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Abstract. The ability of a Bayesian atmospheric inversion to quantify the Paris region’s fossil fuel CO2 emissions on a monthly

basis, based on a network of three surface stations operated during one year as part of the CO2-MEGAPARIS experiment (Au-

gust 2010–July 2011), is analysed. Differences in hourly CO2 atmospheric mole fraction between the near-ground monitoring

sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6-h mean

fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km×2 km horizontal resolution, on5

the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km×1 km horizontal reso-

lution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land

surface model. It corrects a prior estimate of the 6-h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF

2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large

modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients10

if wind speeds are larger than 3ms−1 and if the modelled wind at the upwind site is within ±15o of the transect between

downwind and upwind site. This stringent data selection removes 92 % of the hourly observations. Even though this leaves

few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the

uncertainty in monthly emissions, by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions

correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent15

with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement

period than the 2008 inventory. Several tests of the inversion’s sensitivity to prior emission estimates, to the assumed spa-

tial distribution of the emissions, and to the atmospheric transport modelling demonstrate the robustness of the measurement

constraint on inverted fossil fuel CO2 emissions. The results, however, show significant sensitivity to the description of the

emissions’ spatial distribution in the inversion system, demonstrating the need to rely on high-resolution local inventories such20

as that from AIRPARIF. Although the inversion constrains emissions through the assimilation of CO2 gradients, the results are
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hampered by the improperly-modelled influence of remote CO2 fluxes when air masses originate from urbanised and indus-

trialised areas north-east of Paris. The drastic data selection used in this study limits the ability to continuously monitor Paris

fossil fuel CO2 emissions: the inversion results for specific months such as September 2010 or November 2010 are poorly

constrained by too few CO2 measurements. The high sensitivity of the inverted emissions to the prior emissions’ diurnal vari-

ations highlights the limitations induced by assimilating data during afternoon only. Furthermore, even though the inversion5

improves the seasonal variation and the annual budget of the city’s emissions, the assimilation of data during a limited number

of suitable days does not necessarily yield robust estimates for individual months. These limitations could be overcome through

a refinement of the data processing for a wider data selection, and through the expansion of the observation network.

1 Introduction

There is a high political and scientific interest in developing methods for improving and verifying estimates of fossil fuel10

and cement CO2 emissions. Consequently, there is an increasing deployment of urban CO2 monitoring networks with the

objective of quantifying city emissions through the atmospheric inversion approach (Boon et al., 2016; Duren and Miller,

2012; Lauvaux et al., 2013, 2016; Kort et al., 2013; McKain et al., 2012; Strong et al., 2011; Turnbull et al., 2015). Bréon et al.

(2015), upon which this study builds, recently reported first estimates of fossil fuel CO2 emissions of the Paris urban area dur-

ing a two-month period. They used three ground-based CO2 measurement sites at the north-eastern and south-western edge15

of the area and an inversion system based on a 2 km×2 km horizontal resolution transport model. The monitoring stations in

Gonesse (GON), approximately 15 km north of Paris’ city centre, and in Montgé-en-Goële (MON), 35 km north-east (NE) of

Paris’ city centre, were deployed by the CO2-MEGAPARIS project and operated from August 2010 to July 2011. The monitor-

ing station in Gif-sur-Yvette (GIF), 20 km south-west (SW) of Paris’ city centre, is part of the Integrated Carbon Observation

System-France long-term network.20

The main principle of the atmospheric inversion proposed by Bréon et al. (2015) consists in constraining CO2 emission

budgets of the urban area by assimilating atmospheric CO2 mole fraction gradients between pairs of sites located upwind and

downwind of the city. The use of cross-city gradients, rather than individual mole fractions, aims at eliminating the variability

of CO2 caused by the transport of remote and natural fluxes outside the urban area. It assumes that the signal from these fluxes

has a relatively large spatial and temporal scale compared to the distance and transport duration between the measurement25

sites. These signals and the potential signal from natural fluxes within the urban area cannot be sufficiently well controlled

by the monitoring network, in particular because their large day-to-day variations cannot be filtered as a smooth baseline in

the time series of CO2 concentrations at individual sites (an approach frequently used in regional atmospheric inversions, e.g.,

in Henne et al., 2016). On the contrary, such signals can be as high as the signal caused by the emissions within the urban

area (Bréon et al., 2015; Kort et al., 2013; Nordbo et al., 2012). Uncertainties in remote and natural fluxes can thus highly30

impact the skill for inverting the urban emissions. In the simulations by Bréon et al. (2015), the ratio between the signal from

the natural and remote fluxes and the signal from the urban emissions is high when analysing individual measurements. It,

however, strongly decreases when analysing gradients. This weak impact of natural fluxes on inversions is on one hand due to
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the fact that the dense and compact Paris urban area exhibits little vegetation within its bounds. On the other hand, it is due to

the fact that, upwind the city, the signal from fluxes outside this urban area is sufficiently diffused in space so that it is relatively

homogeneous over the Paris urban area and constant during the duration of the transport over this area.

The selected cross-city gradients also provide a characterization of the increase in the CO2 mixing ratios of air parcels that

pass over the city. It is assumed that these gradients represent emissions from the entire city and are not highly sensitive to the5

distribution of the emissions. This assumption is line with the inversion system of Bréon et al. (2015) that controls the city-

scale emissions budgets and the temporal variation of fossil fuel CO2 emissions, but not their spatial distribution. However,

this method should not be seen as a sort of mass balance, given that, in practice, the inversion is not set up to ensure that the

upwind and downwind concentrations corresponds to the same air masses that travelled from the upwind to the downwind

site. Furthermore, since the atmospheric boundary layer evolves significantly in space and time and due to the atmospheric10

diffusion during the transport over the Paris area, such cross-city gradients cannot perfectly represent the CO2 enrichment of

air parcels passing over the urban area. In addition, temporal variations of the emissions during the transport of air masses

over the Paris area prevent from relating a given gradient to the emissions at a given time. The gradients need to be interpreted

using a transport model and knowledge on the spatio-temporal variations of the emissions at hourly scale. In that sense, the

assimilation of gradients is affected by transport modelling uncertainties and by uncertainties in the variations of the emissions15

at high spatial and temporal resolution, such as it the case for any inverse modelling approaches.

The inversion assimilates cross-city CO2 gradients during afternoon to correct prior estimates of 6-h fossil fuel CO2 emis-

sions budgets of the Paris metropolitan area (Île-de-France administrative region). These prior estimates are derived from the

AIRPARIF inventory for the year 2008 (AIRPARIF, 2012). AIRPARIF is a non-profit agency that is accredited by the French

Ministry of Environment to monitor the air quality in Île-de-France. Even though they have a limited impact on the inversion20

when gradients are assimilated, the system of Bréon et al. (2015) also inverts biogenic fluxes and corrects prior estimates of the

biogenic fluxes from C-TESSEL, the land-surface component of the ECMWF (European Centre for Medium-Range Weather

Forecasts) numerical weather forecasting system (Boussetta et al., 2013). In order to model the CO2 gradients, the inversion

uses an estimate of the fossil fuel CO2 emission and biogenic flux distribution at 2 km×2km and hourly resolution, coupled

to a 2 km×2 km resolution configuration of the chemistry transport model CHIMERE (Menut et al., 2013).25

Bréon et al. (2015) developed and tested this inversion set-up for two months in autumn 2010. The values of the AIRPARIF

2008 inventory were used to derive the prior estimates for the corresponding dates in 2010. Bréon et al. (2015) reported a sig-

nificant improvement of the fit between modelled and measured CO2 gradients by the inversion and reasonable patterns of

corrections applied to prior emission values. The small number of monitoring sites and the stringent criteria for selecting gra-

dients leads to a high number of periods, ranging from one to several days, during which the inversion does not assimilate any30

atmospheric CO2 data. As a consequence, averages of the inverted emissions over one month were found to be more reliable

than 1-day to 1-week mean results.

The aim of this study is to derive a full year of monthly mean emission estimates for the Paris area, based on the inversion

system described by Bréon et al. (2015) and on the availability of measurements at MON, GON and GIF during the period

mid-2010 to mid-2011. The 1-yr long inversion allows a better evaluation of the method by analysing the seasonal variation35
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and the annual budget of the inverted emissions. In particular, the annual budget can be compared to the AIRPARIF emission

assessment for 2010 (AIRPARIF, 2013). This assessment is based on an inventory model that has been improved since the

release of the 2008 inventory. The 2010 inventory applies to a time period which better corresponds to the inversion period

than the 2008 inventory used for the inversion. Therefore it provides some independent information to check the corrections

applied by the inversion to the prior estimate of the annual budget derived from the 2008 inventory.5

Preliminary tests of the inversion during the 1-yr period, however, revealed that the selection of gradients, as proposed by

Bréon et al. (2015), do not conform fully with the underlying assumptions of having gradients dominantly influenced by urban

emissions. Notably, negative CO2 gradients between downwind and upwind sites were frequently measured when using the

gradient selection criteria of Bréon et al. (2015). This led us to revise the selection of CO2 data to form gradients. The revision

consists primarily on a tighter filtering of wind directions to select gradients in order to avoid situations when air parcels leaving10

the upwind site or reaching the downwind site do not overpass a significant part of the city and the vicinity of the other site.

Section 2 presents a summary description of the inversion configuration and the revised gradient selection. Section 3 analyses

the inversion results for different configurations. In particular, it assesses the impact of the stricter gradient selection, and the

sensitivity of the results to the prior emission estimates, to the emissions’ spatial distribution, and to the atmospheric transport

modelling, so as to evaluate how robustly the emissions are constrained by atmospheric CO2 data. These results are discussed15

in Sect. 4.

2 Inversion configuration

The inversion method described by Bréon et al. (2015) is based on the Bayesian approach. The control vector x gathers the

CO2 flux budgets. xb is the vector of the prior estimates of these budgets, independent of atmospheric observations. The

observed CO2 mole fraction gradients selected for the inversion are assembled into y0, which defines the observation space y.20

The linear observation operator H : x 7→ y =Hx+y
f projects the control vector x into the observation space y through the

linear operator H (combining the description of the fluxes’ spatial distribution and the atmospheric transport model) and the

addition of CO2 gradients yf caused by fluxes that are not controlled by the inversion, such as the remote fluxes characterized

by the CO2 boundary conditions of the regional transport model. The uncertainties in xb and the observation errors, i.e., errors

in the measurements y0 and from the observation operator H, are assumed to have unbiased Gaussian distributions and are25

characterized by the prior uncertainty covariance matrix B and the observation error covariance matrix R, respectively. xa,

the optimal posterior estimate of x, knowing its prior estimate xb and measurements y0, can be obtained from (e.g., Rodgers,

2000):

xa = xb +(B−1+H
T
R

−1
H)−1

H
T
R

−1(y0 −y
f
−Hxb). (1)
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The uncertainty in xa has unbiased Gaussian distribution and is characterized by the posterior uncertainty covariance matrix

A:

A= (B−1 +H
T
R

−1
H)−1. (2)

The inversion uses measurements during a given 30-day period to derive fluxes during the same 30-day period. Independent

inversions are made for twelve consecutive 30-days periods starting on 1 August 2010 to cover the entire observation period5

from August 2010 to July 2011. The 6-h mean inverted emissions during each period serve as the basis for the analysis of

emissions in the Paris area at the monthly scale. Even though these 30 day periods do not correspond exactly to the calendar

months, the names of the calendar months are used to label them.

We briefly recall descriptions of the components of Eq. (1)–(2) as laid out by Bréon et al. (2015) in the next Sections

(Sect. 2.1-2.4). As detailed in Sect. 2.2, two modifications, however, are brought to the definition of the observation space y10

and thus to the observation operator H. The modifications result in two new inversion configurations that are denominated

initial (i.e., close to Bréon et al., 2015) and reference configuration hereafter. Section 2.6 presents the set-up of the sensitivity

tests, where the prior estimates of the control variable, xb, and components of the observation operator H are modified with

respect to the reference configuration.

