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Abstract. This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of

cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015) is updated by using the direct numerical

simulation (DNS) results for the Taylor-microscale-based Reynolds number (Reλ) up to 1,140. The DNS results for particles

with a small Stokes number (St) show a consistent Reynolds-number dependence of the so-called clustering effect with the

locality theory proposed by Onishi et al. (2015). It is confirmed that the present Onishi kernel is more robust for a wider St5

range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is

then compared with the Ayala-Wang kernel (Ayala et al. (2008a); Wang et al. (2008)). At low and moderate Reynolds numbers

both kernels show similar values except for r2 ∼ r1, for which the Ayala-Wang kernel shows much larger values due to its large

turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between

the two kernels. The Ayala-Wang kernel increases for the autoconversion region (r1, r2 < 40 µm) and for the accretion region10

(r1 < 40 µm and r2>40µm; r1 > 40 µm and r2<40µm) as Reλ increases. In contrast, the Onishi kernel decreases for the

autoconversion region and increases for the rain-rain self-collection region (r1, r2 > 40 µm). Stochastic collision-coalescence

equation (SCE) simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE

with the Ayala-Wang kernel (SCE-Ayala) and that with the present Onishi kernel (SCE-Onishi) are compared with results

from the Lagrangian Cloud Simulator (LCS, Onishi et al. (2015)), which tracks individual particle motions and size evolutions15

in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent results with the LCS results

for small Reλ. The two SCE simulations, however, show different Reynolds-number dependences, indicating possible large

differences in atmospheric turbulent clouds with large Reλ.

1 Introduction

Several mechanisms have been proposed to explain the rapid growth of cloud droplets, which often result in fast rain initiation20

in the early stages of cloud development. Examples of these mechanisms include the turbulence-enhanced collision rate of

cloud droplets (Falkovich and Pumir (2007); Grabowski and Wang (2013)), turbulent entrainment (Blyth (1993); Krueger et al.

(1997)), giant cloud condensation nuclei (Yin et al. (2000); Van Den Heever and Cotton (2007)), and turbulent dispersions of

cloud droplets (Sidin et al. (2009)). The first mechanism, which has received the most attention, has led to extensive research
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on particle collisions in turbulence (e.g., Sundaram and Collins (1997); Wang et al. (2000); Saw et al. (2008); Onishi et al.

(2009); Dallas and Vassilicos (2011)).

One direction taken by the research in this area is the simulation of collisional growth by solving the stochastic collision-

coalescence equation (SCE). Such research relies on accurate collision-coalescence models, which consist of models for the

collision kernel Kc (r1, r2) (where ri is the particle radius), the collision efficiency Ec (r1, r2), and the coalescence efficiency5

Ecoal (r1, r2). To consider the influence of turbulence, several turbulent collision models have been proposed. Saffman and

Turner (1956) analytically derived a collision kernel model for particles with no inertia or with a very small Stokes number

(St= τp/τη, where τp is the particle relaxation time and τη is the Kolmogorov time), while Abrahamson (1975) derived a

model for St� 1. For moderate Stokes numbers, i.e., St∼ 1, one difficulty is the preferential motion of inertial particles.

Inertial particles preferentially cluster in regions of low vorticity and high strain if St� 1 (Maxey (1987)), and cluster in10

a way that mimics the clustering of zero-acceleration points by the sweep-stick mechanism if 1 . St. τp/TI , where TI is

the integral timescale of the turbulence (Coleman and Vassilicos (2009)). This matters because clustering increases the mean

collision rate (Sundaram and Collins (1997)). To quantify the clustering due to the preferential concentration effect a model

is formulated for finite-inertial particles. However, the model requires several empirical parameters that should be determined

from reference data, e.g., results from a direct numerical simulation (DNS).15

One serious problem is that the Reynolds-number dependence of turbulent collisions has not yet been clarified. Actually,

many authors ignore the Reynolds-number dependence and assume a constant collision kernel regardless of the Reynolds

number (e.g., Saffman and Turner (1956); Derevyanko et al. (2008); Zaichik and Alipchenkov (2009)) or assume a convergence

to a constant collision kernel with increasing Reynolds number (e.g., Ayala et al. (2008a)). Onishi et al. (2013) observed that

the clustering effect, and consequently the collision kernel, decreases as the Taylor-microscale-based Reynolds number (Reλ)20

increases for St=0.4. Onishi and Vassilicos (2014) later clarified that the Reynolds-number dependence of the clustering effect

for 1/3 . St. 1 is due to internal intermittency of the turbulence. Because a robust theoretical model for turbulent collision

kernels is not yet available, we need empirical models for the investigation of turbulence enhancement on cloud development.

As an example, the Ayala-Wang kernel (Ayala et al. (2008a); Wang et al. (2008)) is a widely used turbulent kernel model.

Recently, Onishi et al. (2015) proposed an empirical kernel model based on DNS data for the wide range of 49≤Reλ ≤ 530,25

whereReλ is the Taylor-microscale-based Reynolds number. Onishi et al. (2015) also conducted stochastic and direct collision

simulations to investigate the turbulence enhancement on drop size evolution. They investigated the energy dissipation (ε)

dependence for the range of 100≤ ε≤ 1,000 cm2/s3 and the Reλ dependence for the range of 66≤Reλ ≤ 206. The results

showed good agreement of the ε dependence between the stochastic simulations with the Ayala-Wang and Onishi kernels, but

a significant discrepancy for the Reλ dependence between the two kernels. The discrepancy in Reλ dependence may become30

a critical issue for cloud simulations because Reλ is typically as large as O(103−4) in atmospheric turbulent clouds. However,

Onishi et al. (2015) did not provide a detailed discussion on the difference of the Ayala-Wang and Onishi kernels in Reλ

dependence.

This study, therefore, aims to compare the Ayala-Wang and Onishi kernels by focusing on their Reλ dependence. First,

the Onishi kernel is updated by using the reference collision statistics obtained by the DNS for Reλ up to 1,140. The Ayala-35
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Wang and the present Onishi kernel values are compared in detail. The SCE simulations with the Ayala-Wang and Onishi

kernels are also compared with each other and with the reference results from the Lagrangian Cloud Simulator (LCS, Onishi

et al. (2015)), which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The collision

growth simulation with the LCS is conducted for Reλ up to 333.

