡
௜ୀଵ

 
(5)

 RMSE ൌ ඨ
1
݊
෍ ൫߬௦௔௧,௜ െ ߬௔௘௥௢,௜൯

ଶ௡

௜ୀଵ
 (6)

wWhere, τ௔௘௥௢,௜ represents the ground-based observation data and, τ௦௔௧ represents the satellite retrievals. 

Mean satellite-retrieved AOD (MSA) and mean AERONET&CARSNET AOD (MAA) represent the central tendency of the 
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data. Relative mean bias (RMB) is used to determine under- or overestimatione of the AOD retrievals;, it is the ratio of MSA 

to MAA as Eq. (5): 

 RMB ൌ MSA/MAA (7)

Mean bias error (MBE) is the mean value of difference between the satellite retrievals and AATSR AODs, and the mean 

absolute error (MAE) is the absolute value of the mean value of bias error. Together with RMB, the MBE and MAE are used 

to determine the magnitude of the difference between the two datasets. 5 

2.2 KAPPA Statistics 

In the scatter plot of the collocated pairs, the retrieved data and the corresponding collocated ground-based observation data 

could be considered as two arrays, and the main purpose of KAPPA is to explore how these two arrays match each other. For 

retrieval of aerosol properties, the performances of most algorithms will turn downdecrease in effectiveness with increase 

ofincreasing AOD, i.e., difficulties in retrieving AOD will be increased as AOD growsincreases. Obviously, when only using 10 

 the absolute value of the difference between ground-based data and AATSR AOD data in each collocation pair, as an ,|ݏܾܽ݅|

assessment standard for different AODs, is insufficient and lack ofs persuasion. Therefore, the combination of |ܾ݅ܽݏ| and 

 to the value of the reference data in each collocation pair, used in the KAPPA |ݏܾܽ݅|  i.e., the ratio of ,݀݊ݑ݋ݎܩ/|ݏܾܽ݅|

coefficient will make upaccount for this shortage and provides a new statistic for assessing the agreement between two arrays, 

taking advantage of the KAPPA coefficient. 15 

The KAPPA coefficient was originally proposed as a descriptive statistic indicating the degree of beyond-chance agreement 

between two ratings per subject on in a dichotomous form (Bloch and Kraaemer, 1989). KAPPA coefficients with various 

forms also could be used to measure the accuracy for of thematic classifications (Rosenfield and Fitzpatrick-Lins, 1986). 

KAPPA is, in short, a measure of “true” agreement (Cohen, 1960). The pairs collocated by matching ground-based data with 

AATSR L2 AOD data could be regarded as two different arrays so that we introduced the KAPPA coefficient to assess 20 

agreement between these two arrays. According toBased on the concept about of the KAPPA coefficient purposed proposed 

by Cohen (1960), an appropriate modification with a two-category nominal scale has been madeis shown in Table 3. 

Table 3. Design of the KAPPA coefficient. 

  Criteriaon 2 
Total 

 Relevant (highly) Relevant (low) 

Criteriaon 1 Relevant (highly) a b G1 

Relevant (low) c d G2 

Total F1 F2 n 

 



11 
 

To estimate the KAPPA coefficient, it one needs to determine which which pairs areis “true” or which which pairs areis 

“relevant”. However, if only given matched collocation pairs, we cannot’t determine which pair is relevant or which retrieved 

AOD in the collocation pair is on behalf of high quality. Therefore, the design of criteriona 1 and criteriona 2 needs to be 

reasonable and fit for the purpose of validation. 

For criteriona 1, if  |ܾ݅ܽݏ| is greater than the mean of |ܾ݅ܽݏ|, then it is marked as “lowly relevancet”, and if not, it is marked 5 

as “highly relevant”. Here, the bias was assessed  from the first quartile to the third quartile for eliminating possible “outliers”. 

The |ܾ݅ܽݏ| only indicates the absolute error of the retrieved AOD, and it still needs another statistic for criteriona 2, the i.e., 

 is greater |݀݊ݑ݋ݎܩ/|ݏܾܽ݅| which indicates the relative error of retrieval AOD retrieval. For criteriona 2, if ,݀݊ݑ݋ݎܩ/|ݏܾܽ݅|

than 0.2 (according to EE4), then it is marked as “lowly relevant”, and if not, it is marked as “highly relevant”. For the 

conventional formula of calculating the KAPPA coefficient: 10 

 Κ ൌ ଴ܲ െ ௖ܲ

1 െ ௖ܲ
 (8)

wWhere Po is the proportion of observed agreements and P is the proportion of chance agreements. 

 ଴ܲ ൌ
ሺܽ ൅ ݀ሻ

݊
 (9)

 

௖ܲ ൌ
ቀ
ଵܨ ൈ ଵܩ

݊ ቁ ൅ ቀ
ଶܨ ൈ ଶܩ

݊ ቁ

݊
 (10)

Algorithms for AATSR AOD retrieval used to underestimate AOD over different regions in China include including the ADV 

ORAC and SU algorithms., otherwise, onOn this basis, it is goodthe agreement between ground-based observation data and 

satellite retrievals for is assessed based on the ADV and SU algorithms (Che et al., 2015). The main aim of this new KAPPA 

coefficient is to evaluate the comprehensive performance of these algorithms., Iits function is to represent not only the degree 15 

of underestimation, but also but also the level of agreement between different datasets. 

3. Validation results and analysis 

We have collected different validation reference data of AERONET and CASNET in 2007, 2008 and 2010. Only 14 ground-

based observation sites are available for us in 2007, of which some are located close to each other. Most of them are located 

in different provinces,; but however, the total numbers of sites are is small and the space distribution is not uniform. Therefore, 20 

the numbers of matches are is relatively small for all the  all of the algorithms. More AERONET/CARSNET data are available 

in 2008, with a total ofly 32 sites including 8 AERONET sites and 24 CARSNET sites. There are’re 14 AERO&CARS sites 

giving providing data for validation in 2010. 
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The focus of this paper is to find determine the differences between the ADV, ORAC, and SU L2 AOD products. Therefore, 

we calculated statistics and analysed the validation results separately by year (see Tab. 4). 

 

 

Table 4. Main statistics of the validation results. 5 

 
 N MSA MAA MBE MAE RMSE RMB CC KAPPA Within EE3 Within EE4

AATSR  
ADV 

2007 94 0.244 0.347 -0.103 0.115 0.095 0.704 0.885 0.473 74.5% 77.7% 

2008 307 0.211 0.361 -0.151 0.157 0.124 0.583 0.790 0.329 70.0% 77.5% 

2010 136 0.150 0.293 -0.143 0.148 0.089 0.512 0.785 0.180 91.2% 93.4% 

AATSR 
ORAC 

2007 137 0.324 0.270 0.054 0.137 0.206 1.200 0.708 0.474 44.5% 50.4% 

2008 612 0.271 0.330 -0.060 0.160 0.209 0.819 0.472 0.439 40.4% 47.4% 

2010 282 0.254 0.274 -0.020 0.141 0.170 0.925 0.665 0.367 42.2% 46.8% 

AATSR 
SU 

2007 94 0.330 0.404 -0.074 0.092 0.124 0.816 0.933 0.409 77.7% 87.2% 

2008 435 0.293 0.412 -0.118 0.137 0.140 0.713 0.822 0.484 71.5% 80.2% 

2010 167 0.270 0.375 -0.105 0.119 0.131 0.720 0.888 0.520 77.3% 84.4% 

 3.1 The ADV algorithm 

For 2007, tThe RMS error is 0.095, minimal the lowest of all results, the CC is 0.885, and the distribution of collocated pairs 

in the scatter plot are is concentrated near the regression, as shown in Fig. 2a., Mmost of the collocated pairs are within EE3 

(about approximately 74.5%), indicating that the satellite retrievals agree are consistent with AERONET/CARSNET data well. 

