
Reply to Referee Comments 

Dear Referees, 

thank  you  for  your  comments  and  remarks  to  the  manuscript.  Reconsidering  the  points  you 
addressed have substantially improved the manuscript. 
We have included a new chapter (now chapter 5), which we devote to the comparison of the model 
and measurements. We compare the variability in the two datasets in order justify the conclusion of 
the study, in which we apply the results from a model study to measurements.
In addition, numerous other and small changes have been made. We no longer include NO2, as 
there  are  very  few  measurements.  The  paper  now  includes  an  appendix,  which  describes  the 
influence of the Pacific ocean and on limits in pressure on the results. 
In the following, we present a point by point reply to your suggestions, followed by the marked up 
manuscript. As a reference and for better readability, we have also added the manuscript as such. 

Best regards, 

Johannes Eckstein 



Referee 1

Major Comments

1. However, the question arises if the model can be used as an appropriate tool for the question. I  
think this question has not been addressed sufficiently in the paper. How well can data from a  
course model resolution be representative of the state of the atmosphere as described here? The  
representation of the model climatology vs. flight track interpolation should depend on the models  
spatial and temporal resolution. If the grid or time span is too large (likely the case for global  
models), the model would not be able to represent the variability of the observations. A test would  
require to average the observations to the same model grid and then compare the variability. 

As noted above, we have now included a separate section (Sec. 5) that treats this question. 
We show the influence of the small scale variability on climatological mean values and 
discuss the differences between model and measurement variability on longer time scales.

2. Furthermore, I do not see any evaluation of the model. How well does the model represent the  
atmosphere?  Especially  water  vapor  is  a  gas  that  many  models  are  not  able  to  simulate  
appropriately, which is also the case for NOx and NOy. A discussion on how much this study  
depends on the performance of the model to represent chemical tracer should be added. 

The  new section  also  covers  the  differences  between species.  A detailed  validation  is  
beyond the scope of this study, as we use the model as a tool for a different purpose. The 
section describing the model has been expanded, including more references. A validation 
of the model is not the focus of this study, but described by Hegglin (JGR), 2010.

3. Finally, little has been done to identify reasons for differences between the flight track comparison  
and the global comparison, based on the atmospheric character of different trace gases dependent  
on  the  region  for  instance.  Depending  on  region,  airmasses  experience  more  pollution,  
convection, stratosphere/troposphere exchange. The Pacific experiences a lot of pollution from  
South East Asia in some seasons than the Atlantic. Since CARIBIC data do not cover the Pacific,  
what implication does that have of the representation of the data compared to a global average? I  
would suggest, plotting a lon/lat map for a certain altitude level, say 1 km below the tropopause.  
This may help explain why some tracers are representative and why others may be not. Certainty  
35-70 degrees is a very large region that covers a lot of different airmasses reaching from the  
tropics to the polar regions.

We have included a section in the appendix that assesses the influence of the Pacific (Sec. 
A1). The influence on climatological mean values is stronger for those species determined 
by source regions in Asia. 

Minor Comments

1. Page 3, Line 9. The assumption that species in the model show a similar variability has not been 
supported. A climatology of trace gases from the course model resolution is expected to show a 
much smaller variability than the observations. Wouldn’t you expect a different result if you would 
run with a high model resolution spatial and temporal?

We now include a new section (Sec. 5) which treats the differences in model and 
measurement variability. Setting up or running a model run with a higher resolution is 
beyond the scope of this paper.



2. Page 4, line 15: Why is N2O5 counted twice, please explain.

N2O5 is measured by catalytic conversion to NO. One N2O5 molecule yields two NO 
molecules, this is why every N has to be counted. This is explained in the manuscript.

3. Page 5: Line 6: is it +-4km (as stated above) or +- 4.25km?

It has been corrected here. It is +-4.25km, but heights are labeled with their centers, which 
corresponds to +-4km.

4. Page 5,  Line  17ff:  Constraining  the  data  to  35-75  degree  N is  not  really  removing different  
characteristics of tropical or polar airmasses and you would expect a larger variability. Earlier  
studies discussed differences in the characteristics of UTLS airmasses depending on the location  
with the jet stream and therefore with the height ofthe tropopause, which strongly varies with  
season. I think, constraining the comparison to 35-75 degrees N because of a good coverage of  
aircraft data would the better argument. There should be some discussion on the variability of the  
considered region.

True, the good coverage was also an argument that we now state in the text. The latitudinal 
limit is for sure not sufficient to exclude all influence of lower higher or lower latitudes, 
but is a first  approximation. We do discuss data relative to the local tropopause, as all  
fields are presented in HrelTP.

5. Page 5, Line 23, if you define mid-latitude as 35-75deg, then please specify that here.

We have added a comment specifying this. 

6. Page 6: Line 6-7: The temperature comparison for the data is taken from meteorological analysis.  
Are those the same that were used to nudge the model? That would explain the high correlation  
coefficient. Please clarify.

Temperature measured by CARIBIC is not considered for ERA-Interim, which was used 
for nudging the model.

7. Page 7, Line 7-8: HrelTP does not look very similar to me. Distributions in the lower two rows in  
Figure 1 are more often above the TP than the flight track interpolated data. What implications  
will this have for the analysis?

We have reformulated the paragraph and revised our judgment. The reasoning is different:  
Both,  the distribution in  HrelTP and the different  climatologies,  are influenced by the 
sampling pattern. So the differences that show up in HrelTP do not imply differences in the 
climatologies, but both are influenced for the same reasons. 

8. Page 7: Line 18. The text describes that the variability of the model data if interpolated to the  
flight track is only 40-70% of the actual observed data. Further, it is discussed that the variability  
in the model cannot capture the small scale variability of the data. Then the assumption is made  
that the variability of the model is similar for all species. I do not follow this conclusion. Why is  
this the case?

This paragraph has been completely revised and a new section now covers this subject.



9. Page 9: Line 19: How does the model represent CO2, N2O and CH4? If those are prescribed as  
fixed boundary conditions, certainly the model would not identify the variability that exists in the  
real data.

Boundary conditions are not fixed. For CO2, N2O and CH4, they are prescribed as latitude 
dependent monthly means. We have included a short paragraph in the text on the boundary 
conditions of chemical species.

10. Page 13: I am not surprised about the different characteristics, since the different coverage of  
CARIBIC compared to the random distribution is very different, Figure 1 left column, the flight  
track sample more tropical air masses (being more concentrated in the south). Furthermore, the  
Pacific with different characteristic of tracers are not sampled by the CARIBIC data set. It would  
help to see for example a figure of CO at the altitude considered for example 1 km below the  
tropopause. A discussion on differences of the sampling location due to chemical characteristics  
that  are  different  depending  on  sampling  tropical  or  polar  air  masses,  or  characteristic  
longitudinal variability in different tracers would be helpful.

Whether  the  climatologies  produced  by  the  sampling  pattern  of  CARIBIC  are 
representative  is  just  the  question  that  we  are  investigating  in  this  study.  Regional 
differences  are  another,  interesting  subject,  which  is  more  difficult  to  investigate  with 
CARIBIC data. As a first step, the influence of the Pacific ocean is included as part of the 
appendix of the paper. 

11. Page 17: typo line 2 “while it is can be much”  

The typo has been corrected.

12. Page 17: Line 10: models usually have a poor representation of NO and NO2, especially in the  
UTLS it  depends on lightning. Also convection is influencing NOx and can strongly vary with  
location, which is usually not well represented in models. Couldn’t this be the reason why there is  
a larger uncertainty?

NOx production resulting from lightning activity is included in the model (Grewe et al.,  
2001). The geographical restraint of CARIBIC flight routes to flight corridors and thereby to 
the regions with high VMR of NOx has the stronger influence on representativeness. 

13. Line 14: How is the model representing H2O in the stratosphere?

In  the  stratosphere  and  mesosphere  the  chemical  H2O tendency  (due  to  the  methane 
oxidation) is calculated with the help of the chemical submodel MECCA (Sander et al.,  
2005). 

14. Line 20; C2H6 and C3H8 are considered short-lived species with lifetimes of a few weeks or so.

We have changed the description to moderately long-lived.

15. Section 5.5 I  think,  the question should be changes for  extended to:  What would be a better  
regional coverage improve the statistic? This could be easily addressed within this paper, since  
one could extend the coverage over the pacific region, but keep the number of flights the same.

The influence of the Pacific is now covered in the appendix (Sec. A1). A more detailed 
study of the influence of different regions could be the subject future studies.

16. Conclusions: Page 21: Line 14: Sentence is unclear.  

The sentence has been reworded. 
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC is
::
are

:
often used to derive trace

gas climatologies
::::::::::::
climatologies

:::
of

:::::
trace

:::::
gases

:::
in

:::
the

::::::
upper

:::::::::::
troposphere

::::
and

::::::
lower

:::::::::::
stratosphere

::::::::
(UTLS). We investigate to

what extent such derived climatologies can be assumed to be representative for
::::::::::::
climatologies

:::
are

:::::::::::::
representative

::
of

:
the true

state of the atmosphere.
::::::::::::
Climatologies

::::
are

::::::::::
considered

:::::::
relative

:::
to

:::
the

:::::::::::
tropopause

::
in

::::::::::::
mid-latitudes

:::::::
(35◦N

::
to

:::::::
75◦N)

:::
for

:::::
trace

:::::
gases

::::
with

::::::::
different

::::::::::::
atmospheric

:::::::::
lifetimes. Using the chemistry-climate model EMAC,

:
we sample the modelled trace gases5

along CARIBIC flight tracks. Different trace gases are considered and climatologies relative to the mid-latitude tropopause are

calculated. Representativeness can now be
:::::::::::::::::
Representativeness

::
is

::::
then assessed by comparing the CARIBIC sampled model data

to the true
:::
full climatological model state. Three statistical methods are applied for this purpose: the Kolomogorov-Smirnov

test , and
:::
the

::::::::::::
investigation

::
of

:::::::::::::::::
representativeness:

::::
the

:::::::::::::::::::
Kolmogorov-Smirnov

::::
test

::::
and

::::
two scores based on

:::
(i) the variability and

:::
(ii) relative differences.10

Generally, representativeness
::::
Two

::::::::::::
requirements

:::
for

:::
any

:::::
score

::::::::::
describing

::::::::::::::::
representativeness

:::
are

:::::::::
essential:

:::::::::::::::::
Representativeness

is expected to decrease with increasing variability and to increase
:::::::
increase

::
(i)

:
with the number of available samples

:::::::
samples

::::
and

:::
(ii)

::::
with

::::::::::
decreasing

::::::::::
variability

::
of

:::
the

:::::::
species

::::::::::
considered. Based on this assumption

::::
these

::::
two

::::::::::::
requirements, we investigate the

suitability of the different statistical measures for our problem
::::::::::::
investigating

::::::::::::::::
representativeness. The Kolmogorov-Smirnov test

seems too
::
is

::::
very strict and does not identify any

::::
trace

:::
gas

:
climatology as representative – not even long lived well observed

::
of15

::::
long

:::::
lived trace gases. In contrast, the variability based scores pass the general requirements for representativeness formulated

above. In addition, even the simplest metric (relative differences ) seems
::::
two

::::::
scores

::::::
based

:::
on

:::::
either

::::::::::
variability

:::
or

:::::::
relative

::::::::::
differences

:::::
show

:::
the

::::::::
expected

:::::::::
behaviour

::::
and

::::
thus

:::::::
appear applicable for investigating representativeness.

Using
:::
For

::::
the

::::
final

::::::::
analysis

::
of
::::::::::::::

climatological
:::::::::::::::::
representativeness,

:::
we

::::
use

:
the relative differences score we investigate the

representativeness of a large number of different trace gases . For our final consideration we assume that the EMAC model is a20

reasonable representation of the real world and that representativeness in the model world can be translated to representativeness

1



for CARIBIC measurements. This assumption is justified by comparing the model variability to
::::
and

::::::::
calculate

:
a
::::::::::::::::
representativeness

::::::::::
uncertainty

:::
for

::::
each

:::::
trace

::::
gas

::
in

:::::::
percent.

::
In

:::::
order

::
to

::::::
justify

:::
the

:::::::
transfer

:::
of

::::::::::
conclusions

::::::
about

::::::::::::::::
representativeness

::
of

:::::::::
individual

:::::
trace

:::::
gases

:::::
from

:::
the

::::::
model

::
to

:::::::::::::
measurements,

:::
we

:::::::
compare

::::
the

::::
trace

::::
gas

:::::::::
variability

::::::::
between

:::::
model

::::
and

:::::::::::::
measurements.

::::
We

::::
find

:::
that

:
the variability of CARIBIC measurements

::::::
model

:::::::
reaches

::::::::
50-100%

:::
of

:::
the

::::::::::::
measurement

::::::::::
variability.

::::
The

:::::::::
tendency

::
of

:::
the

::::::
model

:::
to

:::::::::::::
underestimate

:::
the

:::::::::
variability

::
is
:::::::
caused

:::
by

:::
the5

::::::::
relatively

::::::
coarse

:::::::
spatial

:::
and

:::::::::
temporal

::::::
model

:::::::::
resolution.

::
In

:::::::::::
conclusion,

:::
we

::::::::
provide

:::::::::::::::::
representativeness

::::::::::::
uncertainties

:::
for

:::::::
several

::::::::
species

:::
for

:::::::::::
tropopause

::::::::::
referenced

:::::::::::::
climatologies.

::::::::::
Long-lived

:::::::
species

::::
like CO2 ::::

have
::::
low

::::::::::::
uncertainties

::::::::::
(≤ 0.4%),

:::::
while

::::::::::::
shorter-lived

:::::::
species

::::
like

:
O3 ::::

have
::::::
larger

::::::::::::
uncertainties

:::::::::
(10-15%). Finally, we show how

:::::::
translate the representativeness score can be translated into a number of flights

:::
that

::::
are nec-

essary to achieve a certain degree of representativeness.
:::
For

::::::::
example,

::::::::::
increasing

:::
the

:::::::
number

::
of

::::::
flights

:::::
from

::::
334

::
to

:::::
1000

::::::
would10

::::::
reduce

:::
the

:::::::::::
uncertainty

::
in CO

::
to

::
a

:::::
mere

::::
1%,

:::::
while

::::
the

::::::::::
uncertainty

:::
for

:::::::
shorter

:::::
lived

:::::::
species

:::
like

:
NO

:::::
would

:::::
drop

:::::
from

:::::
80%

::
to

:::::
10%.

1 Introduction

The UTLS (upper troposphere/lower stratosphere) is dynamically and chemically very complex and shows strong gradients in

temperature, humidity and in many trace gases (Gettelman et al., 2011). As the the mid and upper troposphere have a strong15

influence on the atmospheric greenhouse effect, the UTLS plays an important role in our climate system (Riese et al., 2012).

To characterize processes and evaluate the performance of chemistry-transport models in this area, we require spatially well

resolved data collected on a global scale
::
are

::::::::
required.

Aircraft are a suitable platform to carry out these measurements as they are able to probe in situ and at a high frequency.

Measurements taken by commercial aircraft projects like IAGOS (In-Service Aircraft for a Global Observing System, Petzold20

et al. (2015)) and CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner, Matsueda et al. (2008))

generate more continuous and regular datasets than research aircraft on sporadic campaigns and are therefore commonly given

the attribute representative. But what is meant by this adjective?

Ramsey and Hewitt (2005) give a general introduction to representativeness, coming from soil sciences. As they state, the

adjective representative has no meaning of its own, so a definition has to be given and ’it must be asked "representative of25

what?"’

In the scope
::::
area of meteorology, Nappo et al. (1982) give the following definition: ’Representativeness is the extent to which

a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain

taken on a scale appropriate for a specific application.’ Representativeness in their understanding ’is an exact condition, i.e., an

observation is or is not representative.’ Only if ’a set of criteria for representativeness is established, analytical and statistical30

methods can be used to estimate how well the criteria are met.’

The mathematical definition given by Nappo et al. (1982) is mostly applied to data collected in the boundary layer, where

it is used to answer the question whether a flux tower station is representative for
:
of

:
the area in which it is positioned (e.g.
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by Schmid (1997), Laj et al. (2009) or Henne et al. (2010)). This can also be analysed by means of a cluster analysis with

backward trajectories (e.g. by Henne et al. (2008) or Balzani Lööv et al. (2008)). By this method, source regions for measured

trace gases can be found and the type and origin of air masses contributing to an observed air mass determined, i.e. the airmass

the data is representative for
::
are

:::::::::::::
representative

:::
of. Köppe et al. (2009) apply this method to aircraft data from the project

IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument container, being5

part of IAGOS).