2 Turbulent Coagulation Kernel Models5

2.1 Turbulent coagulation kernel

The geometric collision frequence per unit volume between particles with radius r1 and those with radius r2, Nc (r1, r2), is

expressed by the geometric collision kernel Kc (r1, r2) as

Nc (r1, r2) =Kc (r1, r2)np,1np,2, (1)

where np,i is the number density of particles with radius ri. The coagulation kernelKcoag can be expressed by the combination10

of the geometric collision kernel, collision efficiency Ec and coalescence efficiency Ecoal as

Kcoag (r1, r2) = Ecoal (r1, r2)Ec (r1, r2)Kc (r1, r2) . (2)

The gravitational collision kernel describes the collisions due to the settling velocity difference in the form of

Kc,grav (r1, r2) = πR2
12 |V∞1−V∞2| , (3)

where R12 (= r1 + r2) is the collision radius and V∞i is the gravitational particle settling velocity. Turbulence enlarges the15

geometric collision kernel, i.e., the turbulent geometric kernel Kc,turb is larger than Kc,grav. Turbulence also enhances the

coagulation kernel through enlarging Ec. The turbulence enhancement on the collision efficiency, ηE , is defined as

ηE (r1, r2) =
Ec (r1, r2) [T ]

Ec (r1, r2) [NoT ]
, (4)

where [T] and [NoT] indicate the turbulent flow case and the stagnant (non-turbulent) flow case, respectively.

It had been difficult to confidently discuss the collision efficiency in a turbulent flow until Ayala et al. (2007) developed a20

reliable superposition method, which iteratively solves the Stokes disturbance flows for a many-particle system. That super-

position method is, however, computationally expensive due to its iteration procedure. Onishi et al. (2013) later developed a

less costly method, named the binary-based superposition method (BiSM), which has been adopted in the LCS (Onishi et al.

(2015)). BiSM assumes that interactions via three or more particles are negligible. This dramatically reduces the computational

cost but maintains reliability as long as the particle number concentration is small, as observed in atmospheric clouds.25
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Sundaram and Collins (1997) showed, by means of a DNS, that the preferential concentration of inertial particles, the so-

called clustering effect, increases the collision frequency. The clustering effect is expressed in the spherical formulation derived

by Wang et al. (1998) as

Kc(r1, r2) = 2πR2
12 〈|wr(x=R12)|〉g12(x=R12), (5)

where 〈· · · 〉 denotes an ensemble average, |wr(x=R12)| (|wr| hereafter) is the radial relative velocity at contact separation,5

and g12(x=R12) (g12 hereafter) is the radial distribution function at contact separation and represents the clustering effect.

Droplet deformation and coalescence efficiency, which this study ignores, affect the collision growth of droplets with r>100

µm, although such effects only become significant for droplets with r>500 µm. It would, therefore, lead to some errors if

extending the present results to such large droplets.

2.2 Ayala-Wang model10

Ayala et al. (2008a) provided a parameterization for the turbulent geometric collision kernel of finite-inertia sedimenting

droplets by proposing an empirical model for g12 in addition to a theoretical model for 〈|wr|〉.
By following the expression by Chun et al. (2005), the clustering effect for a monodisperse suspension of sedimenting

droplets is expressed as

g11 =
(η
r

)C1

, (6)15

where η is the Kolmogorov length. C1 is a function of St, Reλ and the non-dimensional parameter for gravity V∞/vη with the

Kolmogorov velocity vη . This parameterization was extended for a bidisperse system in a manner similar to that in Chun et al.

(2005):

g12 =

(
η2 + r2d
r2L + r2d

)C1/2

, (7)

where rL=max(r1, r2) and C1 follow the same expression for the monodisperse case at Stmax=max(St1,St2)=St(rL), and20

rd is a length scale of the acceleration diffusion experienced by the particles. When two particles in a pair are two different

sizes, any fluid acceleration or gravity will induce a relative velocity. This effect yields a diffusion-like process in the system

and tends to smooth out inhomogeneities in the particle pair concentration. Thus, rd is larger for larger |St1−St2| for the

bidisperse case and a monodisperse suspension form is recovered for the case rd� rL. It should be noted for the discussion

in subsection 4.4 that the g12 model was designed to show maximum clustering at St∼ 1 and a higher droplet clustering for25

larger Reλ (Ayala et al. (2008b)).

In addition to the empirical g12 model, Ayala et al. (2008a) developed a theory for 〈|wr|〉 that is applicable to inertial droplets

sedimenting under gravity in a turbulent flow. The basic assumption was that the droplet relative trajectory is mostly determined
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by gravitational sedimentation. Following Dodin and Elperin (2002), they decomposed the radial relative velocity (between two

particles falling under gravity in a homogeneous isotropic turbulent flow) into a random part ξ caused by turbulent fluctuations

and a deterministic part h due to gravity:

wr(φ) = ξ(φ) +h(φ), (8)

where the angle of contact, φ, is measured from the gravity axis. The random variable ξ(φ) is assumed to be normally distributed5

with a standard deviation σ(φ).

Using σ(φ= 90◦) to approximate σ(φ), they obtained

〈|wr|〉 =

√
2

π

(
σ2 +

π

8
(τp,1− τp,2)

2
g2
)1/2

, (9)

where σ is expressed in terms of τp,i, V∞i and flow parameters urms (the rms of the velocity fluctuations) in terms of ε and

Reλ.10

2.3 Onishi model

2.3.1 model for g12

Onishi et al. (2015) proposed an original model for the clustering effect in monodisperse systems.

g11− 1 =

A1St
2 (≡ y1) (for St < Sta)

A2ReλSt
−2 (≡ y2) (for Sta ≤ St)

, (10)

whereA1 andA2 were empirically determined to be 110 and 0.38, respectively. The regime boundary Sta is (A2/A1)1/4Re
1/4
λ .15

A tanh smoothing function, za, was employed to connect the two formulations in the equation as

g11− 1 =H(St−Sta)y1z
α
a +H(Sta−St)y2(1− za)α. (11)

(Note that the Heaviside function was missing in Onishi et al. (2015).) Here,

za(St) =
1

2

(
1− tanh

log10St− log10Sta
Ca

)
, (12)

where Ca is parameterized as20

Ca = acRe
bc
λ . (13)
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Figure 1. Stokes number against the particle radius for various energy dissipation rates.

in Eq. (11), α is parameterized as

α= log2 aαRe
bα
λ . (14)

Onishi et al. (2015) determined the optimal values for the abovementioned empirical coefficients (i.e., A1, A2, ac, bc, aα, and

bα) based on the dataset in Onishi et al. (2013); Onishi and Vassilicos (2014) for St≤ 1.