The RMB is 0.704, and the regression line is y = 0.77x – 0.02, which reflects one the tendency of underestimation. This kind  10 

type of underestimation will beis more severe as growth ofwith increasing AOD value. Low dispersion and slight 

underestimation make the KAPPA coefficient high (0.473), showing demonstrating that the ADV algorithm has good 

performanceperforms well in calculating the AOD over China in 2007. The ADV algorithm is appropriate for the retrieval of 

low AODs, especially for those less than 1.0;, so thus, the MSA for 2007 is 0.244. 

For 2008, the lower RMB (0.621) means suggests more severe underestimation, and the lower CC (0.776) and higher RSE 15 

(0.130) mean indicate lower accuracy. Similar with 2007, the MSA of the ADV is 0.211. Therefore, the KAAPA coefficient, 

which is on behalf measures the overall performance, is 0.329, lower than result that of 2007. For 2010, the lowest RMS (0.089) 

and largest proportion of matches ared located in EE3 (91.2%) and EE4 (93.4%), respectively, with the lowest in three years 

mean small accidental error of the three years. However, the KAPPA coefficient is 0.180, also the lowest in of the three years.  
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The most obvious feature of the ADV algorithm is underestimation, as shown demonstrated in Fig. 2. The mean േ 2σ lines 

in the different ranges are almost within the EE4 lines for these three years. The highest MSA is 0.250 in 2007, and the 

lowest MSA is 0.173 in 2010 in three years. The ADV algorithm has ability incan  retrieving retrieve low AOD values well 

with high accuracy. Actually thisThis “ability” is systematic for either high AODs or low AODs. This also limits the range of 

application of the ADV algorithm, especially in calculating AODs in range of high value rangess.  5 

 

Fig. 2. Scatter plots of AATSR ADV L2 AOD products with ground-based data in China in 2007, 2008 and 2010. The dashed, dotted 

and blue solid lines represent thes 1-1 line, EE4 line and regression line, respectively. The magenta points are means for specific 

ranges of AERO&CARS AOD, and the magenta lines are the ܖ܉܍ܕ േ ૛ો for a certain range. 

3.2 The ORAC algorithm 10 

The ORAC algorithm had good performance performed well forin 2007, getting achieving a KAPPA coefficient of 0.474. 

However, the distribution of those matches is dispersed in Fig. 3b, implying low CC (0.708) and high RMSE (0.206). From 

the angle ofIn terms of the degree of fitness, its performance is not goodeffective. However, tThere is’s no obvious trend of 

underestimation or overestimation, and the regression line is close to the 1-1 line. Only 50.4% of collocated pairs are within 

EE4, and most of the mean േ 2σ lines are out of the EE4 lines, showing suggesting that accidental errors influence the 15 

accuracy of the ORAC algorithm. The MSA of the ORAC is 0.324. 

From the number of matches, ORAC has the most matches of the three algorithms (Ssee Fig. 3). Different from 2008, no 

there’s obvious underestimation occurs from in the results of 2007 and 2010, as demonstrated by the regression lines shown 

in Fig. 3b and 3c. For 2008, the RMB is 0.829, showing suggesting a trend of slight underestimation trend. The applicability 

of ORAC is good high, with MSA of 0.271. The collocated pairs are relatively dispersed, and almost all mean േ 2σ lines are 20 

out of EE4 lines, influencing the RMSE and CC. For 2010, the same dispersion of points in the scattered plot and low KAPPA 

coefficient are observed.  
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Fig. 3. Scatter plots of AATSR ORAC L2 AOD products with ground-based data in China in 2007, 2008 and 2010. 

Overall, the ORAC algorithm tends to retrieve AODs unstably for either high AODs or low AODs and with a slight 

underestimation in 2007. The results of 2008 and 2010 have share common features in common, even though the regression 

lines are below the 1-1 lines, influences indicating that of accidental error are is larger than systematic error. 5 

3.3 The SU algorithm 

The SU algorithm had good performances performed well for allin three years, getting achieving KAPPA coefficients of 0.409, 

0.484 and 0.520, respectively. Large proportions of matches are within EE3 and EE4, and almost all the  all of the mean േ 2σ 

lines are within the EE4 lines, both showing suggesting that the matches are concentrated in small regions around the regression 

line. The RMBs are 0.816, 0.713 and 0.720 respectively for 2007, 2008 and 2010, respectively, showing demonstrating the 10 

underestimation of the SU product. The applicability of  SU is good high, with MSA of 0.293 for 2008.  

The most obvious feature of the SU algorithm is its stability in retrieving AOD for different years or different regions (Fig. 4). 

The MSA are ranges from 0.270 for 2010 to 0.330 for 2007, and the KAPPA coefficient is from 0.520 to 0.409, which means 

suggests that the SU algorithm had performed better performance in retrieving low AODs. The SU algorithm has the best 

performance in retrieving AODterms of AOD retrieval, as it has thewith highest KAPPA coefficient (0.520). 15 
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Fig. 4. Scatter plots of AATSR SU L2 AOD products with ground-based data in China in 2007, 2008 and 2010. 

Overall, the SU algorithm could can be applied to retrieve AOD at in different ranges with high precision. Factors in 

influencing the performances of the SU algorithm includes small systematic error and even smaller accidental error. 

4. Uncertainty analysis based on aerosol loading 

In the previous section, we have validated all three AOD products over mainland China in 2007, 2008 and 2010, discovering 5 

that all these three products tend to be existingexhibit underestimation at to some extent. For the purpose of ascertaining the 

causes of the underestimation, in this section, we focus on analysing the AOD uncertainties which are theleading to differences 

between retrieved AODs and ground-based AODs at in special conditions. Collocated pairs are divided into three groups 

according to aerosol loading, including light loading (τ ൏ 0.15), heavy loading (τ ൐ 0,4), and moderate loading (Levy et al., 

2010). It is’s obvious that the AOD bias become greaterincreases with the growth ofincreasing AOD for all three products. 10 

These products have one feature in common, that is, the AOD bias tends to be negative, which means indicates that the 

underestimation becomes more significant with the growth ofincreasing aerosol loading. The ADV and SU algorithms have 

good perform wellances ion estimating AOD even, i.e., with little underestimation, when aerosol loading is low (light loading) 

(Fig. 5).  

 15 
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Fig. 5. Scatter plot of AERONET&CARSNET AODs with ADV AOD bias or uncertainties, and histrogram of AOD bias. Colours 

represent different groups:, blue for denotes light loading, green for denotes moderate loading, and red for denotes heavy loading. 

Basic statistics are texted displayed on in the top left corner, including the number of scattered points, MBE and linear regression 

equation (Fit). The text on the bottom with different colours are describes the basic statistics of each group. Each group has one box, 

the bottom and top borders-bottom and borders-topborders of which represent ۰۳ۻ ൅ ૛ો and ۰۳ۻ െ ૛ો, respectively, containing 5 

96% of scattered points from each group. The centere line of each box represents the MBE of each group. The blue line is the 

regression line of all scattered points.  

Under complex conditions, the ORAC overestimates AOD in regions of light loading and moderate loading compared with 

the AEROENT, as shown in Fig. 6a-6b. Compared to the CARSNET data, it also appears overestimation occurs for light 

loading, and this overestimation is maieanly due to two points with large error. In the moderate loading region, the MBE tends 10 

to be positive in Fig. 6a, probably because the distribution of AEROENT sites is uneven, that as most of sites are located in 

eastern China. 