Lary (2004) and Stiller (2010) discuss the representativeness error in the field of data assimilation. Lary (2004) uses repre-

sentativeness uncertainty as a synonym for variability within a grid cell, Stiller (2010) discusses the sampling error, which is

considered to be part of the representativeness uncertainty. Larsen et al. (2014) study the representativeness of one dimensional

measurements taken along the flight track of an aircraft to the three dimensional field that is being probed. But as they consider10

single flight tracks, their methods and definitions do not apply here.

The study of Schutgens et al. (2016) is more related to this study. They consider the sampling error on a global scale,

comparing normal model means to means of model data collocated to satellite measurements. They find that this sampling

error reaches 20− 60% of the model error (difference between observations and collocated model values).

We have been motivated by Kunz et al. (2008). They analysed whether the dataset of the aircraft campaign SPURT (SPURen-15

stofftransport in der Tropopausenregion - trace gas transport in the tropopause region, Engel et al. (2006)) is representative of

the larger MOZAIC dataset (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIr-

bus airCraft, the precursor of IAGOS-core). Kunz et al. (2008) investigate distributions of two substances (O3 and H2O) in two

atmospheric compartments (upper troposphere and lower stratosphere). They find that the smaller SPURT dataset is represen-

tative on every time scale of the larger MOZAIC set for O3, while this is not the case for H2O. While SPURT O3 data can be20

used for climatological investigations, the variability of H2O is too large to be fully captured by SPURT on the interseasonal

time scales.

This is similar to what is done in this study: We investigate the representativeness of data for different trace gases from

IAGOS-CARIBIC (see Sec. 2.1) for a climatology in the UTLS. Possible mathematical definitions of the word representative-

ness are first discussed with the help of this data. Then, its representativeness following these definitions is investigated. By25

using data from the chemistry-climate model EMAC (see Sec. 2.2) along the flight tracks of IAGOS-CARIBIC and comparing

this to a larger sample taken from the model, it becomes possible to investigate the representativeness of the smaller of the two

model datasets. We assume that the different species are equally well represented in the model in terms of the processes acting

on them and their variability . In this way,
:::
also

::::::
assess

::::::::
whether

:::
the

::::::::::
complexity

:::
of

:::
the

::::::
model

::
is
:::::::
similar

::
to

::::
that

:::::::::
portrayed

:::
by

:::
the

:::::::::::::
measurements,

:::::
using

::::
the

:::::::::
variability

:::
as

:
a
::::::::
measure

:::
for

::::
the

::::::::::
complexity.

::::
We

::::
find

::::
that

:::
the

::::::::::
variability

::
of

:::
the

::::::
model

::
is
:::::
high

:::::::
enough30

:::
and

:::::::::
therefore

::::::::
quantify the representativeness of IAGOS-CARIBIC measurement data for a climatology in the UTLS can be

quantified by using the two model datasets alone, using only the geolocation of the measurements. An exact reproduction of

all measurements by the model is not necessary for this argument and is not investigated in this study.

In Sec. 2, more details on the data from IAGOS-CARIBIC and the model run will be given. The general concept and defini-

tion of representativeness is discussed in Sec. 3. This section also gives details on sampling the model and on the variability,35
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which is used to group results by species. The statistical methods are then explained in Sec. 4, namely the Kolmogorov-Smirnov

test, a variability analysis following the general idea of Kunz et al. (2008) and Rohrer and Berresheim (2006) and the relative

difference of two climatologies.
:::
We

::::
then

:::::::
discuss

:::
the

::::::::::
variability

::
of

:::
the

::::::
model

::::
data

:::
in

::::::::::
comparison

::
to
::::
that

:::
of

:::
the

:::::::::::::
measurements

::
in

::::
Sec.

::
5.

:
The application of the methods to the different model samples is described in Sec. 6. After showing the result of each

of the three methods seperately, Sec. 6.4 discusses the representativeness of the IAGOS-CARIBIC measurement data, while5

Sec. 6.5 answers the question how many flights are necessary to achieve representativeness. Sec. 7 summarizes and concludes.

2 Model and data

2.1 The observational IAGOS-CARIBIC dataset

Within IAGOS-CARIBIC (CARIBIC for short), an instrumented container is mounted in the cargo bay of a Lufthansa passen-

ger aircraft during typically four intercontinental flights per month, flying from Frankfurt, Germany (Munich, Germany, since10

August, 2014), see also Brenninkmeijer et al. (2007) and www.caribic-atmospheric.com.

During each CARIBIC flight, about 100 trace trace gas and aerosol parameters are measured. Some are measured continu-

ously with a frequency between 5Hz and 1/(5min) and commonly available every
:::::
5s−1

:::
and

:::::::::::
0.2min−1)

::::
and

::::::::
available

:::::
from

:::
the

::::::::
database

::::::
binned

::
to

:
10swhile others

:
.
::::::
Others

:
(e.g. non-methane hydrocarbons) are taken from up to 32 air samples collected

per flight. The substances considered in this study are NOy, H2O, O3, CO2, NO, , (CH3)2CO (acetone), CO and CH4 from15

continuous measurements and N2O, C2H6 and C3H8 from air samples. NOy is the sum of all reactive nitrogen species, mea-

sured by catalytic conversion to NO (Brenninkmeijer et al., 2007).
::::
Data

:::
of N2O,

:
CH4:::

and
:
CO2 ::::

were
:::::::::
detrended

:::
by

::::::::::
subtracting

:::
the

:::::
mean

::
of

:::::
each

::::
year

:::::
from

:::
the

::::::
values

:::
of

:::
that

:::::
year

:::
and

:::::::
adding

:::
the

:::::::
overall

:::::
mean.

The data of all flights from the year 2005 (beginning of the second phase of CARIBIC) to the end of December, 2013 (end

of the model run) are considered in this study.
:::
This

:::::::
dataset

::::
will

:::
be

:::::::
referred

::
to
:::
as

:::::::::::::
MEASCARIBIC.20

As this study investigates representativeness using model data, the geolocation of the CARIBIC measurements at 10s res-

olution is used. In a second step, the gaps of the CARIBIC measurements and height information (due to technical problems

etc.) are mapped onto their representation in the model data to infer the representativeness of the measurement data.

2.2 The chemistry-climate model EMAC

EMAC (ECHAM5/MESSy Atmospheric Chemistry model; Jöckel et al. (2006)) is a combination of the general circulation25

model ECHAM5 (Roeckner et al., 2006) and different submodels combined through the Modular Earth Submodel System

(MESSy, Jöckel et al. (2005)). We use here a model configuration with 39 vertical levels reaching up to 80km and a horizontal

resolution of T42 (roughly 2.8◦ horizontal resolution).

The model integration used in this study simulated the time between January 1994 and December 2013, with data output

every eleven hours. Meteorology is nudged up to 1hPa using divergence, vorticity, ground pressure and temperature from30

six-hourly ERA-Interim reanalysis. It includes the extensive EVAL-Chemistry using the kinetics for chemistry and photolysis
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of Sander et al. (2011). This set of equations has been designed to simulate tropospheric and stratospheric chemistry equally

well.

:::::::::
Boundary

::::::::::
conditions

:::
for

::::::::::
greenhouse

::::::
gases

::::::::
(latitude

:::::::::
dependent

::::::::
monthly

:::::::
means)

::::
are

:::::
taken

:::::
from

:
Meinshausen et al. (2011)

:::
and

:::::::::
continued

:::
to

:::::
2013

:::::
from

:::
the

:::::
RCP

::::
6.0

::::::::
scenario (Moss et al., 2010)

:
.
:::::::::
Boundary

::::::::::
conditions

:::
for

::::::
ozone

:::::::::
depleting

::::::::::
substances

::::::
(CFCs

:::
and

:::::::
halons)

:::
are

:::::
from

:::
the

::::::::::
WMO-A1

::::::::
scenario (WMO, 2010).

::::::::::
Emissions

:::
for NOx,

:
CO,

::::
and

::::::::::::
non-methane

:::::::
volatile

:::::::
organic5

::::::::::
compounds

:::
are

::::::
taken

::::
from

::::
the

::::::::
EDGAR

::::
data

::::
base

::::::::::::::::::::::::::::::::::::
(http://edgar.jrc.ec.europa.eu/index.php).

::::
The

:::::
setup

:::
of

:::
the

::::::
model

:::
in

::::
this

:::::
study

::
is
:::::::
similar

::
to
:::::

that
:::::
made

:::
for

::::
the

:::
run

:::::::::::::::
RC1SD-base-08

:::
of

:::
the

::::::
Earth

:::::::
System

::::::::::
Chemistry

:::::::::
integrated

::::::::::
Modelling

::::::::::
(ESCiMo)

:::::::::
initiative,

:::::::::
presented

:::
by

:
Jöckel et al. (2016)

:
.
::
It

::::::
differs

:::
in

:::::::
vertical

::::::::::
resolution

::::
(47

::::::
versus

:::
39

::::::
levels),

::::
but

:::::::::
horizontal

::::::::::
resolution,

::::::::
nudging

::::
and

:::
the

:::::::::
chemistry

::::
are

:::
the

::::::
same.

::::
The

:::::
study

:::
by

:
Jöckel et al. (2016)

:::::
gives

:
a
::::::::

detailed

::::::::::
description

:::
and

::::::::
presents

::::
first

:::::::::
validation

:::::::
results.10

Hegglin et al. (2010)
:::::::::
performed

:::
an

::::::::
extensive

:::::::::::
inter-model

:::::::::::
comparison

:::::::::
including

::::::
EMAC

:::::
with

:::
the

:::::
same

::::::::::
horizontal

:::::::::
resolution

::
as

:::
the

:::::
setup

:::
for

::::
this

:::::
study.

::::::::::
Dynamical

:::
as

::::
well

::
as

::::::::
chemical

:::::::
metrics

:::::
have

::::
been

:::::
used

::
in

::::
this

:::::
study,

:::::::::
focussing

:::
on

:::
the

::::::
UTLS.

::::::::
Overall,

::::
they

::::
find

:::::::
EMAC

::::::::
performs

::::
well

:::::::
within

:::
the

:::::
range

:::
of

:::
the

:::::::
models

::::
that

:::::
were

::::::
tested.

::::
The

::::::
reader

::
is

:::::::
referred

:::
to

:::
the

:::::
study

:::
for

:::::::
further

::::::
details.

The substances used from the model
::::
used

:::
in

:::
this

::::::
study are the same as those used from measurements, summing up

::::
from15

:::::::::::::
measurements.

:
NOy:

,
::::::
which

::
is

:::::::::
simulated

:::
in

::
its

::::::::::::
components,

::
is
:::::::::

summed
::
up

:
from N, NO, NO2, NO3, N2O5 (counted twice

:::::::
because

:::::::::::::
measurements

:::
of

:
NOy ::

are
::::::

taken
:::
by

::::::::
catalytic

::::::::::
conversion), HNO4, HNO3, HONO, HNO, PAN, ClNO2, ClNO3,

BrNO2 and BrNO3. Data of N2O, CH4 and CO2 was detrendedby subtracting the mean of each year from the values of that

year and adding the overall mean
::::
were

::::::::::
detrended,

:::::
using

:::
the

:::::
same

::::::::
method

:::::::
applied

::
to

:::
the

:::::::::::::
measurements.

3 Defining representativeness20

As noted above and specified by Nappo et al. (1982) and Ramsey and Hewitt (2005), the word representative is meaningful

only if accompanied by an object. Ramsey and Hewitt (2005) raise three questions to be answered in order to address represen-

tativeness: 1. For what parameter is the sample data to be seen as representative: e.g. the mean, a trend or an area? 2. Of which

population is
:::
are the sample data to be seen as representative? 3. To which degree is

:::
are

:
the data to be seen as representative?

To assess the representativeness of CARIBIC data, these three questions have to be answered as well.25

3.1 Representative for what parameter?

First, it is crucial to define what we anticipate the CARIBIC data to be representative of, since ’the same set of measurements

may be deemed representative for some purpose but not other’ (Nappo et al., 1982). In this study, we investigate whether the

CARIBIC data can be used to construct a climatology in the UTLS. We consider monthly binned data in the height of ±4km

:::::::::
±4.25km around the dynamical tropopause defined at the pressure at 3.5PVU

:::
and

::
in

::::::::::::
mid-latitudes

::::
with

:::::::::::::::::
75◦N< ϕ< 35◦N.30

In order to reference data to the tropopause, we use the geometric height in kilometers relative to the tropopause (HrelTP) at

each datapoint. For the measurements, this height is provided by the meteorological support of CARIBIC by KNMI (Konin-
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klijk Nederlands Meteorologisch Instituut) (http://www.knmi.nl/samenw/campaign_support/CARIBIC/), who use data from

ECMWF (European Centre for Mendium-range Weather Forecast) for their calculation.

From model output, the height relative to the tropopause (HrelTP) can be calculated, as the pressure value of the dynamical

tropopause is known at each location, as well as the temperature and pressure profile. This HrelTP value calculated from the

model data along the flight tracks of CARIBIC compares well with interpolated values from ECMWF provided by KNMI5

(Pearson correlation coefficient of ρ= 0.97), which is expected as the meteorology of the model is nudged using ERA-Interim

data. The distribution of all values of HrelTP from the model is shown in Figure 1, showing a maximum right at the tropopause.

Data was
::::
were

:
used within ±4.25km of

::::::
around

:
the tropopause in steps of 0.5km, labelling the bins according to the central

height at full and half kilometers.

Even though all data of trace gases (be it from model or measurements) is
:::
are sorted into bins of HrelTP, it is important to10

keep in mind the limits in pressure. These are inherent in the CARIBIC dataset, as the aircraft flies on constant flight levels

with 180hPa< p < 280hPa. In addition, we explicitly limit pressure to this range in order to exclude data from ascents and

descents of the aircraft. But since data is
::
are

:
considered relative to the tropopause, these limits are no longer visible directly

from the resulting climatology, even though they can influence it strongly. The reason is that aircraft flying at constant pressure

can measure far above (below) the tropopause only if the tropopause is located at high (low) pressurevalues. The properties of15

many trace substances are not only a function of their distance to the tropopause, but also of pressure. The limits in pressure

inherent in the sample therefore also influence the climatology. They have to be considered and should be explicitly stated. This

efffect
:::::
effect

:
is illustrated in the supplementary material

:::::::::
Appendix

:::
A1

:
with the help of the methods developed in this study.

In addition to limiting in HrelTP and p, it is necessary to apply a limit in latitude ϕ.
:::
We

:::::
limit

:::
the

:::::
data

::
by

:::::::::
including

:::::
only

::::::::::::
mid-latitudes

::::
with

:::::::::::::::::
75◦N< ϕ< 35◦N.

:
Tropical data with ϕ < 35◦N are excluded because of the considerably higher dynamical20

tropopause. Data with ϕ > 75◦N are excluded because of the different chemistry in far northern latitudes, which leads to

considerably different values
::::::
mixing

:::::
ratios

:
for some some species that should not be combined with data from lower latitudes

in one climatology. In addition, this latitudinal band is well covered by CARIBIC measurements. Other regions or latitudinal

bands can be investigated using the same approach.

::::
Like

:::
the

:::::
limit

:::
in

::::::::
pressure,

:::::::::
CARIBIC

:::::
data

:::
are

::::
also

:::::::
limited

::
in

::::::::::
longitude,

::
as

:::
the

:::::::
Pacific

::::::
Ocean

::
is
::::::
never

:::::::
probed.

::::
The

::::::
effect

::
of25

:::
this

:::::
limit

:::
on

:::
the

:::::::::::
climatology

::
is

:::::::::
discussed

::
in

:::::::::
Appendix

::::
A2.

As a summary, we can specify more closely the question (Representative for what parameter?) asked in the beginning: Is a

climatology compiled from CARIBIC data representative for
::
of the tropopause region in mid-latitudes?

3.2 Representative for
:
of

:
which population?

When assessing the representativeness of the sample made up by all CARIBIC measurements
::::::
(called

::::::::::::::
MEASCARIBIC,

::::
see30

::::
Sec.