2.1 Control vector x and the prior estimate of the flux budgets xb15

x contains 6-h mean fossil fuelCO2 emission budgets for windows 0-6h, 6-12h, 12-18h, 18-24h (local time is used hereafter)

for each day for the Île-de-France region. Most of the emissions in this region are concentrated in the urban agglomeration of

Paris. Thus, this choice of x approximately consists in controlling the emission budget of this urban area. x also contains 30-

day mean biogenic CO2 fluxes for each of the four 6-hour windows of the day (0-6h, 6-12h, 12-18h, 18-24h) for 9 areas that

make up the Northern France modelling domain, including one that encompasses the Paris region (see Fig. 1). The inversion20

optimises the diurnal cycle of both the fossil fuel CO2 emissions and biogenic fluxes through resolving these fluxes for the

different 6-h windows of the day. However, it controls the day-to-day variability of the fossil fuel CO2 emissions but not the

one of the biogenic fluxes. The inversion controls scaling factors of the flux budgets provided by the emission inventories and

the ecosystem model simulations through the linear part of the observation operator (H, see below). For the sake of simplicity

we state hereafter that it controls the flux budgets themselves.25

The initial and reference inversion configurations use our best available knowledge on the flux budgets—the AIRPARIF 2008

inventory (since the AIRPARIF 2010 monthly mean budgets were not available for this study) and the C-TESSEL simulation—

to define the prior estimate xb. The sensitivity tests, described in Sect. 2.6, investigate the impact of using different prior

estimates for the Paris fossil fuel CO2 emissions.
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2.2 Configuration of the observation vector y and measurement vector y0

The specific definition of the observation space y and of the corresponding measurement vectory0 depends on the measurement

availability, on the range of wind directions used to select gradients, and on the meteorological forcing of the CO2 transport

model. Two different meteorological products are used to define the wind direction for the gradient selection (see forward

Sect, 2.3.1).5

The three monitoring sites are located roughly along a NE-SW direction at edges of the urban area in mixed urban-rural

environments (Fig. 1) at heights of 9m (MON), 4m (GON) and 7m (GIF) above ground. The NE-SW direction corresponds

to the dominant wind directions in Île-de-France. Technical details about the measurements are given in Xueref-Remy et al.

(2016), Bréon et al. (2015) and Lac et al. (2013). Here we briefly summarise the main aspects. The CO2-MEGAPARIS sites

GON and MON were equipped with a ring-down cavity analyser from Picarro (model G1302), while an automated gas chro-10

matograph analyser (Agilent HP6890, see Gibert et al., 2007) has been used at GIF. All measurements are quality controlled

and calibrated against the World Meteorological Organisation mole fraction scale WMO-X2007 (Zhao and Tans, 2006). The

instrumental reproducibility of the Piccaro 5min averages is better than 0.17ppm, while measurement accuracy is estimated

at 0.38ppm (Bréon et al., 2015; Xueref-Remy et al., 2016). The precision of the chromatograph analyser in GIF is estimated

at 0.05ppm for 5min averages (Lac et al., 2013). In our study, we binned measured CO2 data into 1-h means. The accuracy15

for these hourly means is better than 0.4ppm at the three sites which is negligible compared to the modelling uncertainties

(see forward Sect. 2.5).

Figure 2 and Fig. A1–A2 illustrate the temporal coverage of the measurements available during the CO2-MEGAPARIS

period (August 2010–July 2011) at each measurement site. They also show which data are finally used to form gradients. Some

significant data gaps can be noticed, e.g., during June 2010 and 2011 at GON, September 2010 at MON, January, November20

and December 2010 at GIF. The regular 1-day gaps correspond to instrument calibrations.

CO2 at the measurement sites is significantly influenced by both the Paris urban emissions and the remote fluxes (i.e., by

fluxes outside the modelling domain, whose influence is simulated by the transport of the CO2 conditions imposed at the

model boundaries, and by biogenic and fossil fuel fluxes within the modelling domain but outside the Paris urban area). It

is assumed, that, due to atmospheric diffusion, the signature of the remote fluxes upwind the city on the concentrations in25

our domain has horizontal and vertical spatial scales and a temporal scale of variability that are large enough so that it does

not evolve during the transit of an air parcel above the city. In other words, it is assumed that the remote fluxes do not cause

CO2 gradients between downwind and upwind stations when the wind blows from the upwind to the downwind sites. This

critical assumption is supported by the fact that the simulated CO2 gradients, caused by remote fluxes, are negligible. However,

this does not necessarily imply that the measured gradients are not influenced by the actual fluxes (Bréon et al., 2015). This30

assumption is also supported by the much better fit between observed and modelled CO2, when observations are defined by

cross-city gradients instead of CO2 mixing ratios at individual sites (Bréon et al., 2015). By assimilating CO2 gradients rather

than individual CO2 mole fractions, we thus expect to prevent the inversion from being sensitive to the uncertainties in the

estimate of the remote fluxes.
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Local sources in the vicinity of the measurement sites are difficult to represent in the model. In order to limit their impact,

Bréon et al. (2015) selected gradients only if the wind speed is above a given threshold of 2ms−1. Similar to most inversion

studies that used rural measurement sites (e.g., Broquet et al., 2011; Geels et al., 2007), Bréon et al. (2015) assimilated data

during the afternoon only, since the model seemed to poorly represent vertical transport during other periods of the day.

Specifically, Bréon et al. (2015) used differences in simultaneous hourly-averagedCO2 measurements between the peri-urban5

stations during the afternoon (12-16h) to define the measurement vector y0. When (at a given hour) the wind at GIF, given

by the meteorological simulation (see below Sect. 2.3.1), is from SW, i.e. from 160o to 260o, and is above 2ms−1, GIF is

the upwind site and Bréon et al. (2015) assimilate hourly CO2 mole fraction differences between MON and GIF and between

GON and GIF. When the simulated wind at MON is from NE, i.e. from 0o to 135o and exceeds 2ms−1, MON is the upwind

site and Bréon et al. (2015) assimilate the CO2 differences between GON and MON and between GON and GIF.10

Using this configuration, Bréon et al. (2015) assimilated CO2 gradients between GON and MON. GON and MON are

separated by only a short distance. The enhancement of CO2 between these two sites therefore rather reflects the emissions

from a small portion of the North-Eastern suburbs of Paris than emissions from the entire urban area. Model-data misfits for

such gradients relate far more to the uncertainties in the high resolution mapping of the emissions than to uncertainties in

the budget of the city emissions. In addition, these gradients are strongly affected by emissions from the Charles-de-Gaulle15

airport which is located between the two sites and an important local source of CO2 that is not representative of the main CO2

sources in the Paris urban area. Thus, gradients between GON and MON are not adapted to constrain city-scale emissions.

Furthermore, in order to retain a significant fraction of measurements in the inversion, Bréon et al. (2015) used a loose range of

wind directions to define upwind and downwind conditions. This loose range could allow the assimilation of gradients when air

masses leaving the upwind site or reaching the downwind site hardly cross a significant portion of the Paris urban area, or, more20

generally, when air masses are not really transported from the upwind to the downwind site. This loose selection of gradients

for constraining fluxes was not identified as a major source of systematic error. Through this configuration, Bréon et al. (2015)

primarily aimed at decreasing the impact of remote fluxes on CO2 mole fractions while keeping a large amount of data for

the inversion. Both choices, the assimilation of GON-MON and the loose wind filtering to select gradients , however, lead to

estimates of spatially integrated emissions of the city constrained by measurements that are influenced only by emissions from25

a small fraction of the city. This would not be an issue if the spatial distribution of emissions provided by AIRPARIF was

perfectly accurate. On the other hand, any significant error in the emissions’ spatial distribution may induce a large error on

the city-wide emission inversion. Indeed, if the assumed spatial distribution of the emission bears significant errors (which is

likely the case), the inversion corrections, driven by model-data misfits due to errors in emissions from a small part of the city,

will become inconsistent with the errors at the city-scale, raising large so-called aggregation errors (Kaminski et al., 2001).30

As mentioned in the introduction, preliminary tests of inversions using the configuration of Bréon et al. (2015) for the period

August 2010–July 2011 demonstrated the need for an improved configuration where the selection of CO2 conforms better

with our assumptions on gradients. In this study, two critical changes are applied. They consist in assimilating GIF-GON and

GIF-MON and in discarding GON-MON gradients when the wind is from NE. Furthermore, a stricter (narrower) range of wind

directions to select CO2 gradients is used. Discarding GON-MON gradients suppresses the large amount of negative gradients35
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in the measurement vector y0. The impact of discarding GON-MON gradients on the inversion results is not analysed deeper

in the following. It relates to specific details of the Paris network configuration. Here, we focuses on the impact of using

a narrower range of wind directions for the gradient selection. The stricter selection of wind directions consists in assimilating

a gradient between two sites only if the modelled wind at the upwind site is within ±15o of the transect between the downwind

and upwind site. The specific choice of ±15o is somewhat arbitrary. On the one hand it ensures the selection of a significant5

number of gradients. On the other hand it ensures that air masses leaving the upwind site or reaching the downwind site are

transported over a large part of the urban area and in a direction that is close to the transect between downwind and upwind

sites. Thus, the gradients GIF-GON, GIF-MON, MON-GIF and GON-GIF are assimilated only if the wind is from 20o to

50o, 35o to 65o, 215o to 245o, and 200o to 230o, respectively. We use the term SW gradients for the gradients GON-GIF and

MON-GIF and NE gradients for the gradients GIF-MON and GIF-GON.10

We apply other significant changes to the gradient selection criteria of Bréon et al. (2015). First, we increase here the mini-

mum wind speed threshold at the upwind site from 2 to 3ms−1. This change is driven by the fact that, as noticed by Bréon et al.

(2015), large model-data misfits persist after inversion for wind speeds close to 2ms−1. This suggests that a threshold of 2ms−1

was not sufficient to avoid a large contamination of the measurements by poorly-modelled local sources. Furthermore, in this

study, a single valid 1-h mean gradient during a given afternoon is not selected for the inversion. This avoids constraining the15

emissions of a given day based on a single observation that potentially bears a large transport model error. At last, an analysis

of the impact of individual observations on the corrections applied by the inversion to the prior monthly flux estimates (i.e.,

impact of the product between the gain matrix K= (B−1 +H
T
R

−1
H)−1

H
T
R

−1
and the model-data misfit for each indi-

vidual gradient, see for more details Moore et al., 2011) was conducted for the initial and reference inversion experiments. It

revealed that, for the initial inversion, during November, two gradients had far more impact on the correction to the emissions20

budget of this month than the other gradients. The gradients removed had both an impact of approximately -0.3MtCO2 on this

budget (i.e. approximately -0.6MtCO2 in total). In both cases, these high impacts were connected to high prior model-data

misfits during weak vertical mixing episodes. Again, similar to many inversion experiments (e.g, Chevallier et al., 2010), in

order to avoid giving too much weight to individual measurements the two corresponding gradients were removed from the

initial inversion experiment. However, such gradients are not selected by the tighter wind direction filtering of the reference25

inversion.

