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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive cli-

matologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such cli-

matologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in

mid-latitudes (35◦N to 75◦N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC,

we sample the modelled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the5

CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation

of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and (ii) relative differences.

Two requirements for any score describing representativeness are essential: Representativeness is expected to increase

(i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two require-

ments, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-10

Smirnov test is very strict and does not identify any trace gas climatology as representative – not even of long lived trace gases.

In contrast, the two scores based on either variability or relative differences show the expected behaviour and thus appear

applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative

differences score and calculate a representativeness uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measure-15

ments, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100% of the

measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial

and temporal model resolution.

In conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies. Long-

lived species like CO2 have low uncertainties (≤ 0.4%), while shorter-lived species like O3 have larger uncertainties (10-15%).20

Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of
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representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a

mere 1%, while the uncertainty for shorter lived species like NO would drop from 80% to 10%.

1 Introduction

The UTLS (upper troposphere/lower stratosphere) is dynamically and chemically very complex and shows strong gradients

in temperature, humidity and in many trace gases (Gettelman et al., 2011). As the mid and upper troposphere have a strong5

influence on the atmospheric greenhouse effect, the UTLS plays an important role in our climate system (Riese et al., 2012).

To characterize processes and evaluate the performance of chemistry-transport models in this area, spatially well resolved data

collected on a global scale are required.

Aircraft are a suitable platform to carry out these measurements as they are able to probe in situ and at a high frequency.

Measurements taken by commercial aircraft projects like IAGOS (In-Service Aircraft for a Global Observing System, Petzold10

et al. (2015)) and CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner, Matsueda et al. (2008))

generate more continuous and regular datasets than research aircraft on sporadic campaigns and are therefore commonly given

the attribute representative. But what is meant by this adjective?

Ramsey and Hewitt (2005) give a general introduction to representativeness, coming from soil sciences. As they state, the

adjective representative has no meaning of its own, so a definition has to be given and ’it must be asked "representative of15

what?"’

In the area of meteorology, Nappo et al. (1982) give the following definition: ’Representativeness is the extent to which a

set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain

taken on a scale appropriate for a specific application.’ Representativeness in their understanding ’is an exact condition, i.e., an

observation is or is not representative.’ Only if ’a set of criteria for representativeness is established, analytical and statistical20

methods can be used to estimate how well the criteria are met.’

The mathematical definition given by Nappo et al. (1982) is mostly applied to data collected in the boundary layer, where it

is used to answer the question whether a flux tower station is representative of the area in which it is positioned (e.g. by Schmid

(1997), Laj et al. (2009) or Henne et al. (2010)). This can also be analysed by means of a cluster analysis with backward

trajectories (e.g. by Henne et al. (2008) or Balzani Lööv et al. (2008)). By this method, source regions for measured trace gases25

can be found and the type and origin of air masses contributing to an observed air mass determined, i.e. the airmass the data

are representative of. Köppe et al. (2009) apply this method to aircraft data from the project IAGOS-CARIBIC (Civil Aircraft

for the Regular Investigation of the Atmosphere Based on an Instrument container, being part of IAGOS).

Lary (2004) and Stiller (2010) discuss the representativeness error in the field of data assimilation. Lary (2004) uses repre-

sentativeness uncertainty as a synonym for variability within a grid cell, Stiller (2010) discusses the sampling error, which is30

considered to be part of the representativeness uncertainty. Larsen et al. (2014) study the representativeness of one dimensional

measurements taken along the flight track of an aircraft to the three dimensional field that is being probed. But as they consider

single flight tracks, their methods and definitions do not apply here.
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The study of Schutgens et al. (2016) is more related to this study. They consider the sampling error on a global scale,

comparing normal model means to means of model data collocated to satellite measurements. They find that this sampling

error reaches 20− 60% of the model error (difference between observations and collocated model values).

We have been motivated by Kunz et al. (2008). They analysed whether the dataset of the aircraft campaign SPURT (SPURen-

stofftransport in der Tropopausenregion - trace gas transport in the tropopause region, Engel et al. (2006)) is representative of5

the larger MOZAIC dataset (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIr-

bus airCraft, the precursor of IAGOS-core). Kunz et al. (2008) investigate distributions of two substances (O3 and H2O) in two

atmospheric compartments (upper troposphere and lower stratosphere). They find that the smaller SPURT dataset is represen-

tative on every time scale of the larger MOZAIC set for O3, while this is not the case for H2O. While SPURT O3 data can be

used for climatological investigations, the variability of H2O is too large to be fully captured by SPURT on the interseasonal10

time scales.

This is similar to what is done in this study: We investigate the representativeness of data for different trace gases from

IAGOS-CARIBIC (see Sec. 2.1) for a climatology in the UTLS. Possible mathematical definitions of the word representative-

ness are first discussed with the help of this data. Then, its representativeness following these definitions is investigated. By

using data from the chemistry-climate model EMAC (see Sec. 2.2) along the flight tracks of IAGOS-CARIBIC and comparing15

this to a larger sample taken from the model, it becomes possible to investigate the representativeness of the smaller of the two

model datasets. We also assess whether the complexity of the model is similar to that portrayed by the measurements, using

the variability as a measure for the complexity. We find that the variability of the model is high enough and therefore quantify

the representativeness of IAGOS-CARIBIC measurement data for a climatology in the UTLS by using the two model datasets

alone.20

In Sec. 2, more details on the data from IAGOS-CARIBIC and the model run will be given. The general concept and defini-

tion of representativeness is discussed in Sec. 3. This section also gives details on sampling the model and on the variability,

which is used to group results by species. The statistical methods are then explained in Sec. 4, namely the Kolmogorov-Smirnov

test, a variability analysis following the general idea of Kunz et al. (2008) and Rohrer and Berresheim (2006) and the relative

difference of two climatologies. We then discuss the variability of the model data in comparison to that of the measurements in25

Sec. 5. The application of the methods to the different model samples is described in Sec. 6. After showing the result of each

of the three methods seperately, Sec. 6.4 discusses the representativeness of the IAGOS-CARIBIC measurement data, while

Sec. 6.5 answers the question how many flights are necessary to achieve representativeness. Sec. 7 summarizes and concludes.

2 Model and data

2.1 The observational IAGOS-CARIBIC dataset30

Within IAGOS-CARIBIC (CARIBIC for short), an instrumented container is mounted in the cargo bay of a Lufthansa passen-

ger aircraft during typically four intercontinental flights per month, flying from Frankfurt, Germany (Munich, Germany, since

August, 2014), see also Brenninkmeijer et al. (2007) and www.caribic-atmospheric.com.
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During each CARIBIC flight, about 100 trace trace gas and aerosol parameters are measured. Some are measured continu-

ously with a frequency between 5s−1 and 0.2min−1) and available from the database binned to 10s. Others (e.g. non-methane

hydrocarbons) are taken from up to 32 air samples collected per flight. The substances considered in this study are NOy, H2O,

O3, CO2, NO, (CH3)2CO (acetone), CO and CH4 from continuous measurements and N2O, C2H6 and C3H8 from air sam-

ples. NOy is the sum of all reactive nitrogen species, measured by catalytic conversion to NO (Brenninkmeijer et al., 2007).5

Data of N2O, CH4 and CO2 were detrended by subtracting the mean of each year from the values of that year and adding the

overall mean.

The data of all flights from the year 2005 (beginning of the second phase of CARIBIC) to the end of December, 2013 (end

of the model run) are considered in this study. This dataset will be referred to as MEASCARIBIC.

As this study investigates representativeness using model data, the geolocation of the CARIBIC measurements at 10s res-10

olution is used. In a second step, the gaps of the CARIBIC measurements and height information (due to technical problems

etc.) are mapped onto their representation in the model data to infer the representativeness of the measurement data.

2.2 The chemistry-climate model EMAC

EMAC (ECHAM5/MESSy Atmospheric Chemistry model; Jöckel et al. (2006)) is a combination of the general circulation

model ECHAM5 (Roeckner et al., 2006) and different submodels combined through the Modular Earth Submodel System15

(MESSy, Jöckel et al. (2005)). We use here a model configuration with 39 vertical levels reaching up to 80km and a horizontal

resolution of T42 (roughly 2.8◦ horizontal resolution).