::::
2.1), the population is the atmosphere around the tropopause and its composition. For many of the species measured

by CARIBIC, there is no other project that takes such multi-tracer in-situ meaurements as regularly at the same spatial and

temporal resolution. IAGOS-core and CONTRAIL sample with much higher frequency, but take measurements of only few

6
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Table 1. Summary of the specifications defining the three datasets MODCARIBIC::::::

regular
CARIBIC, MODRANDPATH and MODRANDLOC:::::::RANDLOC.

dataset EMAC on total sets per month duration p distribution

MODCARIBIC :::::

regular
CARIBIC: CARIBIC paths

(2005-13)

334 up to 4

in 3 days

8-10h flight levels show up,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDPATH:::::::RANDPATH: random paths 1296 12

in 28 days

24h

:::::::
adjusted gaussian,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDLOC ::::::RANDLOC: random location 864 8

in 28 days

24h
even

::::::
uniform,

min(p) = 10hPa

max(p) = 500hPa

substances while satellites do not resolve the small scale-structures
:::::
scale

:::::::::
structures

:
necessary to disentangle the dynamics

around the tropopause. The population is therefore not accessible by the measurement platforms currently available.

This is the reason why the representativeness of the CARIBIC data is
:::
are

:
investigated by comparing the model data along

CARIBIC flight tracks to two larger samples taken from the model. These larger datasets are considered the population, in

reference to which the representativeness of the smaller dataset (model along CARIBIC paths) is assessed. Three datasets were5

created from the model output: the model along CARIBIC paths and two random model samples. All are presented in the

following paragraphs, a summary being given in Table 1 and Figure 1.

MODCARIBIC:::::::

regular
CARIBIC: For the dataset MODCARIBIC ::::::

regular
CARIBIC, the model output was interpolated linearly in latitude, longitude,

logarithm of pressure and time to the position of the CARIBIC aircraft, using the location at a resolution of 10s for all species
:
,

:::::::::::
independent

::
of

:::
the

:::::
time

:::::::::
resolution

::
in

:::::::::::::
MEASCARIBIC. Figure 1 shows the flight paths considered in this study. Since CARIBIC10

also measures temperature
::
(at

::::
10s

:::::::::::
resolution), the high pearson correlation coefficient of ρ= 0.97 of modelled to measured

temperature can serve as an indication that this interpolation leads to reasonable results, despite the coarse
:::::::
coarser resolution

in time and space of the model output.

:::::::::::::
MODsampled

CARIBIC:
::::
The

:::::::::::::
measurement

:::::::::
frequency

::::
for

:::::
some

:::::::
species

:::
in

:::::::::::::
MEASCARIBIC:::

is
::::::
lower

::::
(e.g.

::::::
those

:::::
taken

::::
by

::::::
whole

:::
air

::::::::
samples),

:::
all

:::::::
species

:::::::
contain

:::::
gaps

::::::::
because

::
of

::::::::::
instrument

:::::::::
problems

::
at

:::::
some

::::::
point

:::
and

::::::
some

::
of

::::
the

:::::::
species

::::::::::
considered

:::
by

:::
the15

:::::
model

::::::::
datasets

:::
are

::::
not

:::::::::
measured

::
at

:::
all.

:::::::::::
Sometimes,

::
it
::
is
::::::::::
interesting

:::
to

::::::::
consider

::::::::::::
MODregular

CARIBIC :::::::
reduced

:::
to

:::
the

:::::
exact

:::::::
number

:::
of

::::::::::::
measurement

::::::
points,

:::
i.e.

::::::::
reduced

:::
by

:::
all

:::::
these

::::::::::::
measurement

:::::
gaps.

::::
The

::::::
model

:::::::
dataset

:::::
along

::::::::::
CARIBIC

:::::
paths

::::
that

::::
has

:::
the

:::::
same

::::
gaps

::
as

:::::::::::::
MEASCARIBIC::::

will
:::
be

:::::::
referred

:::
to

::
as

::::::::::::
MODsampled

CARIBIC.

As is visible in Fig.
::::::
Figure 1 (central column), only three of the model levels lay in the pressure range sampled by CARIBIC.

This is why it is not feasible to compare MODCARIBIC directly to the full model output, but
::
To

:::::
have

:::::::::::
comparable

:::::::::
statistics,20

:::::::::::
MODregular

CARIBIC::::
was

::
to

:
two random model sampleswere created which are more similar in their statistical properties to MODCARIBIC.
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MODRANDPATH: The dataset referred to as MODRANDPATH is a larger set of flight paths used to sample the model. This

set was mainly used to investigate the representativeness of MODCARIBIC ::::::

regular
CARIBIC. From the year 2005 to the end of 2013, 12

random flight paths were generated per month (1296 in total, evenly spaced in each month’s first 28 days) and the model fields

interpolated onto these paths. The starting point was randomly chosen in the northern hemisphere, as well as the direction taken

by the aircraft. The speed was set to 885.1kmh−1, the median of the speed of the true CARIBIC aircraft. The flights start at5

0 : 00UTC
:::
0:00

:::::
UTC

:
and sample the model for one day

:::
24h

:
in 10s intervals. They are reflected at the north pole and at the

equator and reverse the sign of the increment in latitude direction once during flight. The first 100 of these paths are displayed

in Figure 1.

The pressure was kept constant for each of the random flights, reproducing the statistics of the pressure distribution for

CARIBIC as a whole. For this, a normal distribution centered around 223.42hPa with a standard deviation of 18.94hPa was10

used to choose the pressure value for each of the random flights. All pressure values of p < 180hPa or p > 280hPa were

redistributed evenly between 200hPa and 250hPa to exclude unrealistically high or low values and sharpen the maximum.

:::::::::::::::
MOD3

RANDPATH:
::::
The

:::::::::
dependecy

:::
of

::::::::::::::::
representativeness

:::
on

:::
the

:::::::
number

:::
of

:::::
flights

::
is
:::
an

:::::::::
important

::::
part

::
of

::::
this

::::::
study.

::::
Each

:::
of

:::
the

:::::::
random

:::::
paths

::::
was

:::::::
divided

::::
into

:::::
three

:::::
parts,

::::::::
resulting

:::
in

:::::
3888

:::::
eight

::::
hour

:::::::
flights,

:::
the

::::::::
duration

::
of

::
a
::::::
typical

:::::::::::::::
intercontinental

:::::
flight

::::
with

::::::::::
CARIBIC.

:::::::::::::::::
Representativeness

::::
was

:::::
then

:::::::::
calculated

::::
with

::::
the

::::::::
different

::::::::
methods

:::
for

::::::::::::::
MODRANDPATH::::

and
:::::
these

:::::::::::
subsamples,15

:::::::::
increasing

:::::
their

::::
size

::
by

:::::::::
including

:::::
more

:::
of

:::
the

:::::
3888

:::::::
shorter

:::::::
random

:::::::
flights.

::::
This

:::::::
dataset

:::
of

::::::::::
randomized

:::::::
shorter

::::::
flights

::::
will

:::
be

:::::::
referred

::
to

:::
as

::::::::::::::
MOD3

RANDPATH.

MODRANDLOC: For this sample, latitude and longitude were randomly drawn in the northern hemisphere (not aligned along

a route) and the definition of the pressure distribution widened, drawing pressure from an even
:
a

:::::::
uniform

:
distribution from

500hPa to 10hPa for each flight. Again, the datasets start at 0 : 00UTC
:::
0:00

:::::
UTC

:
and the separate points are 10s apart,20

collecting 8640 samples on a sampling day. Eight of these sets are distributed evenly in each month, summing to a total

of 864 sets of this type. This set was used to test whether MODCARIBIC is representative for
::::::

regular
CARIBIC:::

is
:::::::::::::
representative

::
of

:
a

climatology around the tropopause only within its pressure limits or also when expanding these limits.

As is visible in Figure 1, the distribution in HrelTP is very similar for all datasets
:::::::::::::
MODRANDPATH::::

and
::::::::::::::

MODRANDLOC

even though the pressure is presribed
:::::::::
prescribed

:
in very different ways . This is an important prerequisite for the following25

investigation, as it shows that the relative
:::::
(mean

:::
of

::::::::
0.79km

::::
and

::::::::
0.64km

::::::::::::
respectively).

::::
The

:::::::::::
distribution

:::
of

::::::::::::
MODregular

CARIBIC ::
is

:::::::
different

:::::::
(mean

::
of

:::::::::
0.26km),

::::::
which

::
is

::::
due

::
to

:::
the

::::::
larger

:
amount of data in each height bin is similar for all three datasets

::::
from

::::::::
southern

:::::::
latitudes

::::
(not

::::::::
shown).

::::
The

::::::::
different

:::::::
regional

:::::::::
sampling

::
is

::::
one

::
of

:::
the

:::::::
reasons

::::
why

:::::::::::::
climatologies

::::
from

::::::::::::
MODregular

CARIBIC::::
and

:::::::::::::
MODRANDPATH::::::

differ
:::
and

::::
this

:::::::::
difference

::::
also

:::::::
affects

:::
the

::::::::::
distribution

:::
in

:::::::
HrelTP.

Representativeness was assessed using only model data in this study. In order to transfer the results from model data to30

measurements, we assume that different species are equally well represented in the model in terms of their variability. This

inference is plausible, considering the equally good representation of the stratosphere and the troposphere in the model .

The question whether this assumption is valid was also investigated with the available data. The relative standard deviation

σr = σ/µ was calculated in each month of the climatlogies of CARIBIC measurements (MEASCARIBIC) and MODCARIBIC (σ

8
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Figure 1. Flight paths
::::
path

:::::::::
distribution

:
(left), distribution in p

::
of

::::::
probed

::::::::
pressures (

:
p,
:

center) and HrelTP
:::::
height

::::::
relative

::
to
:::
the

:::::::::
dynamical

:::::::::
tropopause (

::::::
HrelTP, right) for the three datasets MODCARIBIC :::::

regular
CARIBIC:(top), MODRANDPATH (center) and MODRANDLOC (bottom). Only parts

of the paths of MODRANDPATH and MODRANDLOC are shown
::
in

:::
the

:::
left

::::::
column.
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being the standard deviation, µ the mean) as a measure for the variability. By taking the mean over all months of the fraction

of σMODCARIBIC
r and σMEASCARIBIC

r , the fraction of variability of MEASCARIBIC reached by MODCARIBIC can be evaluated.

The variability of MODCARIBIC is similar for all species, reaching between 40 and 70% of that of MEASCARIBIC. The Pearson

correlation coefficient of σMODCARIBIC
r and σMEASCARIBIC

r is 0.81 (see supplementary material). These two facts show that the model

represents all species equally well. On an absolute scale, the model cannot reach the variability of measurements due to its5

coarse resolution (see Section 2.2). The linear interpolation onto the location of the aircraft does not introduce the smaller scale

variability present in the measurements. Also, the variability of MEASCARIBIC is not equal to the atmospheric variability, due

to different characterisitics of the instruments for each species.

The assumption underlying this study is that the representativeness evaluated from the model data is also valid for the real

atmosphere and the measurements taken by CARIBIC. This assumption is justified by the similar variability of the model for10

all species.

3.3 Confidence limits of the representativeness

When defining representativeness, one more question remains: What are the confidence limits of the representativeness?

Three definitions for representativeness are discussed and applied in this study: The Kolmogorov-Smirnov test, the variabiltiy

:::::::::
variability analysis following Kunz et al. (2008) and the relative difference of two climatologies. The first method gives a yes-15

no answer within a chosen statistical confidence level. The other two approaches are formulated in such a way as to return a

score. By (arbitrarily) setting a value for the score, the representative cases can be discriminated from the non-representative

cases (see Sec. 4 and Sec. 6), the score corresponding to a confidence level.

There are two more requirements that we define as having to be met by representativeness in general:

1. Representativeness has to increase with the number of samples (flights in the case of this study).20

2. Representativeness has to decrease with increasing variability of the underlying distribution.

These two assumptions are implicitely also made by Kunz et al. (2008), as they investigate the representativeness of a smaller

for a larger dataset and for two species of different variability. The measure for variability we use in this study is explained in

the following section.

3.4 Defining a measure for variability25

The representativeness
:::::::::::::::::
Representativeness

:
is expected to differ for different species because of their atmospheric variability or

atmospheric lifetime. This is part of the definition of representativeness given in Section 3.3. Kunz et al. (2008) also find that

O3 and H2O are different in their representativeness and attribute this to the variability. It is therefore reasonable to consider

results for representativeness relative to the variability of a species, which we denote by τ∗
:
.
::
In

::::
this

::::::
study,

:::
we

::::
use

:::
the

:::::::
relative

:::::::
standard

:::::::::
deviation

:::
σr ::

as
::
a
:::::::
measure

::::
for

:::::::::
variability. It is calculated from MODRANDPATH following Equation 1 using the mean µ30

10
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Figure 2. Variability τ∗
::
σr:

calculated from MODRANDPATH:::
for

:::::::
different

::::::
datasets

:
using Equation 1. The species are sorted in τ∗

::
by

::
σr , species

with low variability (high τ∗) listed to the left
:
,
::::
using

:::
the

::::::
values

::::
from

::::::::::::
MODRANDPATH:::

for
::::::
sorting.

:::::
Note

:::
that

:::::::::::::
log10(σr) = τ∗,

:::
see

::::
Eq.

:
3.

and standard deviation σ of each species.

τ∗σr
::

= log10(
µ

σ
)
σ

µ
:

(1)

Figure 2 shows the sorted values of τ∗
::
σr:for the species considered in this study

:
,
:::::
using

:::
the

::::
full

::::
time

:::::
series

:::
to

::::::::
calculate

:::
σr. It

is worthwile to note that in defining τ∗
::::::::
variability

:
in this way, we closely follow Junge (1974), who showed that under certain

constraints, the relationship5

10−τ
∗
=
σ

µ
=σr =

σ

µ
=

::::

a · τ−b (2)

holds, which links variability and lifetime τ using two species-dependent constants a and b. σr is the relative standard deviation

used in Section 3.2 to compare model and measurement variability. This relationship has frequently been called Junge rela-

tionship in the past (e.g. by Stroebe et al. (2006) or MacLeod et al. (2013)). And indeed, as is visible in Figure 2, longer lived

species like CO2 or N2O show lower variability(higher τ∗), while shorter lived species show higher variability(lower τ∗).10

::
It

::
is

:::::::::
important

::
to

::::
note

::::
that

:::
the

::::::
values

:::::::::::
determined

:::::
from

:::::::::::::
MEASCARIBIC :::

are
:::::::
affected

:::
by

:::
the

:::::::::::::
measurement

:::::::::
frequency

::
in

:::::
case

::
of

::::
data

:::::::
sampled

:::
by

::::::
whole

:::
air

:::::::
samples

:
(N2O,

:
C2H6::::

and C3H8:
)
::::
and

::
by

:::::
gaps

:::
due

::
to
::::::::::
instrument

:::::::::
problems.

::::
But

:::
the

:::::::::
influence

::
of

:::::
these

::::
gaps

::
is

::::::
small,

::
as

::::
can

:::
be

::::
seen

:::
by

:::
the

:::::
small

:::::::::::
differences

::
of

:::
the

::::
two

::::::
values

:::
for

::::::::::::
MODregular

CARIBIC::::
and

:::::::::::::
MODsampled

CARIBIC.
::::::::::::
MEASCARIBIC::::

has

:
a
:::::::
slightly

::::::
higher

::::::::::
variability

::::
than

:::
the

::::::
model

:::::::
datasets

::::
for

::::
most

::::::::
species.

::::
The

::::::::::
relationship

:::
of

::::::
model

:::
and

:::::::::::::
measurement

:::::::::
variability

::
is

::::::::
discussed

:::
in

:::::
more

:::::
detail

::
in

:::::::
Section

:::
5.

::::
The

::::::
model

:::::::
datasets

:::
are

:::::
very

:::::::
similar,

::::::
despite

:::::
their

::::::::
different

:::::::::
sampling

::::::::
patterns.

:::::
They

::::
only15

:::::
differ

:::
for

::::::::::
short-lived

:::::::
species

:::
(to

:::
the

:::::
right

::
in

::::::
Figure

:::
2),

::::::
which

::::
have

::
a
::::::
strong

:::::
daily

:::::
cycle,

::::
e.g NO.