Three configurations of the observation space y are used in this study: yini, yref , and ylag . The first one, yini, corresponds

to the initial inversion configuration. It includes all the new options discussed above, except the narrowing of the wind direction

ranges for the gradient selection. The selection of GIF-GON, GIF-MON, MON-GIF and GON-GIF gradients in yini is based

on the wind direction ranges at GIF and MON as proposed by Bréon et al. (2015). The second one, yref , corresponds to the30

reference inversion configuration. It includes all the new options and selects gradients based on the new wind direction ranges

at GIF, GON and MON defined in this section. The comparison between the initial and reference inversions is used to assess

the impact of using tight wind direction ranges on retrieved emissions and to evaluate if the selected gradients now conform

better with our assumptions (see Sect. 3.1-3.2). ylag is only used for a single experiment whose results are briefly discussed

in Sect. 3.2. This observation vector consists in spatio-temporal gradients, i.e., mole fraction differences between a downwind35
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site at a given time and an upwind site 2h before. Given a mean wind speed of 7ms−1 in the lower planetary boundary layer of

the Paris area during the afternoon over the 1-yr period and a distance of about 40 km between the upwind and downwind site

the typical time for air being transported from the upwind to the downside site is approximately 2h. The wind selection in this

experiment is similar to that of the reference experiment. It uses simulated wind fields at the time of the upwind mole fraction

measurement involved in the gradient. At a given site the assimilation window is also reduced so that a given gradient does not5

involve any measurement outside the 12-16h window, despite the use of a time lag in the gradient. The use of spatio-temporal

gradients instead of spatial gradients appears more in line with the concept of a mass balance approach which constrains

emissions based on mole fraction variations in air parcels that are transported over the Paris area. Due to atmospheric diffusion

and variations in the planetary boundary layer, the spatio-temporal gradients still need to be interpreted using a high resolution

transport model. However, with such a configuration of the observation vector, the number of data that can be assimilated is10

further decreased as the assimilation window at both the upwind and downwind sites is reduced.

2.3 Observation operator H

This section describes the observation operator H : x 7→ y =Hx+y
f. The linear operator H can be decomposed into three

operators (H=H
samp

H
trans

H
map) consisting in the fluxes’ spatio-temporal distribution (Hmap), the atmospheric transport sim-

ulated using CHIMERE (Htrans), and the sampling of simulated 4D-CO2 field like the observations (Hsamp). yf gathers in-15

fluences on the gradients which are not controlled by the inversion such as the signature of the model boundary conditions.

In the following, we present the implementation of these operators and vectors used in Bréon et al. (2015) and the initial and

reference inversions of this study, respectively, as well as alternative options used for sensitivity tests.

2.3.1 Atmospheric transport modelling and sampling

The atmospheric transport Htrans and the signature of sources and sinks on CO2 concentrations that are not controlled by the20

inversion (yf) are modelled using a Northern France configuration of CHIMERE. It has a a 2 km×2 km spatial resolution for

the Paris region, and a 2×10km and 10 km×10 km spatial resolution for the surroundings (see Fig. 1). It has 20 vertical hybrid

pressure-sigma (terrain-following) layers that range between surface and the mid-troposphere, up to 500hPa. In the initial and

reference inversion of this study, as in Bréon et al. (2015), CHIMERE is driven by operational analyses of ECMWF’s Integrated

Forecasting System, available at approximately 15 km×15km spatial resolution and 3h temporal resolution. In this case we25

will denote Htrans=Htrans
ECM and y

f = y
f
ini−ECM ,yf

ref−ECM or yf
lag−ECM , depending on the type of gradient selection used.

Lac et al. (2013) conducted meteorological simulations on our modelling domain using a 2 km×2 km resolution config-

uration of the non-hydrostatic mesoscale model Meso-NH. Meso-NH, jointly developed by Météo-France and Laboratoire

d’Aérologie (Lafore et al., 1998), is coupled to 3-hourly analysed meteorological fields from AROME (Application of Re-

search to Operations at Mesoscale)-France (Seity et al., 2010) and to the land-surface-atmosphere interaction model SURFEX30

(Masson et al., 2013). SURFEX includes the urban and vegetation scheme TEB (Masson, 2000). Therefore, in contrast to the

ECMWF meteorological forcing, Meso-NH/TEB includes some urban parametrisation, which may have a large impact on the

transport over the city. Lac et al. (2013) showed, by comparison to Lidar systems operated on a short-term basis in the Paris
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area, that Meso-NH/TEB captures relatively well the diurnal cycle of the boundary layer height as well as the differences in

this height between peri-urban and urban locations.

A test of sensitivity is conducted to assess the impact of the uncertainties in the meteorological product on the inversions

(in particular the uncertainties in the wind and in the boundary layer height). The meteorological product is used to drive the

atmospheric transport model and to select the cross-city gradients. This test consists in using hourly mean outputs of Meso-5

NH/TEB to drive CHIMERE and to select gradients. Meso-NH/TEB simulations, originally conducted over a slightly different

grid (see Lac et al., 2013, their Fig. 1a.), are interpolated onto the CHIMERE grid. When using Meso-NH/TEB H
trans and y

f

are denoted by H
trans
MNH and y

f
ref−MNH , respectively.

In order to build the linear part of the observation operator H and y
f, the operator Hsamp is applied. Hsamp extracts the

selected gradients between the monitoring sites from the simulated 4-D CO2 mole fraction fields as described in Sect. 2.2. The10

underlying selection of the horizontal and vertical positioning of the monitoring sites in the CHIMERE grid is the same as in

Bréon et al. (2015). Because the gradient selection depends on modelled wind speed and direction, the observation space y and

thus yf and H
samp depend on the meteorological simulations (ECMWF or Meso-NH/TEB). We denote Hsamp by H

samp
ini−ECM ,

H
samp
ref−ECM , Hsamp

lag−ECM or Hsamp
ref−MNH , depending on the inversion cases.

2.3.2 Emissions outside Île-de-France and model boundary conditions15

y
f encompasses the signature of fossil fuel CO2 emissions outside the Paris region but within the modelling domain, that

of the modelling domain’s CO2 boundary conditions and that of the 30-day simulations initial conditions. The signature of

the emissions outside the Paris region but within the modelling domain are simulated by CHIMERE using fossil fuel CO2

emissions from the EDGAR database (Janssens-Maenhout et al., 2012). Daily CO2 mole fraction fields provided by the global

inversion of Chevallier et al. (2010) are used as CO2 boundary conditions at the lateral and top edges of the modelling domain20

and as initial conditions for the CO2 mole fraction fields at the beginning of each 30-day period. The global inversion of

Chevallier et al. (2010) is based on the simulation of the CO2 transport by the LMDZ model (Hourdin et al., 2006) and on the

assimilation of ground-based measurements from a global network.

2.3.3 Mapping of the Paris fossil fuel CO2 emissions and biogenic fluxes

H
map is built on hourly biogenic flux and emission maps at the horizontal resolution of the CHIMERE transport model. In both25

the initial and reference inversions, as in Bréon et al. (2015), the description of the fossil fuel CO2 Paris emissions at 1-h and

2 km×2 km resolution in H
map is based on the hourly AIRPARIF 2008 inventory. The temporal profiles and spatial distributions

of this inventory are analysed in Bréon et al. (2015). We just recall that emissions are available at 1 h and 1 km×1 km resolution

for three typical days (weekday, Saturday, Sunday) of 5 typical months (January, April, July, August, October) of the year 2008.

In order to build hourly estimates for the 1-yr period August 2010-July 2011, we follow AIRPARIF’s recommendation and30

use January emissions for all five months from November to March, April data for all three months from April to June, and

October data for both September and October and, for a given day in 2010 or 2011, we use the values from the same day in

2008.
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For sensitivity tests (see Sect. 3.3.2), the emission component of Hmap is alternatively built based on a national emission

inventory for 2005 compiled by the Institut Für Energiewirtschaft Und Rationelle Energieanwendung (IER) of the University

of Stuttgart, Germany. Latoska (2009) disaggregated reported emission totals for France for 2005 into a 1×1 arc minute grid

with the use of various proxies for the distribution of emitting activities such as population census, traffic intensity and land

cover. We used monthly, weekly and hourly temporal profiles for different emissions sectors from the IER inventory for Europe5

as described by Vogel et al. (2010) to disaggregate annual emissions to hourly emissions. The IER and AIRPARIF emission

inventories are two largely independent datasets.

In all experiments, the component in H
map that corresponds to the biogenic control variables is based on Net Ecosystem

Exchange simulated by C-TESSEL at 3 hourly and 15 km×15km resolution. The simulated Net Ecosystem Exchange is

interpolated hourly onto the CHIMERE grid (at 2 km to 10 km resolution). The C-TESSEL model does not have a specific10

implementation for urban ecosystems and due to its moderate horizontal resolution, it is not expected to provide a precise

representation of biogenic fluxes within the urban area and in its vicinity. However, as reminded in the introduction , the signal

from C-TESSEL in the CO2 gradients between the peri-urban sites simulated by Bréon et al. (2015) is low. Therefore, the

natural fluxes are not expected to critically affect the inversion of fossil fuel CO2 emissions in our study (see forward Sect. 3).

We denote Hmap by H
map
AP if the hourly fossil fuel CO2 flux maps are built using AIRPARIF 2008; by H

map
IER if the hourly fossil15

fuel CO2 flux maps are built using IER.

2.3.4 Building the H matrix

In order to apply eq. (1) and (2), H is built based on the different operators described above. Each column of H corresponds

to the response of the selected CO2 gradients to a control variable. Each column of this matrix is computed by applying the

H operator (i.e. the series of operators described above) to a control vector containing only zeros except for the corresponding20

control variable which is set to 1.

Let nx denote the number of control variables (156 elements) for a given month of inversion, nf the dimension of the 3D

flux field in the input of the CHIMERE model (i.e. the number of model horizontal grid cells times the number of hours during

one month of inversion, i.e, 118 × 118 × 720), nc the dimension of the 4D field of CO2 in output of the CHIMERE model

(i.e. number of model grid cells times the number of hours during one month of inversion, i.e.,118 × 118 × 20 × 720), and,25

at last, ny the number of gradients selected for a 1-month inversion. The dimension of H is nx×ny, while the dimension of

H
map is nx×nf , of Htrans nf ×nc and of Hsamp nc×ny . nx application of Hsamp

H
trans

H
map are needed to build the H matrix.

Once the H is built, since both nx and ny are relatively small, we can easily afford the computations in eq. (1) and (2) which

involve the inversion of matrices of size nx×nx or ny ×ny and multiplication of such matrices with H.

2.4 Prior error covariance matrix B30

We set-up the prior error covariance matrix B as in Bréon et al. (2015). Assuming that there is no correlation between the

uncertainties in the fossil fuel CO2 emissions and the uncertainties in the biogenic fluxes, B is modelled as a diagonal block

matrix with two blocks: one corresponds to the uncertainties in the Paris fossil fuel CO2 emissions, and the other one to the Net
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Ecosystem Exchange in the modelling domain. For each block, we make separate assumptions on the variance of the uncertainty

in the individual control variable in one hand and on the temporal and spatial correlations between these uncertainties on the

other hand.

Regarding the Paris fossil fuel emissions, we assume a 50% relative uncertainty (in terms of standard deviation) in the prior

estimates of individual 6-h emission budgets. We assume that we can decompose these prior uncertainties for a given month5

into uncertainties in the mean diurnal cycle of the emissions and into uncertainties in the day-to-day variations of the emissions.

Therefore, we compute the temporal autocorrelations of the prior uncertainties in the 6-h emission budgets, ct(t1, t2) (where

t1 and t2 are two 6-h windows of 2 days of the month of inversion), as the product of the correlations of the uncertainties in the

mean diurnal cycle between the four 6-h windows of the day, cw(w1,w2) (where w1 and w2 are the two 6-h windows of the

day corresponding to t1 and t2 respectively), and correlations of uncertainty in the day-to-day variations between different days,10

cd(d1,d2) (where d1 and d2 are the two days corresponding to t1 and t2). We assume that the correlations of the uncertainty

in the mean diurnal cycle between the 6-h windows of the day are positive: cw(w1,w2)=0.4 for two consecutive windows (for

example, w1=0-6h and w2=6-12h) and cw(w1,w2)=0.2 for two non-consecutive ones (for example, w1=0-6h and w2=12-

18h). The correlations of uncertainty in the day-to-day variations between different days are modelled using an exponentially

decaying function with a characteristic time of 7 days: cd(d1,d2) = e
|d2−d1|

7 .15

The standard deviation of the prior uncertainty in the 30-day budgets of Net Ecosystem Exchange for a given area and 6-h

window of the day is assumed to be about 75% of the prior estimate of this budget from C-TESSEL. In practice, it appears from

our computations that the resulting value of this uncertainty decreases when the surface of the corresponding area increases.