The model integration used in this study simulated the time between January 1994 and December 2013, with data output

every eleven hours. Meteorology is nudged up to 1hPa using divergence, vorticity, ground pressure and temperature from

six-hourly ERA-Interim reanalysis. It includes the extensive EVAL-Chemistry using the kinetics for chemistry and photolysis20

of Sander et al. (2011). This set of equations has been designed to simulate tropospheric and stratospheric chemistry equally

well.

Boundary conditions for greenhouse gases (latitude dependent monthly means) are taken from Meinshausen et al. (2011)

and continued to 2013 from the RCP 6.0 scenario (Moss et al., 2010). Boundary conditions for ozone depleting substances

(CFCs and halons) are from the WMO-A1 scenario (WMO, 2010). Emissions for NOx, CO, and non-methane volatile organic25

compounds are taken from the EDGAR data base (http://edgar.jrc.ec.europa.eu/index.php).

The setup of the model in this study is similar to that made for the run RC1SD-base-08 of the Earth System Chemistry

integrated Modelling (ESCiMo) initiative, presented by Jöckel et al. (2016). It differs in vertical resolution (47 versus 39

levels), but horizontal resolution, nudging and the chemistry are the same. The study by Jöckel et al. (2016) gives a detailed

description and presents first validation results.30

Hegglin et al. (2010) performed an extensive inter-model comparison including EMAC with the same horizontal resolution

as the setup for this study. Dynamical as well as chemical metrics have been used in this study, focussing on the UTLS. Overall,

they find EMAC performs well within the range of the models that were tested. The reader is referred to the study for further

details.
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The substances from the model used in this study are the same as those from measurements. NOy, which is simulated in

its components, is summed up from N, NO, NO2, NO3, N2O5 (counted twice because measurements of NOy are taken by

catalytic conversion), HNO4, HNO3, HONO, HNO, PAN, ClNO2, ClNO3, BrNO2 and BrNO3. Data of N2O, CH4 and

CO2 were detrended, using the same method applied to the measurements.

3 Defining representativeness5

As noted above and specified by Nappo et al. (1982) and Ramsey and Hewitt (2005), the word representative is meaningful

only if accompanied by an object. Ramsey and Hewitt (2005) raise three questions to be answered in order to address represen-

tativeness: 1. For what parameter is the sample data to be seen as representative: e.g. the mean, a trend or an area? 2. Of which

population are the sample data to be seen as representative? 3. To which degree are the data to be seen as representative? To

assess the representativeness of CARIBIC data, these three questions have to be answered as well.10

3.1 Representative for what parameter?

First, it is crucial to define what we anticipate the CARIBIC data to be representative of, since ’the same set of measurements

may be deemed representative for some purpose but not other’ (Nappo et al., 1982). In this study, we investigate whether the

CARIBIC data can be used to construct a climatology in the UTLS. We consider monthly binned data in the height of±4.25km
around the dynamical tropopause defined at the pressure at 3.5PVU and in mid-latitudes with 75◦N< ϕ< 35◦N.15

In order to reference data to the tropopause, we use the geometric height in kilometers relative to the tropopause (HrelTP) at

each datapoint. For the measurements, this height is provided by the meteorological support of CARIBIC by KNMI (Konin-

klijk Nederlands Meteorologisch Instituut) (http://www.knmi.nl/samenw/campaign_support/CARIBIC/), who use data from

ECMWF (European Centre for Mendium-range Weather Forecast) for their calculation.

From model output, the height relative to the tropopause (HrelTP) can be calculated, as the pressure value of the dynamical20

tropopause is known at each location, as well as the temperature and pressure profile. This HrelTP value calculated from the

model data along the flight tracks of CARIBIC compares well with interpolated values from ECMWF provided by KNMI

(Pearson correlation coefficient of ρ= 0.97), which is expected as the meteorology of the model is nudged using ERA-Interim

data. The distribution of all values of HrelTP from the model is shown in Figure 1, showing a maximum right at the tropopause.

Data were used within ±4.25km around the tropopause in steps of 0.5km.25

Even though all data of trace gases (be it from model or measurements) are sorted into bins of HrelTP, it is important to

keep in mind the limits in pressure. These are inherent in the CARIBIC dataset, as the aircraft flies on constant flight levels

with 180hPa< p < 280hPa. In addition, we explicitly limit pressure to this range in order to exclude data from ascents and

descents of the aircraft. But since data are considered relative to the tropopause, these limits are no longer visible directly from

the resulting climatology, even though they can influence it strongly. The reason is that aircraft flying at constant pressure can30

measure far above (below) the tropopause only if the tropopause is located at high (low) pressure. The properties of many trace

substances are not only a function of their distance to the tropopause, but also of pressure. The limits in pressure inherent in
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the sample therefore also influence the climatology. They have to be considered and should be explicitly stated. This effect is

illustrated in Appendix A1 with the help of the methods developed in this study.

In addition to limiting in HrelTP and p, it is necessary to apply a limit in latitude ϕ. We limit the data by including only mid-

latitudes with 75◦N< ϕ< 35◦N. Tropical data with ϕ < 35◦N are excluded because of the considerably higher dynamical

tropopause. Data with ϕ > 75◦N are excluded because of the different chemistry in far northern latitudes, which leads to5

considerably different mixing ratios for some some species that should not be combined with data from lower latitudes in one

climatology. In addition, this latitudinal band is well covered by CARIBIC measurements. Other regions or latitudinal bands

can be investigated using the same approach.

Like the limit in pressure, CARIBIC data are also limited in longitude, as the Pacific Ocean is never probed. The effect of

this limit on the climatology is discussed in Appendix A2.10

As a summary, we can specify more closely the question (Representative for what parameter?) asked in the beginning: Is a

climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

3.2 Representative of which population?

When assessing the representativeness of the sample made up by all CARIBIC measurements (called MEASCARIBIC, see

Sec. 2.1), the population is the atmosphere around the tropopause and its composition. For many of the species measured by15

CARIBIC, there is no other project that takes such multi-tracer in-situ meaurements as regularly at the same spatial and tem-

poral resolution. IAGOS-core and CONTRAIL sample with much higher frequency, but take measurements of only few sub-

stances while satellites do not resolve the small scale structures necessary to disentangle the dynamics around the tropopause.

The population is therefore not accessible by the measurement platforms currently available.

This is the reason why the representativeness of the CARIBIC data are investigated by comparing the model data along20

CARIBIC flight tracks to two larger samples taken from the model. These larger datasets are considered the population, in

reference to which the representativeness of the smaller dataset (model along CARIBIC paths) is assessed. Three datasets were

created from the model output: the model along CARIBIC paths and two random model samples. All are presented in the

following paragraphs, a summary being given in Table 1 and Figure 1.

MODregular
CARIBIC: For the dataset MODregular

CARIBIC, the model output was interpolated linearly in latitude, longitude, logarithm of25

pressure and time to the position of the CARIBIC aircraft, using the location at a resolution of 10s for all species, independent

of the time resolution in MEASCARIBIC. Figure 1 shows the flight paths considered in this study. Since CARIBIC also measures

temperature (at 10s resolution), the high pearson correlation coefficient of ρ= 0.97 of modelled to measured temperature can

serve as an indication that this interpolation leads to reasonable results, despite the coarser resolution in time and space of the

model output.30

MODsampled
CARIBIC: The measurement frequency for some species in MEASCARIBIC is lower (e.g. those taken by whole air sam-

ples), all species contain gaps because of instrument problems at some point and some of the species considered by the model

datasets are not measured at all. Sometimes, it is interesting to consider MODregular
CARIBIC reduced to the exact number of measure-
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Table 1. Summary of the specifications defining the three datasets MODregular
CARIBIC, MODRANDPATH and MODRANDLOC.

dataset EMAC on total sets per month duration p distribution

MODregular
CARIBIC CARIBIC paths

(2005-13)

334 up to 4

in 3 days

8-10h flight levels show up,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDPATH random paths 1296 12

in 28 days

24h adjusted gaussian,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDLOC random location 864 8

in 28 days

24h uniform,

min(p) = 10hPa

max(p) = 500hPa

ment points, i.e. reduced by all these measurement gaps. The model dataset along CARIBIC paths that has the same gaps as

MEASCARIBIC will be referred to as MODsampled
CARIBIC.