11



::
In

::::
Sec.

::::
3.3,

:::
we

:::::::
defined

:::::::::::::::::
representativeness

::
as

:::::::
having

::
to

::::::::
decrease

:::::
with

:::::::::
increasing

::::::::::
variability.

::::::::
Because

:::
we

:::::
want

::
to

::::::::::
emphasize

:::
the

::::::::::
relationship

:::
of

::
σr:::::

with
::
τ

:::
and

::
in
:::::
order

:::
to

:::::::::::
differentiate

:::
this

::::::::::
variability

::::::::::
(calculated

:::::
from

:::
the

::::::::
complete

:::::
time

::::::
series)

::::::
clearly

:::::
from

::::
other

:::::::
similar

::::::
terms,

:::
we

::::
use

::
τ∗

:::::::
defined

:::
in

::::::::
Equation

::
3

::
to

:::
test

::::
the

:::::::::::
relationship

::
of

::::::::::::::::
representativeness

::::
and

::::::::::
variability.

τ∗ = log10(σr) = log10(a)− b · log10(τ)
:::::::::::::::::::::::::::::::::::

(3)

::::
Sec.

:::
4.2

::::
will

:::::
take

:
a
::::::
closer

:::::
look

::
at

::::::::::
variability.

::
It

::::
will

::
be

:::::::::
discussed

:::::
how

:::::::::
variability

::::::::
depends

:::
on

:::
the

:::::
time

:::::
scale

:::
for

::::::
which

::
it
::
is5

:::::::::
calculated.

::::
The

:::::::
values

::::::
shown

::
in
:::::::

Figure
::
2

:::
and

:::::
used

:::
for

::::
the

::::::::::
calculation

::
of
:::
τ∗

::::
use

:::
the

::::
full

:::::
time

::::::
series,

::::
and

:::::::
thereby

:::
the

:::::::
overall

:::::::::
variability.

::
If
:::::::

shorter
:::::
time

::::::
scales

::::
had

:::::
been

::::::::::
considered,

::::
the

::::::
values

:::
for

:::
σr:::

in
::::::
Figure

::
2
::::::
would

:::::::
change,

::::
but

:::
not

::::
the

:::::
order

:::
of

:::
the

::::::
species

::::
that

:::::::
follows

:::::
from

:::
the

:::::::
values.

So including these thoughts on variability in the question formulated at the end of Section 3.1, we can specify more closely

the question we answer in this study: For which species is a climatology compiled from CARIBIC data representative for
::
of10

the tropopause region in mid-latitudes?

4 Statistical methods

We use three different methods to evaluate representativeness: the Kolmogorov-Smirnov test, the variability analysis and rela-

tive differences.

4.1 Kolmogorov-Smirnov Test
::::
test15

The Kolmogorov-Smirnov two-sample test is a non-parametric statistical test that is used to examine whether two datasets have

been taken from the same distribution (e.g. Sachs and Hedderich (2009)). It considers all types of differences in the sample

distributions that can be apparent in the mean, the standard deviation, the kurtosis, etc. The test statistic is the maximum

absolute difference D̂ in the cumulative empirical distribution functions F̂x of the two samples x:

D̂ = max|F̂1− F̂2| (4)20

The discriminating values Dα have been derived depending on the accepted confidence limit α. In this study, the two em-

pirical distribution functions F̂i were taken from MODCARIBIC ::::::

regular
CARIBIC and MODRANDPATH in each height bin and month, see

:
.
::
In

::::::::
addition

:::
to

:::
the

::::::::::::::::::::
Kolmogorov-Smirnov

::::
test,

::::
we

::::
also

:::::::
applied

::::
the

::::::::::::::
Mann-Whitney

::::
test

:::
for

::::
the

:::::
mean

::::
and

:::::::::
Levene’s

::::
and

:::
the

::::::::::::::
Brown-Forsythe

::::
test

:::
for

::::::::
variance

::::
(see

:::::
again

:
Sachs and Hedderich (2009)

:
).
::::
All

::::::
results

:::
of

::::::::
applying

:::::
these

::::
tests

::::
are

:::::::::
presented

::
in

Sec. 6.1.25

4.2 Variability analysis

The variability analysis follows Rohrer and Berresheim (2006) and Kunz et al. (2008). Rohrer and Berresheim (2006) intro-

duced a variance analysis for ground-based observations, Kunz et al. (2008) then applied it to aircraft data. A timeseries of data

is subsequently divided into ever shorter time slices of increasing number and the variance is calculated for the data within
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each time slice. By taking the mean over the whole number of slices and doing this for all divisions in time, a line is calculated,

which is characteteristic
:::::::::::
characteristic

:
for the development of variance in time.

Instead of considering variance in each time slice, we use the relative standard deviation σ
µ ::::::
σr =

σ
µ , which is the definition

of variabiltiy
:::::::::
variability following Junge (1974). It is calculated in each time slice and the mean gives the value for the corre-

sponding time scale.
::
In

:::
the

::::::::::
following,

::::
time

:::::
scale

:::::::::
therefore

:::::
refers

:::
to

:::
the

::::::
length

::
of

:::
the

:::::::
interval

:::
in

::::
time

::
in
::::::
which

:::
the

::::::::::
variability

::
is5

:::::::::
calculated.

:
By scaling the standard deviation σ with the mean µ, different species become comparable. Being a combination

of variability as defined
:::
by Junge (1974) and the variance analysis introduced by Rohrer and Berresheim (2006), this method

is called variability analysis in the following paragraphs.

Figure 3 shows the variability analysis for CO just below the tropopause for MODCARIBIC and
::::::

regular
CARIBIC,

:
MODRANDPATH :::

and

:::::::::::::
MODRANDLOC. The time scale changes from about 5min to 5a along the logarithmically spaced abscissa. As CO is a medium10

long-lived trace gas with an atmospheric lifetime of 2-3 months and a pronounced annual cycle, the mean variability increases

up to time scales of 1a. The variability of MODRANDPATH is larger
:::
and

:::::::::::::
MODRANDLOC::

is
::::::

larger
:::::
than

::::
that

::
of

::::::::::::
MODregular

CARIBIC:
on

almost all time scales. For time scales of 30d and more, however, the lines
::
of

:::
all

:::::
three

:::::::
datasets

:
run in parallel, showing an

increase up to 1a, from when on the variability does not increase. This is consistent with the annual cycle of CO, which is

also the cause for the relative decrease sharply at 0.5a and 1.5a. For time scales below 30d, the distribution of flights in one15

month dominates the variability analysis. MODCARIBIC ::::::

regular
CARIBIC:

includes only up to four flights on consecutive days, the mean

variability does not decrease when going to time scales between 30d and 4d, while in MODRANDPATH, continuosly less data is

:::
are included in each time slice, leading to a continuous drop in the variability. For time scales of less than 1d, the data comes

:::::
come from a single flight, showing another drop in variability that is linked to using data from geographic regions that are ever

more close
::
in

:::
the

::::
case

:::
of

:::::::::::
MODregular

CARIBIC::::
and

::::::::::::::
MODRANDPATH. Since the variability analysis is so closely linked to the distribution20

in time and space, the variability analysis of MODRANDLOC shows an almost constant value in the
:::
for time scales shorter than

30d (not shown)
::::
until

::::
time

::::::
scales

::::::
shorter

:::::
than

:::
one

::::
day

:::
are

::::::::
reached,

:::::
from

:::::
when

:::
on

:::
the

::::::::::
variability

::::
also

:::::
drops.

Kunz et al. (2008) used the variance analysis to investigate whether the smaller SPURT dataset represents the variance

present in MOZAIC dataset. Following this thinking, we consider the variability as one possible criterion to judge the repre-

sentativeness of one dataset for another. A score Rt,hvar describing the representativeness is defined from the difference of the25

values of the variability analysis, using the following equation:

Rt,hvar = log10

(∣∣∣∣∣∣
[
σt,h1

µt,h1

]
−

[
σt,h2

µt,h2

]∣∣∣∣∣∣
)

(5)

where σt,hx stands for the standard deviation and at µt,hx for the mean in time scale t and height h of the datasets x. The overbar

implies that the mean over all time slices corresponding to the time scale t of σ/µ are used. Considering Figure 3, the score

can be interpreted as the absolute value of the difference of the two lines at certain time scales t.30

Decreasing values of Rt,hvar mean better representativeness, the value always being negative. Depending on t, the representa-

tiveness in different time scales can be evaluated. We used time scales of
::::
30d,

:
0.25a, 0.5a, 1a, 2a and 5a to calculate Rt,hvar .

When applying this method to all height bins, a profile in Rtvar is calculated for each species. This is one possible definition for
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Figure 3. Variability analysis calculated for CO for
::::::::::::
MODRANDPATH,

::::::::::::
MODRANDLOC :::

and
:::::::::::
MODregular

CARIBIC::
at

:
HrelTP =−1km (one kilometer

below the tropopause)for MODCARIBIC and MODRANDPATH. The time scales used to calculate Rvar using Equation 5 are indicated by vertical

lines.

representativeness. Yet it has to pass the two requirements of being related to number of samples and variability outlined in

Sec. 3.3. The results of testing this will be presented in Sec. 6.2.

4.3 Relative difference
::::::::::
differences

The third approach to assess representativeness is to analyze the relative differences between the climatologies from two

differently large datasets. The procedure is summarized in Equation 6:5

Rhrel = log10

(
1

12

12∑
m=1

|µm,h1 −µm,h2 |
µm,h2

)
(6)

which was applied to each height bin h. µm,hx stands for the mean of the data in the month m and in height bin h of the datasets

x. The logarithm to the basis 10 was applied to the mean relative difference profile to end up with a profile in Rrel, similar to

the score Rtvar calculated from the variability analysis. Contrary to the Kolmogorov-Smirnov test or the variability analysis, this

test statistic does not contain any information on the underlying distribution, because it uses only the mean in each bin.10

Figure 4 shows an example of relative differences between CO from MODCARIBIC ::::::

regular
CARIBIC:and the larger dataset MODRANDPATH.

The differences are small, mostly below an absolute value of 0.15. Rrel is defined (in Equation 6) as the logarithm to the base

10 of the mean over all months (not shown). The score increases towards the top and bottom in Figure 4 due to less data

there. Like for Rtvar, decreasing values in Rrel mean better representativeness. And like Rtvar, Rrel has to be tested for passing
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Figure 4. Relative differences of CO for MODCARIBIC :::::

regular
CARIBIC:and MODRANDPATH.

::::
This

::
is
:::
the

::::
basis

:
used to calculate Rrel.

the requirements of being related to number of samples and variability (see Sec. 3.3) in order to be acceptable as a score for

representativeness. The results of testing this will be discussed in Sec. 6.3.

Other than just as a score, the value of Rrel can be understood as the average uncertainty for assuming the climatology of

MODCARIBIC ::::::

regular
CARIBIC:

as a full model climatology. This is more obvious if taken to the power of 10, in which case the uncertainty

will take values between 0 and 1. Use of this will be made in Section 6.4.5

5
::::::
Model

::::
and

:::::::::::::
measurement

:::::::::::
variability

:::::::::::::::::
Representativeness

::::
was

:::::::
assessed

::::::
using

::::
only

::::::
model

::::
data

::
in

::::
this

::::::
study,

:::
yet

:::
the

::::
final

:::::
goal

:::
was

:::
to

:::::::::
investigate

::::
the

::::::::::::::::
representativeness

::
of

:::::::::::::
MEASCARIBIC.

:::::::::::::
MODregular

CARIBIC :::
and

:::::::::::::
MODsampled

CARIBIC :::
are

:::::
used

::
as

::
a
:::::::::::
placeholder

:::
for

:::::::::::::
MEASCARIBIC::::

and
:::::::::
compared

:::
to

:::::
other

::::::
model

:::::::
datasets

::::::::::::::
(MODRANDPATH::::

and
::::::::::::::
MODRANDLOC)

::
in

::::
the

::::::::
analysis.

::::
The

::::::
results

:::::::
derived

:::::
from

:::::
these

::::::
model

:::::::
datasets

::::
will

:::
be

::::::::::
interpreted

:::
for

::::::::::::
MEASCARIBIC:::

in
::::
Sec.

::
6.

:::::
This

::::::
means

::::
that

::::::::::
conclusions

::::::
drawn

:::::
from

::::::
model

::::
data

::::::
alone

::::
will

::
be

:::::::
applied

::
to
::::::::::::::
measurements.10

::
To

:::::::
justify

:::
this

::::::::::
reasoning,

::
it
::
is

:::::::::
important

::
to
::::::::::

investigate
::::

the
::::::::::
differences

::::::::
between

:::
the

::::::
model

::::
and

:::
the

::::
real

:::::::::::
atmosphere.

::
It
:::

is
:::
not

::::::
crucial

::::
that

:::
the

::::::
model

::::::::::
reproduces

::::
the

:::::
exact

::::::
values

::
of

::::
the

:::::::::::::
measurements,

::::
but

:::::
rather

::::
that

:::
the

:::::::::::
complexity

:::
for

::::
each

:::::::
species

:::
in

:::
the

:::::
model

::
is
:::::::
similar

::
to

:::
the

::::
real

:::::::::::
complexity.

::::
This

::::
will

:::
be

:::::::::::
investigated

::
in

:::
the

:::::::::
following

::::
two

::::::::
sections.

::::
The

::::::::::
variability

::
of

::::::::::::
MODsampled

CARIBIC

:::
will

:::
be

:::::
used

::
as

:::
an

::::::::
indicator

::
of

:::
its

::::::::::
complexity

::::
and

:::::::::
compared

:::
to

:::
the

:::::::::
variability

:::
of

:::::::::::::
MEASCARIBIC.

:::::::
Similar

:::
to

::::::::
Equation

::
1,
:::
we

::::
use

:::
the

:::::::
relative

::::::::
standard

::::::::
deviation

:::::::::
σr = σ/µ

:::
as

:
a
::::::::
measure

:::
for

::::::::::
variability

:::::
when

::::::::::
comparing

::::::
model

:::
and

::::::::::::::
measurements.

::::::::::
Variability

::
of15

:
a
::::::
certain

:::::
time

:::::
scale,

::::
e.g.

:::::::
20min,

::::
will

:::
be

:::::::
referred

::
to
:::
as

::::::
20min

::::::::::
variability

::
in

:::
the

::::::::::
following,

:::::::::::
accordingly

:::
for

:::::
other

::::
time

:::::::
scales.
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5.1
:::::::::
Influence

::
of

:::::
short

:::::
time

::::::
scales

:::
on

:::
the

::::::::::::::
climatological

:::::
mean

:::
All

::::::
model

::::::::
datasets

::::
have

:::::
been

:::::::
created

:::::
from

::::::::
gridded

::::::::
datafiles

::::
with

::
a
:::::::
certain

:::::::::
resolution

:::::
(2.8◦

:::
or

::::::
about

:::::::
200km,

::::
see

::::
Sec.

:::::
2.2).

:::::::::::
Considering

:::
the

:::::::
median

::::::::
airspeed

::
of

:::
the

::::::::::
CARIBIC

:::::::
aircraft

::
of

:::::::::::::
885.1kmh−1,

::::
this

::::::
model

::::::::::
resolution

:::::::::::
corresponds

::
to

::
a

::::
time

:::::
scale

::
of

:::::
about

:::::::
20min.

:::::::::::::
MEASCARIBIC::::

has
:
a
:::::
time

::::::::::
resoltution

::
of

:::
up

::
to

::::
10s,

::::::::::
depending

:::
on

:::
the

::::::::::
instrument.

::::::
Model

:::::
data

:::
has

:::::
been

:::::::
linearly

::::::::::
interpolated

:::
to

::::
this

::::
high

::::
10s

::::::::::
resolution,

::::
but

::::
this

::::
does

::::
not

:::::::::
introduce

:::
the

::::::::::
variability

::::
that

::
is
:::::::
present

:::
in

:::
the

::::::::::::::
measurements.

::::
The5

::::::
20min

::::::::::
variability

::
is

::::::::
therefore

:::::::
always

:::::
larger

:::
in

:::::::::::::
MEASCARIBIC ::::

than
::
in

:::::::::::::
MODsampled

CARIBIC.
:::
To

:::::
what

:::::
extent

::::
this

:::::
small

:::::
scale

::::::::::
variability

:::::::::
influences

:::
the

:::::::::::::
climatological

::::::
values

::
is
:::::::::::
investigated

:::::
here.