If we limited the discussion for the autoconversion regime, i.e., r<40 µm, the range St≤ 1 would be enough for the typical5

energy dissipation rate ε≤1000 cm2/s3 observed in atmospheric turbulent clouds. However, as clearly shown in Figure 1, St

can be as large as 10 for r=100 µm and ε=1000 cm2/s3. That is, in the discussion on the accretion process that describes the

conversion from cloud to rain due to rain drops collecting cloud droplets, we need to deal with St > 1 as well.
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A1 A2 ac bc ac2 bc2 aα bα

Onishi et al. (2015) 110 0.38 0.060 0.30 - - 0.26 0.50

present 110 0.32 0.046 0.36 0.094 0.25 0.23 0.50
Table 1. Parameter values for g11 model.

Hence, this study modifies the parameterization in the original Onishi kernel to obtain better overall matching for a wider

range of St. After trial and error, we finally obtained a modification of the form of Ca as

Ca = min
(
acRe

bc
λ ,ac2Re

bc2
λ

)
. (15)

We confirmed that this form with ac = 0.046, bc = 0.36, ac2 = 0.094, and bc2 = 0.25 leads to an improvement, as shown later

in subsection 4.2. The updated coefficients are summarized in Table 1.5

To determine the clustering effect for bidisperse systems, the empirical formulation proposed by Zhou et al. (2001) is

employed:

g12 = 1 + ρ12 (g11− 1)
1/2

(g22− 1)
1/2

, (16)

where ρ12 = 2.6exp(−Stmax) + 0.205exp(−0.0206Stmax) 1
2 [1 + tanh(Stmax− 3)].

The gravitational settling affects the clustering effect for large St particles. The parameterization here does not consider10

the gravity effect. This would lead to some error in collision statistics. But the error was not significant in this study and the

present parameterization worked well for predicting the turbulence enhancement in size evolutions due to collisional growth

as in Subsection 4.5.

2.3.2 Model for 〈|wr|〉

Onishi et al. (2015) employed the model of Wang et al. (2000) for 〈|wr|〉, which was based on the model by Kruis and Kusters15

(1997), as

〈|wr|〉=

[
2

π

(
w2
shear +w2

accel

)]1/2
, (17)

w2
shear =

R2ε

15ν
, (18)

w2
accel =

1

3
Cw (Stmax)fKK , (19)
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where ν is the kinematic viscosity and Cw(Stmax) = 1 + 0.6exp
[
−(Stmax− 1)1.5

]
. The formulation of fKK was proposed

by Kruis and Kusters (1997) as

fKK =
γu2rms
γ− 1

{
(θ1 + θ2)− 4θ1θ2

(θ1 + θ2)

[
1 + θ1 + θ2

(1 + θ1)(1 + θ2)

]1/2}

×
[

1

(1 + θ1)(1 + θ2)
− 1

(1 + γθ1)(1 + γθ2)

]
, (20)

where θi = τp,i/TL with TL as the Lagrangian integral time, and γ = 0.183u2rms/(εν)1/2. The Lagrangian integral time is5

parameterized as TL = 0.4Te, where Te(= u2rms)/ε) is the large-eddy turnover time (Kruis and Kusters (1997); Zhou et al.

(2001)). In the equation, θi shows the relative particle relaxation time to the particle-flow interaction time. Note that this 〈|wr|〉
parameterization is for non-sedimenting droplets.

Onishi et al. (2009) concluded that gravitational sedimentation does not significantly influence turbulent collisions of cloud

droplets. However, for this study, which extends the discussion to the small rain drop regime, the gravitational sedimentation10

cannot be ignored. Therefore, this study introduces a simple modification to make the model applicable to sedimenting droplets

by considering the mechanism in which the gravitational settling shortens the interaction time of droplets with eddies (Onishi

et al. (2009)). Onishi et al. (2009) modeled the enlargement of the relative particle relaxation time by gravity as

θi,sed =

√
3(1− f(θi)) + s2v

3(1− f(θi))
θi, (21)

where f(θ) is defined as the ratio of the particle velocity fluctuation to the flow velocity fluctuation, i.e., f(θ) = v′2p /urms
2,15

and sv = Vp,∞/urms is a non-dimensional parameter quantifying the influence of sedimentation. By replacing θi in Eq. (20)

by θi,sed, we obtain the radial relative velocity for droplets with gravitational sedimentation, 〈|wr|〉turb,sed.

The above simple treatment is not yet complete. Ayala et al. (2008a) suggested the following two contributions of gravi-

tational sedimentation on 〈|wr|〉; (i) gravity reduces the interaction time of droplets with turbulent eddies, and therefore the

variance of particle velocities is reduced, and (ii) gravity also decreases the correlation coefficient. The second contribution20

is missing in the present simple treatment. Nonetheless, since the present treatment leads to an improvement in the turbulent

coagulation kernel, as shown in subsection 4.3, this study adopts this simple treatment and leaves more robust treatment to

future work.

The turbulent collision kernel formulated from the above g12 and 〈|wr|〉turb,sed does not include the collision contribution

due to the settling velocity difference. To include the contribution of the settling velocity difference, the following simple25

formulation was employed to obtain the total collision kernel.

Kc,total(r1, r2) =
(
K2
c,turb(r1, r2) +K2

c,grav(r1, r2)
)1/2

(22)

Here, Kc,turb denotes the turbulent collision kernel obtained by Kc,turb = 2πR2
12 〈|wr|〉turb,sed g12. This simple form is exact

if no clustering (g12 = 1) occurs and |wr|turb,sed and |wr|grav follow Gaussian distributions.
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2.3.3 Turbulent enhancement on collision efficiency

Onishi et al. (2015) employed the collision efficiency values of Pinsky et al. (2001) (Ec,PKS01 hereafter) and ηE tabulated

in Wang et al. (2008). These tabulated values spanned a relatively small range of particle sizes: the sizes of collector droplets

(r1) were 20, 30, and 50 µm and the size ratios (r2/r1) were from 0.167 to 0.90. Later, Wang and Grabowski (2009) tabulated

the preliminary values of the enhancement factor for a wider range of droplet sizes: r1=20, 30, 40, and 50 µm and r2/r15

from 0.0 to 1.0. Note that the data for r2/r1=0.0 were simply set to the values for r2/r1=0.0835. It should also be noted

that Wang and Grabowski (2009) tabulated the enhancement factors against the Hall collision efficiency (Ec,Hall hereafter,

Hall (1980)). Unfortunately, inconsistencies exist between the two collision efficiency models. We found differences that are

sometimes much larger than 10% of the mean between Ec,PKS01 and Ec,Hall, particularly for small and large r2/r1 ratios,

i.e., for r2/r1 ∼ 0 and ∼ 1. These differences should be carefully compensated in ηE . Wang and Grabowski (2009) tabulated10

the enhancement on Ec,Hall, η
#Hall
E . In fact, we observed an overestimation in turbulent enhancement on the autoconversion

rate when we used η#HallE for the SCE simulation withEc,PKS01. For Table 2, we calculated ηE againstEc,PKS01 (η#PKS01E )

from η#HallE as

η#PKS01E (r1, r2) =
Ec,Hall (r1, r2)

Ec,PKS01 (r1, r2)
η#HallE (r1, r2) . (23)

Following Wang and Grabowski (2009), this study simply sets the values for r1 ≤ 20 µm to those at r1=20 µm, and similarly15

the values at r1=60 µm to those at r1=50 µm. The factor is set to unity for r1=100 µm and larger. Also, following Seifert et al.