As is visible in Figure 1 (central column), only three of the model levels lay in the pressure range sampled by CARIBIC. To

have comparable statistics, MODregular
CARIBIC was to two random model samples.

MODRANDPATH: The dataset referred to as MODRANDPATH is a larger set of flight paths used to sample the model. This set was5

mainly used to investigate the representativeness of MODregular
CARIBIC. From the year 2005 to the end of 2013, 12 random flight paths

were generated per month (1296 in total, evenly spaced in each month’s first 28 days) and the model fields interpolated onto

these paths. The starting point was randomly chosen in the northern hemisphere, as well as the direction taken by the aircraft.

The speed was set to 885.1kmh−1, the median of the speed of the true CARIBIC aircraft. The flights start at 0:00UTC and

sample the model for 24h in 10s intervals. They are reflected at the north pole and at the equator and reverse the sign of the10

increment in latitude direction once during flight. The first 100 of these paths are displayed in Figure 1.

The pressure was kept constant for each of the random flights, reproducing the statistics of the pressure distribution for

CARIBIC as a whole. For this, a normal distribution centered around 223.42hPa with a standard deviation of 18.94hPa was

used to choose the pressure value for each of the random flights. All pressure values of p < 180hPa or p > 280hPa were

redistributed evenly between 200hPa and 250hPa to exclude unrealistically high or low values and sharpen the maximum.15

MOD3
RANDPATH: The dependecy of representativeness on the number of flights is an important part of this study. Each of the

random paths was divided into three parts, resulting in 3888 eight hour flights, the duration of a typical intercontinental flight

with CARIBIC. Representativeness was then calculated with the different methods for MODRANDPATH and these subsamples,

increasing their size by including more of the 3888 shorter random flights. This dataset of randomized shorter flights will be

referred to as MOD3
RANDPATH.20

MODRANDLOC: For this sample, latitude and longitude were randomly drawn in the northern hemisphere (not aligned along

a route) and the definition of the pressure distribution widened, drawing pressure from a uniform distribution from 500hPa to
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10hPa for each flight. Again, the datasets start at 0:00UTC and the separate points are 10s apart, collecting 8640 samples on

a sampling day. Eight of these sets are distributed evenly in each month, summing to a total of 864 sets of this type. This set

was used to test whether MODregular
CARIBIC is representative of a climatology around the tropopause only within its pressure limits

or also when expanding these limits.

As is visible in Figure 1, the distribution in HrelTP is very similar for MODRANDPATH and MODRANDLOC even though the5

pressure is prescribed in very different ways (mean of 0.79km and 0.64km respectively). The distribution of MODregular
CARIBIC

is different (mean of 0.26km), which is due to the larger amount of data from southern latitudes (not shown). The different

regional sampling is one of the reasons why climatologies from MODregular
CARIBIC and MODRANDPATH differ and this difference also

affects the distribution in HrelTP.
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Figure 1. Flight path distribution (left), distribution of probed pressures (p, center) and height relative to the dynamical tropopause (HrelTP,

right) for the three datasets MODregular
CARIBIC (top), MODRANDPATH (center) and MODRANDLOC (bottom). Only parts of the paths of MODRANDPATH

and MODRANDLOC are shown in the left column.
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3.3 Confidence limits of representativeness

When defining representativeness, one more question remains: What are the confidence limits of the representativeness?

Three definitions for representativeness are discussed and applied in this study: The Kolmogorov-Smirnov test, the variability

analysis following Kunz et al. (2008) and the relative difference of two climatologies. The first method gives a yes-no answer

within a chosen statistical confidence level. The other two approaches are formulated in such a way as to return a score. By5

(arbitrarily) setting a value for the score, the representative cases can be discriminated from the non-representative cases (see

Sec. 4 and Sec. 6), the score corresponding to a confidence level.

There are two more requirements that we define as having to be met by representativeness in general:

1. Representativeness has to increase with the number of samples (flights in the case of this study).

2. Representativeness has to decrease with increasing variability of the underlying distribution.10

These two assumptions are implicitely also made by Kunz et al. (2008), as they investigate the representativeness of a smaller

for a larger dataset and for two species of different variability. The measure for variability we use in this study is explained in

the following section.

3.4 Defining a measure for variability

Representativeness is expected to differ for different species because of their atmospheric variability or atmospheric lifetime.15

This is part of the definition of representativeness given in Section 3.3. Kunz et al. (2008) also find that O3 and H2O are different

in their representativeness and attribute this to the variability. It is therefore reasonable to consider results for representativeness

relative to the variability of a species. In this study, we use the relative standard deviation σr as a measure for variability. It is

calculated following Equation 1 using the mean µ and standard deviation σ of each species.

σr =
σ

µ
(1)20

Figure 2 shows the sorted values of σr for the species considered in this study, using the full time series to calculate σr. It

is worthwile to note that in defining variability in this way, we closely follow Junge (1974), who showed that under certain

constraints, the relationship

σr =
σ

µ
= a · τ−b (2)

holds, which links variability and lifetime τ using two species-dependent constants a and b. This relationship has frequently25

been called Junge relationship in the past (e.g. by Stroebe et al. (2006) or MacLeod et al. (2013)). And indeed, as visible in

Figure 2, longer lived species like CO2 or N2O show lower variability, while shorter lived species show higher variability.

It is important to note that the values determined from MEASCARIBIC are affected by the measurement frequency in case of

data sampled by whole air samples (N2O, C2H6 and C3H8) and by gaps due to instrument problems. But the influence of these

gaps is small, as can be seen by the small differences of the two values for MODregular
CARIBIC and MODsampled

CARIBIC. MEASCARIBIC has30

9



C
O

2
C

H
4

N
2O C

O
C

2H
6

A
ce

to
ne P
A

N
C

3H
8

O
3

N
O

y
H

N
O

4
H

2O
H

N
O

3
N

2O
5

B
rN

O
3

N
O

3
C

lN
O

3
H

O
N

O
N

O
C

lN
O

2

<
r

10 -3

10 -2

10 -1

10 0

10 1

10 2

MOD
RANDPATH

MOD
RANDLOC

MOD
CARIBIC
regular

MEAS
CARIBIC

MOD
CARIBIC
sampled

Figure 2. Variability σr calculated for different datasets using Equation 1. The species are sorted by σr , species with low variability listed to

the left, using the values from MODRANDPATH for sorting. Note that log10(σr) = τ∗, see Eq. 3.

a slightly higher variability than the model datasets for most species. The relationship of model and measurement variability is

discussed in more detail in Section 5. The model datasets are very similar, despite their different sampling patterns. They only

differ for short-lived species (to the right in Figure 2), which have a strong daily cycle, e.g NO.

In Sec. 3.3, we defined representativeness as having to decrease with increasing variability. Because we want to emphasize

the relationship of σr with τ and in order to differentiate this variability (calculated from the complete time series) clearly from5

other similar terms, we use τ∗ defined in Equation 3 to test the relationship of representativeness and variability.

τ∗ = log10(σr) = log10(a)− b · log10(τ) (3)

Sec. 4.2 will take a closer look at variability. It will be discussed how variability depends on the time scale for which it is

calculated. The values shown in Figure 2 and used for the calculation of τ∗ use the full time series, and thereby the overall

variability. If shorter time scales had been considered, the values for σr in Figure 2 would change, but not the order of the10

species that follows from the values.

So including these thoughts on variability in the question formulated at the end of Section 3.1, we can specify more closely

the question we answer in this study: For which species is a climatology compiled from CARIBIC data representative of the

tropopause region in mid-latitudes?
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4 Statistical methods

We use three different methods to evaluate representativeness: the Kolmogorov-Smirnov test, the variability analysis and rela-

tive differences.