:::
By

::::::::
reducing

:::
the

:::::::
20min

:::::::::
variability

:::
in

:::::::::::::
MEASCARIBIC ::

to
::::
that

::
of

:::::::::::::
MODsampled

CARIBIC,
::
it

::
is

::::::::
possible

::
to

:::::::::
determine

::::
the

::::::::
influence

:::
of

:::
the

:::::
small

:::::
scale

:::::::::
variability

:::
on

:::
the

:::::::::::::
climatological

:::::
mean

:::::::
values.

::::
The

::::::::
reduction

:::
in

:::::::::
variability

::::
was

:::::
done

:::::::::
separately

:::
for

::::
each

:::::::
species

::::
and

:::::
height

:::
to

:::::::
account

::::
for

::::::::::
differences

::
in

::::::
terms

::
of

::::::
model

:::::::::::
complexity

::::::::
between

:::
the

::::::::
species.

::
In

:::::
order

:::
to

::::::
reduce

::::
the

:::::::::
variability

:::
in

:::
the10

::::
time

::::::
series,

::::
they

:::::
were

:::::::::
smoothed

::::
out,

:::
the

:::::::
method

::
is
:::::::::
presented

:::
in

::::
App.

:::
B.

::::
The

::::::::::
smoothing

:::::::
number

:::::
used

::
in

::::
this

:::::::
method

::::::::
indicates

::::
how

:::::
much

::::::::::
variability

:::
has

:::::
been

:::::::::
removed.

::::
The

:::::::
20min

:::::::::
variability

:::
of

:::::::::::::
MEASCARIBIC::::

was
:::::
then

:::::::::
calculated

:::
for

:::::::
several

::::::::::
smoothing

::::::::
numbers.

::::::
Figure

:
5
:::::
(left

:::::
panel,

:::::
solid

:::::
lines)

::::::
shows

:::::
how

:::
the

::::::
20min

::::::::::
variability

:::::
drops

:::
for

:::
all

:::::::
species

:
if
::::
the

::::
data

:::
are

:::::::::
smoothed

::::::::::::
progressively

::::::::::
(increasing

:::
the

::::::::::
smoothing

:::::::::
number).

::::
The

:::::::
leftmost

::::::
point

:::
for

::::
each

:::::::
species

::::::::::::
corresponds

::
to

:::
the

::::
full

:::::::
20min

::::::::::
variability,

:::::
while

::::
this15

:::::::::
variability

:::::
drops

::
to
:::::
zero

::
if

:::
the

::::
time

::::::::
intervals

::::::::::
considered

::
in

::::::::::
smoothing

:::::::
become

:::::
much

:::::::
longer

::::
than

:::::::
20min.

::::
The

::::::
dashed

:::::
lines

:::::
show

:::
the

:::
full

::::::
model

::::::::::
variability,

::::::
which

::::
was

:::
not

:::::::::
smoothed

::::
out.

::::
The

:::::::::::
crosspoints

::
of

:::
the

::::
full

::::
and

:::::::::::::
corresponding

::::::
dashed

::::
line

::::::::
indicate

:::
the

:::::::::
smoothing

::::::::
numbers

::::
for

::::::
which

:::::::::::::
MEASCARIBIC:::

has
::::

the
:::::
same

:::::::
20min

:::::::::
variability

:::
as

:::::::::::::
MODsampled

CARIBIC.
:::::::::::::
MEASCARIBIC ::

in
::::::
which

:::::
each

::::::
species

::::
has

::::
been

:::::::::
smoothed

:::
to

:::
this

:::::
point

::::
will

:::
be

:::::::
referred

:::
to

::
as

::::::::::::::
MEASsmoothed

CARIBIC.

:::::::::::::
Climatological

:::::
mean

::::::
values

::
of
:::::::::::::
MEASsmoothed

CARIBIC:::::
were

::::
then

:::::::::
compared

::
to

:::::
mean

::::::
values

:::::
from

:::::::::::::
MEASCARIBIC ::::

with
:::
the

::::
full

:::::::::
variability,20

:::::::
thereby

:::::::::::
determining

:::
the

:::::::::
influence

:::
of

::::
the

:::::::
reduced

:::::::
20min

::::::::::
variability.

:::
A

:::::::
similar

:::::::::
influence

::
is

:::::::::
expected

:::
by

:::
the

:::::::
coarse

::::::
model

:::::::::
resolution,

::::::
which

:::
by

:::::::::
definition

:::
has

:::
the

::::::
same

::::::
20min

::::::::::
variability

::
as

:::::::::::::
MEASsmoothed

CARIBIC.
:

::::
The

:::::
mean

:::::::
relative

:::::::::
difference

::
of

:::
the

:::::::::::::
climatologies

:::
for

:::::::
different

:::::::
species

::::::::
between

:::::::::::::
MEASsmoothed

CARIBIC :::
and

:::::::::::::
MEASCARIBIC::

is
:::::::::
displayed

::
in

::::::
Figure

:
5
::::::
(right

::::::
panel).

::::
The

::::::::::
differences

:::::::
depend

::::::::
strongly

::
on

:::
the

::::::::
species.

:::::
Those

:::::::
species

::::
that

:::
are

:::::::::
measured

:::
by

::
air

::::::::
samples

:
(N2O:

,

C2H6 :::
and

:
C3H8:

)
::::
have

:::::
been

:::::::
shaded

:::
in

:::::
grey,

:::::
since

::::
they

:::::::
contain

:::::
very

:::::
little

::::
data

:::
far

::::::
above

::::
and

::::::
below

:::
the

:::::::::::
tropopause

::::
and

:::
are25

::::::::
therefore

:::
not

::::::::::
considered

::
in
::::
this

:::::::
section.

:

::::
The

:::::
mean

:::::::
relative

:::::::::::
differences

:::
are

:::::::
smaller

:::::
than

::::
1%

:::
for

:::
the

:::::
long

:::::
lived

:::::::
species

:::
to

:::
the

::::
left

::::
and

:::::
reach

::::::::
10-20%

:::
for

::::
the

:::::
other

:::::::
species.

:::::::
Largest

:::::::
values

::::::
appear

:::::::
where

:::
the

:::::::
mixing

::::::
ratios

:::
of

:::
the

::::::::
species

:::
are

::::::
small

::::
and

:::::::
vertical

:::::::::
gradients

::::
are

:::::::
strong,

:::
i.e.

:::
in

:::::::::::
stratospheric

:
CO,

::::::::
acetone

::
or

:
H2O::::

and
:::::::::::
tropospheric O3:

.
::::
E.g. H2O :::

has
::::
very

::::
low

::::::::::::
stratospheric

:::::::
mixing

:::::
ratios,

::::
that

:::
are

::::::::
reached

::
in

::::::::::
small-scale

:::::::::
intrusions

::
of

::::::::::::
stratospheric

:::
air

:::::::::::
encountered

::::::
during

::::::
flight.

::
If

:::::
these

::::::::::
small-scale

:::::::::
structures

::::
are

:::::::::
smoothed

:::
out,

::::
the

:::::
mean30

::::::
values

:::::::
become

:::::
larger

::::
and

:::
the

::::::::::
difference

::
of

:::::::::::::
MEASsmoothed

CARIBIC::::
and

:::::::::::::
MEASCARIBIC ::

is
::::
large

::::
and

::::::::
positive.

::::
The

:::::::
relative

::::::::::
differences

:::::
show

:::
the

:::::::::
influence

::
of

::
a
:::::
lower

::::::::::
variability

::::
that

::
is

:::::
equal

::
to

::::
that

:::
of

::::::::::::
MODsampled

CARIBIC.
:::::
This

::::::::
therefore

::::::
shows

:::
that

:::
the

:::::::
coarse

::::::
model

:::::::::
resolution

::::
does

:::
in

::::::::
principle

:::
not

::::
lead

:::
to

::::
very

:::::
large

:::::
errors

:::
in

:::::::::::::
climatological

:::::
mean

:::::::
values.

::::::::::::
Nevertheless,

:::
the
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Figure 5.
:::
Left

::::::
panel:

::::::
20min

::::::::
variability

:::
of

:
i)
::::::::::::
MEASCARIBIC,

::::
that

:::
has

::::
been

::::::::
smoothed

:::
out

::
to
:::

an
::::::::
increasing

:::::::
degree,

:::::::
indicated

:::
by

::
an

:::::::::
increasing

::::::::
smoothing

:::::::
number

::::::
(solid

:::::
lines)

::::
and

::
of

:::
ii)

:::::::::::
MODsampled

CARIBIC :::::::
(dashed

:::::
lines),

:::::
both

:::
for

:::::::::::::::
HrelTP =−1km.

::::
The

:::::::::
crosspoint

:::
of

:::
the

::::::
dashed

::::
and

:::::::::::
corresponding

::::
full

:::
line

:::::::
indicate

::::
the

:::::::::
smoothing

::::::
number

::::
that

::
is
::::::
needed

:::
to

::::::::
reproduce

:::
the

:::::::
20min

:::::::::
variability

::
of

:::::::::::
MODsampled

CARIBIC.
:::::

Right
::::::

panel:

::::
Mean

:::::::
relative

:::::::::
differences

:::
of

:::::::::::
MEASsmoothed

CARIBIC::::
and

::::::::::::
MEASCARIBIC.

::::::::::::
MEASsmoothed

CARIBIC :::
has

:::::
been

::::::::
smoothed

::
to
:::::
have

:::
the

::::
same

:::::::
20min

:::::::::
variability

::
as

::::::::::
MODsampled

CARIBIC,
:::::

using
:::
the

:::::::::
smoothing

:::::::
number

::::
from

:::
the

:::
left

::::
hand

::::::
panel.

:::
The

:::::::
relative

:::::::::
differences

:::::::::
correspond

::
to
:::
the

:::::
error

::
in

:::
the

:::::::::::
climatologies

::
of

::::::::::
MODsampled

CARIBIC:::
due

:::
to

:::
the

:::::
coarse

::::::
model

:::::::::
resolution. N2O:

, C2H6 :::
and C3H8 ::

are
::::::::
measured

:::
by

::
air

:::::::
samples

::::
with

::
a
:::
low

::::::::::::
measurement

::::::::
frequency

:::
and

:::::::
therefore

:::
not

:::::::::
considered

:::::
here.

:::::
model

::::::
could

:::::
have

:::::
other

:::::::::
defiencies

::
in
::::

the
::::::::::
description

:::
of

:::
the

::::::::
different

:::::::
species.

::::::
These

::::
are

:::::
made

::::::
visible

:::
in

:::
the

:::::::::
following

:::::::
section

::
by

::::::::::
comparing

::::::
model

::::
and

::::::::::::
measurement

:::::::::
variability

::::::::
directly.

5.2
:::::::::::
Comparing

::::::
model

::::
and

:::::::::::::
measurement

::::::::::
variability

::
In

::::
this

:::::::
section,

:::
the

::::::::::
variability

:::
of

::::::::::::
MODsampled

CARIBIC ::
is

:::::::::
compared

::::::::
directly

::
to

::::
that

::
of

::::::::::::::
MEASsmoothed

CARIBIC.
::::
For

::::
this

:::::::
dataset,

:::::::::::::
MEASCARIBIC

:::
has

:::::
been

::::::
altered

:::
in

::::
such

::
a
::::
way

::
to
::::::::::

reproduce
:::
the

:::::::
20min

:::::::::
variability

:::
of

::::::::::::
MODsampled

CARIBIC,
::::

see
:::
the

::::::::::
preceeding

::::::::
section.

:::
As

::::
this

:::::
study5

::::::
argues

::::::::::
completely

::::::
within

:::
the

::::::
model

::::::
world,

::
it
::
is

:::::::::
important

::::
that

:::
the

::::::
model

:::
has

:::::::
similar

::::::
values

:::
for

:::
the

::::::::::
variability,

::::::
which

::
is

:::::
used

::
as

::
an

::::::::
indicator

:::
of

:::
the

::::::::::
underlying

:::::::::::
complexity.

::
If

:::
the

::::::
model

:::::::
cannot

:::::::::
reproduce

:::
the

::::::::::::
measurement

::::::::::
variability

::
at

:::
all,

::
it
::
is
:::
not

:::::::::
plausible

::::
why

:::::::::::
conclusions

::
on

:::::::::::::::::
representativeness

::::::
drawn

:::::
from

::::::
model

::::
data

::::::
should

::::
also

:::
be

::::
true

:::
for

:::
the

::::
real

:::::::::::
atmosphere.

:::
As

:::
has

:::::
been

:::::::::
discussed

::
in

::::
Sec.

::::
4.2,

::::::::::
variability

::::::::
depends

:::
on

:::
the

::::
time

:::::
scale

:::
for

::::::
which

::
it
::
is
:::::::::::
considered.

::
In

::::::
order

::
to

::::::::
evaluate

:::
the

:::::
model

:::::::::::::
performance,

:::
we

::::::::
compare

:::
σr:::

on
::::
time

::::::
scales

:::
of

::::
30d

::::
and

::::
1a.

::::
30d

:::::::::
variability

::::::::
includes

:::::
data

:::::
from

::::::::
typically

::
4

::::::
flights,

:::
so10

:::
this

::
is
::
a
::::::::
measure

:::
for

:::
the

:::::::::::
atmospheric

:::::::::
variabilty

:::
on

:::
the

:::::::
global,

:::::
large

:::::
scale

:::::::::
dynamics.

:::
1a

::::::::::
variability

:::::
gives

:
a
:::::
good

:::::::::::
impression

::
of

:::
the

::::::
annual

::::::
cycle,

::
as

::
it

::::::::
includes

::::
data

::::
from

::::::
many

::::::
flights

:::
and

::::::::
different

::::::
years.

::::::
Figure

::
6
::::::
shows

::::::::::::
σMOD
r /σMEAS

r :::
for

:::::
time

:::::
scales

:::
of

::::
30d

::::
(left)

::::
and

:::
1a

:::::::
(right),

:::::
using

:::
the

::::::::
datasets

::::::::::::
MODsampled

CARIBIC :::
and

:::::::::::::
MEASsmoothed

CARIBIC:
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Figure 6.
::::::::::
σMOD
r /σMEAS

r :::::
given

::
in
:::::::
percent

::
for

::::
time

::::::
scales

::
of

::::
30d

::::
(left)

:::
and

:::
1a

::::::
(right),

:::::
where

:::::
MOD

::::::
stands

:::
for

::::::::::
MODsampled

CARIBIC::::
and

::::::
MEAS

:::::
stands

::
for

::::::::::::
MEASsmoothed

CARIBIC.
::::::
Values

::::::
greater

::::
than

::::
50%

:::::::
indicate

:::
the

::::
high

:::::
model

::::::::::
complexity.

::::::
Figure

::
6
::::::
shows

::::
that

::::
the

::::::::::
variability

::
in

::::
the

:::::::::::::
measurements

::::::::
reached

:::
by

:::
the

:::::::
model

::::::
differs

::::::::
between

::::::::
species.

:::
In

:::::::
general,

::::
the

:::::::::
variability

::::::::
reached

:::
for

:::::::
shorter

:::::
lived

:::::::
species

::::::
better

::::
fits

::::
that

::
of

::::
the

::::::::::::::
measurements.

::::::::::
Short-lived

:::::::
species

:::::
also

::::::::
undergo

::
a
:::::
more

:::::::
complex

::::::::::
chemistry

::
in

:::
the

:::::::
model,

:::::
which

:::::
adds

::::::::::
variability.

::::
The

::::
30d

:::::::::
variability

::::::
shown

:::
in

::::::
Figure

:
6
:::::
(left)

:::::::
reveals

::
to

:::::
what

::::::
extent

:::
the

:::::
model

::
is
:::::
able

::
to

:::::::
capture

:::::::::
variability

:::::::
related

::
to

:::
the

:::::
large

:::::
scale

:::::::::
dynamics.

:::::
Most

:::::::
species

:::::
reach

::::::::
40-80%.

:
NO

:
is
:::::
very

:::::
short

::::
lived

::::
and

:::::::
strongly

:::::::::::
determined

::
by

:::
its

:::::
daily

:::::
cycle,

::::::
which

::
is
::::
the

::::::
reason

::::
why

:::
the

::::::::::
variability

::
in

:::
the

::::::
model

:::::::
reaches

::::::
higher

:::::::
values.5

::::
The

::::
time

:::::
scale

:::
of

:::
1a

::::::
shows

:::
the

::::::::::
variability

:::
that

::::::::::
represents

:::::::::::
seasonality.