(2010), for 100≤ ε≤ 600 cm2/s3, this study linearly interpolates/extrapolates between the values of η#PKS01E at ε=100 cm2/s3

and at ε=400 cm2/s3. For ε>600 cm2/s3 the extrapolated values at ε=600 cm2/s3 are used for η#PKS01E .

3 Direct Numerical Simulations

3.1 Computational methods20

We now solve the three-dimensional continuity and Navier-Stokes equations for incompressible flows:

∇ ·U = 0, (24)

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p+ ν∇2U+F(x, t). (25)

The kinematic viscosity ν is set to 1.5× 10−5 m2s−3, which is the value for atmospheric air at 1 atm and 298 K. The last

term on the right-hand side represents the external forcing needed to achieve a statistically steady state. This study employs25

reduced-communication forcing (RCF) (Onishi et al. (2011)), which is suitable for massively parallel finite-difference models
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r1 =

r2/r1 20µm 30µm 40µm 50µm

0.0 1.74 1.77 1.49 1.21

0.1 5.26 3.55 2.31 1.65

0.2 2.67 0.742 1.29 1.04

0.3 1.75 0.733 1.15 1.04

0.4 0.995 0.953 1.11 1.06

0.5 0.955 1.06 1.03 1.03

0.6 0.730 1.11 1.00 1.03

0.7 0.701 1.07 0.983 0.991

0.8 1.01 1.18 1.06 1.01

0.9 1.63 1.81 1.34 1.31

1.0 29.2 6.10 2.89 3.14

r1 =

r2/r1 20µm 30µm 40µm 50µm

0.0 4.98 3.59 2.52 1.45

0.1 10.7 5.45 3.13 1.86

0.2 4.03 0.879 1.51 1.20

0.3 2.08 0.758 1.22 1.15

0.4 1.05 0.973 1.14 1.100

0.5 0.751 1.19 1.10 1.05

0.6 0.832 1.29 1.10 1.07

0.7 0.929 1.29 1.10 1.02

0.8 1.42 1.41 1.21 1.09

0.9 3.94 2.19 1.51 1.34

1.0 22.6 5.47 2.18 1.88
(a) (b)

Table 2. Enhancement factor for the Pinsky collision efficiency (PKS01), η#PKS01E , for (a) ε=100 cm2/s3 and (b) ε=400 cm2/s3.

(FDM), to maintain the kinetic energy with |k|< 2.5, where k is a wavevector. Spatial derivatives are calculated using fourth-

order central differences. The conservative scheme of Morinishi et al. (1998) is employed for the advection term, and the

second-order Runge-Kutta scheme is employed for time integration. To solve the velocity-pressure coupling, we use the highly

simplified marker and cell (HSMAC) scheme (Hirt and Cook (1972)), which iterates until the rms of the velocity divergence

becomes smaller than δ/∆, where ∆ is the grid spacing and δ is chosen to be 10−3. The governing equations are discretized5

by using a cubic domain of length 2πL0, where L0 is the representative length. Periodic boundary conditions are applied in all

three directions. The flow cube is discretized uniformly into N3 gridpoints, resulting in ∆ = 2πL0 /N .

Under the limit of a large ratio of the density of the particle material to that of the fluid (ρp/ρf >> 1), the governing equation

for water droplets is given by

dV

dt
= − f

τp
(V− (U(x, t) +u(x, t))) +Fimpulse +g, (26)10

where V is the particle velocity, U is the air velocity at the position of the droplet, u is the disturbance flow velocity due

to the surrounding droplets, and τp is the particle relaxation time defined as τp = (2/9)(ρp/ρf )(r2/ν), in which r is the

particle radius. Fimpulse denotes the impulsive force due to collisions and g is the gravity vector (= (−g,0,0), where g is

the gravitational acceleration). The ratio of the density of the particle material to that of the fluid, ρp/ρf , is set to 8.43×102

at 1 atm and 298 K, and f is the drag coefficient defined as the ratio between the nonlinear drag and the linear drag (Rowe15

and Henwood (1961)). It should be noted that Eq. (26), which adopts the point-particle assumption, is inaccurate for large St

particles whose radii are not small enough compared to the Kolmogorov scale.
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N3 L0 [m] Re u′ kmaxlη Reλ Np

N4000 40003 0.312 14100 1.01 2.10 874 1.60× 109

N6000 60003 0.468 24200 1.01 2.11 1140 5.40× 109

Table 3. Case configurations and typical turbulence statistics. Re= U0L0/ν, u′ is the rms of flow velocity fluctuation, kmax(=N/2) is the

maximum wavenumber, lη is the Kolmogorov scale, and Reλ is the Taylor-microscale based Reynolds number. Np is the total number of

particles.

The second-order Runge-Kutta method is used for the time integration. The flow velocity at the droplet position U is linearly

interpolated from the adjacent grid values. This simple linear interpolation is justified through comparisons with the cubic

Hermitian, cubic Lagrangian, and fifth-order Lagrangian interpolations from Sundaram and Collins (1996). The disturbance

flow u, which denotes the hydrodynamic interaction, is calculated by using the BiSM (Onishi et al. (2013)). The particle mass

and volume fractions are so dilute that the flow modulation is ignored.5

3.2 Computation for turbulent collision statistics

After the background airflow has reached a statistically stationary state, monodispersed water droplets are introduced into the

flow. After a period exceeding three times the eddy-turnover time T0 = L0/U0, collision detection is then started. Droplets are

allowed to overlap (ghost-particle condition) and a collision is judged from the trajectories of a pair of droplets by assuming

linear particle movement for the time interval ∆t.10

The detailed description of the procedures for calculating collision statistics can be found in Onishi et al. (2013), who

conducted the DNS for Reλ up to 530. This study performed additional simulations to push the maximum Reλ forward, up to

1,140. The computational settings for the present simulations are summarized in Table 3.