4.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov two-sample test is a non-parametric statistical test that is used to examine whether two datasets have5

been taken from the same distribution (e.g. Sachs and Hedderich (2009)). It considers all types of differences in the sample

distributions that can be apparent in the mean, the standard deviation, the kurtosis, etc. The test statistic is the maximum

absolute difference D̂ in the cumulative empirical distribution functions F̂x of the two samples x:

D̂ = max|F̂1− F̂2| (4)

The discriminating valuesDα have been derived depending on the accepted confidence limit α. In this study, the two empirical10

distribution functions F̂i were taken from MODregular
CARIBIC and MODRANDPATH in each height bin and month. In addition to the

Kolmogorov-Smirnov test, we also applied the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for

variance (see again Sachs and Hedderich (2009)). All results of applying these tests are presented in Sec. 6.1.

4.2 Variability analysis

The variability analysis follows Rohrer and Berresheim (2006) and Kunz et al. (2008). Rohrer and Berresheim (2006) intro-15

duced a variance analysis for ground-based observations, Kunz et al. (2008) then applied it to aircraft data. A timeseries of data

is subsequently divided into ever shorter time slices of increasing number and the variance is calculated for the data within

each time slice. By taking the mean over the whole number of slices and doing this for all divisions in time, a line is calculated,

which is characteristic for the development of variance in time.

Instead of considering variance in each time slice, we use the relative standard deviation σr = σ
µ , which is the definition of20

variability following Junge (1974). It is calculated in each time slice and the mean gives the value for the corresponding time

scale. In the following, time scale therefore refers to the length of the interval in time in which the variability is calculated.

By scaling the standard deviation σ with the mean µ, different species become comparable. Being a combination of variability

as defined by Junge (1974) and the variance analysis introduced by Rohrer and Berresheim (2006), this method is called

variability analysis in the following paragraphs.25

Figure 3 shows the variability analysis for CO just below the tropopause for MODregular
CARIBIC, MODRANDPATH and MODRANDLOC.

The time scale changes from about 5min to 5a along the logarithmically spaced abscissa. As CO is a medium long-lived trace

gas with an atmospheric lifetime of 2-3 months and a pronounced annual cycle, the mean variability increases up to time scales

of 1a. The variability of MODRANDPATH and MODRANDLOC is larger than that of MODregular
CARIBIC on almost all time scales. For

time scales of 30d and more, however, the lines of all three datasets run in parallel, showing an increase up to 1a, from when30

on the variability does not increase. This is consistent with the annual cycle of CO, which is also the cause for the relative

11
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Figure 3. Variability analysis calculated for CO for MODRANDPATH, MODRANDLOC and MODregular
CARIBIC at HrelTP =−1km (one kilometer

below the tropopause). The time scales used to calculate Rvar using Equation 5 are indicated by vertical lines.

decrease sharply at 0.5a and 1.5a. For time scales below 30d, the distribution of flights in one month dominates the variability

analysis. MODregular
CARIBIC includes only up to four flights on consecutive days, the mean variability does not decrease when going

to time scales between 30d and 4d, while in MODRANDPATH, continuosly less data are included in each time slice, leading

to a continuous drop in the variability. For time scales of less than 1d, the data come from a single flight, showing another

drop in variability that is linked to using data from geographic regions that are ever more close in the case of MODregular
CARIBIC and5

MODRANDPATH. Since the variability analysis is so closely linked to the distribution in time and space, the variability analysis

of MODRANDLOC shows an almost constant value for time scales shorter than 30d until time scales shorter than one day are

reached, from when on the variability also drops.

Kunz et al. (2008) used the variance analysis to investigate whether the smaller SPURT dataset represents the variance

present in MOZAIC dataset. Following this thinking, we consider the variability as one possible criterion to judge the repre-10

sentativeness of one dataset for another. A score Rt,hvar describing the representativeness is defined from the difference of the

values of the variability analysis, using the following equation:

Rt,hvar = log10

(∣∣∣∣∣∣
[
σt,h1

µt,h1

]
−

[
σt,h2

µt,h2

]∣∣∣∣∣∣
)

(5)

where σt,hx stands for the standard deviation and at µt,hx for the mean in time scale t and height h of the datasets x. The overbar

implies that the mean over all time slices corresponding to the time scale t of σ/µ are used. Considering Figure 3, the score15

can be interpreted as the absolute value of the difference of the two lines at certain time scales t.
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Decreasing values of Rt,hvar mean better representativeness, the value always being negative. Depending on t, the representa-

tiveness in different time scales can be evaluated. We used time scales of 30d, 0.25a, 0.5a, 1a, 2a and 5a to calculate Rt,hvar .

When applying this method to all height bins, a profile in Rtvar is calculated for each species. This is one possible definition for

representativeness. Yet it has to pass the two requirements of being related to number of samples and variability outlined in

Sec. 3.3. The results of testing this will be presented in Sec. 6.2.5

4.3 Relative differences

The third approach to assess representativeness is to analyze the relative differences between the climatologies from two

differently large datasets. The procedure is summarized in Equation 6:

Rhrel = log10

(
1

12

12∑
m=1

|µm,h1 −µm,h2 |
µm,h2

)
(6)

which was applied to each height bin h. µm,hx stands for the mean of the data in the month m and in height bin h of the datasets10

x. The logarithm to the basis 10 was applied to the mean relative difference profile to end up with a profile in Rrel, similar to

the score Rtvar calculated from the variability analysis. Contrary to the Kolmogorov-Smirnov test or the variability analysis, this

test statistic does not contain any information on the underlying distribution, because it uses only the mean in each bin.

Figure 4 shows an example of relative differences between CO from MODregular
CARIBIC and the larger dataset MODRANDPATH.

The differences are small, mostly below an absolute value of 0.15. Rrel is defined (in Equation 6) as the logarithm to the base15

10 of the mean over all months (not shown). The score increases towards the top and bottom in Figure 4 due to less data

there. Like for Rtvar, decreasing values in Rrel mean better representativeness. And like Rtvar, Rrel has to be tested for passing

the requirements of being related to number of samples and variability (see Sec. 3.3) in order to be acceptable as a score for

representativeness. The results of testing this will be discussed in Sec. 6.3.

Other than just as a score, the value of Rrel can be understood as the average uncertainty for assuming the climatology of20

MODregular
CARIBIC as a full model climatology. This is more obvious if taken to the power of 10, in which case the uncertainty will

take values between 0 and 1. Use of this will be made in Section 6.4.

5 Model and measurement variability

Representativeness was assessed using only model data in this study, yet the final goal was to investigate the representativeness

of MEASCARIBIC. MODregular
CARIBIC and MODsampled

CARIBIC are used as a placeholder for MEASCARIBIC and compared to other model25

datasets (MODRANDPATH and MODRANDLOC) in the analysis. The results derived from these model datasets will be interpreted

for MEASCARIBIC in Sec. 6. This means that conclusions drawn from model data alone will be applied to measurements.

To justify this reasoning, it is important to investigate the differences between the model and the real atmosphere. It is not

crucial that the model reproduces the exact values of the measurements, but rather that the complexity for each species in the

model is similar to the real complexity. This will be investigated in the following two sections. The variability of MODsampled
CARIBIC30

will be used as an indicator of its complexity and compared to the variability of MEASCARIBIC. Similar to Equation 1, we use
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Figure 4. Relative differences of CO for MODregular
CARIBIC and MODRANDPATH. This is the basis used to calculate Rrel.

the relative standard deviation σr = σ/µ as a measure for variability when comparing model and measurements. Variability of

a certain time scale, e.g. 20min, will be referred to as 20min variability in the following, accordingly for other time scales.

5.1 Influence of short time scales on the climatological mean

All model datasets have been created from gridded datafiles with a certain resolution (2.8◦ or about 200km, see Sec. 2.2).

Considering the median airspeed of the CARIBIC aircraft of 885.1kmh−1, this model resolution corresponds to a time scale5

of about 20min. MEASCARIBIC has a time resoltution of up to 10s, depending on the instrument. Model data has been linearly

interpolated to this high 10s resolution, but this does not introduce the variability that is present in the measurements. The

20min variability is therefore always larger in MEASCARIBIC than in MODsampled
CARIBIC. To what extent this small scale variability

influences the climatological values is investigated here.