::::
The

::::::
model

::::
does

::
a
::::::
better

:::
job

:::
for

::::
this

:::::
time

:::::
scale

::::
than

:::
for

::::
30d,

::::::
short

::::
lived

:::::::
species

::::
and

:
CO2 ::::::::

reaching
::::
well

:::::
over

::::
60%

:::
of

:::
the

::::::::::
variability,

::::::::::::
approaching

::::::
100%

:::
for

:::::
some

::::::::
species.

:::::
Here

:::::
again,

:::
the

:::::::
model

:::::::::
chemistry

::::::::
increases

:::
the

::::::::::
variability

:::
for

:::::::
shorter

:::::
lived

::::::
species

:::
to

:::
the

:::::
right.

::::::
There

:::
are

:::::::
species

::::
that

:::
are

:::
not

:::
as

::::
well

:::::::::::
represented,

:::::
while

::::
this

::::
also

:::::::
depends

:::
on

:::
the

::::::
height

::::::::::
considered

:::::
(e.g.

::::
high

::::::
values

:::
for

::::::::::::
stratospheric

:
N2O:

).

::::
The

::::::
model

:::::::::
variability

::
is
::::::::::
influenced

:::
by

:::::
many

:::::::
factors

:::::::::
including

:::
the

:::::::::
dynamics,

::::
the

:::::::::::::
representation

::
of

:::
the

::::::::::
chemistry

:::
and

:::
of

:::
the10

:::::::
sources

::::::::
included

::
in

:::
the

:::::::
model.

::::
The

:::::::
limited

:::::::::
horizontal

::::
and

:::::::
vertical

::::::::::
resolution

::::
also

:::::
plays

::
a
::::
role,

:::::
even

:::::::
though

:::::::::::::
MEASsmoothed

CARIBIC::
is

::::
used

::
as

::
a
::::::::
reference

:::
for

::::
the

:::::::::::
comparison.

::
If

:::::::::
compared

::
to

:::
the

::::::::
original

:::::::::::::
MEASCARIBIC,

:::
the

:::::::::::
percentages

::
of

::::::::::
variability

:::::::
reached

:::
by

:::
the

:::::
model

:::::
drop

:::
by

::::::::
10-20%

::::
(not

:::::::
shown).

::
It
::
is
::::::::

beyond
:::
the

:::::
scope

:::
of

::::
this

:::::
paper

::
to
:::::::

further
:::::::::::
disentangle

:::::
what

::::::
causes

:::
the

::::::::::
defiencies

::
of

:::
the

::::::
model

:::
and

:::::
what

:::::
leads

::
to
::::
the

::::::::::
differences

::::::::
between

:::
the

:::::::
species.

:::
As

:
is
:::::::
shown

::
in

::::::
Figure

::
6,

:::
the

::::::
model

:::::::
reaches

:::::
more

::::
than

:::::
50%

::
of

:::
the

:::::::::
variability

:::
of

:::
the

:::::::::::::
measurements.

::::
This

:::::
ratio

:::::::
depends

::::::::
strongly15

::
on

:::
the

:::::::
species

::::
and

::
is
::::::
higher

:::
for

:::::::
longer

::::
time

::::::
scales.

:::::
This

::::::
points

::
at

::
a

::::
high

::::::::::
complexity

:::
of

:::
the

::::::
model

::::
and

:::::::
justifies

:::
the

:::::::::::
assumption

:::::::::
underlying

::::
this

::::::
study:

::::
The

::::::::::::::::
representativeness

:::::::::
evaluated

:::::
from

:::
the

::::::
model

::::
data

::::::
alone

::
is

::::
also

::::
valid

:::
for

::::
the

:::
real

:::::::::::
atmosphere

::::
and

:::
the

::::::::::::
measurements

::::::
taken

::
by

::::::::::
CARIBIC.
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6 Results

Here, we first present the results of the application of the Kolmogorov-Smirnov test (Sec. 6.1), the variability analysis (Sec. 6.2)

and the relative difference (Sec. 6.3) to MODCARIBIC ::::::

regular
CARIBIC:and MODRANDPATH. All have to be related to the number of flights

and the the variabiltiy
:::::::::
variability

:
of the species as discussed in Section 3.3. A similar analysis has also been performed with

data
::::::
These

::::::::
methods

:::::
have

::::
also

:::::
been

:::::::
applied

:::
to

::::
data

::::
not

:::::
from

::
an

::::::::::::
atmospheric

::::::
model

::::
but

:
from a random number generator,5

leading to equivalent results. This study is
::::::
These

:::
are presented as supplementary material to the article. Sec. 6.4 interprets the

results by species as a representativeness uncertainty. Finally, Sec. 6.5 answers the question of how many flights are necessary

to achieve a certain degree of representativeness.
:
In

:::::::::
addition,

:::::::::
Appendix

::
A

::::::::
discusses

:::
the

:::::::::
influence

::
of

:::
the

::::::::::
limitations

::
in

:::::::::
longitude

:::
and

::
in
::::::::
pressure

::::::
which

:::
are

::::::::
inherent

::
in

:::
the

::::::::::
CARIBIC

:::::::
dataset.

6.1 Applying the Kolmogorov-Smirnov test10

The application of the Kolmogorov-Smirnov test to MODCARIBIC and MODCARIBIC :::::::

regular
CARIBIC :::

and
::::::::::::::

MODRANDPATH:yields a first

important result. Independent of the trace gas and HrelTP
:::::
height

:
considered, the result is always negative (not shown). This

means that the data in each bin of MODCARIBIC is
::::::

regular
CARIBIC::::

are
:
not representative of the corresponding bin in MODRANDPATH

when defining representativeness by a positive result of the Kolmogorov-Smirnov test. This is also true if the data is
:::
are not

binned in months but only in HrelTP. The result also stays the same for all values of the confidence limit α (using values of15

0.001, 0.01, 0.05, 0.1 and 0.2).

A similar finding for aircraft data has
::::
have

:
already been reported by Kunz et al. (2008). On the one hand side this could

mean that MODCARIBIC ::::::

regular
CARIBIC:

is simply not representative of MODRANDPATH. But if the other methods presented here are

considered, the conclusion seems more appropriate that the Kolmogorov-Smirnov test is simply not the correct
::::::::::
appropriate

way to answer the question. It can be considered as too strict for the type of data and the question considered here. This is20

further discussed with the help
:::
also

::::
the

:::::
result

:
of a sensitivity study, the results of which are presented

:::::
which

::
is
:::::::::

discussed
:

as

supplementary material to this text.

::
In

::::::::
addition

::
to

:::::::
binning

::::
into

::::::
twelve

:::::::
months

::::::::
(January

::
to

:::::::::::
December),

:::
we

::::
have

::::
also

::::::
tested

::::::::::::
MODregular

CARIBIC :::
and

::::::::::::::
MODRANDPATH :::::

when

:::
first

::::::::
binning

::::
into

:::::::
separate

:::::::
months

:::::
(108

:::::::
months

::
in

::::
nine

::::::
years)

::::
and

::::
then

:::::
using

::::
this

::::::::
monthly

:::::
mean

::::
data

:::
to

:::::::
compile

::
a

:::::::::::
climatology.

:::
For

::::
this

::::::::
monthly

:::::
mean

:::::
data,

::::
the

::::::::::::::::::::
Kolmogorov-Smirnov

::::
test

::::
does

:::::
give

:
a
::::::::

positive
::::::
result

::
in

:::::
some

:::::::
heights

::::
and

::::::::
months.

::::
But

:::
no25

::::::::::
meaningful

:::::::
pattern

:::::
could

:::
be

::::::::::
determined

:::::
from

:::
the

:::::::
results.

::::::::::
Especially,

:::
the

::::::
result

::::
does

::::
not

:::::::
depend

::
on

:::
τ∗

::::
(not

::::::::
shown).

::::
The

:::::
same

:
is
::::

true
::::

for
:::
the

::::::::::::::
Mann-Whitney

:::
test

::::
for

:::
the

:::::
mean

::::
and

::::::::
Levene’s

::::
and

:::
the

:::::::::::::::
Brown-Forsythe

::::
test

:::
for

::::::::
variance.

:::::
They

:::::
give

:::
no

:::::::
positive

:::::
result

:::
for

:::::
data

::::::
binned

::::::::
directly

::::
into

::::::::
months.

::::
The

:::::
result

:::
is

:::::::
positive

:::
for

::::::
some

:::::::
months

::::
and

:::::::
heights

::
if
:::::
data

:::
are

::::
first

:::::::
binned

::::
into

:::::::
separate

:::::::
months

:::
the

::::::::
monthly

::::::
mean

::::
data

::::
used

:::
for

:::::::
testing.

::::
The

:::::::
postive

::::::
results

::::::
seem

::::::::
randomly

::::::::::
distributed

::::
and

:::
no

:::::::::::
relationship

::
to

::
τ∗

::::::
could

::
be

::::::
found.

::::::
These

:::::
tests

::::::::
therefore

::::
also

:::::
seem

:::
not

:::
to

::
be

::::::::
suitable

:::
for

:::::::::
answering

:::
the

::::::::
question

:::
of

:::::::::::::::::
representativeness.30
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Figure 7. Rvar calculated according to Equation 5 for a time scale of 1a for all species in all height bins, using MODCARIBIC :::::

regular
CARIBIC:and

MODRANDPATH.
:::
Low

::::::
values

::::::
indicate

:::::
small

:::::::::
differences

::
in
:::::::::
variability.

6.2 Applying the variability analysis

This section presents the results of the application of the variability analysis to MODCARIBIC ::::::

regular
CARIBIC:and MODRANDPATH.

Equation 5 was applied for different time scales (
::::
30d,

:
0.25a, 0.5a, 1a, 2a and 5a) to calculate Rvar. The results are exemplarily

discussed for a time scale of 1a, shown in Figure 7, in which the results are sorted using the values of τ∗ displayed in Figure 2.

5

Rvar shows a strong relationship with
:::::::::::
dependancy

::
on

:
τ∗. This is visible from Figure 7, in which the results are sorted using

the
::::
with

::::::::::
decreasing values of τ∗ displayed in

:::::
(from Figure 2, that is

:
),
::::
i.e. with increasingly higher atmospheric variabilty from

left to right. The Pearson correlation coefficient ρ of Rvar and τ∗ is high, |ρ|> 0.9 in all height bins, independent of the time

scale. Rvar also shows a strong relationship to the number of samples: The amount of data in both MODCARIBIC ::::::

regular
CARIBIC:

and

MODRANDPATH decreases below and above the tropopause, and Rvar follows suit for practically all species.10

::::
The

:::::::
relation

::
of

::::
Rvar::::

and
:::
the

:::::::
number

::
of

::::::
flights

::::
was

::::
also

:::::
tested

:::
by

:::::
using

::::::::::::::
MOD3

RANDPATH:::::::
defined

::
in

::::
Sec.

::::
3.3.

::::
Rvar::::

was
:::::::::
correlated

::::
with

:::
the

::::::::
number

:::
of

::::::
flights

::::
for

::::
each

::::::::
species

::::
and

:::::::
height.

::::::
When

::::::::::::
investigating

::
a

:::::
linear

::::::::::::
relationship,

::::
the

::::::::
Pearson

::::::::::
correlation

:::::::::
coefficient

::::
was

:::::::::::::
approximately

::::::::::
|ρ| ≈ 0.75

:::
for

:::
the

::::
time

:::::
scale

:::
of

:::
5a,

::::::::::
increasing

::::::::::
continously

::::::
when

::::::::::
considering

:::::::
shorter

::::
time

::::::
scales

::
to

:::::::::
|ρ| ≈ 0.95

::::
for

:::
the

:::::
time

:::::
scale

::
of

:::::
30d.

::::::::::::
Considering

::
a

::::::::::
logarithmic

:::::::::::
relationship

::::::::
inreases

::::
the

:::::::::
goodness

::
of

:::
fit

:::
for

::::::
longer

:::::
time

::::::
scales,

:::::
while

::
it
:::::::::
decreases

::::
that

:::
for

::::::
shorter

:::::
time

::::::
scales

::::::::::
(|ρ| ≈ 0.85

:::
for

::::
both

:::
5a

::::
and

:::::
30d).15

Rvar therefore passes the requirements of being inversely related to τ∗ and directly to the amount of used data points
:::::::
number

::
of

::::::::
included

::::
data

::::::
points

::::
and

:::::
flights. Figure 7 can therefore be used to judge upon the representativeness of MODCARIBIC ::::::

regular
CARIBIC

for MODRANDPATH.

This is also supported by the study of random number data presented as supplementary material.
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Figure 8. Rrel calculated for according to Equation 6
::
for

:
all species in all height bins, using MODCARIBIC ::::::

regular
CARIBIC and MODRANDPATH.

::::
Low

:::::
values

:::::::
indicate

::::
small

::::::::::
differences

::
in

:::::::::::
climatological

:::::
mean

::::::
values.

This shows that by using the relive
::::::
relative

:
standard deviation (Equation 5) instead of the variance analysis applied by Kunz

et al. (2008), the difference in variability can be used to infer representativeness. Rohrer and Berresheim (2006) originally

introduced the variance analysis to investigate the sources and time scales of variability in a dataset and for this it remains a

valid method. In order to infer representativeness, it is more appropriate to use the relative standard deviation in the analysis

instead of the absolute variance.5

6.3 Relative differences

Rrel was calculated for each species in each height bin according to Equation 6, see
::::::
results

:::
are

:::::::::
presented

::
in

:
Figure 8.

Figure 8 shows how low variability (decreasing to the left, values taken from Figure 2), is linked with
:::::
good

::::::::::::::::
representativeness

:
(low values in Rrel, or good representativeness, respectively (see Sec. 4.3). Rrel decreases linearly with increasing variability

τ∗ with a high Pearson correlation coefficient greater than 0.95 for all height bins (not shown). The relation of Rrel with the10

number of values is also visible
:::
As

:::::::
visibile in Figure 8as the values decrease ,

::::
Rrel:::::

also
:::::::::
decreases with the number of data

points, this number having its maximum
:::::
which

:::::::::::
maximizes just around the tropopause and decreasing

::::::::
decreases

:
above and

below it (see Figure 1).

This shows that Rrel passes the requirements of being related to number of samples and variability τ∗ and can be used as a

measure for representativeness.15

This relation with
::::::::::
dependance

:::
on the number of values was tested in more detail: Each of the random paths of MODRANDPATH

was divided into three parts. Each part is then eight hours long, like a typical intercontinental flight with CARIBIC, and there

are a total number of altogether 3888 shorter random flights.Rrel was then calculated for MODRANDPATH and these subsamples,
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increasing their size by including more of the 3888 shorter random flights
:::
data

::::::
points

::::
was

::::
also

::::::
tested

:::
by

:::::
using

::::::::::::::
MOD3

RANDPATH

::::::::
described

:::
in

::::
Sec.

:::
3.3. The Pearson correlation coefficient

:
ρ
:
between the number of shorter random flights and Rrel was larger

than 0.9
:::::::
ρ≈ 0.95

:
for all species in all heights(not shown).

:::::
Less

:::::::
variable

:::::::
species

::::
like

:
CO2 ::::

show
::
a
:::::
better

:::::::::::
relationship

:::::
with

:::
the

::::::::
logarithm

:::
of

:::
the

:::::::
number

:::
of

::::::
flights. This underlines how Rrel is well correlated with the number of measurements.

Using Rrel as a measure passes both conditions: It is directly proportional to the number of flights and indirectly to the5

variability. In addition to using Figure 7, Figure 8 can therefore be used to judge upon the representativeness of MODCARIBIC

::::::

regular
CARIBIC:for MODRANDPATH. Rrel can be transformed into a relative difference in percent, by taking Rrel to the power of ten. A

score of -2 stands for a mean relative difference of 1%.

The score that discriminates representative from the non-representative case has to be arbitrarily chosen (see Nappo et al.