3.3 Computation for size evolutions due to collisional growth

To obtain reference data regarding droplet collisional growth, we tracked the growth of droplets that initially had the following15

exponential size distribution (e.g., Soong (1974)):

f0(x) =
n0
xm0

exp(−x/xm0), (27)

where xm0 is the mass of a droplet with a radius of rm0 and n0 is the initial number density. We carried out two cases: one with

rm0=15 µm and n0 = 1.42× 108 m−3, and the other with rm0=10 µm and n0 = 4.79× 108 m−3. The corresponding initial

liquid water content was 2.0 g/m3 for both cases. It was assumed that colliding particles immediately united without breakups,20

and conserved mass and momentum.

Table 4 summarizes the computational parameters for the flow calculation as well as the obtained flow statistics for the

collision growth simulations. In cases T100, T, and T1000, the same grid configuration with the same Reynolds number was
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N3 L0 [m] Re u′ kmaxlη Reλ ε [cm3/s2]

NoT 323 0.0127 0 0 - 0 0

T100 963 0.0180 97.4 1.00 2.04 66.1 100

T 963 0.0127 97.4 1.00 2.04 66.1 400

T1000 963 0.0101 97.4 1.00 2.04 66.1 1000

TR127 2563 0.0338 360 0.98 2.06 127 400

TR206 5123 0.0669 908 1.00 2.06 206 400

TR333 10003 0.135 2220 1.00 2.07 333 400
Table 4. Case configurations and typical turbulence statistics. Re= U0L0/ν, where U0 is the representative velocity and L0 is the represen-

tative length, u′ is the rms of the flow velocity fluctuation, kmax(=N/2) is the maximum wavenumber, lη is the Kolmogorov scale, λ is the

local shear rate, and Reλ is the Taylor-microscale-based Reynolds number.

calculated, but the energy dissipation rates, which are in the typical range observed in turbulent atmospheric clouds, were 100,

400, and 1,000 cm3/s2, respectively. Cases T, TR127, TR206, and TR333 obtained flows with the same energy dissipation

rate (400 cm3/s2) but with different Reλ values. Onishi et al. (2015) already presented these cases except for TR333 with

rm0=15 µm. The present study additionally performed the case TR333 with rm0=15 µm to obtain a clear Reynolds-number

dependence, as well as cases T, TR127, and TR206 with rm0=10 µm.5

4 Results and Discussion

4.1 Estimate for Reynolds-number dependence of clustering effect of small-St particles

Onishi et al. (2013) observed that the clustering effect and consequently the collision kernel decreases as the Reynolds number

increases for Reλ>100 and St=0.4. Later, Onishi and Vassilicos (2014) clarified that the Reynolds-number dependence of g11

observed for 1/3< St < 1 is due to internal intermittency of the three-dimensional turbulence.10

To quantify the influence of intermittence on g11, we need to separate the local quantity from the global (average) quantity.

Kolmogorov (1962) introduced the local energy dissipation as

εl(x, t) =
3

4πl3

∫
|y|≤l

ε#(x+y, t)dy, (28)

where superscript # denotes the local quantity. It was supposed that the PDF of εl follows a log-normal distribution if l is much

smaller than the flow integral scale. Assuming l ∼ η, we obtain15

PLN (ε∗|µ,σ2) =
1√

2πσε∗
exp

(
−(lnε∗−µ)

2

2σ2

)
, (29)
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where ε∗ = εη . Parameters σ and µ appear in the first and second moments of ε∗ as

〈ε∗〉(= ε) = exp
(
µ+σ2/2

)
(30)

and〈
ε∗2
〉

= exp
(
2µ+ 2σ2

)
, (31)

respectively.5

The intermittency is measured by the flatness factor F , defined as

F =

〈
(∂u1/∂x1)

4
〉

〈
(∂u1/∂x1)

2
〉2 . (32)

It is observed that F follows a power law relation with Reλ, for example, F ∼Re3/8λ (Pope (2000)). Given ∂u1/∂x1 ∼
(εη/ν)

1/2
= (ε∗/ν)

1/2, we obtain

F ∼
〈
ε∗2
〉

ε2
∼Re3/8λ . (33)10

Substitution of Eqs. (30) and (31) into Eq. (33) yields

σ2 =
3

8
ln(Reλ). (34)

Eq. (30) then yields

µ= lnεRe
−3/16
λ . (35)

That is, PLN (ε∗|µ,σ2) can be rewritten as PLN (ε∗|Reλ).15

We can define a local St, St∗, as

St∗ = St×
(
ε∗

ε

)1/2

, (36)

the PDF of which follows

P (St∗|Reλ) =
2εSt∗

St2
PLN

(
ε

(
St∗

St

)2
∣∣∣∣∣Reλ

)
. (37)

It should be emphasized that the shape of PLN (and consequently P ) depends on Reλ. If we assume a universal radial distri-20

bution function at contact separation against St∗ –g#univ11 (St∗)–, the global clustering effect can be obtained as

g11 (St, Reλ) =

∞∫
0

g#univ11 (St∗)P (St∗|Reλ)dSt∗. (38)
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It should be noted that g11 depends on Reλ, whereas g#univ11 does not (which is why it is called universal). For St∗� 1, the

universal clustering effect would have the form g#univ11 =A1St
∗2 + 1 by following Eq. (10). Substitution of this form into Eq.

(38) yields g11 (St� 1, Reλ) =A1St
2 + 1, regardless of the value of Reλ. This explains why the g11 for St= 0.1 does not

show a significant Reynolds-number dependence. For a moderate St∗, we simply formulate the universal function by following

Eqs. (10) and (11) but without the smoothing operators, as follows:5

g#univ11 (St∗) =H(St∗−St∗a)A∗1St
∗2 +H(St∗a−St∗)A∗2St∗−2, (39)

where A∗1 and A∗2 are empirical parameters and St∗a is defined as (A∗2/A
∗
1)1/4. Based on the DNS data for St=0.1, 0.4, and 0.6

in the flow with Reλ=130, we found that A∗1 = 110 and A∗2 = 0.073 work reasonably well. Although we have no justification

for this universal function, it can provide g11 for arbitrary St (<1) and Reλ through Eq. (38). As we cannot analytically

calculate the integration in Eq. (38), we have to numerically calculate it to obtain g11 for a certain combination of St and Reλ.10

We calculated g11 for St=0.1, 0.4, and 0.6 with Reλ= 100, 200, 400, 1,000, 4,000 and 10,000. We then obtained the following

empirical formulations by applying the least squre method to the calculated results.

g11 (St = 0.1, Reλ) ∼ 2.1, (40)

g11 (St = 0.4, Reλ) ∼ 19.3− 1.9log10Reλ, (41)

g11 (St = 0.6, Reλ) ∼ 34.3− 3.9log10Reλ. (42)15

Figure 3 shows a comparison between g11 values from the above equations and those from the DNS. The figure shows that the

empirical estimates can reproduce the Reynolds-number dependence of g11 correctly.