By reducing the 20min variability in MEASCARIBIC to that of MODsampled
CARIBIC, it is possible to determine the influence of the10

small scale variability on the climatological mean values. The reduction in variability was done separately for each species and

height to account for differences in terms of model complexity between the species. In order to reduce the variability in the

time series, they were smoothed out, the method is presented in App. B. The smoothing number used in this method indicates

how much variability has been removed. The 20min variability of MEASCARIBIC was then calculated for several smoothing

numbers.15

Figure 5 (left panel, solid lines) shows how the 20min variability drops for all species if the data are smoothed progressively

(increasing the smoothing number). The leftmost point for each species corresponds to the full 20min variability, while this

variability drops to zero if the time intervals considered in smoothing become much longer than 20min. The dashed lines show
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Figure 5. Left panel: 20min variability of i) MEASCARIBIC, that has been smoothed out to an increasing degree, indicated by an increasing

smoothing number (solid lines) and of ii) MODsampled
CARIBIC (dashed lines), both for HrelTP =−1km. The crosspoint of the dashed and cor-

responding full line indicate the smoothing number that is needed to reproduce the 20min variability of MODsampled
CARIBIC. Right panel: Mean

relative differences of MEASsmoothed
CARIBIC and MEASCARIBIC. MEASsmoothed

CARIBIC has been smoothed to have the same 20min variability as MODsampled
CARIBIC,

using the smoothing number from the left hand panel. The relative differences correspond to the error in the climatologies of MODsampled
CARIBIC

due to the coarse model resolution. N2O, C2H6 and C3H8 are measured by air samples with a low measurement frequency and therefore

not considered here.

the full model variability, which was not smoothed out. The crosspoints of the full and corresponding dashed line indicate the

smoothing numbers for which MEASCARIBIC has the same 20min variability as MODsampled
CARIBIC. MEASCARIBIC in which each

species has been smoothed to this point will be referred to as MEASsmoothed
CARIBIC.

Climatological mean values of MEASsmoothed
CARIBIC were then compared to mean values from MEASCARIBIC with the full variabil-

ity, thereby determining the influence of the reduced 20min variability. A similar influence is expected by the coarse model5

resolution, which by definition has the same 20min variability as MEASsmoothed
CARIBIC.

The mean relative difference of the climatologies for different species between MEASsmoothed
CARIBIC and MEASCARIBIC is displayed

in Figure 5 (right panel). The differences depend strongly on the species. Those species that are measured by air samples (N2O,

C2H6 and C3H8) have been shaded in grey, since they contain very little data far above and below the tropopause and are

therefore not considered in this section.10

The mean relative differences are smaller than 1% for the long lived species to the left and reach 10-20% for the other

species. Largest values appear where the mixing ratios of the species are small and vertical gradients are strong, i.e. in strato-

spheric CO, acetone or H2O and tropospheric O3. E.g. H2O has very low stratospheric mixing ratios, that are reached in

small-scale intrusions of stratospheric air encountered during flight. If these small-scale structures are smoothed out, the mean

values become larger and the difference of MEASsmoothed
CARIBIC and MEASCARIBIC is large and positive.15
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Figure 6. σMOD
r /σMEAS

r given in percent for time scales of 30d (left) and 1a (right), where MOD stands for MODsampled
CARIBIC and MEAS stands

for MEASsmoothed
CARIBIC. Values greater than 50% indicate the high model complexity.

The relative differences show the influence of a lower variability that is equal to that of MODsampled
CARIBIC. This therefore shows

that the coarse model resolution does in principle not lead to very large errors in climatological mean values. Nevertheless, the

model could have other defiencies in the description of the different species. These are made visible in the following section

by comparing model and measurement variability directly.

5.2 Comparing model and measurement variability5

In this section, the variability of MODsampled
CARIBIC is compared directly to that of MEASsmoothed

CARIBIC. For this dataset, MEASCARIBIC

has been altered in such a way to reproduce the 20min variability of MODsampled
CARIBIC, see the preceeding section. As this study

argues completely within the model world, it is important that the model has similar values for the variability, which is used as

an indicator of the underlying complexity. If the model cannot reproduce the measurement variability at all, it is not plausible

why conclusions on representativeness drawn from model data should also be true for the real atmosphere.10

As has been discussed in Sec. 4.2, variability depends on the time scale for which it is considered. In order to evaluate the

model performance, we compare σr on time scales of 30d and 1a. 30d variability includes data from typically 4 flights, so

this is a measure for the atmospheric variabilty on the global, large scale dynamics. 1a variability gives a good impression of

the annual cycle, as it includes data from many flights and different years. Figure 6 shows σMOD
r /σMEAS

r for time scales of 30d

(left) and 1a (right), using the datasets MODsampled
CARIBIC and MEASsmoothed

CARIBIC15

Figure 6 shows that the variability in the measurements reached by the model differs between species. In general, the

variability reached for shorter lived species better fits that of the measurements. Short-lived species also undergo a more

complex chemistry in the model, which adds variability. The 30d variability shown in Figure 6 (left) reveals to what extent the

model is able to capture variability related to the large scale dynamics. Most species reach 40-80%. NO is very short lived and

strongly determined by its daily cycle, which is the reason why the variability in the model reaches higher values.20
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The time scale of 1a shows the variability that represents seasonality. The model does a better job for this time scale than

for 30d, short lived species and CO2 reaching well over 60% of the variability, approaching 100% for some species. Here

again, the model chemistry increases the variability for shorter lived species to the right. There are species that are not as well

represented, while this also depends on the height considered (e.g. high values for stratospheric N2O).

The model variability is influenced by many factors including the dynamics, the representation of the chemistry and of the5

sources included in the model. The limited horizontal and vertical resolution also plays a role, even though MEASsmoothed
CARIBIC is

used as a reference for the comparison. If compared to the original MEASCARIBIC, the percentages of variability reached by the

model drop by 10-20% (not shown). It is beyond the scope of this paper to further disentangle what causes the defiencies of

the model and what leads to the differences between the species.

As is shown in Figure 6, the model reaches more than 50% of the variability of the measurements. This ratio depends strongly10

on the species and is higher for longer time scales. This points at a high complexity of the model and justifies the assumption

underlying this study: The representativeness evaluated from the model data alone is also valid for the real atmosphere and the

measurements taken by CARIBIC.

6 Results

Here, we first present the results of the application of the Kolmogorov-Smirnov test (Sec. 6.1), the variability analysis (Sec. 6.2)15

and the relative difference (Sec. 6.3) to MODregular
CARIBIC and MODRANDPATH. All have to be related to the number of flights and the

variability of the species as discussed in Section 3.3. These methods have also been applied to data not from an atmospheric

model but from a random number generator, leading to equivalent results. These are presented as supplementary material to

the article. Sec. 6.4 interprets the results by species as a representativeness uncertainty. Finally, Sec. 6.5 answers the question

of how many flights are necessary to achieve a certain degree of representativeness. In addition, Appendix A discusses the20

influence of the limitations in longitude and in pressure which are inherent in the CARIBIC dataset.

6.1 Applying the Kolmogorov-Smirnov test

The application of the Kolmogorov-Smirnov test to MODregular
CARIBIC and MODRANDPATH yields a first important result. Independent

of the trace gas and height considered, the result is always negative (not shown). This means that the data in each bin of

MODregular
CARIBIC are not representative of the corresponding bin in MODRANDPATH when defining representativeness by a positive25

result of the Kolmogorov-Smirnov test. This is also true if the data are not binned in months but only in HrelTP. The result also

stays the same for all values of the confidence limit α (using values of 0.001, 0.01, 0.05, 0.1 and 0.2).

A similar finding for aircraft data have already been reported by Kunz et al. (2008). On the one hand side this could mean

that MODregular
CARIBIC is simply not representative of MODRANDPATH. But if the other methods presented here are considered, the

conclusion seems more appropriate that the Kolmogorov-Smirnov test is simply not the appropriate way to answer the question.30

It can be considered as too strict for the type of data and the question considered here. This is also the result of a sensitivity

study, which is discussed as supplementary material to this text.
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Figure 7. Rvar calculated according to Equation 5 for a time scale of 1a for all species in all height bins, using MODregular
CARIBIC and

MODRANDPATH. Low values indicate small differences in variability.