The top and bottom borders of the box we draw represent the interval of ሾെ2ߪ,  ሿ, which contains most of the data (aboutߪ2

approximately 95%) for a given group. The data outside the box are “possible outliers” based on thedue to largest error 

contained in each group. Those “possible outliers” have one feature in common in that the corresponding points in the bias 15 

scatter plot are far away from other points. Otherwise, the points below or above the box are different. If a points are is above 

the box, which means indicates that the satellite-retrieved AOD are is larger than the ground-based observed AOD, those this 

“outliers” tends to be caused by a residual cloud. Because The ground-based network measures AOD just from only one point,; 

but however, the satellite- retrieved AODs in each collocated pairs are an average of 25 pixels. Any one of these 25 pixels with 

a cloud residual will lead to an increase ofd AOD in a collocated pair. Therefore, we make a conclusionconclude that the 20 

“outliers” above the box are possibly caused by a cloud residual. From this view, there’s one point above the box of corresponds 

to each aerosol loading respectively for the ADV product. This kind ofThe “outliers” are concentrateds in theup light loading 

region and moderate loading region for the SU product (Fig. 7). The situation of the ORAC is relatively complex;, it exists 

“outliers” occur in the light loading region, which makes the box of the light loading much larger than box that of the moderate 

loading region in 2007 and 2010 as shown in( Fig. 6a and 6c). 25 
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Fig. 6. Scatter plot of AERONET&CARSNET AODs with ORAC AOD bias or uncertainties and histrogram of AOD bias. 

The points below the box are different from those above the box;, most of them are only below the box for due to heavy loading, 

indicating that the ability of estimating AOD will decreasedecreases with the increase ofincreasing aerosol loading, especially 

in region ofthe heavy aerosol loading region.  5 

 

 

Fig. 7. Scatter plot of AEROENT&CARSNET AODs with SU AOD bias or uncertainties and histrogram of AOD bias. 

We make these groups because aerosols have exhibit different natures behaviours with different loading conditions. In general, 

the bias or uncertainty of satellite- retrieved AOD will increase with the increase ofincreasing AOD or aerosol loading. As 10 
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discussed above, all of these algorithms underestimate AOD at different levels;, similarly, it is’s worth noting that 

underestimation get becomes more severe with the increase ofincreasing AOD or aerosol loading. 

5. Uncertainty analysis of individual ground measurement sites 

For the purpose of further evaluating the different performances of these three algorithms on in estimating AOD over mainland 

China, we validate these products on a site- by- site basis. It is significant to explore what the roles of different factors in 5 

estimating AOD. There are several factors maybe that may have impacts on AOD calculationng, including land cover, aerosol 

type, elevation, etc. Therefore, we analyse different validation results of each site to study how these factors work (see Table 

5). 

5.1 Inter-comparison of algorithms site by site 

In this section, we pick select five representative AERONET&CARSNET sites in whichwith it collocated more than 30 10 

successful matches  successfully in 2007, 2008 and 2010 to guarantee an appropriate statistical sample size. These selected 

sites are located in different regions where the land cover and climatic pattern are different and of representative strongly inof 

mainland China. Two AERONET sites and three CARSNET sites were selected, including SACOL and, XiangHe from 

AERONET, and Linan, Shangdianzi and Xilinhot from CARSNET. Most matches of ADV and SU products collocated with 

ground-based data occurred indistributed at March to October, lost data at winter time in 2007, 2008 and 2010, as shown in 15 

Fig. 8 to Fig. 12.. The matches of the ORAC product were distributed at in each month over most sites. 
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Linan is located at 119.73°E, 30.3°N, 119.73°E,	northwest of Zhejiang province. A total of 80%  of the  50	km ൈ 50km 

50	km	surrounding area is covered by green vegetation, and the other 20% is covered with urban land. The ADV and ORAC 

algorithm underestimated AOD, with MBE = 0.13 and 0.12 in 2010, respectively. The SU has good performance performed 

well in Linan, with slight underestimation. The underestimation of the ADV algorithm is more severe than that of SU and 

ORAC. Even though. Although the ORAC algorithm has the most matches in Linan, its performance was unstable, which 5 

means that the level ofs underestimation were was different in different years. 

 

Fig. 8. is the timeTime series comparison of AATSR AOD with CARSNET AOD over the site ofat Linan in 2008 and 2010. 

SACOL is situated at along the southern bank of the Yellow River in Lanzhou city, Gansu province. Lanzhou city is has a 

temperate continental climate, having with four clearly distinctive seasons. The dominated dominant land cover is grassland, 10 

coverings about approximately 95% at aof the spatial extent of the 50	km ൈ 50km 50	km	area from the MODIS MCD12C1 

land cover data. A total of 30% of the surface is acrid and semi-acrid areas, which can be a source of dust aerosols. SU has 

good performance onperforms well in retrieving AOD over SACOL, with a high CC (0.849) and low RMSE (0.072). The 

aAccidental error in the retrievals of using the ORAC algorithm is obvious, leading to a low CC (0.683) and high RMSE 

(0.170). Most of the retrievals (91.3%) of the ADV algorithm are within EE4. However, as discussed above, the ADV algorithm 15 

severely underestimated AOD severely in SACOL. The ADV algorithm tended to severely underestimate the AOD of different 

ranges, severely except for a small number of matches with high quality matches. The matches of the SU product are of high 
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quality in for the three years. The ORAC has collocated matches in January, February, November and December (winter time), 

when there’re no matches ofunlike the ADV and SU products. However, the accuracies accuracy of ORAC in winter time areis 

of greathighly uncertainty, as shown in Fig. 9.  

 

Fig. 9. is the timeTime series comparison of AATSR AOD with AERONET AOD over the site ofat SACOL in 2007, 2008 and 2010. 5 
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Shangdianzi is situated at 94.68°E, 40.15°N, 94.68°E, with complex land cover about of approximately 45% of croplands, 30% 

of mixed forest, 18% of closed shrublands, 5% of grasslands, 1% of water and 1% of evergreen needleleaf forest. The SU 

algorithm has high precision of AOD calculationng over this site from March to October, when most of the land cover is green. 

The ADV algorithm has good performances onalso performs well in calculating AOD over these three sites, with slight 

underestimation. The performance of the ORAC algorithm in Shangdianzi is unstable, good with strong agreement with 5 

ground-based data from March to October and severe underestimation in winter time, as shown in Fig. 10. 

 

Fig. 10. is the timeTime series comparison of AATSR AOD with CARSNET AOD over the site ofat Shangdianzi in 2007, 2008 and 

2010. 
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Xianghe is located at to the southeast of Beijing, having and has the same climatic pattern conditions as Beijing. About 

Approximately 98% of the surface is covered with urban land from according to the MCD12C1 data at extent of a 50	km ൈ

50km 50	km	area. The performances of these three algorithms are at the same high quality level with high quality. However, 

the ADV algorithm still underestimated AOD at a level of MBE = 0.12 in 2007 and 0.10 in 2008. 

 5 

 

Fig. 11. is the timeTime series comparison of AATSR AOD with AERONET AOD over the site ofat XiangHe in 2007, 2008 and 2010. 