4.2 Modeling of clustering effect

Figure 3 shows a comparison between direct numerical simulation results and model predictions for g11. The dashed lines

are the prediction by the Onishi model (Onishi et al. (2015)), and the solid lines are the predictions by the present updated20

model. The DNS data for St≤ 1 and for Reλ ≤ 530 were obtained from the table in Onishi et al. (2015). The data for St=1.4,

2, 4, and 8 were newly obtained. The results for Reλ=874 and 1,140 (these Reynolds numbers are the largest ever achieved

for turbulent particle collision statistics) are included in the figure. The DNS data show a decreasing trend for St < 1 for the

moderate Reynolds number range of 100 .Reλ . 1000. This decreasing trend with respect to Reλ is attributed to the flow

intermittency (Onishi and Vassilicos (2014)) as discussed in the previous subsection. The black solid line is the estimated g1125

for St= 0.4 and the black dashed line is for St= 0.6 (Eqs. (41) and (42), respectively). The present Onishi model show slightly

better agreement with the DNS data in terms of the slopes in comparison with the original model. For St > 1, the DNS data

show increasing trends for the moderate Reλ range, and those trends are predicted by the present parameterization, although

the rate for St= 2 is overestimated. One significant feature of the Onishi g11 model is that maximum clustering occurs at a

larger St for a larger Reλ. This shows a clear contrast with the Ayala-Wang model, which was designed to show maximum30

clustering at St∼ 1 regardless of Reλ.
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Figure 2. Radial distribution function at the contact of monodisperse particles with St=0.1, 0.4, and 0.6 against Reλ. The plotted symbols

are the reference DNS results. The lines are the results of Eqs. (40), (41), and (42), which were fitted to the sample values (+) with using

the least square method. The error bars show ±one standard deviation obtained from more than three runs, with each run lasting for a time

T0 = L0/U0.

The updated parameterization leads to improvement, particularly for the St≥ 1 regime. For example, in the case of Reλ =

127, the rms values of the relative errors of the prediction with the original parameters for (i) St=0.1, 0.2, 0.4, and 0.6 and

for (ii) St=1, 1.4, 2, 4, and 8 were (i) 0.081 and (ii) 0.239. The rms values with the present parameters were (i) 0.075 and (ii)

0.113.

4.3 Turbulent coagulation kernels for small Reynolds-number flow5

Figure 4 shows a comparison between model predictions and DNS results of the coagulation kernel Kcoag(r1, r2) for r1=30

µm,Reλ=127 and ε=400 cm2/s3. The kernel is normalized by the collision radiusR and the local velocity gradient λ
(

= (ε/ν)
1/2
)

.

The reference DNS considers the hydrodynamic interaction and the gravitational droplet sedimentations. We observe a large

discrepancy for r2 ∼ 30 µm (=r1), where the turbulence enhancement on collision efficiency is difficult to define, because the

collision efficiency for r1 = r2 cannot be defined for stagnant flow. Otherwise, the model predictions (Ayala-Wang model and10

Onishi model) agree well with the DNS results. As an example, we also observe a slight improvement of the Onishi model by

including the sedimentation effect on 〈|wr|〉 (subsection 2.3.2) on the data for r2 = 40 µm.
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Figure 3. Radial distribution function at the contact of monodisperse particles, g11, against Reλ. The plotted points are the reference DNS

results, the dotted lines are the prediction with the coefficients of Onishi et al. (2015), and the solid lines are the present prediction.

The Ayala-Wang model shows a local maximum around r2 = r1. The DNS results also show a convex shape, but the value at

r2 = r1 is much smaller than the prediction by the Ayala-Wang model. In contrast, the Onishi model does not show such a local

maximum at r2 = r1 but does provide values much closer to DNS elsewhere. The convex shape is related to the diffusion effect

denoted by rd in Eq. (7). Eq. (16) for g12, employed in the Onishi model, was formulated for non-sedimenting droplets and

this equation therefore leads to weaker acceleration-driven diffusion, i.e., smaller rd (Ayala et al. (2008a)). This can explain5

why the Onishi model does not show the convex shape.

Figure 5 shows the ratio of the turbulent coagulation kernel to the Hall kernel for the turbulent flow with Reλ=127 and

ε=400 cm2/s3. The level of the ratio is basically similar for both the Ayala-Wang and Onishi models, and the ratio is nearly

unity when the droplets are above 100 µm.
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Figure 4. Non-dimensionalized coagulation kernels for r1=30 µm in the turbulent flow with Reλ=127 and ε=400 cm2/s3. The error bars

show ±one standard deviation obtained from more than three runs, with each run lasting for a time T0 = L0/U0.

4.4 Reynolds-number dependence of kernel models

Figure 6 shows the ratio of the coagulation kernel for Reλ=104 to that for Reλ=103. It should be noted that the Ec and

ηE models employed in the Ayala-Wang and Onishi kernels do not consider the Reynolds dependence. Therefore, the figure

actually shows the ratio of the geometric collision kernels, i.e., the ratio of |wr|g12. The Ayala-Wang kernel increases for the

autoconversion region (r1, r2 < 40 µm) and the accretion region (r1 < 40 µm and r2>40 µm, and r1 > 40 µm and r2<40 µm).5

The Onishi kernel decreases for the corresponding autoconversion region, but increases for the rain-rain self-collection region

(r1, r2 > 40 µm).

Figure 7 shows the ratio of g12 for Reλ=104 to that for Reλ=103. It should be noted that the form of Eq. (22) violates the

spherical form and we cannot rigorously define g12,total and 〈|wr|〉total that formulate Kc,total = 2πR2
12 〈|wr|〉total g12,total.