In addition to binning into twelve months (January to December), we have also tested MODregular
CARIBIC and MODRANDPATH when

first binning into separate months (108 months in nine years) and then using this monthly mean data to compile a climatology.

For this monthly mean data, the Kolmogorov-Smirnov test does give a positive result in some heights and months. But no

meaningful pattern could be determined from the results. Especially, the result does not depend on τ∗ (not shown). The same

is true for the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for variance. They give no positive5

result for data binned directly into months. The result is positive for some months and heights if data are first binned into

separate months the monthly mean data used for testing. The postive results seem randomly distributed and no relationship to

τ∗ could be found. These tests therefore also seem not to be suitable for answering the question of representativeness.

6.2 Applying the variability analysis

This section presents the results of the application of the variability analysis to MODregular
CARIBIC and MODRANDPATH. Equation 510

was applied for different time scales (30d, 0.25a, 0.5a, 1a, 2a and 5a) to calculate Rvar. The results are exemplarily discussed

for a time scale of 1a, shown in Figure 7, in which the results are sorted using the values of τ∗ displayed in Figure 2.

Rvar shows a strong dependancy on τ∗. This is visible from Figure 7, in which the results are sorted with decreasing values

of τ∗ (from Figure 2), i.e. with increasingly higher atmospheric variabilty from left to right. The Pearson correlation coefficient

ρ of Rvar and τ∗ is high, |ρ|> 0.9 in all height bins, independent of the time scale. Rvar also shows a strong relationship to the15

number of samples: The amount of data in both MODregular
CARIBIC and MODRANDPATH decreases below and above the tropopause,

and Rvar follows suit for practically all species.
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Figure 8. Rrel calculated according to Equation 6 for all species in all height bins, using MODregular
CARIBIC and MODRANDPATH. Low values indicate

small differences in climatological mean values.

The relation of Rvar and the number of flights was also tested by using MOD3
RANDPATH defined in Sec. 3.3. Rvar was correlated

with the number of flights for each species and height. When investigating a linear relationship, the Pearson correlation coef-

ficient was approximately |ρ| ≈ 0.75 for the time scale of 5a, increasing continously when considering shorter time scales to

|ρ| ≈ 0.95 for the time scale of 30d. Considering a logarithmic relationship inreases the goodness of fit for longer time scales,

while it decreases that for shorter time scales (|ρ| ≈ 0.85 for both 5a and 30d).5

Rvar therefore passes the requirements of being inversely related to τ∗ and directly to the number of included data points and

flights. Figure 7 can therefore be used to judge upon the representativeness of MODregular
CARIBIC for MODRANDPATH.

This shows that by using the relative standard deviation (Equation 5) instead of the variance analysis applied by Kunz et al.

(2008), the difference in variability can be used to infer representativeness. Rohrer and Berresheim (2006) originally introduced

the variance analysis to investigate the sources and time scales of variability in a dataset and for this it remains a valid method.10

In order to infer representativeness, it is more appropriate to use the relative standard deviation in the analysis instead of the

absolute variance.

6.3 Relative differences

Rrel was calculated for each species in each height bin according to Equation 6, results are presented in Figure 8.

Figure 8 shows how low variability (decreasing to the left, values taken from Figure 2), is linked with good representativeness15

(low values in Rrel). Rrel decreases linearly with increasing variability τ∗ with a high Pearson correlation coefficient greater

than 0.95 for all height bins (not shown). As visibile in Figure 8, Rrel also decreases with the number of data points, which

maximizes just around the tropopause and decreases above and below it (see Figure 1).
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This dependance on the number of data points was also tested by using MOD3
RANDPATH described in Sec. 3.3. The Pearson

correlation coefficient ρ between the number of shorter random flights and Rrel was ρ≈ 0.95 for all species in all heights. Less

variable species like CO2 show a better relationship with the logarithm of the number of flights. This underlines how Rrel is

well correlated with the number of measurements.

Using Rrel as a measure passes both conditions: It is directly proportional to the number of flights and indirectly to the5

variability. In addition to Figure 7, Figure 8 can therefore be used to judge upon the representativeness of MODregular
CARIBIC for

MODRANDPATH. Rrel can be transformed into a relative difference in percent, by taking Rrel to the power of ten. A score of -2

stands for a mean relative difference of 1%.

The score that discriminates representative from the non-representative case has to be arbitrarily chosen (see Nappo et al.

(1982) and Ramsey and Hewitt (2005)). This score gives the uncertainty within which the data are considered representative.10

If a score of -2 is defined as representative (corresponding to 1% mean relative difference), then representative species and

heights can now be seperated from those species that are not representative using the results from Figure 8. But the score of -2

is arbitrary. If it is reduced to -1.5 (roughly 3% relative difference), MODregular
CARIBIC can be seen as representative for many more

species.

6.4 Representativeness uncertainty of the CARIBIC measurement data15

The last sections have shown Rrel (see Equation 6) and Rvar (see Equation 5) to be adequate scores to describe representative-

ness. After reconsidering the question we asked in the Section 3.1 (Is a climatology compiled from CARIBIC data represen-

tative of the tropopause region in mid-latitudes?), we will use Rrel in the following. It is more intuitive (compared to Rvar) as

it describes the difference to a larger dataset, e.g. in percent. A further discussion of Rvar is beyond the scope of this paper. As

noted in Sec. 4.3, Rrel is also comprehensible as an uncertainty for using the smaller dataset to compile a climatology and will20

be called representativeness uncertainty correspondingly.

In order to asses the uncertainty for accepting CARIBIC measurement data to create a climatology, model data have to

contain the same amount of data as MEASCARIBIC, which is why MODsampled
CARIBIC (see Sec. 2) will be used in the following. In

addition, MODRANDLOC (see Table 1) was used as reference, as it has a random sampling pattern and represents the full model

state, independent of the sampling pressure. The limits in pressure where again set to 180hPa< p < 280hPa. The resulting25

Rrel is shown in Figure 9. Using different wording, Rrel in this formulation can also be considered the sampling error of the

measurements.

This result - deduced from model data only - is also valid for the real world if the complexity of the model is sufficiently

high for each species. This has been shown by comparing the variability of MODsampled
CARIBIC and MEASsmoothed

CARIBIC for different time

scales (see Sec. 5). The discussion of the following paragraphs is therefore also valid for the real atmosphere, even though30

results have been derived from model data alone. Figure 9 answers the question we asked in Sec. 3.2: For which species is a

climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

When considering the representativeness uncertainty of a climatology, it is also important to consider the annual cycle of

a species, e.g. 10% can be much for a species that is more or less constant, while it is much for a species with a strong
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Figure 9. Representativeness uncertainty for using the CARIBIC data (that is 334 long-distance flights, see Table 1) to compile a climatology:

10Rrel calculated from MODRANDLOC and MODsampled
CARIBIC. Low values indicate small representativeness uncertainties. N2O, C2H6 and C3H8

are measured from air samples, which increases the uncertainty, especially for C3H8.

seasonality. The following paragraphs discuss representativeness by species, not explicitly considering the seasonal variations

for each species. The monthly resolved climatologies of CO, CO2 and O3 will be discussed exemplarily at the end of this

section.

Many of the species that sum up to NOy in the model are not actually measured by CARIBIC and therefore are not displayed

in Figure 9. In general, the representativeness uncertainty is lowest where there are most measurements, which is just around5

the tropopause (see Figure 1). This effect overlays the physical reasons for the different uncertainties for the considered species.

NO has the highest uncertainty of 90%. We propose two possible reasons: On the one hand, there are many gaps in the obser-

vations. But NO is also emitted by aircraft in the UTLS (Stevenson et al., 2004), and since CARIBIC flies in the flight corridors

heavily frequented by commercial aircraft, it is unrealistic to assume a climatology of these species to be representative of the

UTLS on a whole.10

H2O shows a strong gradient in its representativeness uncertainty, which is directly linked to the strong gradient in variability.

The dry stratosphere can be described by relatively few measurements, which is why the uncertainty is low, only reaching 25%

at most. The humid and variable troposphere influenced by daily meteorology has a higher uncertainty, reaching more than

60%.