Xilinhot is situated at 116.07°E, 43.95°N, 116.07°E, at the centre of the Xilinguole grassland. The main land cover is 

grassland (100%) from based on the MODIS MCD12C1 data, at with a spatial extent of 50	km ൈ 50km.50	km. The surface 

circumstance and climate features of Xilinhot are much likesimilar to those of SACOL’s, and the performances of the SU 10 
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algorithm on at these two sites areis the same, i.e., both with high R and low RMSE both. The ADV algorithm slightly 

underestimated AOD slightly with MBE of 0.10~0.13. The ORAC AOD had notshowed good weak agreement with the 

Xilinhot data, mainly because it exits possible “outliers” exist in March to June 2008 and March 2010.  

 

 5 

 

 

Fig. 12. is the Ccomparison of SU AOD with CARSNET AOD over the site ofat Xilinhot in 2008 and 2010. 

Table 5. Statistics of validation results of different products over different sites.  

Site Algorithm N MSA MAA MBE MAE RMSE RMB CC KAPPA Within EE3 Within EE4

Linan 

ADV 33 0.346 0.462 -0.116 0.122 0.088 0.748 0.916 0.341 84.9% 90.9% 

ORAC 48 0.426 0.470 -0.044 0.131 0.144 0.906 0.647 0.668 58.3% 70.8% 

SU 40 0.430 0.484 -0.054 0.082 0.093 0.889 0.917 0.650 85.0% 90.0% 

SACOL 

ADV 46 0.156 0.285 -0.129 0.132 0.068 0.547 0.763 0.283 89.1% 91.3% 

ORAC 74 0.286 0.314 -0.028 0.102 0.170 0.910 0.683 0.595 67.6% 73.0% 

SU 49 0.265 0.291 -0.027 0.062 0.072 0.908 0.849 0.878 77.6% 83.7% 
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Shangdianzi 

ADV 52 0.172 0.297 -0.125 0.131 0.087 0.578 0.780 0.339 78.9% 90.4% 

ORAC 66 0.267 0.304 -0.037 0.107 0.134 0.879 0.781 0.407 54.6% 65.2% 

SU 46 0.285 0.402 -0.117 0.128 0.101 0.710 0.924 0.457 82.6% 87.0% 

XiangHe 

ADV 33 0.184 0.284 -0.100 0.102 0.070 0.649 0.921 0.169 97.0% 97.0% 

ORAC 34 0.227 0.240 -0.013 0.091 0.096 0.946 0.825 0.577 73.5% 76.5% 

SU 36 0.368 0.392 -0.024 0.058 0.077 0.939 0.984 0.444 88.9% 91.7% 

Xilinhot 

ADV 49 0.082 0.198 -0.116 0.117 0.046 0.414 0.814 0.148 95.9% 95.9% 

ORAC 110 0.190 0.182 0.008 0.109 0.166 1.043 0.517 0.389 42.7% 48.2% 

SU 61 0.140 0.220 -0.081 0.085 0.063 0.634 0.937 0.444 88.9% 91.7% 

 

For To guarantee of statistical reliability, there must be more than 30 collocated pairs in at one site. The determination of the 

surface cover aton each site is is according to based on the proportion (> 80% for one land type) of each land cover type from 

the MCD12C1 data at a spatial extent of 50	km ൈ 50km.50	km. If there’s no one land cover type accounts for a’s proportion 

larger than 80% in at a given site, it will be identified as mixed;, then, we select two or more (sum > 80%) land types with the 5 

largest proportions as the main land cover. 

5.2 Analysis of algorithm performances in western China 

Because it lacks enoughsufficient ground-based data in western China are lacking for therom AERONET measurements, only 

data from CARSNET sites are used in 2008. We picked selected six CARSNET sites which are located in western China and 

in which there are’re more than 25 matches.  10 

Urumchi is, situated at 87.62°E, 43.78°N, 87.62°E, serves as the provincial capital of Xinjiang Uyghur Autonomous Region, 

and is  and is the most remote city in China from in terms of distance to any sea in the world. The dominantted land cover at 

the spatial extent of 50	km ൈ 50km 50	km	is grassland, which accounts fors about approximately 85%. The ADV, ORAC 

and SU algorithms all severely underestimated AOD severely, with MBE = 0.22, 0.12 and 0.17, respectively. The MBE is 

lowest mainly because of the “outlier” in April, which decreases its the MBE. 15 
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Fig. 13. is the timeTime series comparison of AATSR AOD with CARSENT AOD over the site ofat Urmchi in 2008. 

Ejina is situated at 101.07°E,41.95°N, 101.07°E, and its main land cover of is barren ground (84%) ground. The performances 

of ORAC and SU are at the same high quality level with high quality, the with MBEs are of 0.02 and 0.09, respectively. 

Another reason why we chose this site is that there are’re no matches of ADV products collocated successfully collocated with 5 

ground-based data. As result fromBased on Fig. 15., the ORAC algorithm has strong applicability in Ejina and high accuracy 

in retrieving AOD. The SU algorithm had good performance tooalso performed well. This explains demonstrates that another 

limitation of the ADV algorithm is its applicability in calculating AOD in China. Dunhuang is situated at 94.68°E, 40.15°N, 

94.68°E, and is  and is surrounded by barren ground (85%). The same situation is like true for Ejina, that it arises a little 

bitwhich causes slight underestimation on at each point but high R and low RMSE for the ORAC algorithm. The performance 10 

of the SU algorithm was not as good as that of the ORAC because of its underestimation with MBE = 0.10. The limits of 

underestimation and applicability of the ADV were more obvious in at this site, as it only had 6 matches on demand andand 

showed severe underestimation with MBE = 0.17. Tazhong is situated at 83.67°E, 39°N, 83.67°E, and is  and is surrounded 

by barren or sparsely vegetation vegetated surface. Almost all land cover is barren ground from according to the MODIS 

MCD12C1 data. Similar with to the former two sites, the ADV product did not haven’t collocated any successful matches in 15 

at this site. Both of the ORAC and SU algorithms had exhibited severe underestimation of retrievals, with MBE = 0.17 and 

0.20, respectively. The outliers of the ORAC product in February are much higher than the observation data, which 

makescausing the lower MBE lower. 

The dominated prevailing climatice pattern in western China is a temperate continental climate with clearly four distinct 

seasons and less precipitation in winter and spring. In conclusion, compared to eastern China, the applicability of the ADV 20 

algorithm is not strong, and the underestimation is more severe. In the four selected sites in western China, the performance 

of the ORAC algorithm is best, even though it exists severe underestimation occurs atin some sites. The accuracy of the SU 

algorithm is not good as high as the ORAC product, with more severe underestimation and the lower applicability is not strong 

as ORAC. 
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Fig. 14. is the timeTime series comparison of AATSR AOD with CARSENT AOD over the site ofat Ejina in 2008. 

 

Fig. 15. is the timeTime series comparison of AATSR AOD with CARSENT AOD over the site ofat Dunhuang in 2008. 

 5 

Fig. 16. is the timeTime series comparison of AATSR AOD with CARSENT AOD over the site of Tazhong in 2008. 