Here, we simply considered g12 expressed by Eq. (11) as the g12,total for the total kernel and obtained 〈|wr|〉total =Kc,total/
(
2πR2g12

)
.10

As designed, the Ayala-Wang kernel shows the increase for increasing Reλ for both the autoconversion and the accretion re-

gions. In contrast, the Onishi kernel shows a decrease for the autoconversion region, but a significant increase for the accretion

region and the rain-rain self-collection region (i.e., r1, r2 > 40 µm). This is due to the shift of the maximum clustering toward

larger St with increasing Reλ.
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(a) (b)

Figure 5. Ratio of the turbulent coagulation kernel to the Hall kernel in the turbulent flow with Reλ=127 and ε=400 cm2/s3. (a) Ayala-Wang

kernel and (b) the present Onishi kernel.

Figure 8 shows the ratio of the radial relative velocity for Reλ=104 to that for Reλ=103. The Ayala-Wang kernel shows little

Reynolds-number dependence. In contrast, the Onishi kernel shows significant Reynolds-number dependence, which tends to

oppose the Reynolds-number dependence of g12 and thus weakens the Reynolds-number dependence of the collision kernel.

The Reynolds-number dependence of the clustering effect is larger than that of the radial relative velocity, and the contour

shape of Figure 6 is more similar to Figure 7 than to Figure 8 for both the Ayala-Wang and the Onishi kernels. That is, the5

Reynolds-number dependence of the two kernels can mostly be attributed to the g12 parameterizations.

Note that the Fortran 90 code used to calculate the present Onishi kernel is provided as a supplemental material.

4.5 Turbulence enhancement of autoconversion rate

We investigated the turbulence enhancement on the autoconversion rate, which is the conversion rate from the cloud category

(r <40 µm) to the rain category due to collisions between the small cloud droplets. The Ayala-Wang kernel and the present10

Onishi kernel were employed to calculate the coagulation growth of droplets modeled by the stochastic collision-coalescence

equation (SCE):

18



(a) (b)

Figure 6. Ratio of the coagulation kernel for Reλ=104 to that for Reλ=103. (a) Ayala-Wang kernel and (b) the present Onishi kernel.

(a) (b)

Figure 7. Ratio of the clustering effect g12 for Reλ=104 to that for Reλ=103.
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(a) (b)

Figure 8. Ratio of the radial relative velocity at contact separation 〈|Wr|〉 for Reλ=104 to that for Reλ=103.

∂nf (m,t)

∂t
=

m/2∫
0

Kcoag(m−m′,m′)nf (m−m′, t)nf (m,t)dm′

−
∞∫
0

Kcoag(m,m
′)nf (m,t)nf (m′, t)dm′, (43)

where m is the particle mass and nf is the number density function. The coagulation component of the spectral bin model

in the Multi-Scale Simulator for the Geoenvironment (MSSG-Bin) cloud physics model (Onishi and Takahashi (2012)) was

used to solve the SCE. The mass coordinate m was discretized as mk = 21/smk−1, where s was set to 16. The representative5

radius of the first bin was 2.7 µm and 528 classes were calculated, the largest class of which had a representative radius of 5.4

mm. The SCE solution is basically a mean-field approximation. In contrast, the LCS acts as a reference model as it includes

all turbulence effects directly in its Lagrangian particle simulation. Due to the high computational cost, however, the LCS is

restricted to moderate Reynolds number (here up to Reλ=333).

Following Seifert et al. (2010), Onishi et al. (2015) used a quantitative measure of the turbulence enhancement focusing on10

the timescale of the autoconversion process. The time required for a cloud to convert 10% of its cloud mass into rain category
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drops is expressed as t10%, which can be used as a measure of the autoconversion timescale. Then, we can define the turbulence

enhancement factor, Eturb, as

Eturb =
Pauto|T
Pauto|NoT

=
t10%NoT
t10%T

, (44)

where the overbar indicates the mean value.

Figure 9(a) shows Eturb as a function of ε for Reλ=66 in the rm0=10 µm case. The LCS data show an almost linear5

increase with increasing ε. Both the SCE simulation with the Ayala-Wang kernel (SCE-Ayala hereafter) and that with the Onishi

kernel (SCE-Onishi hereafter) show the same trend with the LCS data, although the SCE-Ayala slightly overestimates the

enhancement. The maximum relative difference between the SCE-Ayala and SCE-Onishi kernels was as small as 22% at ε=500

cm2/s3. Both the SCE-Ayala and the SCE-Onishi kernels show a kink at ε=600 cm2/s3, where the turbulence enhancement on

collision efficiency levels off. Figure 9(b) shows Eturb as a function of Reλ for ε=400 cm2/s3 in the case of rm0=10 µm.10

The SCE-Ayala and the SCE-Onishi kernels show different trends: the SCE-Ayala predicts an increasing enhancement with

increasing Reλ, while the SCE-Onishi predicts almost constant or slightly decreasing enhancement. The difference between

the two SCE predictions becomes larger for largerReλ, with the LCS result closer to the SCE-Onishi prediction. The difference

between the SCE-Ayala and the SCE-Onishi kernels can be explained by the Reynolds-number dependence of the two kernels,

as discussed in subsection 4.4. This Reynolds-number dependence is relevant, because the SCE prediction becomes very15

different at large Reλ. For example, at Reλ = 2× 104, the SCE-Ayala prediction is 2.5 times larger than the SCE-Onishi

prediction. The LCS results for Reλ ≤ 206 support the SCE-Onishi prediction.

Figure 10 shows Eturb for the rm0=15 µm case, which was also discussed in Onishi et al. (2015). This study additionally

performed the simulation for Reλ=333 to investigate the Reynolds-number dependence more clearly. Basically, the results are

similar to those in the previous figure. In Figure 10, the SCE-Ayala and the SCE-Onishi kernels show closer results forReλ=66,20

and both SCE-Ayala and SCE-Onishi slightly overestimate the enhancement for ε>400 cm2/s3. The difference between the two

predictions at Reλ = 2× 104 is larger: the SCE-Ayala prediction is 3.0 times larger than the SCE-Onishi prediction. The LCS

results for Reλ up to 333 clearly support the SCE-Onishi prediction.

In summary, both Figures 9 and 10 show that the SCE-Ayala and the SCE-Onishi kernels produce consistent results for

low Reλ with about a 20% difference at most, but the two show very different values at large Reλ: the SCE-Ayala prediction25

becomes larger than the SCE-Onishi by a factor of up to 3 in cloud turbulence. This clearly suggests a strong demand for

collision growth data with larger Reλ to construct a more robust turbulent kernel.