Spatial and temporal correlations between the uncertainties for the various 6-h windows of the day and areas are assumed to be

negligible due to the large size of the corresponding areas and due to the differences in the processes dominating the ecosystem20

exchanges between daytime and night-time.

2.5 Observation error covariance matrix R

The observation errors encompass instrumentation errors and errors in the observation operator H. The latter combines trans-

port model errors, representation errors, aggregation errors, errors from the boundary conditions and errors from the emissions

in the modelling domain but outside the Paris area. One of the main source of transport errors is linked to errors in the wind25

and planetary boundary layer height in the meteorological forcing of the transport model. Representation errors are associated

with the variations of CO2 within the 2 km×2 km horizontal resolution grid cell of the model which encompass the peri-urban

sites. They should be relatively small since there is no major CO2 source in these grid cells. Aggregation errors are mainly

associated with uncertainties in the spatial and temporal distribution of the emissions within the Paris area and 6-h windows.

Aggregation errors are critical to account for in our inverse modelling system given that for a given 6-h window, we control30

one scaling factor for the emissions over the whole Paris area.

Bréon et al. (2015) used the diagnostics of Desroziers et al. (2005) to estimate the variances of the observation error. It

was assumed that these errors have the same statistics for any hourly gradient and that there is no correlation between errors

for different hourly gradients. Their corresponding estimate of the standard deviation of the observation error was 3 ppm.
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Here, since a similar inverse modelling framework is used, and even though the revised gradient selection should decrease the

aggregation errors (see Sect. 2.2), we assume that our misfits between the measured and modelled gradients bear the same

observation error as in this study. R is thus modelled as a diagonal matrix with a (3ppm)2 variance for all elements in the

diagonal.

2.6 Principles of the sensitivity tests5

Several tests are conducted to check the reference inversion results’ sensitivity to changes in different components: (a) the prior

estimate of the Paris fossil fuel CO2 emissions, (b) the spatio-temporal distribution of the fossil fuel CO2 emissions within the

Paris region and within a given 6-h window, (c) the meteorological forcing driving both the atmospheric transport model and

the selection of the observations. These changes are representative of typical uncertainties in these components. Most of these

uncertainties are, in principle, accounted for in the configuration of the prior uncertainty covariance matrix B and observation10

error covariance matrix R, respectively. Their impact on the robustness of the inversion results should be given by the posterior

uncertainty covariance matrix A. However, they may not be correctly reflected by the statistical representation that is based

on Gaussian and unbiased distributions and by the rather simple models used to set up the covariance matrices. Therefore, the

sensitivity tests provide a useful alternative evaluation of the robustness of the inversion results.

Regarding the prior estimate of the Paris fossil fuel CO2 emission budgets, as an alternative to the AIRPARIF 2008 budgets,15

we use what is called hereafter flat priors, i.e., prior fossil fuel CO2 emission estimates that are not informed about month

to month variations. Three sets of flat priors are built by rescaling the AIRPARIF 2008 budgets using monthly, daily or 6-h

scaling factors. In the first case, the flat priors have constant monthly values, but retain the relative temporal variations of the 6-

h budgets within a month. In the second case the flat priors have constant daily values, but retain the relative temporal variations

of the 6-h budgets within a day. In the third case, the flat priors have constant 6-h mean values. This change of prior estimate20

can potentially have a large impact on the results since the system assimilates data during the afternoon only. Consequently,

such a change imposes a direct constraint on two 6-h windows of the day only (the 6-12h and the 12-18h windows) while the

constraint on the two other windows (the 0-6h and the 18-24h windows) relies indirectly on the description of the temporal

correlations in the prior uncertainty covariance matrix B.

For each set, different flat priors are tested by taking different values for the monthly budgets. These values cover a case of25

relatively high emissions (5MtCO2month−1), a case of relatively low emissions (3MtCO2month−1), as well as an interme-

diate case corresponding to the annual budget from the AIRPARIF 2008 inventory (4.3MtCO2month−1). A prior estimate

based on the budgets from the IER inventory is also used for the sensitivity tests. As explained in Sect. 2.3.3, Hmap
IER is used

as alternative H
map to H

map
AP , while H

trans
ref−MNH , yf

ref−MNH and H
samp
ref−MNH are used as alternative H

trans, yf and H
samp to

H
trans
ECM , yf

ref−ECM , Hsamp
ref−ECM . Table 1 summarizes the acronyms and settings of the different sensitivity tests.30
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3 Results

Bréon et al. (2015) analysed the skill of the inversion by comparing the fit between measured and modelled CO2 gradients,

which is a first indicator of the reliability of the inverted emissions. In Tab. 2, statistical comparisons between the selected

measured gradients and results from the initial and reference inversion, respectively, are provided. It demonstrates that both

inversions strongly increase the consistency between model and measurements compared to the prior simulations (Tab. 2). Of5

note is that the statistics of both the prior and posterior model-data misfits are smaller for the initial inversion than for the

reference inversion. This is explained by the fact that the initial inversion selects gradient for which the signal (mainly the

impact of the city emissions) is smaller than for the gradients that both inversions select. However, we avoid a more detailed

analysis of the model-data misfit in the following.

Using the loose wind ranges of the initial inversion to select gradients, the root mean square of the biogenic signal in these10

hourly gradients, averaged over the 1-yr CO2-MEGAPARIS period, is 1.1ppm, which is, as indicated in introduction, much

lower than the signal from the Paris emission. When using the tighter wind ranges of the reference inversion, the root mean

square of the biogenic signal in these gradients is even smaller (0.8ppm). Therefore, the changes in the inversion configuration

proposed in our study decrease the impact of the uncertainty in the natural fluxes. This weak impact was already demonstrated

by Bréon et al. (2015). We thus do not analyse further the results that correspond to the control of the natural fluxes in the15

following.

The presentation of the results rather focuses on the estimates of the monthly fossil fuel CO2 emission budgets from mid-

2010 to mid-2011, expressed in MtCO2month−1 (strictly speaking MtCO2 per 30 days, see Sect. 2). The uncertainties (in

terms of standard deviation) in prior and posterior estimates of the monthly emissions are based on the modelling of the B

matrix, described in Sect. 2.4, and on the derivation of the A matrix (eq. (2)). However, the robustness of the results is evaluated20

using independent knowledge on the emissions rather than using these theoretical indicators. AIRPARIF (2013) reports an

estimate of 41.8MtCO2yr
−1 for the annual emission budget of Île-de-France in 2010. This number is used as an indicator

for the evaluation of the 1-yr budget of the estimates from the inversion. According to AIRPARIF (2013), the residential and

the service sector account for 43% of the Paris fossil fuel CO2 emissions in 2010. These emissions are almost entirely linked

to heating. Heating in the industry sector contributes also significantly to Paris’ emissions. The heating is mostly dedicated to25

ambient air in the buildings and to sanitary water. Therefore we expect a large increase of the emissions from summer to winter

and a high correlation between these emissions and the temperature during the cold season. An independent analysis of both

daily gas use and hourly electric consumption within Île-de-France indicate a heating energy use that is highly correlated to

the daily-mean temperature when this temperature is below 19oC, and essentially independent of the daily mean temperature

when this temperature is above 19oC (unpublished analysis led by one co-author of this study, François-Marie Bréon). For the30

evaluation of the results, our emission estimates are thus compared with monthly averages of an independent measure, which

we call heating degrees hereafter. It is defined as the positive difference between the daily mean temperature and 19oC (set

to 0 for days when the temperature is higher than 19oC). The ratio between January and July emission estimates from the

AIRPARIF 2008 inventory seem surprisingly low given these considerations. Furthermore, the prior estimates based on this
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inventory make use of a single emission value from November to March, which does not account for the large temperature

variations during this period. Therefore, an amplified seasonal cycle of the emissions that better correlates with heating degrees

is expected through the atmospheric inversion.

3.1 Initial inversion using loose wind direction criteria for the gradients selection

Figure 3a shows prior and posterior estimates of the Paris emissions from the initial inversion (experiment ini, Tab.1). Monthly5

mean heating degrees for the centre of Paris, derived from the temperature given by the ECMWF’s operational analysis, are also

shown on this figure. The posterior estimates are lower than the prior ones for all months. The inversion decreases the annual

emissions from 51.9MtCO2yr
−1 to 37.4±2.1MtCO2yr

−1. This number is smaller but closer to the AIRPARIF inventory

2010 used for evaluation (41.8MtCO2yr
−1, see Tab. 1).

Posterior fluxes are lowest for August (1.6MtCO2month−1), increase steadily until peaking in February (4.6MtCO2month−1),10

drop strongly in March (2.8MtCO2month−1), and vary between 2 and 3MtCO2month−1 from April to July. Compared to

the prior estimate, the inversion yields larger emissions in winter and increases the amplitude of the seasonal variations. For

the period analysed, monthly mean heating degrees were highest in December (Fig. 3a). Hence, fossil fuel CO2 emissions are

expected to be the highest in December rather than in February. There is no clear correlation between monthly heating degrees

and emission estimates during the November-March period.15

The number of assimilated gradients varies considerably from one month to another, which influences the month-to-month

variations of the inverted emissions. For instance, 163 observations are assimilated in March, compared with only 34 in Novem-

ber. Figure 3a also shows that, for most months, the numbers of selected gradients are not apportioned equally amongst the

NE and SW wind directions. For instance, there are no NE gradients to constrain August emissions, while less than half of

the gradients in March are SW gradients. The different upwind conditions for NE and SW gradients could play a role in the20

month-to-month variability of the inverted emissions, in case the gradient approach does not remove entirely the influence of

remote fluxes.

We investigate the impact of assimilating these two different gradient types on monthly fossil fuel CO2 flux estimates by

conducting inversions based on NE gradients, SW gradients, or even GIF-MON, GIF-GON, MON-GIF or GON-GIF only

(Fig. 3b). The difference in inverted December emissions when assimilating only SW gradients compared to assimilating only25

NE gradients is large, even though a large number of both types of gradients is available during this month. Compared to

the prior estimate, the inversion of SW gradients increases the December emissions. The opposite, however, is true for the

inversion of NE gradients. This behaviour seems to be driven by both the assimilation of GIF-MON and GIF-GON gradients.

An analysis of the average temperature in Paris (not shown) shows lower temperatures for NE wind conditions than for SW

wind conditions. The heating emissions in Paris should thus be higher for NE wind conditions. Therefore, the temperature30

variations cannot explain the differences in December emissions between assimilating SW gradients and assimilating NE

gradients.

The differences between the results when using NE gradients or SW gradients are not as large for other months as in

December. However, they can still be significant, e.g., April (Fig. 3b). These differences cannot be explained by a lack of data
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for a given type of gradient, except in August, when there are no NE gradients. For January and February, differences of 1 to

1.5MtCO2 (i.e., about 35 % relative differences) are obtained between inversions assimilating only MON-GIF compared to

assimilating only GON-GIF, although both are SW gradients and gather more than 40 observations during each month. This

large mismatch between the different inversions when using different data subsets undermines the reliability of the inversion

results, in particular in December. The seasonal profile of the retrieved emission when assimilating only SW gradients is5

far better correlated with heating degrees than when the inversion uses both SW and NE gradients, as emissions reach their

maximum in December. Results seem nearly as sensible when using MON-GIF or GON-GIF as when using all SW gradients.

Figures 4a and 4c illustrate that, even if we discard GON-MON and increase the threshold of the wind speed, there are

episodes when measured gradients show negative values. They, however, should be positive owing to the city’s emissions.