5.3 Inter-comparison 

In conclusion, the SU algorithm has good performances onperforms well in calculating AOD over different land covers from 

March to October. Slight underestimation occurs over barren ground or sparsely vegetation at different times, and there are no 
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obvious features of in terms of precision on in the time series over grasslands. For complex land surfaces where the dominated 

dominant land cover is vegetation, the SU algorithm has extremely good performance onis extremely effective in estimating 

AOD. In the last section, we draw a conclusion that the SU algorithm underestimates AOD over mainland of China in 2008, 

probably because the dominated dominant land cover in the western China is barren or sparsely vegetation, over which the SU 

algorithm underestimates AOD more severely. 5 

The ADV algorithm underestimates AOD in at most of the selected sites we selected. We categorize these sites into four 

classes according to the MBEs of different sites: Class 1 (MBE<0.1), Class 2 (0.2>MBE>0.1), Class 3 (0.3>MBE>0.2), and 

Class 4 (MBE>0.3). The ADV algorithm underestimates AOD over all selected sites, leading to all selected MBEs we 

selectbeing larger than 0. We make such categories for the purpose of assessing the contribution of different surfaces to AOD 

estimation. Only XiangHe of 2008 belongs to Class 1, and Linan, Shangdianzi, and SACOL were are classified into Class 2. 10 

Only Urumchi is in Class 3. Note that, even though Lanzhou and Datong were not selected due their location, they should be 

classified into Class 4.  

Overall, the ADV algorithm underestimates AODs at all sites but at different levels, as the categories we make 

abovedemonstrated by the above categories. Serious underestimation occurs over the sites in Class 3 and Class 4 in the western 

China, where the dominantted land cover is a mixing of a small portion of urban area and a large portion of grasslands. For the 15 

sites in Class 2, there’re differences exist between Beijing and SACOL. SACOL is much likesimilar to the sites in Class 3 and 

Class 4, the main land cover of which is grasslands. Over the sites in Class 1, the algorithm has good performanceperforms 

well, with high R and low MBE, but there are’re no common features in common on theterms of surface 

circumstanceconditions. 

The ORAC product collocates most pairs of all of these products. Most collocated pairs of the SU product and ADV product 20 

collocate are distributed atoccur in March to October, but the collocated pairs of the ORAC product distribute atoccur during 

each month over some sites in 2008. SinceOtherwise, more Because more matches mean suggest more greater errors, for the 

target of determination of the contribution of “outlier” contribution to the overall performance of the ORAC algorithm, we 

introduce the ratio of the individual difference to average the differences for each site:, 

 DR ൌ
ห߬஺ாோை,௜ െ ߬௦௔௧௘,௜ห

൫∑ ห߬஺ாோை,௜ െ ߬ௌ௔௧௘,௜ห௡
௜ୀଵ ൯

/݊ (11)

where DR<1, indicating indicates a “relatively good” match,. Where 3 >DR >1 indicates a, it’s a “relatively poor” match,. 25 

Where and DR >3 is an, it’s probably an “outlier” (see Table 6). 

There are no obvious “possible outliers” in Ejina shown in Fig. 15. Most of the DRs are in athe range from of 0 to 3,, only two 

DRs are larger than 3, and the maximumal (overestimation) is 5.112. The retrieved AOD in March is a possible “outlier”, 
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because it is overestimated, but however,whereas most are underestimated. Another two sites with dominateddominated by 

land cover of barren or sparsely vegetation vegetated land cover are Dunhang (about approximately 85%) and Tazhong (100%). 

The circumstance conditions in Tazhong is are complex, and there are is no obvious laws relationship between the CARSNET 

data and the ORAC AODs. Most of the DRs are less than 3, and a total of 8 DRs are larger than 3. It’s basically identified that 

the oneThe DR in February is an “outlier”, because the varying tendencies are different between the ORAC product and the 5 

ground-based data, and only this points wasindicative of overestimation. 

Table 6. DR dDistribution of DRs ofof specific sites.  

Site DR<1 1<DR<3 3<DR<5 5<DR Total 

Urumchi 47 40 2 1 90 

Ejina 51 43 1 1 96 

Tazhong 63 17 5 3 88 

Dunhuang 57 31 1 2 91 
 

The ORAC product has the largest coverage at the cost expense of losing accuracy, especially exist ofin the presence of 

“outliers”, and only the ORAC product has collocated collocate validation pairs over some sites at during each month in all 10 

three years. The ORAC algorithm underestimates AODs over Ejina, Tazhong and Dunhuang, but the “possible outliers” reduce 

the differences between the CARSNET data and the ORAC product. Xilinhot, Urumchi and SACOL have share the same main 

land cover of grasslands. The problem is that the underestimations over these sites are not at one the same level.  

It is worth noting that the ORAC algorithm has the ability in calculating to calculate high AOD;, however, most of the AODs 

of whichhave  DRs are larger than 3, indicating that the estimation of high AOD is unstable with and has large error, even to 15 

reduce the wholereducing the overall precision. 

6. Seasonal characteristics of three algorithms 

The mainland China, cross about 60 degree of longitude and 30 degree of latitude, is dominated by monsoon-driven climate. 

In such vast territory, there are big differences in climate pattern from western to eastern China. The main climate type in 

eastern and eastern coastal China is monsoon climate. For western China far from the ocean, the climate type is hybrid of 20 

monsoon and continental climate. In dry seasons (winter, first half of spring, and last half of autumn), poor vegetation coverage, 

loosen surface and winds in most northern China regions make coarse particles (sea salt and desert dust) into aerosol. Fine 

particles from coal combustion in winter and soot from straw burning in autumn is also important source of aerosol.  In rainy 

seasons (mainly in summer), high vegetation blocks dust blowing into aerosol and reduce surface reflectance at visible 

wavelength. Table 7 shows the seasonal distribution of validation results of three algorithms. For the mainland China which is 25 
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located in Northern Hemisphere from 20°N to 55°N, the spring time starts from about March to May, the summer time starts 

from about June to August, the autumn time starts from about September to November and the winter time is about from 

December to February in next year. 

 

Table 7. Seasonal distribution of validation results of three algorithms.  5 

      N MSA MAA MBE MAE RMSE RMB KAPPA 

AATSR 3Years 568 0.21 0.35 -0.13 0.14 0.2 0.61 0.38 

ADV Spring 186 0.26 0.41 -0.16 0.16 0.23 0.62 0.4 

Summer 164 0.16 0.29 -0.13 0.14 0.19 0.54 0.26 

  Autumn 190 0.2 0.32 -0.12 0.13 0.17 0.62 0.36 

AATSR 3Years 1085 0.29 0.31 0.02 0.15 0.25 0.93 0.44 

ORAC Spring 294 0.35 0.37 -0.02 0.18 0.3 0.95 0.5 

Summer 296 0.28 0.35 -0.07 0.17 0.26 0.79 0.4 

Autumn 265 0.23 0.22 0.01 0.1 0.16 1.04 0.43 

  Winter 230 0.29 0.28 0.01 0.15 0.25 1.03 0.38 

AATSR 3Years 715 0.29 0.4 -0.11 0.12 0.2 0.73 0.5 

SU Spring 222 0.3 0.42 -0.12 0.14 0.24 0.72 0.53 

Summer 241 0.32 0.43 -0.11 0.13 0.2 0.74 0.49 

  Autumn 237 0.26 0.35 -0.09 0.11 0.16 0.74 0.49 

 

Low mean of uncertainty (MUs) at 550nm means these retrievals are of high quality in Fig. 17. Most of Std_S are below 0.08, 

indicating high uniformity of ADV products (see Fig. 17). Most of collocated pairs of ADV AODs are concentrated below the 

1-1 line and the RMB is 0.61, showing a tendency of underestimation. This kind of underestimation has an impact on ADV 

algorithm performances, for example, the RMS error is 0.19 in summer time, otherwise, the corresponding RMB is 0.54, which 10 

makes the KAPPA coefficient the smallest (0.26) than other seasons. The MBEs is from -0.12 in autumn to -0.16 in spring in 

Table 7, which means that the ADV algorithm tends to underestimate AOD in all seasons (except winter) over mainland China 

(See Figure 18). For monsoon climate, the main aerosol types in many parts of China are influenced by coarse particles (dust 

from Western China and sea salt from eastern coastal China) in spring time. The performance on calculating aerosol properties 

of mixture of coarse particles is best in spring time with highest KAPPA coefficient, even though there are some samples with 15 

high MUs and the RMS error is 0.23.  