4.6 Periodicity influence

As noted in Woittiez et al. (2009) and discussed in Appendix A in Ireland et al. (2015), the periodicity of the computational

domain may lead to errors for the settling particles with large St. Ireland et al. (2015) defined the critical St, Stcrit, as30

Stcrit = Fr
L

l

u′

uη
(45)
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Figure 9. Turbulence enhancement factors for rc=10 µm as a function of (a) the energy dissipation rate ε and (b) the Taylor-microscale-based

Reynolds number Reλ. Reλ=66 in (a) and ε=400 cm2/s3 in (b). The error bars indicate the standard deviations.

where Fr is the Froude number (=aη/g, where aη is the Kolmogorov-scale acceleration), L (=2πL0 in this study) is the domain

size, l is the integral scale and uη is the Kolmogorov-scale velocity. For St larger than Stcrit, the periodicity problem may

arise.

Figures 4, 9 and 10 are for settling particles. For those figures, we have calculated Stcrit to check the periodicity problem.

(i)For Fig. 4, Stcrit=3.7, which corresponds to rcrit=75 µm; rcrit is the radius of particle with St= Stcrit. The two plots5

from DNS, which correspond to r2=80 µm and 120 µm, exceed rcrit. However, since the two plots are more or less similar

with the gravitational (Hall) kernel values, the turbulent contribution would be small compared to the gravitational settling

contribution. That is the error due to the periodicity would not significantly affect the results. (ii)For Figs. 9(a) and 10(a), rcrit

are 50, 65 and 70 µm for ε=100, 400 and 1000 cm2/s3, respectively. For Figs. 10(b) and 10(b) rcrit are 65, 75, 85 and 90

µm for Reλ=66.1, 127, 206 and 333, respectively. The enhancement factor Eturb, shown in Figs. 9 and 10, was evaluated by10

t10%, which is defined as the time required for a cloud to convert 10% of its cloud mass into rain category drops. The threshold

between cloud and rain categories was set at r=40 µm. That is, 10% of particles, in mass and volume, are larger than 40 µm

in radius at t= t10% by definition. For example, according to the DNS results, 3% of particles are larger than 50 µm and only

0.9% of particles are larger than 60 µm at t= t10%. The percentage of particles that are larger than 50 µm in radius may have

some impact on t= t10% and consequently Eturb. In this sense, the plot for ε=100 cm2/s3 in Figs. 9(a) and 10(a), whose rcrit15
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Figure 10. Turbulence enhancement factors for rc=15 as a function of (a) the energy dissipation rate and (b) the Taylor-microscale- based

Reynolds number Reλ. Reλ=66 in (a) and ε=400 cm2/s3 in (b). The error bars indicate the standard deviations.

is 50 µm, may contain some error associated with the periodicity problem. However, since Eturb for that plot is nearly unity

indicating small turbulence enhancement, the periodicity problem does not change the present findings.

5 Conclusions

This study investigated the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets.

The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015) was updated by using the present direct numerical5

simulation (DNS) results for the Taylor-microscale-based Reynolds number (Reλ) up to 1,140. The following three components

were updated: (i) the radial distribution function at contact separation of a monodisperse suspension of droplets, i.e., the

clustering effect, g11, (ii) the radial relative velocity at contact separation, 〈|wr|〉, and (iii) the turbulence enhancement on

collision efficiency, ηE .

We confirmed that the updated g11 parameterization agrees better with DNS results than the original parameterization for10

Reλ ∼ 100. We also confirmed that the updated parameterization has better agreement with the Reynolds-number dependence

of g11 for the estimated values of St= 0.4 and 0.6. The model of radial relative velocity was updated to include the effect of

the gravitational sedimentation of droplets. The comparison with the DNS results confirmed that the updated model for 〈|wr|〉
is better than the original one. The Onishi coagulation kernel employed the turbulence enhancement on collision efficiency
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ηE , tabulated in Wang et al. (2008). The updated kernel is intended to adjust to more recent ηE values, tabulated in Wang

and Grabowski (2009). It should be noted that the collision efficiency Ec in Pinsky et al. (2001) (Ec,PKS01), which the

Onishi kernel employs, is different from the Ec in Hall (1980) (Ec,Hall), particularly for r2/r1 ∼ 0 or ∼ 1. We proposed a

compensation such that ηE (in Wang and Grabowski (2009)), which shows the turbulence enhancement against Ec,Hall, is

applicable to the kernel with Ec,PKS01. The proposed compensation is simply to multiply ηE in Wang and Grabowski (2009)5

by Ec,PKS01/Ec,Hall.

The present Onishi coagulation kernel was compared with the Ayala-Wang kernel (Ayala et al. (2008a); Wang et al. (2008))

together with the DNS values for Reλ=66 and the energy dissipation rate ε=400 cm2/s3. For Kcoag(r1 = 30µm, r2), both

kernels show similar values comparable to the DNS values except for r2 ∼ r1. For the nearly monodisperse case, the Ayala-

Wang kernel overestimates the kernel but provides a sharp convex shape, i.e., a clear local maximum at r2 = 30 µm, that agrees10

with the DNS data qualitatively. The Onishi kernel does not show such a convex shape due to weaker acceleration-driven

diffusion on the clustering effect g12, but the kernel values are in fairly good agreement with the DNS. The Reynolds-number

dependence of the two kernels was also compared. It was shown that the Ayala-Wang kernel increases for the autoconversion

region (r1, r2 < 40 µm) and the accretion region (r1 < 40 µm and r2>40 µm, and r1 > 40 µm and r2<40 µm). In contrast, the

Onishi kernel decreases for the autoconversion region but increases for the rain-rain self-collection region (r1, r2 > 40 µm).15

These Reynolds-number dependences can be attributed to the Reynolds-number dependence of the clustering effect.

We also compared the stochastic collision-coalescence equation (SCE) simulations for both kernels; one with the Ayala-

Wang kernel (SCE-Ayala) and the other with the present Onishi kernel (SCE-Onishi). Lagrangian Cloud Simulator (LCS,

Onishi et al. (2015)) simulations were also conducted to obtain reference data of the turbulent enhancement on collisional

growth, in particular, the enhancement on the autoconversion rate. The SCE-Ayala and SCE-Onishi kernels show consistent20

results for Reλ=66 with about a 20% difference at most, but the two SCE simulations show a different Reynolds-number

dependence, resulting in large differences at large Reλ. It should be emphasized that the SCE-Ayala prediction can become

larger than the SCE-Onishi by a factor of up to 3 in the typical largeReλ range observed in cloud turbulence. These simulations

clearly suggest a strong demand for reference collision growth data with larger Reλ from DNS or laboratory measurement to

construct a more robust kernel model. This is our goal in future studies.25
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