Most of the negative gradients are found when the wind is from NE, such as in December (Fig. 4a), suggesting that such10

gradients may not represent the emissions of the entire city.

3.2 Reference inversion

The estimates of the monthly Paris fossil fuel CO2 emissions by the reference inversion (experiment ref, Tab.1) are given in

Fig. 3c. All negative observed gradients outlined above were obtained at the limit of the wind direction range proposed by

Bréon et al. (2015). As illustrated for December and May by comparing Fig. 4a to Fig. 4b and Fig. 4c to Fig. 4d, respectively,15

the reference inversion, which uses a stricter range of wind directions (Sect. 2.2), removes the negative gradients. Despite the

loss of 65 % of the data compared to the initial inversion, the reference inversion still predicts a large uncertainty reduction for

monthly fossil fuel CO2 emission estimates, from 9 % in November to 50 % in October.

The Paris monthly fossil fuel CO2 emission estimates from the reference inversion correlate well with monthly heating

degrees (r2 = 0.67 for the whole period, r2 = 0.45 for November–February), which was not the case of the initial inversion20

(r2 = 0.54 for the whole period, r2 = 0.07 for November–February). In general, the reference inversion decreases the fossil

fuel CO2 budget from the prior estimate, except in December, which becomes the peak of emissions (Fig. 3c). The emissions

decrease from February to March, which does not correspond to a relative change in heating degrees, is significantly smaller

in the reference than in the initial inversion. The seasonal variations of the reference inversion are strongly improved compared

to initial inversions. The annual budget from the reference inversion (40.9MtCO2) is close to that from AIRPARIF 201025

(41.8MtCO2, see Tab. 1).

The stricter gradient selection further leads to a much better agreement between emission estimates when using different

subsets of gradients (compare Fig. 3d with Fig. 3b). Although significant differences in December and April emissions are still

apparent between using NE gradients or using SW gradients, and in January and February emissions between using GON-

GIF or MON-GIF, these differences are smaller than in the initial inversion. Now, even when assimilating only NE gradients,30

the four months with largest inverted emissions correspond to the four coldest ones with the highest heating degrees of the

year (November to February), though the assimilation of NE gradients still leads to smaller emissions in December than in

November, January and February. One may argue that the improvements of the reference over the initial inversion reflect the

assimilation of a smaller dataset, and therefore are due to smaller corrections. However, results from the reference and initial
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inversion are closer to each other if only SW gradients are assimilated than if only NE gradients are assimilated. Highest

correlation with the heating degrees are obtained when only SW gradients are assimilated.

The theoretical posterior uncertainties in the monthly budgets of the emissions are generally much lower than the prior

uncertainties (with more than 30% uncertainty reduction for most of the months) in the reference inversion. However, even

though our analysis above gives more confidence in the results from the reference inversion than in the results from the initial5

inversion, the inverse modelling system diagnoses smaller posterior uncertainties in the latter than in the former.

Results from the inversion using a 2-h lag between the upwind and the corresponding downwind measurement are shown

in Fig.5. The corrections applied to the prior estimate from AIRPARIF 2008 by this inversion are qualitatively consistent with

those of the reference inversion. The amplitudes of the corrections, however, are much smaller as the large decrease of the

number of assimilated gradients in this inversion compared to the reference configuration (only 4% of available measurement10

are used by reducing the time window of eligible upwind or downwind measurements; see Sec.2.2) clearly limits the weight of

the observational constraint.

3.3 Sensitivity Tests

3.3.1 Sensitivity of the Paris emission budgets to prior estimates xb

Monthly fossil fuel CO2 emissions estimates using flat priors for xb (all experiments FLAT_ in Tab. 1) are reported in Fig. 6.15

Although differences in prior monthly budgets between the FLAT_3.0, FLAT_4.3 and FLAT_5.0 experiments amount to

2MtCO2month−1, posterior differences between their monthly budgets are generally much lower. In addition, the posterior

monthly emissions when using flat priors are comparable to those from the reference inversion—with a very similar month-

to-month variation. The differences between posterior monthly emissions from the FLAT_mM and FLAT_mD (m=3.0, 4.3 or

5.0) inversions and the reference inversion are generally smaller than 1MtCO2month−1, except during September, November,20

May and July when very few (4 to 24) gradients are assimilated (Fig. 6a and Fig. 6b). Larger differences are obtained between

the reference inversion and FLAT_mH (m=3.0, 4.3 or 5.0) inversions, which use prior estimates that are flat at 6-h scale (

Fig. 6c). The FLAT_mH experiments yield larger posterior monthly budgets than the FLAT_mD and FLAT_mM experiments.

Posterior annual budgets from FLAT_mM and FLAT_mD inversions range between 33 and 45.3MtCO2yr
−1, encompass-

ing the budgets from the reference inversion and AIRPARIF 2010 (Tab. 1). In particular, the inverted annual budget from25

FLAT_4.3M and FLAT_4.3D, whose prior estimate have the same annual budget as the prior estimate from the reference

inversion, is equal to 41.1MtCO2. This is very close to the annual budgets from the reference inversion and AIRPARIF

2010. However, the annual emissions budgets from the FLAT_mH inversions range from 33 to 52.2MtCO2, which is biased

compared to both the reference inversion and AIRPARIF 2010.

3.3.2 Sensitivity of the Paris emissions budgets to the mapping and variations at hourly scale30

Figure 7 compares the estimates from the reference inversion, which uses Hmap =H
map
AP , to the estimates from the sensitivity

test with H
map =H

map
IER (INV_mapIER and INV_IER, see Tab. 1). Thus, this experiment also includes results when using the
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IER inventory to build both the 6-h budgets in xb and H
map =H

map
IER (INV_IER). It provides estimates when the inversion

relies entirely on the IER inventory to define these parameters and ignores the existence of the AIRPARIF inventory. This

situation is similar to that in cities, where no local inventory is available. We have less confidence in the posterior estimates

from such an inversion, since the IER inventory does not rely on the same amount of local data as the AIRPARIF inventory.

INV_mapIER regularly predicts lower monthly budgets than the reference inversion, except in June, July, September and5

November. The corresponding differences are relatively small and do not exceed 0.5MtCO2month−1, except in January and

February. Similar to the reference inversion, INV_mapIER predicts highest emissions in December. However, its estimates for

January and February fluxes are particularly low, e.g., January estimates (3.9MtCO2month−1) roughly equal that for May

(3.9MtCO2month−1) or October (3.8MtCO2month−1), and are smaller than that for September (4.1MtCO2month−1).

This results in an annual budget of 39MtCO2yr
−1 that is still closer to the one from AIRPARIF 2010 than to the one from10

AIRPARIF 2008 (Tab. 1).

The monthly prior emissions from AIRPARIF 2008 and IER differ substantially. In particular, from November to May,

the IER inventory estimates up to 3MtCO2month−1, (approximately 40%) higher fossil fuel CO2 emissions for the Paris

region than AIRPARIF 2008. At the annual scale, estimates differ by 8.2MtCO2yr
−1 (Tab. 1). The differences between the

two inventories are due to both the differences in the emission model and the driving activity data used. The two inventories15

correspond to two different years (2008 versus 2005). However, this hardly explains the amplitude of the difference between

the two inventories by itself. The decrease of the total emission in France between 2005 and 2008 was approximately 5 %

(see, e.g., CITEPA, 2015). Here, the difference in total emissions in Île-de-France between the IER and AIRPARIF 2008

inventory, however, is about 14%. Results of the inversion using IER for both the prior emission budgets and the emissions’

spatial distribution (INV_IER) reflect these large prior discrepancies. Indeed, monthly and annual budgets of Paris’ fossil20

fuel CO2 emissions estimated by INV_IER are larger than that from the reference inversion and from INV_mapIER (Fig. 7).

The differences in posterior February emissions from IER_INV and the reference inversion exceed 2MtCO2month−1. The

discrepancies are even larger, when comparing the monthly emission estimates from INV_mapIER and IER_INV, since the

change of Hmap from H
map
AP to H

map
IER has a tendency to decrease the posterior emission estimates.

The IER inventory indicates higher emissions in March than in November. Posterior estimates from INV_IER still indicate25

that the highest emissions are in November-February. Due to a residual influence from the IER prior estimate, INV_IER

predicts highest emissions in February. The December emission estimate is close to February emission estimate, and is the

second highest 1-month mean estimate from INV_IER. Finally, the annual posterior emission from INV_IER is closer to that

from AIRPARIF 2010 than to that from the 2008 inventory, despite the far higher prior annual estimate from the IER inventory

(Tab. 1).30

3.3.3 Sensitivity to H
samp, Htrans and y

f

INV_MNH is compared to the reference inversion to analyse the impact of using Meso-NH/TEB instead of ECMWF as meteo-

rological simulation for both the gradient selection in the observation vector (Hsamp = H
samp
ref−MNH versusHsamp = H

samp
ref−ECM )

and the forcing of CHIMERE (Htrans= H
trans
MNH versus H

trans= H
trans
ECM and y

f=yf
ref−MNH versus y

f=yf
ref−ECM ). Meso-
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NH/TEB data are available up to June only which explains that the analyses here are restrained to the period August 2010 to

June 2011.

The time series of the gradients that are selected for the assimilation using H
samp
ref−MNH and H

samp
ref−ECM , respectively, are

shown in Fig. 2 (and Fig. A1–A2). The significant differences in selected gradients apparent in Fig. 2 (and Fig. A1–A2)) are

driven by small differences in simulated wind fields between ECMWF and Meso-NH/TEB. Small differences in wind direction5

and speed are often sufficient to cross the thresholds defining the gradient selection (Fig. A1–A2). This differences result in

a significantly different set of assimilated gradients and in a different apportionment according to prevailing NE or SW wind

directions (Fig. 8).

Despite this, Fig. 8 reports similarities in inverted monthly emissions from INV_MNH and the reference inversion. Dif-

ferences in monthly posterior emission estimates are less than 0.5MtCO2month−1 when assimilating all selected gradients10

(Fig. 8). The four highest emitting months are still November to February for INV_MNH. However, larger differences to the

reference inversion estimates are found for December and May, resulting in the loss of the peak in December and in an un-

expected peak in May in INV_MNH (Fig. 8a). This disagreement is related to the assimilation of NE gradients. As shown in

Fig. 8b, emissions estimates from INV_MNH and the reference inversion are very similar when only SW gradients are assimi-

lated. By contrast, large differences are obtained in December and May when only NE gradients are assimilated (Fig. 8c). The15

larger fraction of selected NE gradients compared to selected SW gradients when using Meson-NH/TEB instead of ECMWF

could explain the loss of the emission peak in December. There is no peak in December when using either Meso-NH/TEB, or

ECMWF and NE gradients only. Nevertheless, when assimilating SW gradients, the consistency between INV_MNH and the

reference inversion is surprising, given the significantly different SW gradient selection.

4 Discussion and Conclusions20

4.1 Summary and general analysis of the results

We have analysed estimates of monthly mean fossil fuel CO2 emissions from the Paris urban area from August 2010 to July

2011 using continuous CO2 measurements from three stations and a city-scale atmospheric inverse modelling framework de-

rived from Bréon et al. (2015). The inversion modelling is based on a mesoscale configuration of CHIMERE, on the AIRPARIF

high-resolutionCO2 emission inventory for 2008, on the C-TESSEL simulation for the biogenic fluxes in Northern France, and25

on the principle of constraining the 6-h city-scale budget of the emissions using cross-city CO2 gradients. As demonstrated

by the analysis of the inversion results, this study has critically improved configuration of Bréon et al. (2015) by (i) discarding

GON-MON gradients since that are not related to the emission of the entire city, and (ii) by using stricter criteria on the wind

direction and wind speed for the selection of gradients.