 



30 
 

   

Fig. 17 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China in 2007, 2008 and 2010. 

The black solid line represents 1-1 line. The magenta points are means for specific range of AERO&CARS AOD and the magenta 

lines are ܖ܉܍ܕ േ ૛ો of retrievals at certain range. The areas and colours are determined by means of uncertainty (MU) dataset in 

AATSR L2 products and standard deviation of retrievals (Std_S) in collocation frame of ૞૙	ܕܓ ൈ ૞૙	ܕܓ respectively. 5 

The matches of the ORAC product collocated with reference data are distributed discretely at two sides of 1-1 line in Fig. 17. 

The best performance with high KAPPA coefficient of 0.5 is in spring with no underestimation, even though the RMS error is 

high about 0.30. The KAPPA coefficient in the autumn time is lower than in the spring time, even though most of evaluation 

metrics are better in the autumn. Note that, only ORAC product of these three products has been collocated enough matches 

(more than 30) with reference data in the winter time. The performance of ORAC in winter is between that in spring and 10 

autumn without obvious underestimation or overestimation. The limitation of ORAC algorithm is the stability in retrieve 

aerosol properties, as shown in Fig. 18, the magenta mean േ 2σ lines for each season at each range are longer than those for 

other two products. 

The SU algorithm has better performances in three years, getting KAPPA coefficients of 0.50. Most retrievals in matches are 

of high quality collocated with reference data and most Std_S are lower than 0.08, i.e. the sample quality is high and this 15 

coincides with assumption of aerosol properties uniformity in 50km ൈ 50km area. The best performance on retrieval is in the 

autumn, lowest RMS error of 0.16 and largest RMB of 0.74 in three seasons shown in Fig. 18. The magenta lines are similar 

with those of ADV product in corresponding seasons, showing same level of stability in retrieving AOD. The SU algorithm 

has no obvious differences in retrieving AOD in three seasons. One limitation of SU and ADV algorithms is less than 30 

collocated matches in the winter time so that we can’t evaluate its performance during that time. 20 
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Fig. 18 Scatter plots of AATSR ADV, ORAC and SU L2 AOD products with ground-based data in China in the spring, summer, 

autumn and winter time of 2007, 2008 and 2010. 

The latest MODIS Moderate Resolution Imaging Spectroradimeter (MODIS) Collection 6 (C6) product were released in 2013, 

including aerosol datasets produced by two “Dark Target” (DT) algorithms (one is for retrieving over ocean and the other is 5 

for retrieving over land) and “Deep Blue” algorithm for retrieving over bright or semi-arid surface (Levy et al., 2013). For 

over land, the DT algorithm uses an updated cloud mask to allow retrieval of heavy aerosol compared to algorithm employed 

in MODIS Collection 5. It is reported that MODIS C6 products (produced by three algorithms) are of high quality (Sayer at 

el., 2014). Here, we select both MODIC C6 DT and DB 10km ൈ 10km merged dataset as reference data for cross-validation 

of AATSR L2 AOD products. The matches in Fig. 19 are randomly chosen from MODIS and AATSR collocated AOD datasets. 10 

The ADV AOD has lowest RMSE of 0.11. The SU algorithm has same performance with ORAC (similar RMSE and KAPPA) 

but with a little underestimation as the magenta line in Fig. 19.  

   

Fig. 19 Scatter plot of AATSR AOD and DT&DB AOD 

 15 
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76. Conclusions 

These three algorithms (the SU algorithm, the ADV algorithm and the ORAC algorithm) have display different performances 

on in estimating AOD over mainland China in 2007, 2008 and 2010. However, there’s none of the algorithms one show an 

explicitlyhaving better performance than the other two algorithms. The SU and the ADV products have higher accuracy over 

most selected of sites we select but less coverage, whereas the ORAC product has more greater coverage at the cost of accuracy. 5 

All of these algorithms tend to underestimate AOD to some degree. The uUnderestimation gets becomes more severe with 

increase ofincreasing AOD or aerosol loading. The method of grouping helps to identify find more, especially “possible outliers” 

in different regions of aerosol loading.  

The precision of the SU algorithm and ADV algorithms is at the same level over different surfaces. However, the difference 

is that SU product has more  strict quality control than the ADV product, and it eliminates AODs to make the MBE less than 10 

0.10 over different sites (de Leeuw et al. 2013). Over grasslands and barren vegetation, the SU has displays good a strong 

performance with slight underestimation (MBE < 0.10)., Tthe limitationss of underestimation and applicability of the ADV 

are more obvious over such sites. For complex surfaces mixed ofwith two or more land cover types, the performances of these 

three algorithms are at the same level. Note that, Lanzhou and Datong are different from other sites, even though the main land 

cover of themtype is grasslands. All of these algorithms have underestimated AOD at a high level, perhaps because these 15 

algorithms are not un-sensitive to absorptive aerosols. 

Only the ORAC product exists shows “possible outliers” identified by equation (7), which substantially decreases its accuracy 

a lot. Almost, theThe most obvious feature of the “possible outliers” is that the retrieved AODs are higher than the ground-

based measurements.  

As reference data, AERONET L2 data have some limitations, including the distribution and number of sites in mainland China. 20 

Most of sites of AERONET are distributed in eastern China and the coastal region of China for special experimental use;, 

leading to we can’t get enoughas a result, sufficient reference data cannot be obtained to validate the AOD product. The 

CARSNET data makde up for this shortage, because there are’re more CARSNET sites in China, especially in western China, 

where hardly anyfew AERONET sites had builthave been constructed. Limited both by reference data and satellite retrievals, 

most co-allocated pairs are distributingoccur in March to November, and few are distributingoccur in winter (December, 25 

January and February). 

Acknowledgements 

This work was supported in part by the Ministry of Science and Technology (MOST) of, China under Ggrant Nos. 

2013CB733403 and 2013AA122801, and by the National Natural Science Foundation of China (NSFC) under Ggrant Nnos. 

41471306 and GF 30-Y20A02-9003-15/16, and the EU/FP7 MarcPolo project (Grant Agreement Number No. 606953). Part 30 



34 
 

of the work is done was conducted in preparation for the Aerosol_cci project (ESA-ESRIN project AO/1-6207/09/I-LG), from 

which three AATSR AOD products were provided. The data for uncertainty analysis and validation came from thirty-four34 

AERONET sites and eight CARSNET datasites. We thank the PIs, investigators and their staff for establishing and maintaining 

the data for this study. 

References 5 

Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, V., Ramanathan, C. E., and 

Carmichael, G. R.: A regional scale chemical transport modelling of Asian aerosols with data assimilation of AOD 

observations using optimal interpolation technique, Atmos. Environ., 42, 8600-8615, doi:10.1016/j.atmosenv.2008.08.031, 

2008. 

Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active 10 

aerosols, Earth-Sci. Rev., 89, 13-41, doi:10.1016/j.earscirev.2008.03.001, 2008. 

Bevan, S., North, P., Los, S., and Grey, W.: A global dataset of atmospheric aerosol optical depth and surface reflectance from 

AATSR, Remote Sens. Environ., 116, 199-210, doi:10.1016/j.rse.2011.05.024, 2012. 