(1982) and Ramsey and Hewitt (2005)). This score gives the uncertainty within which the data is
:::
are considered representative.10

If a score of -2 is defined as representative (corresponding to 1% mean relative difference), then representative species and

heights can now be seperated from those species that are not representative using the results from Figure 8. But the score of

-2 is arbitrary. If it is reduced to -1.5 (roughly 3% relative difference), MODCARIBIC ::::::

regular
CARIBIC can be seen as representative for

many more species.

6.4 Representativeness uncertainty of the CARIBIC measurement data15

The last sections have shown Rrel (see Equation 6) and Rvar (see Equation 5) to be adequate scores to describe representative-

ness. After reconsidering the question we asked in the Section 3.1 (Is a climatology compiled from CARIBIC data represen-

tative for
::
of

:
the tropopause region in mid-latitudes?), we will use Rrel in the following. It is more intuitive (compared to Rvar)

as it describes the difference to a larger dataset, e.g. in percentand shows the slightly higher correlation coefficient. A further

discussion of Rvar is beyond the scope of this paper. As noted in Sec. 4.3, Rrel is also comprehensible as an uncertainty error20

for using the smaller dataset to compile a climatology and will be called representativeness uncertainty correspondingly.

In order to asses the uncertainty for accepting CARIBIC measurement data to create a climatology, all the gaps (e.g. due to

instrument problems or measurement intervals> 10s) in measurements and HrelTP (calculated from ECMWF fields in the case

of measurements) have to be mapped onto MOD
::::::
model

::::
data

:::::
have

::
to

:::::::
contain

:::
the

:::::
same

::::::::
amount

::
of

::::
data

:::
as

:::::::
MEASCARIBICof the

corresponding species and HrelTP calculated from the model. This was done and Rrel - taken to the power of 10 - recalculated25

using
:
,
:::::
which

::
is
::::
why

::::::::::::
MODsampled

CARIBIC::::
(see

::::
Sec.

:::
2)

:::
will

:::
be

::::
used

::
in
::::
the

:::::::::
following.

::
In

::::::::
addition,

:
MODRANDLOC with an even distribution

in pressure,
:
(see Table 1

:
)
::::
was

:::::
used

:::
as

:::::::::
reference,

:::
as

::
it

:::
has

::
a
::::::::
random

::::::::
sampling

:::::::
pattern

::::
and

::::::::::
represents

:::
the

::::
full

:::::::
model

:::::
state,

:::::::::::
independent

::
of

:::
the

:::::::::
sampling

::::::::
pressure. The limits in pressure where again set to 180hPa< p < 280hPa. The result

::::::::
resulting

:::
Rrel:is shown in Figure 9. Using different wording, Rrel in this formulation can also be considered the sampling error of the

measurements.30

This result - deduced from model data only - is also valid for the real world if the different species are equally well represented

in terms of the processes that act on them, as is the case here, see Section 3.2.Figure 9 therefore gives the representativeness

uncertainty not only for a reduced set of MODCARIBIC, but also for the CARIBIC measurements. It can be used to answer

::::::::::
complexity

::
of

:::
the

::::::
model

::
is

::::::::::
sufficiently

:::::
high

:::
for

::::
each

:::::::
species.

:::::
This

:::
has

:::::
been

::::::
shown

::
by

::::::::::
comparing

:::
the

::::::::::
variability

::
of

::::::::::::
MODsampled

CARIBIC
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Figure 9. Representativeness uncertainty for using the CARIBIC data (that is 334 long-distance flights, see Table 1) to compile a climatology:

10Rrel
::::::::
calculated

:
from MODCARIBIC ::::::RANDLOC:and MODRANDLOC ::::::

sampled
CARIBIC.

::::
Low

::::::
values

::::::
indicate

:::::
small

::::::::::::::::
representativeness

:::::::::::
uncertainties. N2O:,

C2H6:::
and

:
C3H8 ::

are
::::::::
measured

:::::
from

::
air

::::::::
samples,

:::::
which

:::::::
increases

:::
the

::::::::::
uncertainty,

::::::::
especially

:::
for

:
C3H8.

:::
and

:::::::::::::
MEASsmoothed

CARIBIC:::
for

::::::::
different

:::::
time

::::::
scales

::::
(see

::::
Sec.

:::
5).

::::
The

::::::::::
discussion

::
of

:::
the

:::::::::
following

::::::::::
paragraphs

::
is
:::::::::
therefore

::::
also

:::::
valid

:::
for

:::
the

::::
real

:::::::::::
atmosphere,

:::::
even

::::::
though

:::::::
results

::::
have

:::::
been

:::::::
derived

:::::
from

:::::::
model

::::
data

::::::
alone.

::::::
Figure

::
9
::::::::
answers the question we asked

in Sec. 3.2: For which species is a climatology compiled from CARIBIC data representative for
::
of the tropopause region in

mid-latitudes?

The influence of the limit in pressure is shown in the supplement.5

When considering the representativeness uncertainty of a climatology, it is also important to consider the annual cycle

of a species, e.g. 10% can be much for a species that is more or less constant, while it is can be much for a species with

a strong seasonality. Climatologies of , and are exemplarily discussed at the end of this section. The following paragraphs

discuss representativeness by species, not explicitly considering the seasonal variations for each species.
:::
The

::::::::
monthly

::::::::
resolved

::::::::::::
climatologies

::
of

:
CO,

:
CO2 :::

and
:
O3 :::

will
:::
be

:::::::::
discussed

:::::::::::
exemplarily

::
at

:::
the

::::
end

::
of

::::
this

:::::::
section.10

Many of the species that sum up to NOy in the model are not actually measured by CARIBIC and therefore get no value
:::
are

:::
not

:::::::::
displayed in Figure 9. In general, the representativeness uncertainty is lowest where there are most measurements, which

is just around the tropopause (see Figure 1). This effect overlays the physical reasons for the different values of the uncertainty

for all species considered. If the limits in pressure are expanded in using MODRANDLOC, the uncertainty increases markedly,

as is shown in supplementary material. The reasons for this have been discussed in Section 3.1
::::::::::::
uncertainties

:::
for

:::
the

::::::::::
considered15

::::::
species.

and NO have
:::
has

:
the highest uncertainty of 90%() and up to 100% in the case of . We propose two possible reasons: On the

one hand, there are many gaps in the observations. But and NO are
::
is also emitted by aircraft in the UTLS (Stevenson et al.,
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2004), and since CARIBIC flies in the flight corridors heavily frequented by commercial aircraft, it is unrealistic to assume a

climatology of these species to be representative of the UTLS on a whole.

H2O shows a strong gradient in its representativeness uncertainty, which is directly linked to the strong gradient in variability.

The dry stratosphere can be described by relatively few measurements, which is why the uncertainty is low, only reaching 25%

at most. The humid and variable troposphere influenced by daily meteorology has a higher uncertainty, reaching more than5

60%.

NOy, being a pseudo-species made up of many substances, is more difficult to disassemble. The variabilty of many com-

ponents is higher in the troposphere, where the uncertainty is 30% at its maximum. Above, it is smaller than 10% and the

climatology therefore quite trustworthy.

It is interesting to note that C2H6 and C3H8, both collected in whole air samples still reach uncertainty values
:::::::::::
uncertainties10

comparable to those of other species in their range of τ∗. This is due to the fact that these are rather
:::::::::
moderately

:
long-lived

species for which only a moderate
::::::
smaller

:
number of measurements are needed for a representative climatology. The cli-

matology of C3H8 comes with an uncertainty of up to 25%, while that of C2H6 is better with an uncertainty of less than

10%.

The climatology of O3 is very trustworthy, the uncertainty being smaller than 10% for most height bins. The higher values15

in the tropospheric bins should not raise much concern, as O3 increases strongly with height in the UTLS and an uncertainty

of 15% will be practically unnoticable compared to the vertical increase.

This is not true for acetone, where the gradient is just opposite to O3. The climatology is trustable with an uncertainty only

up to 10% in upper levels, while it increases to 20% in the lower heights, where the influence of spatially and temporally

variable sources at the ground is stronger.20

The climatology of CO is very good, the uncertainty in stratospheric height bins being less than 5%. The troposphere, again

stronger under the influence of sources, has a higher uncertainty reaching up to 10%.

The long-lived trace gases CH4, N2O and CO2 (all detrended as described in Sec. 2.1) all have representativeness uncer-

tainties of less than 5%
:::::
0.4%,

::::::
which

::
is
::::::

lower
::::
than

:::::
their

::::::::
seasonal

::::::::::
variability. This is interesting especially for N2O, which is

measured only in the whole air samples.25

As example and summary, the representativeness uncertainty will be applied to climatologies of , CO,
:
CO2 and O3, shown

in Figure 10. CO is shown for MODCARIBIC ::::::

sampled
CARIBIC:

(top left
:
,
:::::
panel

::
A), MODRANDLOC (top right

:
,
:::::
panel

::
B) and CARIBIC mea-

surements (MEASCARIBIC, center left,
:::::
panel

::
C). The white space in these figures has three possible reasons: the aircraft could

have never flown in that bin, there could be measurement gaps in CO or a gap in HrelTP. The measurement gaps of CO and

HrelTP from MEASCARIBIC have been mapped onto MODCARIBIC, the two upper left hand climatologies of Figure 10
:::::::

sampled
CARIBIC,30

:::
but

:::::::
HrelTP

::::::
differs

::::::::
slightly

::::
and

::::::::
therefore

:::::
also

:::
the

::::::
white

:::::
space. The representation of CO in the model, comparing top and

center left figure
:::::::
(panels

::
A

::::
and

::
C), is similar

::
to

:::::::::::::
measurements

:
(in the troposphere more so than in the stratosphere), but was

not subject of this study. We compared the top row of MODCARIBIC ::::::::::::
(MODsampled

CARIBIC:
and MODRANDLOC:,::::::

panels
::
A
::::

and
:::
B)

:
and

found that Rrel is a good descriptor for the representativeness of one for the other. By assuming
::::::::
accepting

:
the result from the

24



model to be valid also for measurements, we can now use the score calculated from the two model samples to determine the

representativeness
::::::::::
uncertainty

:
of MEASCARIBIC.

By again defining Rrel =−1 (10% uncertainty
:
,
::::
one

:::::
third

::
of

:::
the

:::::::::
seasonal

::::::::
variation) as the limit for representativeness, the

climatology of MEASCARIBIC in (Figure 10(center left
:
,
::::::
center

::::
left,

:::::
panel

::
C) was shaded in grey where it is not representative.

The representativeness uncertainty shown in Figure 9 only serves as a first indication of the expected uncertainty when resolv-5

ing monthwise. The center right panel
:::::
(panel

:::
D)

:
displays the standard deviation of CO from MODRANDLOC. By comparing

the center panels
::
(C

:::
and

:::
D), it becomes evident that the variability specific to CO is one of the reasons for the higher repre-

sentativeness uncertainty in spring, while it cannot explain all the features. The number of flights is a different reason, which

explains the higher uncertainty in January, the month with the least flights (not shown).

The limit of 10% should not be applied in general and has to be adapted to the species under consideration. This becomes10

evident by the bottom row in Figure 10
::::::
(panels

::
E
::::

and
:::

F), which shows climatologies of CO2 and O3. CO2 shows a small

annual variation around a high background value. So 10% uncertainty could be easily reached by a single measurement, which

would certainly not be representative for
::
of the whole year. The shading for CO2 in Figure 10 was set at a threshold of 0.3%

:
,

:::::
again

::::
just

:::::
above

::::
one

:::::
third

:::
of

:::
the

::::::::
seasonal

::::::::
variation. The high values in spring in the upper troposphere show an even lower

uncertainty, the uncertainty of all data being less than 0.7% (not shown). The opposite is true for O3, for which the threshold15

was set to 15% uncertainty
:::::::
(around

::::
one

::::::
fourth

::
of

:::
the

:::::::::
seasonal

:::::::::
variation). Many tropospheric values in spring or at times of

high gradients in the stratosphere at the beginning and end of spring have an uncertainty higher than these 15%.

As the results in Figure 9 are sorted by the variability of the species and this is linked to their lifetime in following Junge

(1974), conclusions are possible for species even if they have not been explicitly considered in this study. This is true for SF6,

for example, which is measured in whole air samples by CARIBIC but was set to 0 in the model run and could therefore not be20

included in this study. As it is long-lived in both troposphere and stratosphere (Ravishankara et al., 1993), a climatology from

CARIBIC SF6 measurements can be considered to be representative even though it is measured only by whole air samples.

::::
Two

::::::::::
limitations

:::
are

::::::::
inherent

::
in
::::
the

:::::::::
CARIBIC

:::::
data:

:::
the

:::::::
Pacific

::::::
Ocean

::
is
::::::
never

:::::::
sampled

::::
and

::::
the

:::::::
pressure

:::
is

::::::
limited

:::
to

:::::
flight

::::::
levels.

:::
The

:::::::::
influence

::
of

:::::
both

:::::
these

::::::::::
limitations

::
is

:::::::::
discussed

::
in

:::::::::
Appendix

:::
A.

6.5 Number of flights for representativeness25

One last question remains to be answered: For those substances not representative yet, how often does one have to fly in order

to achieve a representative climatology?

As explained in Section 6.3, Rrel increases linearly with the number of flights considered, the Pearson correlation coefficient

of this relationship exceeding 0.9 for all species . This was tested by cutting all paths of MODRANDPATH into three flight legs and

testing
::::
This

::::::::
question

::::
can

::
be

:::::::::
answered

:::::
with

:::
the

::::
help

:::
of

::::::::::::::
MOD3

RANDPATH.
::::::
Figure

:::
11

::::::
shows

:::
the

::::::::::::::::
representativeness

:::::::::::
uncertainty

:::
for30

:::::
some

::::::
species

::::
and different numbers of these against the whole dataset. For low numbers, the relationship of Rrel and the number

of flights is better described by a logarithmic function. This is also motivated by the study using data from a random number

generator, which is presented as supplementary material to this text. So here, Rrel was fit to the logarithm of the number of

flights. The number of flights necessary to reach a specific representativeness uncertainty , can then be read from the regression

25



:
A

CO

MOD
CARIBIC
sampled

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

vm
r 

[p
pb

]

0

20

40

60

80

100

120

:
B

CO

MOD
RANDLOC

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

vm
r 

[p
pb

]

0

20

40

60

80

100

120

:
C

CO

MEAS
CARIBIC

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

vm
r 

[p
pb

]

0

20

40

60

80

100

120

:
D
:

std(CO) 

MOD
RANDLOC

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

[p
pb

]

0

4

8

12

16

20

24

:
E

CO
2

MEAS
CARIBIC

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

vm
r 

[p
pm

]

382

384

386

388

390

392

394

:
F

O
3

MEAS
CARIBIC

month
2 4 6 8 10 12

H
re

lT
P

 [k
m

]

-4

-2

0

2

4

vm
r 

[p
pb

]
0

100

200

300

400

500

600

Figure 10. Climatology of CO, built from MODCARIBIC ::::::

sampled
CARIBIC (top left, including the measurement gaps in MEASCARIBIC due to instrument

problems
:::::
panel

:
A), MODRANDLOC (top right

::::
panel

::
B) and the CARIBIC measurements (MEASCARIBIC, center left

:::::
panel

:
C). Areas of 10ˆRrel >

0.1, calculated from the top row, were used to shade non-representative areas in the climatology of MEASCARIBIC in grey. The right center

panel
::::
Panel

::
D

:
displays the 1σ standard deviation of CO from MODRANDLOC. The bottom row

::::::
(panels

::
E
:::
and

:::
F) displays climatologies from

MEASCARIBIC of CO2 (left) and O3, shaded with 10ˆRrel > 0.003 and 10ˆRrel > 0.15, respectively.
26



line calculated from Rrel and log(number of flights).The result for Rrel =−1, corresponding to a representativeness uncertainty

of 10%, is shown in Figure 11. It is in principle a translation of the value of Rrel from Figure 8 into a number of flights that are

necessary to reach an uncertainty of 10%. Rrel =−1, i.e. 10% uncertainty are again set as a mean value, which may be too high

for some species, depending on their annual cycle. Number of 8h flights necessary to reach a representativeness uncertainty

of 10% (Rrel =−1). This result was calculated using MODRANDPATH, the method is explained in the text.
::::::
flights.