NOy, being a pseudo-species made up of many substances, is more difficult to disassemble. The variabilty of many com-15

ponents is higher in the troposphere, where the uncertainty is 30% at its maximum. Above, it is smaller than 10% and the

climatology therefore quite trustworthy.
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It is interesting to note that C2H6 and C3H8, both collected in whole air samples still reach uncertainties comparable to those

of other species in their range of τ∗. This is due to the fact that these are moderately long-lived species for which only a smaller

number of measurements are needed for a representative climatology. The climatology of C3H8 comes with an uncertainty of

up to 25%, while that of C2H6 is better with an uncertainty of less than 10%.

The climatology of O3 is very trustworthy, the uncertainty being smaller than 10% for most height bins. The higher values5

in the tropospheric bins should not raise much concern, as O3 increases strongly with height in the UTLS and an uncertainty

of 15% will be practically unnoticable compared to the vertical increase.

This is not true for acetone, where the gradient is just opposite to O3. The climatology is trustable with an uncertainty only

up to 10% in upper levels, while it increases to 20% in the lower heights, where the influence of spatially and temporally

variable sources at the ground is stronger.10

The climatology of CO is very good, the uncertainty in stratospheric height bins being less than 5%. The troposphere, again

stronger under the influence of sources, has a higher uncertainty reaching up to 10%.

The long-lived trace gases CH4, N2O and CO2 (all detrended as described in Sec. 2.1) all have representativeness uncertain-

ties of less than 0.4%, which is lower than their seasonal variability. This is interesting especially for N2O, which is measured

only in the whole air samples.15

As example and summary, the representativeness uncertainty will be applied to climatologies of CO, CO2 and O3, shown in

Figure 10. CO is shown for MODsampled
CARIBIC (top left, panel A), MODRANDLOC (top right, panel B) and CARIBIC measurements

(MEASCARIBIC, center left, panel C). The white space in these figures has three possible reasons: the aircraft could have never

flown in that bin, there could be measurement gaps in CO or a gap in HrelTP. The measurement gaps of CO and HrelTP

from MEASCARIBIC have been mapped onto MODsampled
CARIBIC, but HrelTP differs slightly and therefore also the white space. The20

representation of CO in the model, comparing top and center left figure (panels A and C), is similar to measurements (in the

troposphere more so than in the stratosphere), but was not subject of this study. We compared the top row (MODsampled
CARIBIC and

MODRANDLOC, panels A and B) and found that Rrel is a good descriptor for the representativeness of one for the other. By

accepting the result from the model to be valid also for measurements, we can now use the score calculated from the two model

samples to determine the representativeness uncertainty of MEASCARIBIC.25

By again defining Rrel =−1 (10% uncertainty, one third of the seasonal variation) as the limit for representativeness, the

climatology of MEASCARIBIC (Figure 10, center left, panel C) was shaded in grey where it is not representative. The representa-

tiveness uncertainty shown in Figure 9 only serves as a first indication of the expected uncertainty when resolving monthwise.

The center right panel (panel D) displays the standard deviation of CO from MODRANDLOC. By comparing the center panels

(C and D), it becomes evident that the variability specific to CO is one of the reasons for the higher representativeness uncer-30

tainty in spring, while it cannot explain all the features. The number of flights is a different reason, which explains the higher

uncertainty in January, the month with the least flights (not shown).

The limit of 10% should not be applied in general and has to be adapted to the species under consideration. This becomes

evident by the bottom row in Figure 10 (panels E and F), which shows climatologies of CO2 and O3. CO2 shows a small

annual variation around a high background value. So 10% uncertainty could be easily reached by a single measurement, which35
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Figure 10. Climatology of CO, built from MODsampled
CARIBIC (panel A), MODRANDLOC (panel B) and the CARIBIC measurements (MEASCARIBIC,

panel C). Areas of 10ˆRrel > 0.1, calculated from the top row, were used to shade non-representative areas in the climatology of MEASCARIBIC

in grey. Panel D displays the 1σ standard deviation of CO from MODRANDLOC. The bottom row (panels E and F) displays climatologies from

MEASCARIBIC of CO2 (left) and O3, shaded with 10ˆRrel > 0.003 and 10ˆRrel > 0.15, respectively.
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would certainly not be representative of the whole year. The shading for CO2 in Figure 10 was set at a threshold of 0.3%,

again just above one third of the seasonal variation. The high values in spring in the upper troposphere show an even lower

uncertainty, the uncertainty of all data being less than 0.7% (not shown). The opposite is true for O3, for which the threshold

was set to 15% uncertainty (around one fourth of the seasonal variation). Many tropospheric values in spring or at times of

high gradients in the stratosphere at the beginning and end of spring have an uncertainty higher than these 15%.5

As the results in Figure 9 are sorted by the variability of the species and this is linked to their lifetime in following Junge

(1974), conclusions are possible for species even if they have not been explicitly considered in this study. This is true for SF6,

for example, which is measured in whole air samples by CARIBIC but was set to 0 in the model run and could therefore not be

included in this study. As it is long-lived in both troposphere and stratosphere (Ravishankara et al., 1993), a climatology from

CARIBIC SF6 measurements can be considered to be representative even though it is measured only by whole air samples.10

Two limitations are inherent in the CARIBIC data: the Pacific Ocean is never sampled and the pressure is limited to flight

levels. The influence of both these limitations is discussed in Appendix A.

6.5 Number of flights for representativeness

One last question remains to be answered: For those substances not representative yet, how often does one have to fly in order

to achieve a representative climatology?15

This question can be answered with the help of MOD3
RANDPATH. Figure 11 shows the representativeness uncertainty for some

species and different numbers of flights. As has been discussed in Section 6.4, the yearly variation of a species is one of the

factors that determines the threshold of the uncertainty with which the species can be considered to be representative.

E.g., for (detrended) CO2, the mean value of MODRANDLOC is 385.7ppmv with a yearly variation of 2.5 to 3.5ppmv. A

representativeness uncertainty of at least 0.5% has therefore to be set as the minimum threshold for CO2. This can be reached20

with only few flights, much less than those included in MODsampled
CARIBIC, indicated by the dashed line in Figure 11 at 334 flights.

For O3, on the other hand, the yearly cycle proposes an uncertainty of 50% or more. While this is the minimum value to

reproduce the yearly cycle at all, it may still not be sufficient for the application. With the number of CARIBIC flights, the

uncertainty in O3 is low already (< 5% in this height), while the uncertainty is continuosly reduced if the number of flights

increases.25

As is indicated by Figure 11, highly variable species like NO need many flights in order for their climatologies to reach

low uncertainties. Even 1000 flights, approximately ten more years of flying the CARIBIC observatory, will not reduce the

uncertainty below 10%.

Other species that are not included in Figure 11 can be deduced from their value of τ∗ with the help of Figure 2. Those species

measured in air samples need even more CARIBIC flights than indicated by the number in Figure ??, as the measurement30

frequency is much lower.

24



No of flights
10 2 10 3

10
^R

re
l (

re
pr

es
en

t. 
un

ce
rt

.)
 [%

]

10 -3

10 -2

10 -1

10 0

10 1

10 2
@HrelTP=0km

NO
H2O
O3
CO
CH4
CO2
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7 Conclusions

We describe and assess the degree of climatological representativeness of data from the passenger aircraft project IAGOS-

CARIBIC. After a general discussion of the concept of representativeness, we apply general rules to investigate whether

climatologies from IAGOS-CARIBIC trace gas measurements can be seen as representative. We answer the specific question:

For which species is a climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?5

In order to answer this question, four datasets were created from a nudged model run of the chemistry-climate model

EMAC. Two datasets sample the model at the geolocation of CARIBIC measurement data (MODregular
CARIBIC and MODsampled

CARIBIC).

These datasets are contrasted to the much larger datasets MODRANDPATH (random flight tracks with similar properties as those

of MODregular
CARIBIC) and MODRANDLOC (random locations).

As a first step, we demonstrate that these model datasets are appropriate to answer our question, which asks for the rep-10

resentativeness of CARIBIC measurement data. In order to justify the validity of the conclusions drawn from model data to

the measurements, we compare model and measurement variability, using the variability as an indication of the models ability

to reproduce changes in space and time. To compare like with like, variability on scales smaller than the model resolution is

removed from the measurements. With this prerequisite the model reproduces 50-100% of the variability of the measurements,

depending on time scale, height relative to the tropopause and species. This is sufficient to transfer our results from the model15

world to the real atmosphere.