Bloch, D. A., and Kraaemer, H. C., 2	ൈ	2 Kappa coefficients: Measures of agreement or association, Biometrics, 45: 269-287, 

doi: 10.2307/2532052, 1989. 15 

Bilal, M., J. E. Nichol, and Chan, P. W.: Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm 

(SARA) over Beijing under low and high aerosol loadings and dust storms, Remote Sens. Environ., 153, 50-60, 

doi:10.1016/j.rse.2014.07.015, 2014. 

Bloch, D. A., and Kraaemer, H. C., 2	ൈ	2 Kappa coefficients: Measures of agreement or association, Biometrics, 45: 269-287, 

doi: 10.2307/2532052, 1989. 20 

Che, H., Zhang, X., Chen, H., Damiri, B., Goloub P., Li, Z., Zhang, X., Wei, Y., Zhou, H., Dong, F., Li, D., and Zhou, T.: 

Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network, J. Geophys. Res. 

114, doi:10.1029/2008JD011030, 2009. 

Che, Y., Xue, Y., Xu, H., Mikusauskas, R., and She, L.: The inter-comparison of AATSR aerosol optical depth retrievals from 

various algorithms, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium held in Milan, 25 

Italy, 27-31 July 2015, 2230-2233, doi:10.1109/IGARSS.2015.7326249, 2015. 

Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanre´, D., and Holben, B. N.: Validation of MODIS aerosol optical 

depth retrieval over land, dust, Geophys. Res. Lett., 29, MOD2-1–MOD2-4, doi: 10.1029/2001GL013205, 2002. 

Climate Change Initiative: http://www.esa-aerosol-cci.org/, last access: 15 January 2016. 

Cohen, J. A.: A coefficient of agreement for nominal scales, Educ. Psychol. Meas., 20, 37-46, 1960. 30 

de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W. H., Descloitres, J., Grainger, R. G., Griesfeller, J., Heckel, A., Kinne, 

S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., 



35 
 

Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G. E., Virtanen, T. H., von Hoyningen-Huene, W., Vountas, 

M., and Pinnock, S.: Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis, Remote 

Sens. Environ., 162, 295-315, doi:10.1016/j.rse.2013.04.023, 2013. 

Flowerdew, R. J., and Haigh, J. D.: Retrieval of aerosol optical thickness over land using the ATSR-2 Dual-Look Satellite 

Radiometer, Geophys. Res. Lett., 23, 351-354, 1996. 5 

Foody, G. M.: Status of land cover classification accuracy assessment, Remote Sens. Environ., 80, 185-201, 

doi:10.1016/S0034-4257(01)00295-4, 2002. 

Griggs, M.: Satellite Observation of Atmospheric Aerosols During the EOMET Cruise, J. Atmos. Sci., 36, 695-698, 1979. 

Grey, W. M. E., North, P. R. J., Los, S. O., and Mitchell, R. M.: Aerosol Optical Depth and Land Surface Reflectance from 

Multiangle AATSR Measurements: Global Validation and Intersensor Comparisons, IEEE T. Geosci. Remote, 44, 2184-10 

2197, doi:10.1109/TGRS.2006.872079, 2006. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanre´, D., Buis, J. P., Setzer, K. A., Vermote, E., Reagan, J. A., Kaufman, Y. J., 

Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—A Federated Instrument Network and Data Archive 

for Aerosol Characterization, Remote Sens. Environ., 66, 1-16, doi:10.1016/S0034-4257(98)00031-5, 1998. 

Holzer-Popp, T., de Leeuw, G., Griesfeller, J., Martynenko, D., Kluser, L., Bevan, S., Davies, W., Ducos, F., Deuze, J. L., 15 

Graigner, R. G., von Hoyningen-Huene, W., Kolmonen, P., Litvinov, P., North, P., Poulsen, C. A., Ramon, D., Siddans, R., 

Sogacheva, L., Tanre, D., Thomas, G. E., Vountas, M., Descloitres, J., Griesfeller, J., Kinne, S., Schulz, M., and Pinnock, 

S., A.: Aerosol retrieval experiments in the ESA Aerosol_cci project, Atmos. Meas. Tech., 6, 1919-1957, doi:10.5194/amt-

6-1919-2013, 2013. 

Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to Moderate Resolution Imaging 20 

Spectroradiometer aerosol retrieval over land, J. Geophys. Res., 112, doi:10.1029/2006JD007815, 2007. 

Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the 

Collection 5 MODIS dark-target aerosol products over land,  Atmos. Chem. Phys. 10, 10399-10420, doi:10.5194/acp-10-

10399-2010, 2010. 

Li, M., and Zhang, L.: Haze in China: Current and future challenges, Environ. Pollut., 189, 85-86, 25 

doi:10.1016/j.envpol.2014.02.024, 2014. 

Ichoku, C, D. A. Chu, Mattoo, S., Kaufman, Y. J., Remer, L. A., Tanre´, D., Slutsker, I., and Holben, B. N.: A spatio-temporal 

approach for global validation and analysis of MODIS aerosol products, Geophys. Res. Lett., 29, MOD1-1-MOD1-4, 

doi: 10.1029/2001GL013206, 2002. 

Intergovernmental Panel on Climate Change (IPCC): Climate Change 2013: The Physical Science Basis, Contribution of 30 

Working Group I to the Fifth Assessment Report of the IPCC, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., 

Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., an Midgley, P. M., Cambridge University Press, Cambridge, UK, 

New York, NY, USA, 2013. 



36 
 

Kinne, S., Lohmann, U., Feichter, J., Schulz, M., Timmreck, C., Ghan, S., Easter, R., Chin, M., Ginoux, P., Takemura, T., 

Tegen, I., Koch, D., Herzog, M., Penner, J., Pitari, G., Holben, B., Eck, T., Smirnov, A., Dubovik, O., Slutsker, I., Tanre, 

D., Torres, O., Mishchenko, M., Geogdzhayev, I., Chu, D. A., and Kaufman, Y.: Monthly averages of aerosol properties: a 

global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 

doi:10.1029/2001JD001253, 2003. 5 

Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., and Crean, K. A.: Multiangle Imaging Spectroradiometer (MISR) 

global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations, 

J. Geophys. Res., 110, doi:10.1029/2004JD004706, 2005. 

Kahn, R. A., Li, W. H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbei, E.: Aerosol source plume physical 

characteristics from Space-based multiangle imaging, J. Geophys. Res., 112, doi:10.1029/2006JD007647, 2007. 10 

Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., Martonchik, J. V., Paradise, S. R., Hansen, E. 

G., and Remer, L. A.: MISR aerosol product attributes and statistical comparisons With MODIS, IEEE T. Geosci. Remote, 

47, 4095-4113, doi: 10.1109/TGRS.2009.2023115, 2009. 

Kahn, R. A., Garay, M. J., Nelson, D. L., Levy, R. C., Bull, M. A., Diner, D. J., Martonchik, J. V., Hansen, E. L., Remer, L. 

A., and Tanre´, D.: Response to “Ward Unified Satellite Climatology of Aerosol Properties. 3. MODIS versus MISR versus 15 

AERONET”, J. Quant. Spectrosc. Ra., 112, 901-909, 2011. 

Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., Holben, B. N.: Operational remote sensing of tropospheric 

aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102, 17051-17067, doi: 

10.1029/96JD03988, 1997. 

Kinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast, S., Giorgetta, M., Eck, T. F., and Stevens, B.: 20 

MAC-v1: A new global aerosol climatology for climate studies, J. Adv. Model Earth Syst., 5, 704-740, 

doi:10.1002/jame.20035, 2013. 