The analysis suggests an improvement of the city’s seasonal to annual emission budget from the reference inversion com-30

pared to the prior estimate that is based on the AIRPARIF 2008 inventory. The inversion derives an annual emission budget (for

August 2010–July 2011) of 40.9MtCO2yr
−1, which is closer to the independent estimate from the AIRPARIF 2010 inventory

(41.8MtCO2yr
−1) than to the prior estimate (51.9MtCO2yr

−1). Although the reported estimate from the AIRPARIF 2010
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inventory does not exactly correspond to the mid-2010 to mid-2011 period, changes between the 2008 and 2010 inventories

reflect improvements in the inventory model and actual changes of the Paris emissions. Therefore, the fact that the corrections

applied by the inversion to the prior estimate from AIRPARIF 2008 are consistent with the differences between the AIRPARIF

2008 and 2010 inventories gives confidence in the inversion.

The seasonal variations of the monthly inverted emissions also appear more realistic than that of the prior emission estimates.5

The seasonal amplitude of the emissions revealed by the reference inversion is higher than that of the prior estimate of the

emission, derived from the 5 typical months of the AIPARIF 2008 inventory. This increase in amplitude makes sense, given that

a large fraction (43 % according to the AIRPARIF 2008 inventory) of the Paris emissions are due to domestic and commercial

heating. It is supported by the fact that the seasonal variations in the AIRPARIF 2010 inventory are higher than that derived

from the AIRPARIF 2008 inventory. The inverted seasonal cycle of the emissions correlates well (r2 =0.45) with the heating10

degrees in fall-winter (November–February). The four months with highest inverted emissions correspond to the four coldest

months (November to February)–with a peak in both the emissions and the heating degrees in December. By contrast, the prior

estimate of the emissions derived from AIRPARIF 2008 does not differentiate monthly budgets from November to March.

The sensitivity tests indicate that the uncertainties assigned to the prior estimates of the 6-h mean emissions, to the spatio-

temporal distribution of the emissions within the Paris area and 6-h windows, and to the meteorological simulations (for15

the cross-city gradient selection and for the forcing of CHIMERE) have a moderate impact on the monthly mean emission

estimates once the inversion is driven by the most stringent selection of the measurements. This weak sensitivity of the inverted

emissions to the uncertainties assigned to the inverse modelling components is important for the credibility of the inversion

approach in view to apply this approach as an independent method to verify inventories. Here, the inverted emission budgets

are sensitive to each of the above-mentioned components. However, even though we assimilate a relatively small number of20

data, this sensitivity is generally much smaller than the differences between inverted and prior estimates at monthly to annual

scale. Furthermore, the plausible seasonal variations of the emissions revealed by the reference inversion is robust to most

sensitivity tests.

The inversions generally return smaller emissions than the prior estimates. This is even the case when using a prior estimate

that is flat at the monthly scale only, and that has an annual emission budget of 36MtCO2yr
−1, i.e., a budget that is smaller25

than that from AIRPARIF 2010. The inversion decreases the annual emission budget when using the diurnal cycle of the

emissions from AIRPARIF 2008 as prior estimate of the 6-h mean emissions. In contrast, the annual emission budget is

increased when a flat diurnal cycle and a prior estimate of the annual emission budget that is smaller than that from AIRPARIF

2010 (i.e. of 36MtCO2yr
−1) is used. This can reveal an error in the mean diurnal cycle of the emissions from AIRPARIF

2008, which the inversion could not correct for since data are assimilated during afternoon only. Moreover, we define the30

uncertainties in the prior emission estimates in terms of relative rather than absolute uncertainty. Consequently, using the

diurnal cycle of the emissions from AIRPARIF 2008 in the prior estimate of the 6-h mean emissions and higher (smaller) prior

emissions at monthly to annual scale leads to higher (smaller) prior uncertainties, and thus to a stronger (weaker) constraint

from the atmospheric measurements, resulting in a stronger (weaker) decrease of the emissions. One could argue that this

artificially helps getting a robust convergence of the sensitivity tests using different prior estimates and it likely plays a role at35
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the annual scale. This could be problematic, since having a fixed value for the relative uncertainty in the prior estimates is not

suitable when these estimates become very small. However, for some months, the convergence between inversions utilising

different flat priors is obtained by both positive and negative corrections. This is the case in January and February 2011 for

FLAT_mM experiments (Fig.6a). The convergence can also be obtained with positive corrections that are larger when prior

uncertainties are smaller, e.g., in December 2010 for FLAT_mM experiments (Fig.6a). Figure 6c gives several examples where5

the monthly budget of the prior estimate that are flat at the 6-h scale determines if the corresponding corrections are positive or

negative. This figure also illustrates the fact that the amplitude of the correction to the monthly estimates is not highly correlated

with the corresponding prior uncertainty. Furthermore, the fact that higher prior emission estimates are assigned higher prior

uncertainties cannot explain the level of convergence of the sensitivity tests. In particular, it can not explain the robustness

of the retrieved seasonal cycle of emissions when using flat priors. It neither explains the fact that the annual budget from10

INV_IER is closer to AIRPARIF 2010 than to AIRPARIF 2008. INV_MNH selected a significantly different set of gradients.

However, it still constrains the inverted emissions towards the same levels of emissions as in the reference inversion (typically

differences in monthly emissions are <5 %).

The improvement of the reference inversion compared to the initial inversion demonstrates the need for a narrow definition

of the wind direction ranges, and more generally the need for a very careful selection of CO2 data. This reveals the asset of15

following as much as possible the concept of assimilating cross-city CO2 gradients to control the emissions at the whole city

scale, and to filter out the poorly modelled influence of fluxes outside the Paris urban area. The assimilation of gradients cannot

perfectly cancel this influence because firstly one cannot set up the inversion system to ensure that the selected gradients

correspond to the concentration variations of air masses that travel from the upwind to the downwind sites (at least due to

uncertainties in the atmospheric transport) and secondly because the signal from fluxes outside the Paris varies during such20

a transport (due to atmospheric diffusion). However, results from Bréon et al. (2015) and from this study demonstrate that

the assimilation of gradients succeeds in decreasing this signal. These studies also show that such a decrease strengthens the

inversion results by limiting the problem of the uncertainties in the remote fluxes for regional inversions (which is particularly

critical in the Paris area as shown by Bréon et al., 2015) and the problem of the uncertainties in natural fluxes for urban CO2

emission inversions. The positive insights from the evaluation of our results also strengthens the confidence in this relatively25

simple concept to estimate monthly budgets of the city emissions, even if it relies on the assimilation of a relatively small

amount of data.

4.2 Problems to be solved

The different inversion tests still raise concerns for the inversion of the cities’ monthly emission budgets. We expected that

cross-city gradients would be weakly sensitive to the uncertainties in the distribution of the emissions within the Paris region30

and the 6-h windows, which explains why we control, for a given 6-h window, a single scaling factor for the emissions of the

entire urban area. The inversion results, however, are significantly affected by changes in the emission distribution. This does

not necessarily question the control of a single scaling factor for the emissions of the whole urban area since reasonable results
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are obtained using the emission distribution from AIRPARIF but it reveals the need to rely on robust, high resolution emission

maps such as those produced by local agencies like AIRPARIF. However, many cities do not have such local inventories.

Bréon et al. (2015) have shown that the selection of afternoon data provides little constraint on night-time emissions. This is

problematic since the diurnal cycle is highly uncertain in inventories. The differences between the results from FLAT_mD and

FLAT_mH indicate that the poor representation of the diurnal cycle in FLAT_mH has a large impact on the inverted monthly5

emissions. As highlighted above, the inversions, based on the diurnal cycle from AIRPARIF 2008, generally tend to decrease

the prior estimates which can also be viewed as an impact from errors in this diurnal cycle. New approaches and techniques

are needed to provide a direct constraint on the night-time emissions or to better extrapolate the information from daytime to

night-time data to solve for this problem. The poor representation of the day-to-day variations in the flat prior of FLAT_mD

does not seem to impact the results from this inversion, which are close to that of FLAT_mM. Even though there is a large10

number of days, even sometimes weeks, during which no gradients are assimilated, the inversion does not strongly rely on

the prior day-to-day variations within the months to correct the monthly mean emissions budgets. However, there is a critical

lack of data, which is primarily due to the small number of sites available for this study, and thus to the relatively small wind

sectors by which we select cross-city gradients. This lack of data hinders the results of all inversions for specific months such

as September, November, April, May and July, when less than 30 1-hour mean gradients are assimilated. The month-to-month15

variability is thus often driven by the variability of the data availability. Results at the monthly scale are thus not systematically

consistent with the different sensitivity tests. Monthly estimates can be weakened by missing or over-weighting high variations

in the emissions over short time periods (e.g., due to a cold event). One can hope that this limitation could be overcome by an

expansion of the observation network with stations all around the Paris urban area, which could ensure a continuous monitoring

of the cross-city CO2 gradients.20

In December, the number of assimilated data is relatively high for both the reference inversion and INV_MNH. However,

while the inversions increase the emissions compared to AIRPARIF 2008 during December when using ECMWF data and all

gradients (SW and NE gradients), this is not the case when assimilating subsets of the cross-city gradients only, or when using

Meso-NH/TB. Consequently, there is no peak of inverted emission estimates in December. Neither is this a robust feature of

the reference inversion. The absence of an emission peak in December is associated with the assimilation of NE gradients (i.e.,25

due to the assimilation of NE gradients only, or, to the use of the Meso-NH/TEB meteorology which selects a larger fraction

of NE gradients than its ECMWF counterpart).

More generally, the assimilation of NE gradients seems to raise concerns while more satisfying results are obtained when

using SW gradients. This applies also to the initial inversion, for which the NE direction corresponds to wider wind direction

ranges. Thus, the problem cannot be related to a very specific source NE of Paris. When the wind blows from NE, the signature30

of emissions from remote, highly urbanised and industrialised areas (North-Eastern France, Benelux and Western Germany)

should impact the CO2 fields in the Paris area. On the opposite, the regions between the Atlantic Ocean and Paris are mostly

rural. While the computation of gradients is an efficient way of limiting the signatures of the fluxes outside the Paris area on

assimilated data, and while it effectively reduces these signatures to a small component in the simulated gradients, it does not

ensure a total removal of such signatures in the measurements which may bear a more spatial heterogeneity than the modelling35
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framework. The large-scale signature of the remote natural fluxes from SW may be more easily modelled or filtered out by the

computation of gradients in the Paris area than the signature of emissions from NE. This could explain why the assimilation

of NE gradients is more problematic than that of SW gradients. This could reveal another limitation in assimilating cross-

city gradients. The high temporal variability of the ratio of assimilated NE gradients to SW gradients may be problematic for

the monitoring of the month-to-month variability of the city emissions. Similarly, the small biogenic signal in the simulated5

gradients may be due to the use of an ecosystem model with moderate horizontal resolution. Measured gradients might be

impacted by urban ecosystems that cannot be represented with this model. Due to the high density and compactness of the

Paris urban area, we can assume that such urban ecosystems should have a low impact on the inversion of Paris emissions.

This, however, should be further investigated based on urban ecosystem modelling and monitoring (Nordbo et al., 2012).

The last major issue is the limited confidence in the posterior uncertainties computed by the inversion system. We purposely10

avoided analysing them in details in Sect. 3. They provide qualitative insights on the behaviour of the inversion, i.e., posterior

uncertainties remain close to the prior ones for night-time emissions, which are poorly constrained by using only afternoon

CO2 data (Bréon et al., 2015). The posterior uncertainties also vary as a function of the number of assimilated data. The

different estimates from the sensitivity tests generally lie in the 68% confidence (1-σ) interval of the reference inversion.