Three methods to describe representativeness are developed and applied: (i) the Kolmogorov-Smirnov test (and the Mann-

Whitney, Brown-Forsythe and Levene’s test), (ii) variability analysis following Kunz et al. (2008) and (iii) a test interpreting
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the relative difference between two datasets. Two fundamental requirements are essential for representativeness: its increase

(i) with the number of measurements and (ii) with decreasing atmospheric variability of the species, which is related to atmo-

spheric lifetime following Junge (1974). By formulating the variability analysis and relative differences as scores (Rvar and Rrel

respectively), we demonstrate that they pass these two requirements, while the statistical tests are all too strict. Rrel (describ-

ing the representativeness of a climatology) is better suited for answering the question and is therefore used in the remaining5

analysis.

The score Rrel is easily converted to a representativeness uncertainty in percent and this measure is used in the discussion.

The results show that CO2, N2O and CH4 have very low uncertainties (below 0.4%). CO, C2H6, and O3 reach higher values

(5% - 20%), but can still be used to compile representative climatologies around the tropopause. NOy and H2O are only

usable in the lower stratosphere (uncertainties of 5% to 8% there, higher elsewhere), while NO and C3H8 cannot be used10

for a representative climatology (uncertainties of 25% and more). Naturally, the interpretation of results strongly depends on

the chosen threshold uncertainty and should depend on the seasonal variability of the species under consideration. This is

demonstrated by setting different limits for climatologies of CO2, CO and O3.

In addition, the uncertainty can be translated into a number of flights necessary to achieve representativeness. This is demon-

strated for some species by showing the relationship of the number of flights and the representativeness uncertainty. For long-15

lived species like CO2 and CH4, the 334 IAGOS-CARIBIC flights used in this study already provide enough data, while

short-lived species like NO need around 1000 flights to reduce the uncertainty to 10%, sufficient to reproduce the strong

annual cycle.

The general concept of using two sets of model data to calculate the representativeness is easily applicable to other questions.

One model dataset should mirror the measurements, the other should be much larger, taking into account certain statistical20

properties of the measurement dataset, so that the two datasets become comparable.

Questioning the representativeness of sampled data is important. Patterns might occur when sorting or averaging sparsely

sampled data, but these patterns are not necessarily meaningful. We discuss and show a way to address this problem of repre-

sentativeness by using model data. By help of the methods presented here, representativeness is given a sound mathematical

description, returning an uncertainty characterizing the specific dataset.25

Appendix A: Limitations in longitude and pressure

MEASCARIBIC is limited in longitude (the Pacific Ocean is never sampled) and pressure (as all civil aircraft, CARIBIC flies

at a certain pressure level). Both limitations influence the climatologies calculated from the dataset. They are discussed in the

following sections.

A1 Limitation in pressure: Aircraft tropopause pressure bias30

By calculating Rrel using MODregular
CARIBIC and MODRANDLOC, an important fact can be illustrated about data collected with instru-

ments on civil aircraft. As the aircraft flies at constant pressure levels, data are also taken at these pressure altitudes only. If
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data are then resorted into heights relative to the tropopause (HrelTP), this limit in pressure is no longer visible. Nevertheless,

it influences the results as the volume mixing rations of many trace substances are not only a function of their distance to the

tropopause, but also of pressure.

The effect on the climatological values can be illustrated by calculating Rrel (see Equation 4) using MODRANDLOC and

MODregular
CARIBIC within 10hPa< p < 500hPa. Figure 12 shows the results (right panel). For comparison, the left panel of Fig-5

ure 12 shows Rrel of the same datasets when setting 180hPa< p < 280hPa, the range at which CARIBIC measures. The

representativeness uncertainty is much higher in almost all heights on the right hand side (10hPa< p < 500hPa), except just

above the tropopause, where MODregular
CARIBIC contains most data. Only the long lived species CO2, N2O and CH4 retain their

low uncertainties. For the more variable species to the right of the figure, the representativeness uncertainty increases strongly,

especially in the troposphere, where the variability increases if data taken at higher pressure are included.
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Figure 12. Rrel calculated from MODregular
CARIBIC and MODRANDLOC with the range of p set to 180hPa< p < 280hPa (left) and 10hPa<

p < 500hPa (right). Low values indicate small climatological differences. The difference between the two panels shows the influence of

expanding the limits in p when calculating the climatological mean values with HrelTP used as a vertical coordinate.

10

The strong increase in representativeness uncertainty is always present in measurement data from commercial aircraft, which

can only collect data high above the tropopause when the tropopause is at high pressure and far below when it is at low pressure

values. This bias is naturally contained in all data measured at constant pressure and then sorted relative to the tropopause and

should be kept in mind when examining climatologies from corresponding platforms.

A2 Limitation in longitude: The influence of the Pacific Ocean15

As visible in Fig 1, there are no CARIBIC measurements over the Pacific Ocean, while MODRANDLOC and MODRANDPATH also

cover the Pacific. The uncertainty introduced by taking the Pacific into account in MODRANDLOC is investigated by calculating

Rrel from MODregular
CARIBIC and MODRANDLOC in two different setups. Rrel is calculated from full MODRANDLOC and MODregular

CARIBIC

(denoted by RA
rel) and compared to Rrel calculated with MODRANDLOC limited in longitude λ to 120◦W < λ < 120◦E (denoted

27
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Figure 13. |RA
rel/RB

rel− 1|, given in percent. This is the fraction of the representativeness uncertainty introduced in Rrel calculated from

MODregular
CARIBIC and MODRANDLOC by including the Pacific ocean in MODRANDLOC, even though it is not sampled by MODregular

CARIBIC. Both,

textRA
rel and textRB

rel have been calculed from MODregular
CARIBIC and MODRANDLOC, excluding the Pacific in MODRANDLOC in the calculation of

textRB
rel.

by RB
rel). The result is shown in Figure 13 as relative differences |RA

rel/RB
rel− 1| between the two uncertainties. The relative

differences show the share of the uncertainty inherent in MODregular
CARIBIC because the Pacific is included in the reference dataset

MODRANDLOC.

The importance of the Pacific depends on the species under consideration and whether the stratosphere or troposphere are

considered. The influence on stratospheric values is very small for all species. In addition, those heights with less data (top and5

bottom) are most strongly influenced if the Pacific is not considered. For the long-lived species CO2 and N2O, the uncertainty

increases only little (less than 3%) if the Pacific is included in the reference climatology of MODRANDLOC. But tropospheric

CH4 is more influenced by surface values. Interestingly, ClNO2 is also not affected, which clearly shows that the effect does

not depend on lifetime, but on the source regions and the chemistry. Acetone, CO and C2H6 are air pollutants with strong

sources in Asia. Parts of these sources are excluded if the Pacific is not considered, which is why the inclusion of the Pacific10

in MODRANDLOC is responsible for 15-20% of the total uncertainty. The situation is similar for HNO3, N2O5, BrNO3 and

HONO. For the other species, the uncertainty introduced by the Pacific is smaller.

Appendix B: Method of smoothing

This section shortly describes the method of smoothing used for creating the dataset MEASsmoothed
CARIBIC.

Each species and each flight is considered separately. For smoothing a certain interval of the time series (consisting of a15

certain number of data points N ), the time series is first cut into the corresponding number of pieces and the mean value of the
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Figure 14. Timeseries of CO for flight 445 from Frankfurt to Tokyo. Shown is the time series of the interpolated model data and of the

measurements. Measurements have been smoothed three times. The number indicates the length of the smoothing interval N .

N datapoints calculated within each piece. In a second step, these mean values are associated with the center of each piece of

the time series. Then, a linear interpolation is performed between the central points. The corresponding mean value is applied

directly from the beginning of the flight to the center of the first interval and from the center of the last interval to the end of the

flight. Finally, the gaps in the original time series are mapped onto the smoothed data. The original and the resulting smoothed

time series are shown in Figure 14 for three different lengths of the smoothing interval N .5
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