Kokhanovsky, A. A., Curier, R. L., de Leeuw, G., Grey, W. M. F., Lee, K. H., Bennouna, Y., Schoemaker, R., and North, P. 

R. J.: The inter-comparison of AATSR dual-view aerosol optical thickness retrievals with results from various algorithms 

and instruments, Int. J. Remote Sens., 30, 4525-4537, doi:10.1080/01431160802578012, 2009. 25 

Kokhanovsky, A. A. and de Leeuw, G.: Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 2009. 

Kolmonen, P., Sogacheva, L., Timo, H., Virtanen, de Leeuw, G., and Kulmala, M.: The ADV/ASV AATSR aerosol retrieval 

algorithm: current status and presentation of a full-mission AOD dataset, Int. J. Digit. Earth, doi: 

10.1080/17538947.2015.1111450， 2015. 

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS 30 

aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, doi:10.5194/amt-6-2989-2013, 2013. 

Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to Moderate Resolution Imaging 

Spectroradiometer aerosol retrieval over land, J. Geophys. Res., 112, doi:10.1029/2006JD007815, 2007. 



37 
 

Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the 

Collection 5 MODIS dark-target aerosol products over land,  Atmos. Chem. Phys. 10, 10399-10420, doi:10.5194/acp-10-

10399-2010, 2010. 

Li, M., and Zhang, L.: Haze in China: Current and future challenges, Environ. Pollut., 189, 85-86, 

doi:10.1016/j.envpol.2014.02.024, 2014. 5 

McMurry, P. H.: A review of atmospheric aerosol measurements, Atmos. Environ., 34, 1959-1999, doi:10.1016/S1352-

2310(99)00455-0, 1999. 

Martonchik, J. V., Diner, D. J., Kahn, R., and Gaitley, B.: Comparison of MISR and AERONET aerosol optical depths over 

desert sites, Geophys. Res. Lett., 31, doi:10.1029/2004GL019807, 2004. 

McMurry, P. H.: A review of atmospheric aerosol measurements, Atmos. Environ., 34, 1959-1999, doi:10.1016/S1352-10 

2310(99)00455-0, 1999. 

Misra, A., Jayaraman, A., and Ganguly, D.: Validation of MODIS derived aerosol optical depth over Western India, J. Geophys. 

Res., 113, doi:10.1029/2007JD009075, 2008. 

Mei, L., Xue, Y., Xu. H., Guang, J., Li, Y., Wang, Y., Ai, J., Jiang, S., And He, X.: Validation and analysis of aerosol optical 

thickness retrieval over land, Int. J. Remote Sens., 33, 781-803, doi:10.1080/01431161.2011.577831, 2012. 15 

North, P.R.J., Briggs, S.A., Plummer, S.E. and Settle, J.J., (1999). Retrieval of land surface bidirectional reflectance and 

aerosol opacity from ATSR-2 multiangle imagery, IEEE T. GEOSCI. REMOTE, 37, 526-537, doi: 10.1109/36.739106, 1999. 

Kolmonen, P., Sogacheva, L., Timo, H., Virtanen, de Leeuw, G., and Kulmala, M.: The ADV/ASV AATSR aerosol retrieval 

algorithm: current status and presentation of a full-mission AOD dataset, Int. J. Digit. Earth, doi: 

10.1080/17538947.2015.1111450， 2015. 20 

Prins, E. M., Feltz, J. M., Menzel, W. P., Menzel, W. P., and Ward, D. E.: An overview of GOES-8 diurnal fire and smoke 

results for SCAR-B and 1995 fire season in South America, J. Geophys. Res., 103, 31821-31836, 1998. 

Rosenfield, G. H., and Fitzpatrick-Lins, K.: A coefficient of agreement as a measure of thematic classification accuracy, 

Photogramm. Eng. Rem. S., 52, 223-227, 1986. 

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, 25 

R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 

62, 947–973, doi: http://dx.doi.org/10.1175/JAS3385.1, 2005. 

Stehman, S. V.: Selecting and interpreting measures of thematic classification accuracy, Remote Sens. Environ., 62, 77-89, 

doi:10.1016/S0034-4257(97)00083-7, 1997. 

Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., And Zeger, S. L.: Fine particulate air pollution and mortality in 20 U.S. 30 

cities, 1987–1994, New Engl. J. Med., 343, 1742-1749, doi: 10.1056/NEJM200012143432401, 2000. 



38 
 

Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong, M.-J., MODIS Collection 6 aerosol 

products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. 

119(24), 13,965–13,989, 2014 (DOI: 10.1002/2014JD022453) 

Stehman, S. V.: Selecting and interpreting measures of thematic classification accuracy, Remote Sens. Environ., 62, 77-89, 

doi:10.1016/S0034-4257(97)00083-7, 1997.Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and Holben, 5 

B.: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements, J. 

Atmos. Sci., 59, 398-413, doi: http://dx.doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2, 2002. 

Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron species and iron solubility in Asian dust during 

the long-range transport from western China to Japan, Atmos. Chem. Phys., 11, 11237-11252, doi:10.5194/acp-11-11237-

2011, 2011. 10 

Thomas, G. E., Poulsen, C. A., Curier, R. L., de Leeuw, G., Marsh, S. H., Carboni, E., Grainger, R. G., and Siddans, R.: 

Comparison of AATSR and SEVIRI aerosol retrievals over the Northern Adriatic, Q. J. Roy. Meteor. Soc., 133, 85-95, doi: 

10.1002/qj.126, 2007. 

Thomas, G. E., Carboni, E., Sayer, A. M., Poulsen, C. A., Siddans, R., and Grainger, R. G.: Oxford-RAL Aerosol and Cloud 

(ORAC): Aerosol Retrievals from Satellite Radiometers, In: Aerosol Remote Sensing Over Land, edited by: 15 

Kokhanovsky, A. and de Leeuw, G., Springer, Berlin, 2009.  

Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and Holben, B.: A long-term record of aerosol optical depth 

from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398-413, doi: 

http://dx.doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2, 2002. 

Tzanis, C., and Varotsos, C.A.: Tropospheric aerosol forcing of climate: a case study for the greater area of Greece, Int. J. 20 

Remote Sens., 29, 2507-2517, 2008. 

Varotsos, C., Ondov, J., Tzanis, C., Ozturk, F., Nelson, M., Ke, H., and Christodoulakis, J.: An observational study of the 

atmospheric ultra-fine particle dynamics, Atmos. Environ., 59, 312-319, 2012. 

Varotsos, C.: Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere, J. Geophys. Res., 

110, D09202, doi:10.1029/2004JD005397, 2005  25 

Veefkind, J. P., de Leeuw, G., and Durkee, P. A.: Retrieval of aerosol optical depth over land using two-angle view satellite 

radiometry during TARFOX, Geophys. Res. Lett, 25, 3135-3138, 1998. 

Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron species and iron solubility in Asian dust during 

the long-range transport from western China to Japan, Atmos. Chem. Phys., 11, 11237-11252, doi:10.5194/acp-11-11237-

2011, 2011. 30 

Xue, Y., Xu, H., Guang, J., Mei, L., Guo, J., Li, C., Mikusauskas, R., and He, X.: Observation of an agricultural biomass 

burning in central and east China using merged aerosol optical depth data from multiple satellite missions, Int. J. Remote 

Sens., 35, 5971-5983, doi:10.1080/2150704X.2014.943321, 2014. 

 


	acp-2016-195-author_response-version1.pdf (p.1-10)
	Response_acp-RC1-CYH-20160420
	Response-to-acp-CYH-20160420

	acp-2016-195-track.pdf (p.11-48)