However, the posterior uncertainties look generally very low for specific months, despite the lack of confidence in the specific15

monthly estimates as discussed above, and despite the very limited number of assimilated data. During February and March,

the posterior uncertainties from the reference inversion are lower than 0.69MtCO2yr
−1. The large emission decrease of

1.32MtCO2yr
−1 from February to March is surprising. The relative difference between the posterior and prior uncertainties

when moving from the initial inversion to the more reliable reference inversion demonstrates how misleading the interpretation

of theoretical uncertainties can be when several mathematical assumptions in the inversion are not met in practice. However,20

even though the configuration is far from perfect, the misfits between posterior estimates and observations are still smaller

than between prior estimates and observations. This gives a stronger confidence in posterior emission estimates than in the

posterior uncertainties of these emissions. Sensitivity tests with the analysis of the posterior estimates only were conducted to

give a better picture of the strength of the measurement constraint.

4.3 Perspectives25

Despite these concerns, the results from this study are promising and several methodological improvements were found. The

inversion test of assimilating spatio-temporal gradients accounts for the time air parcels need to pass from the upwind site over

the urban area to the downwind site. Such gradients should bear a smaller signal from fluxes outside the urban area than spatial

gradients, which should help isolating this signal from the city emissions. The lack of data, however, prevented this inversion

from significantly departing from its prior emission estimate. Such a strategy would be more appropriate if a larger amount30

of data was available, but it is impractical for our limited network: it exacerbates the loss of data from already strict gradient

selection criteria and degrades the overall emission retrieval compared to the reference inversion. For the same reason, it would

be inappropriate with our limited network to narrow the wind direction ranges to select gradients to less than ±15o of the
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transect between the downwind and upwind sites, even though, in principle, it would strengthen the decrease of the signature

from fluxes outside the urban area.

The expansion of the network, in particular a full encirclement of the city with at least 8 sites (given that the wind ranges for

the selection of gradients between one upwind site and one downwind site cover 30 degrees in this study) should strengthen

the results and could allow applying such new techniques that result in a stricter gradient selection. However, relying on5

such a measurement expansion may not be sufficient. Exploiting more information from the available dataset without violat-

ing or undermining our assumptions on the selection of cross-city gradients is a requirement to strengthen the observational

constraint of the inversion. The Paris observation network has been set back since September 2014 in the framework of the

CARBOCOUNT-CITY and LE CO2 PARISIEN projects. Both projects aim to deploy more measurement sites than the CO2-

MEGAPARIS project. However, relying on such a measurement network expansion may not be sufficient. New methods should10

be developed to exploit urban measurements (Wu et al., 2016) which would allow to solve for the spatial distribution of the

emissions, which does not seem possible with the current monitoring network of peri-urban sites. This in turn could help assim-

ilating data that do not necessarily bear the signature of the emissions from a large part of the city. Finally, developing methods

to exploit morning, evening and night-time data would be necessary to constrain night-time fluxes. This is not necessary to

improve the knowledge on the emissions based on atmospheric inversion, but this is necessary to develop accurate tools for the15

operational monitoring and verification of the emissions based on this approach.

Even though it applies to the specific case of monitoring the CO2 emissions from Paris, this study demonstrates the potential

of an approach which can be adapted to a wide range of cities. The urban surrounding, spread, size, topography and meteorology

of some cities increase the difficulty for catching cross-city gradients, and different strategies may be more adapted for such

cases. The atmospheric inversion of the city emissions is still an emerging activity, but the present results already raise some20

confidence in this concept, especially since many other resources (combining atmospheric CO2 inversions with air quality

monitoring, the development of new measurement types) could help overcoming the remaining challenges.

Acknowledgements. This study was conducted within the European CarboCountCity project funded by European Institute of Technology’s

Climate KIC program. Grégoire Broquet’s research was funded and supported by the Chaire industrielle BridGES, a joint research program

between Thalès Alenia Space, Veolia, and the parent institutions of LSCE (CEA, CNRS, UVSQ). Thanks are also due to Balendra Thiru-25

chittampalan and Felix R. Vogel for providing the IER inventory. The latter we also thank for providing the temporal profiles to disaggregate

this inventory’s annual emissions to hourly emissions.

24



References

AIRPARIF: Inventaire des émissions en Île-de-France. Résultats - année 2008, Tech. rep., AIRPARIF Surveillance de la Qualité de l’Air en

Île-de-France, Paris, France, last access: 26 March 2015, 2012.

AIRPARIF: Bilan des émissions de polluants atmospheríques et de gaz à effet de serre en Île-de-France pour l’année 2010 et historique

2000/2005. Méthodologies et résultats, Tech. rep., AIRPARIF Surveillance de la Qualité de l’Air en Île-de-France, Paris, France, last5

access: 26 March 2015, 2013.

Boon, A., Broquet, G., Clifford, D. J., Chevallier, F., Butterfield, D. M., Pison, I., Ramont, M., Paris, J.-D., and Ciais, P.: Analysis of the

potential of near-ground measurements of CO2 and CH4 in London, UK, for the monitoring of city-scale emissions using an atmospheric

transport model, Atm. Chem. Phys., 16, 6735–6756, doi:doi:10.5194/acp-16-6735-2016, 2016.

Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A.-A., Calvet, J.-C., van den Hurk, B., Viterbo, P., Lafont, S., Dutra, E., Jarlan, L.,10

Balzaro, M., Papale, D., and van der Werf, G.: Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system:

Implementation and offline validation, J. Geophys. Res. Atmos, 118, 5923–5946, doi:10.1002/jgrd.50488, 2013.

Bréon, F.-M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Rémy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel,

O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atm. Chem. Phys.,

15, 1707–1724, doi:10.5194/acp-15-1707-2015, 2015.15

Broquet, G., Chevallier, F., Rayner, P., Aulagnier, C., Pison, I., Ramonet, M., Schmidt, M., Vermeulen, A. T., and Ciais, P.: A European

summertime CO2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements, J. Geophys. Res. Atmos., 116,

doi:10.1029/2011JD016202, 2011.

Chevallier, F., Cias, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L., Esaki, Y., Fröhlich, M., Gomez,

A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H.,20

Morguí, J. A., Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y., Schmidt, M., Steele, L. P., Vay, S. A., Vermeulen,

A. T., Wofsy, S., and Worthy, D.: CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis, J. Geophys. Res, 115,

doi:10.1029/2010JD013887, 2010.

CITEPA: Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France–Séries sectorielles et analyses étendues,

Tech. rep., CITEPA Centre Interprofessionnel Technique d’Etudes de la Pollution Atmosphérique, Paris, France, last access: 9 September25

2015, 2015.

Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis error statistics in observation space,

Q. J. R. Meteor. Soc., 131, 3385–3396, doi:10.1256/qj.05.108, 2005.

Duren, R. M. and Miller, C. E.: COMMENTARY: Measuring the carbon emissions of megacities, Nat. Clim. Change, 2, 560–562, 2012.

Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R., Aalto, T., Brandt, J., Christensen, J. H., Frohn,30

L. M., Haszpra, L., Karstens, U., Rödenbeck, C., Ramonet, M., Carboni, G., and Santaguida, R.: Comparing atmospheric transport models

for future regional inversions over Europe – Part 1: mapping the atmospheric CO2 signals, Atmos. Chem. and Phys., 7, 3461–3479,

doi:10.5194/acp-7-3461-2007, http://www.atmos-chem-phys.net/7/3461/2007/, 2007.

Gibert, F., Schmidt, M., Cuesta, J., Ciais, P., Ramonet, M., Xueref, I., Larmanou, E., and Flamant, P. H.: Retrieval of average CO2 fluxes

by combining in situ CO2 measurements and backscatter lidar information, J. Geophys. Res. Atmos., 112, doi:10.1029/2006JD008190,35

http://dx.doi.org/10.1029/2006JD008190, d10301, 2007.

25

http://dx.doi.org/doi:10.5194/acp-16-6735-2016
http://dx.doi.org/10.1002/jgrd.50488
http://dx.doi.org/10.5194/acp-15-1707-2015
http://dx.doi.org/10.1029/2011JD016202
http://dx.doi.org/10.1029/2010JD013887
http://dx.doi.org/10.1256/qj.05.108
http://dx.doi.org/10.5194/acp-7-3461-2007
http://www.atmos-chem-phys.net/7/3461/2007/
http://dx.doi.org/10.1029/2006JD008190
http://dx.doi.org/10.1029/2006JD008190


Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Valida-

tion of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710,

doi:10.5194/acp-16-3683-2016, http://www.atmos-chem-phys.net/16/3683/2016/, 2016.

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y.,

Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized5

physics with emphasis on tropical convection, Clim. Dyn., 27, 787–813, doi:10.1007/s00382-006-0158-0, 2006.

Janssens-Maenhout, G., Dentener, F., Van Aardenne, J., Monni, S., Pagliari, V., Orlandini, L., Klimont, Z., Kurokawa, J., Akimoto, H.,

Ohara, T., Wankmueller, R., Battye, B., Grano, D., and Zuber, A.: EDGAR-HTAP: a Harmonized Gridded Air Pollution Emission Dataset

Based on National Inventories, Tech. Rep. EUR report No. EUR 25299, European Commission Publications Office, JRC68434, Ispra,

Italy, 2012.10

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation errors in atmospheric transport inversions, J. Geophys. Res.,

106, 4703–4715, doi:10.1029/2000JD900581, 2001.

Kort, E. A., Angevine, W. M., Duren, R., and Miller, C. E.: Surface observations for monitoring urban fossil fuel CO2 emissions: Minimum

site location requirements for the Los Angeles megacity, J. Geophys. Res. Atmos., 118, 1577–1584, doi:10.1002/jgrd.50135, 2013.

Lac, C., Donnelly, R. P., Masson, V., Pal, S., Riette, S., Donier, S., Queguiner, S., Tanguy, G., Ammoura, L., and Xueref-Remy,15

I.: CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project, Atmos. Chem. Phys., 13, 4941–4961,

doi:10.5194/acp-13-4941-2013, 2013.

Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P.,

Redelsperger, J. L., Richard, E., and Vilá-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formu-

lation and control simulations, Ann. Geophys., 16, 90–106, doi:10.1007/s00585-997-0090-6, 1998.20

Latoska, A.: Erstellung eines räumlich hoch aufgelösten Emissionsinventar von Luftschadstoffen am Beispiel von Frankreich im Jahr 2005,

Master’s thesis, Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart, Stuttgart, Germany, 2009.

Lauvaux, T., Miles, N. L., Richards, S. J., Deng, A., Stauffer, D. R., Davis, K. J., Jacobson, G., Rella, C., Calonder, G.-P., and DeCola, P. L.:

Urban Emissions of CO2 from Davos, Switzerland: The First Real-Time Monitoring System Using an Atmospheric Inversion Technique,

J. Appl. Meteor. Climatol., 52, 2654–2668, doi:10.1175/JAMC-D-13-038.1, 2013.25

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O’Keefe, D.,

Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., and Wu, K.: High-

resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX), J.

Geophys. Res. Atmos., 121, 5213–5236, doi:10.1002/2015JD024473, http://dx.doi.org/10.1002/2015JD024473, 2015JD024473, 2016.

Masson, V.: A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Layer Meteorol., 1994, 357–397, 2000.30

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P.,

Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M.,

Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari,

M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The

SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev.,35

6, 929–960, doi:10.5194/gmd-6-929-2013, 2013.

26

http://dx.doi.org/10.5194/acp-16-3683-2016
http://www.atmos-chem-phys.net/16/3683/2016/
http://dx.doi.org/10.1007/s00382-006-0158-0
http://dx.doi.org/10.1029/2000JD900581
http://dx.doi.org/10.1002/jgrd.50135
http://dx.doi.org/10.5194/acp-13-4941-2013
http://dx.doi.org/10.1007/s00585-997-0090-6
http://dx.doi.org/10.1175/JAMC-D-13-038.1
http://dx.doi.org/10.1002/2015JD024473
http://dx.doi.org/10.1002/2015JD024473
http://dx.doi.org/10.5194/gmd-6-929-2013


McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., and Stephens, B. B.: Assessment of ground-based atmo-

spheric observations for verification of greenhouse gas emissions from an urban region, Proc. Natl. Acad. Sci. U. S. A., 109, 8423–8428,

doi:10.1073/pnas.1116645109, 2012.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S.,

Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for5

regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, doi:10.5194/gmd-6-981-2013, 2013.

Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Foley, D., Doyle, J. D., Costa, D., and Robinson, P.:

The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part III–Observation impact and

observation sensitivity in the California Current System, Prog. Oceanog., 91, 74–94, 2011.

Nordbo, A., Järvi, L., Haapanala, S., Wood, C. R., and Vesala, T.: Fraction of natural area as main predictor of net CO2 emissions from cities,10

Geophys. Res. Lett., 39, doi:10.1029/2012gl053087, 2012.

Rodgers, C. D.: Inverse methods for atmospheric sounding: Theory and practice, World Sci., London, 2000.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale

Operational Model, Mon. Weather Rev., 139, 976–991, doi:10.1175/2010MWR3425.1, 2010.

Strong, C., Stwertka, C., Bowling, D. R., Stephens, B. B., and Ehleringer, J. R.: Urban carbon dioxide cycles within the Salt Lake Valley:15

A multiple-box model validated by observations, J. Geophys. Res., 116, doi:10.1029/2011JD015693, 2011.

Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Tans, P., Lehman, S., Davis, K. J., Miles, N. L., Richardson, S. J., Lauvaux,

T., Cambaliza, M. O., Shepson, P., Gurney, K., Patarasuk, R., and Zondervan, A.: Towards quantification and source sector identifica-

tion of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment, J. Geophys. Res. Atmos., 120, 292–312,

doi:10.1002/2014JD022555, 2015.20

Vogel, F. R., Thiruchittampalam, B., Theloke, J., Kretschmer, R., Gerbig, C., Hammer, S., and Levin, I.: Can we evaluate a fine-

grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO2 observations?, Tellus B,

65, doi:10.3402/tellusb.v65i0.18681, 2010.

Wu, L., Broquet, G., Ciais, P., Bellassen, V., Vogel, F., Chevallier, F., Xueref-Remy, I., and Wang, Y.: What would dense atmospheric ob-

servation network bring to the quantification of city CO2 emissions?, Atm. Chem. Phys., 16, 7743–7771, doi:10.5194/acp-16-7743-2016,25

2016.

Xueref-Remy, I., Dieudonné, E., Vuillemin, C., Lopez, M., Lac, C., Schmidt, M., Delmotte, M., Chevallier, F., Ravetta, F., Per-

russel, O., Ciais, P., Bréon, F.-M., Broquet, G., Ramonet, M., Spain, T. G., and Ampe, C.: Diurnal, synoptic and seasonal

variability of atmospheric CO2 in the Paris megacity area, Atmos. Chem. Phys. Disc., 2016, 1–51, doi:10.5194/acp-2016-218,

http://www.atmos-chem-phys-discuss.net/acp-2016-218/, 2016.30

Zhao, C. L. and Tans, P. P.: Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air, J. Geophys. Res-Atmos., 111,

doi:10.1029/2005jd006003, 2006.

27

http://dx.doi.org/10.1073/pnas.1116645109
http://dx.doi.org/10.5194/gmd-6-981-2013
http://dx.doi.org/10.1029/2012gl053087
http://dx.doi.org/10.1175/2010MWR3425.1
http://dx.doi.org/10.1029/2011JD015693
http://dx.doi.org/10.1002/2014JD022555
http://dx.doi.org/10.3402/tellusb.v65i0.18681
http://dx.doi.org/10.5194/acp-16-7743-2016
http://dx.doi.org/10.5194/acp-2016-218
http://www.atmos-chem-phys-discuss.net/acp-2016-218/
http://dx.doi.org/10.1029/2005jd006003


Figure 1. Map of the Northern France modelling domain. The monitoring sites are depicted as red crosses, while the green line denotes

the boundaries of the Île-de-France region. Black lines show the model grid: 2 km×2 km spatial resolution in the centre, 2km×10 km and

10 km×10 km spatial resolution for the surroundings, respectively.
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Figure 2. Afternoon (12-16 h) CO2 data availability during the CO2-MEGAPARIS project (August 2010–July 2011) for the different

monitoring sites used in this study. Available hourly observed data are displayed as grey vertical lines. Red and blue: observations that are

actually assimilated when using the reference (stringent) gradient selection criteria. Red: Selection when using ECMWF wind fields for the

wind estimation. Blue: Selection when using Meso-NH/TEB wind fields for the wind estimation.
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Figure 3. Monthly fossil fuel CO2 emissions prior and posterior estimates from inversions in MtCO2. Left column: Prior estimates (line)

± the standard deviation of uncertainties (shade) are displayed in grey while posterior estimates (line) ± the standard deviation (bars) are

displayed in green. (a): Results using the initial inversion configuration. (b): Results using the reference inversion configuration. Monthly

mean heating degrees for the centre of Paris, obtained from ECMWF’s operational analysis, are displayed in black. Numbers at the top are

those of the CO2 mole fraction gradients assimilated for SW- or NE winds, respectively. Prior and posterior annual emission estimates are

displayed in the left bottom corner. Right column: Results using the initial (c) and reference (d) configuration of the inversions but assimilate

only subsets of selected gradients (see Sect. 2.2.) Colour-coded numbers at the top are those of the assimilated gradient by each subset. Prior

estimates (line) ± the standard deviation of uncertainties (shade) are displayed in grey. Symbols are slightly shifted to prevent overlap.
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Figure 4. Time series of mean afternoon (12-16 h) CO2 mole fraction differences (∆CO2) between downwind and upwind sites for De-

cember 2010 (upper panel) and May 2011 (lower panel). Measured CO2 mole fraction differences are shown in red; prior and posterior

CO2 mole fraction differences in blue and green, respectively. (a) and (c): Selection of gradients relies on wind direction ranges of the

initial inversion configuration. (b) and (d): Wind direction ranges are limited to a narrow SW/NE wind corridor across the city following the

reference inversion configuration (see Sect. 2.2).

Figure 5. Results for the Lagrangian experiment (see Sect. 2.2 and Tab. 1). As for Fig. 3c, but a 2-hour time lag between downwind and

upwind measurements is introduced.

31



Figure 6. Sensitivity of monthly fossil fuel CO2 emissions upon xb. Monthly fossil fuel CO2 estimates ± the standard deviation of their

uncertainties are shown for inversions that use 3MtCO2month−1 (black), 4.3MtCO2month−1 (red), and 5MtCO2month−1 (blue)

monthly prior emissions. (a) Priors are flat at monthly scale. (b) Priors are flat at daily scale. (c) Priors are flat at 6- h scale (see Sect. 2.6 for

details). Fluxes obtained by the reference inversion are displayed in green. Numbers at the top denote the number of assimilated CO2 mole

fraction gradients. Symbols are slightly displaced to prevent overlap.
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Figure 7. Sensitivity of monthly fossil fuel CO2 emissions upon Hmap. Red: Monthly fossil fuel CO2 emissions estimates ± the standard

deviation of their uncertainties obtained from the reference inversion (green), INV_mapIER (red), and INV_IER (blue), respectively. Monthly

fossil fuel CO2 emissions prior estimates by AIRPARIF are depicted in black while IER’s monthly estimates ± the standard deviation of

uncertainties are depicted in sky blue and grey, respectively. Note the different scale of the ordinate compared to Fig. 3, 5 and 6.
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Figure 8. Sensitivity of monthly fossil fuel CO2 budgets upon meteorological data. Displayed are the estimates ± the standard deviation of

their uncertainties obtained from the reference inversion (green) and INV_MNH (black), respectively. Numbers at the top denote color-coded

the number of assimilated gradients. (a) Assimilation of both SW and NE gradients. (b) Assimilation of SW gradients. (c) Assimilation of

NE gradients.
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Figure A1. Time series of mean wind directions during afternoon (12-16 h) at the different monitoring sites used in this study. Solid horizontal

lines denote the range of wind directions used by the reference (stringent) gradient selection (see Sect. 2.2). Red: Wind directions as simulated

by ECMWF. Blue: Wind directions as simulated by Meso-NH/TEB. Yellow vertical lines indicate wind speed >3ms−1. Green vertical lines:

Data are actually assimilated when using the reference (stringent) gradient selection criteria.
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Figure A2. Time series of mean wind speed during afternoon (12-16h) at the different monitoring sites used in this study. Solid horizontal

lines denote a 3ms−1 wind speed threshold. Red: Wind speed as simulated by ECMWF. Blue: Wind speed as simulated by Meso-NH/TEB.

Yellow vertical lines indicate wind directions are within the range of wind direction used by the reference (stringent) gradient selection.

Green vertical lines: Data are actually assimilated when using the reference (stringent) gradient selection criteria.
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Table 1. Summary of the different inversion configuration and Île-de-France (IdF) annual fossil fuel CO2 emissions from different inventories

and inversion results. Priors that are flat at the monthly, daily and 6-hourly scale are denoted M, D and H, respectively (see section 2.6 for

the details). Posterior estimates are derived from inversions using the operator and prior estimate indicated in the corresponding line of the

table.

Inversion Acronym
H

yf
xb

IdF annual

fossil fuel CO2

emissions inMtCO2

Hsamp Htrans Hmap Prior Post

Initial ini H
samp
ini−ECM Htrans

ECM H
map
AP yf

ini−ECM AP08 51.9 37.4

Reference ref H
samp
ref−ECM Htrans

ECM H
map
AP yf

ref−ECM AP08 51.9 40.9

Sensitivity FLAT_4.3H

H
samp
ref−ECM Htrans

ECM H
map
AP yf

ref−ECM

H 51.9 47.1

Tests FLAT_4.3D D 51.9 41.1

FLAT_4.3M M 51.9 41.4

FLAT_3.0H H 36.0 37.1

FLAT_3.0D D 36.0 33.0

FLAT_3.0M M 36.0 33.0

FLAT_5.0H H 60.0 52.2

FLAT_5.0D D 60.0 45.3

FLAT_5.0M M 60.0 45.3

INV_mapIER H
samp
ref−ECM Htrans

ECM H
map
IER yf

ref−ECM AP08 51.9 39.0

INV_IER H
samp
ref−ECM Htrans

ECM H
map
IER yf

ref−ECM IER 60.1 45.5

INV_MNH H
samp
ref−MNH Htrans

MNH H
map
AP yf

ref−MNH AP08 51.9 1

Time lag lag H
samp
ref−ECM Htrans

ECM H
map
IER yf

ref−ECM AP08 51.9 46.8

Emissions for the year 2010 as given by AIRPARIF (2013) 41.8

1 Meso-NH/TEB data are available up to June 2011 only
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Table 2. Annual and seasonal bias, standard deviation (STD), root mean square error (RMSE) and coefficient of determination (r2) of prior

model-data misfit and posterior model-data misfit for the initial inversion (experiment ini) and the reference inversion (experiment ref ),

respectively. All values, except for r2, are given inppm.

Bias STD RMSE r2

ini ref ini ref ini ref ini ref

prior post prior post prior post prior post prior post prior post prior post prior prior

Annual 2.50 0.33 3.04 0.36 3.60 2.21 3.77 2.20 4.38 2.23 4.84 2.22 0.53 0.80 0.53 0.81

JJA 2.20 0.23 2.70 0.39 2.31 1.59 2.54 1.62 3.18 1.60 3.70 1.66 0.13 0.45 0.03 0.34

SON 2.41 0.28 3.73 0.38 3.49 1.98 2.95 2.05 4.23 2.00 4.74 2.07 0.35 0.75 0.27 0.61

DJF 2.35 0.48 2.79 0.44 4.21 2.51 4.55 2.29 4.82 2.55 5.33 2.32 0.61 0.84 0.55 0.85

MAM 3.01 0.26 3.29 0.20 3.65 2.38 4.01 2.63 4.72 2.39 5.17 2.62 0.22 0.56 0.07 0.50
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