:::
As

:::
has

:::::
been5

::::::::
discussed

:::
in

:::::::
Section

::::
6.4,

:::
the

::::::
yearly

::::::::
variation

:::
of

:
a
:::::::
species

::
is

::::
one

::
of

:::
the

:::::::
factors

::::
that

::::::::::
determines

:::
the

:::::::::
threshold

::
of

::::
the

::::::::::
uncertainty

::::
with

::::::
which

:::
the

:::::::
species

:::
can

:::
be

::::::::::
considered

::
to

:::
be

:::::::::::::
representative.

As is displayed
::::
E.g.,

:::
for

:::::::::::
(detrended) CO2,

::::
the

:::::
mean

:::::
value

::
of

::::::::::::::
MODRANDLOC ::

is
:::::::::::
385.7ppmv

::::
with

::
a
::::::
yearly

::::::::
variation

::
of

::::
2.5

::
to

:::::::::
3.5ppmv.

::
A

:::::::::::::::::
representativeness

::::::::::
uncertainty

:::
of

::
at

::::
least

::::::
0.5%

::::
has

::::::::
therefore

::
to
:::
be

:::
set

:::
as

:::
the

:::::::::
minimum

:::::::::
threshold

:::
for

:
CO2.

:::::
This

:::
can

:::
be

:::::::
reached

::::
with

:::::
only

::::
few

::::::
flights,

::::::
much

:::
less

:::::
than

:::::
those

::::::::
included

::
in

:::::::::::::
MODsampled

CARIBIC,
::::::::
indicated

:::
by

:::
the

:::::::
dashed

::::
line in Figure 1110

and goes in line with Sec. 6.4, CARIBIC with a total number of
::
at

:
334 flightsfrom 2005-2013 is already representative for

many long-lived species with low variability (high τ∗), to the left of the plot. For many of the nitrogen containing species

with low τ∗ (to the right), data representative of a climatology is probably impossible to collect within IAGOS-CARIBIC.

The necessary number of flights reach up to more than 3000 in the tropospheric heights, corresponding to almost all data in

MODRANDPATH. For those species in the center of the plot, the representativeness uncertainty may be further reduced by flying15

more often, especially for those with flight numbers below 1000 like
:
.

:::
For

:
O3, or . Due to their lower variability in the lower stratosphere, the climatological values of these species are already

representative. In general, the uppermost and lowermost heights need more flights as they are less frequently probed by the

aircraft.
::
on

:::
the

::::::
other

:::::
hand,

::::
the

::::::
yearly

:::::
cycle

:::::::::
proposes

::
an

:::::::::::
uncertainty

:::
of

:::::
50%

::
or

::::::
more.

::::::
While

::::
this

::
is
::::

the
:::::::::
minimum

:::::
value

:::
to

:::::::::
reproduce

:::
the

::::::
yearly

::::::
cycle

::
at

:::
all,

::
it
:::::
may

::::
still

:::
not

:::
be

:::::::::
sufficient

:::
for

:::
the

:::::::::::
application.

:::::
With

:::
the

::::::::
number

::
of

::::::::::
CARIBIC

:::::::
flights,

:::
the20

::::::::::
uncertainty

::
in

:
O3 ::

is
::::
low

:::::::
already

::::::
(< 5%

:::
in

:::
this

::::::::
height),

:::::
while

::::
the

::::::::::
uncertainty

::
is
:::::::::::
continuosly

::::::::
reduced

::
if

:::
the

:::::::
number

:::
of

::::::
flights

:::::::::
increases.

:::
As

::
is

:::::::::
indicated

::
by

:::::::
Figure

:::
11,

:::::::
highly

:::::::
variable

:::::::
species

::::
like

:
NO

::::
need

::::::
many

::::::
flights

::
in

::::::
order

:::
for

:::::
their

::::::::::::
climatologies

:::
to

:::::
reach

:::
low

:::::::::::::
uncertainties.

:::::
Even

:::::
1000

:::::::
flights,

:::::::::::::
approximately

:::
ten

:::::
more

::::::
years

::
of

::::::
flying

::::
the

:::::::::
CARIBIC

:::::::::::
observatory,

:::::
will

:::
not

:::::::
reduce

:::
the

::::::::::
uncertainty

::::::
below

:::::
10%.25

:::::
Other

:::::::
species

::::
that

:::
are

:::
not

::::::::
included

::
in

::::::
Figure

:::
11

:::
can

:::
be

:::::::
deduced

:::::
from

::::
their

::::::
value

::
of

::
τ∗

:::::
with

:::
the

::::
help

::
of

::::::
Figure

::
2.
::::::
Those

:::::::
species

::::::::
measured

:::
in

:::
air

::::::::
samples

::::
need

:::::
even

:::::
more

::::::::::
CARIBIC

::::::
flights

:::::
than

:::::::::
indicated

::
by

::::
the

:::::::
number

:::
in

::::::
Figure

::::
??,

::
as

::::
the

::::::::::::
measurement

:::::::::
frequency

::
is

:::::
much

::::::
lower.

:

7 Conclusions

:::
We

::::::::
describe

:::
and

::::::
assess

:::
the

::::::
degree

::
of

:::::::::::::
climatological

:::::::::::::::::
representativeness

::
of

::::
data

:::::
from

:::
the

:::::::::
passenger

::::::
aircraft

:::::::
project

:::::::::::::::::
IAGOS-CARIBIC.30

After a general discussion of our representativeness concept
:::
the

:::::::
concept

:::
of

::::::::::::::::
representativeness, we apply general rules to in-

vestigate the feasibility of compiling
:::::::
whether

:
climatologies from IAGOS-CARIBIC trace gas measurements

:::
can

:::
be

::::
seen

:::
as
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Figure 11.
:::::::::::::::
Representativeness

:::::::::
uncertainty

:::
for

::::::::
different

:::::::
numbers

:::
of

:::::
flights

:::
for

:::::
some

:::::::
species.

::::
The

:::::::
number

::
of

::::::
flights

::
in
::::::::::::

MEASCARIBIC::
is

:::::::
indicated

:::
by

:::
the

::::::
vertical

::::::
dashed

::::
line.

:::::
Other

::::::
species

:::
can

::
be

::::::::
deduced

::::
from

::::
their

:::::
value

::
of

::
τ∗

::::
with

:::
the

::::
help

::
of

::::::
Figure

::
2.

::::::::::::
representative. We answer the specific question: For which species is a climatology compiled from CARIBIC data representa-

tive for
::
of the tropopause region in mid-latitudes?

In order to answer this question, three
::::
four datasets were created from a nudged model run of the chemistry-climate model

EMAC: sampling
:
.
:::::
Two

:::::::
datasets

:::::::
sample

:
the model at the geolocation of CARIBIC measurement data (MODCARIBIC) and

using the two different random samples
::::::

regular
CARIBIC::::

and
:::::::::::::
MODsampled

CARIBIC).
::::::
These

::::::::
datasets

:::
are

::::::::::
contrasted

::
to

:::
the

::::::
much

:::::
larger

::::::::
datasets5

MODRANDPATH (random flight tracks with similar properties as those of MODCARIBIC:::::::

regular
CARIBIC) and MODRANDLOC (random

locations).

Of these three datasets, MODCARIBIC and MODRANDPATH are used to develop methods describing representativeness ,

applying
:::
As

:
a
::::
first

:::::
step,

:::
we

:::::::::::
demonstrate

::::
that

:::::
these

:::::::
model

:::::::
datasets

:::
are

:::::::::::
appropriate

::
to

:::::::
answer

::::
our

::::::::
question,

::::::
which

:::::
asks

:::
for

:::
the

::::::::::::::::
representativeness

::
of

::::::::::
CARIBIC

::::::::::::
measurement

::::
data.

:::
In

:::::
order

::
to

::::::
justify

:::
the

::::::::
validity

::
of

:::
the

:::::::::::
conclusions

::::::
drawn

:::::
from

::::::
model

::::
data

::
to10

:::
the

:::::::::::::
measurements,

:::
we

::::::::
compare

::::::
model

::::
and

::::::::::::
measurement

::::::::::
variability,

:::::
using

::::
the

:::::::::
variability

:::
as

::
an

:::::::::
indication

:::
of

:::
the

:::::::
models

::::::
ability

::
to

:::::::::
reproduce

::::::::
changes

::
in

::::::
space

:::
and

:::::
time.

:::
To

::::::::
compare

::::
like

:::::
with

::::
like,

::::::::::
variability

:::
on

::::::
scales

:::::::
smaller

::::
than

:::
the

::::::
model

::::::::::
resolution

::
is

::::::::
removed

::::
from

:::
the

::::::::::::::
measurements.

:::::
With

:::
this

:::::::::::
prerequisite

:::
the

::::::
model

::::::::::
reproduces

:::::::::
50-100%

::
of

::::
the

:::::::::
variability

::
of

:::
the

::::::::::::::
measurements,

:::::::::
depending

:::
on

::::
time

::::::
scale,

::::::
height

:::::::
relative

::
to

:::
the

::::::::::
tropopause

::::
and

::::::::
species.

::::
This

::
is

:::::::::
sufficient

::
to

:::::::
transfer

::::
our

::::::
results

:::::
from

:::
the

::::::
model

:::::
world

::
to

::::
the

:::
real

::::::::::::
atmosphere.15

:::::
Three

:::::::::
methods

::
to

::::::::
describe

:::::::::::::::::
representativeness

:::
are

::::::::::
developed

::::
and

::::::::
applied:

:::
(i)

:
the Kolmogorov-Smirnov test , a

:::
(and

::::
the

::::::::::::::
Mann-Whitney,

::::::::::::::
Brown-Forsythe

::::
and

::::::::
Levene’s

:::::
test),

:::
(ii) variability analysis following Kunz et al. (2008) and a relative differences

test
:::
(iii)

::
a
::::
test

:::::::::::
interpreting

::::
the

:::::::
relative

::::::::::
difference

::::::::
between

::::
two

:::::::::
datasets.

::::
Two

::::::::::::
fundamental

::::::::::::
requirements

::::
are

::::::::
essential

::::
for
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:::::::::::::::::
representativeness:

::
its

::::::::
increase

:::
(i)

:::::
with

:::
the

:::::::
number

:::
of

:::::::::::::
measurements

::::
and

:::
(ii)

:::::
with

::::::::::
decreasing

:::::::::::
atmospheric

::::::::::
variability

:::
of

:::
the

:::::::
species,

::::::
which

::
is

:::::::
related

::
to

:::::::::::
atmospheric

::::::::
lifetime

:::::::::
following Junge (1974). By formulating the variability analysis and relative

differences as scores (Rvar and Rrel respectively), we show
:::::::::::
demonstrate

:
that they pass the two requirementswe defined as having

to be met by any description of representativeness: Representativeness should increase with the number of measurements and

decrease with the variability of the species. Variability was defined following
::::
these

::::
two

:::::::::::::
requirements,

:::::
while

::::
the

:::::::::
statistical5

::::
tests

:::
are

:::
all

:::
too

:::::
strict. Rrel is more applicable for answering the question, asking for

::::::::::
(describing

:
the representativeness of for a

climatology. It
:
a
::::::::::::
climatology)

::
is

:::::
better

::::::
suited

:::
for

:::::::::
answering

::::
the

:::::::
question

::::
and

:
is therefore used for the

:
in
::::
the

:::::::::
remaining analysis.

A score of Rrel =−1 defines
:::
The

::::::
score

::::
Rrel ::

is
::::::
easily

:::::::::
converted

::
to

:
a representativeness uncertainty of 10%. It is used to

discriminate the representative from the non-representative compiled climatologies
::
in

:::::::
percent

::::
and

::::
this

::::::::
measure

::
is

::::
used

:::
in

:::
the

:::::::::
discussion. The results (using MODCARIBIC and MODRANDLOC) show that the data of

::::
show

::::
that

:
CO2, N2O ,

:::
and

:
CH4 ,

::::
have10

::::
very

::::
low

:::::::::::
uncertainties

:::::::
(below

::::::
0.4%).

:
CO, C2H6, and O3 can

:::::
reach

::::::
higher

::::::
values

::::
(5%

:
-
::::::
20%),

::::
but

:::
can

::::
still

:
be used to compile

representative climatologies around the tropopause, while acetone, .
:
NOy and H2O are only usable in the stratosphere. ,

:::::
lower

:::::::::::
stratosphere

::::::::::::
(uncertainties

:::
of

::::
5%

::
to

::::
8%

::::::
there,

::::::
higher

:::::::::::
elsewhere),

:::::
while

:
NO and C3H8 cannot be used for a representative

climatology
::::::::::::
(uncertainties

::
of

:::::
25%

::::
and

::::::
more). Naturally, the results strongly depend on the accepted uncertainty of 10% and

would change if this limit is set to a different value.15

::::::::::::
interpretation

::
of

:::::::
results

:::::::
strongly

::::::::
depends

:::
on

:::
the

:::::::
chosen

::::::::
threshold

:::::::::::
uncertainty

:::
and

:::::::
should

:::::::
depend

::
on

::::
the

:::::::
seasonal

::::::::::
variability

::
of

:::
the

:::::::
species

:::::
under

:::::::::::::
consideration.

:::::
This

::
is

::::::::::::
demonstrated

:::
by

::::::
setting

::::::::
different

::::::
limits

:::
for

::::::::::::
climatologies

::
of

:
CO2:

, CO
:::
and

:
O3:

.
:

In addition, the uncertainty can be translated into a number of flights necessary to achieve representativeness. E.g. for , 1500

to 1000 flights are necessary for a representative climatology in the upper troposphere,
:::
This

::
is
:::::::::::::
demonstrated

:::
for

:::::
some

:::::::
species

::
by

::::::::
showing

::::
the

:::::::::::
relationship

::
of

:::
the

::::::::
number

::
of

::::::
flights

::::
and

:::
the

:::::::::::::::::
representativeness

:::::::::::
uncertainty.

::::
For

:::::::::
long-lived

:::::::
species

::::
like

:
CO220

:::
and

:
CH4,

:
the number strongly decreasing with height

:::
334

:::::::::::::::::
IAGOS-CARIBIC

::::::
flights

:::::
used

::
in

::::
this

:::::
study

:::::::
already

:::::::
provide

:::::::
enough

::::
data,

::::::
while

::::::::::
short-lived

::::::
species

::::
like

:
NO

::::
need

:::::::
around

::::
1000

:::::::
flights

::
to

::::::
reduce

:::
the

:::::::::::
uncertainty

::
to

:::::
10%,

:::::::::
sufficient

::
to
::::::::::
reproduce

:::
the

:::::
strong

:::::::
annual

:::::
cycle.

The general concept of using two sets of model data to calculate the representativeness is easily applicable to other questions.

One model data set
::::::
dataset

:
should mirror the measurements, the other should be much larger, taking into account certain25

statistical properties of the measurement data set
:::::::
dataset, so that the two data sets

:::::::
datasets become comparable.

Questioning the representativeness of sampled data is important. Patterns might occur when sorting or averaging sparsely

sampled data, but these patterns are not necessarily meaningful. We discuss and show a way to address this problem of rep-

resentativeness by using model data. In following
:::
By

::::
help

::
of
:

the methods presented here, representativeness is given a sound

mathematical description, returning an uncertainty characterizing the specific dataset.30

Appendix A:
:::::::::::
Limitations

::
in

:::::::::
longitude

::::
and

:::::::::
pressure

29



::::::::::::
MEASCARIBIC:::

is
::::::
limited

:::
in

:::::::::
longitude

::::
(the

::::::
Pacific

:::::::
Ocean

::
is

:::::
never

:::::::::
sampled)

::::
and

::::::::
pressure

:::
(as

:::
all

:::::
civil

:::::::
aircraft,

::::::::::
CARIBIC

::::
flies

::
at

:
a
:::::::
certain

::::::::
pressure

::::::
level).

::::
Both

::::::::::
limitations

:::::::::
influence

:::
the

::::::::::::
climatologies

::::::::::
calculated

:::::
from

:::
the

:::::::
dataset.

:::::
They

:::
are

:::::::::
discussed

:::
in

:::
the

::::::::
following

:::::::::
sections.

A1
::::::::::
Limitation

::
in

:::::::::
pressure:

:::::::::
Aircraft

::::::::::
tropopause

:::::::::
pressure

::::
bias

:::
By

::::::::::
calculating

::::
Rrel::::::

using
::::::::::::
MODregular

CARIBIC::::
and

::::::::::::::
MODRANDLOC,

:::
an

:::::::::
important

:::::
fact

::::
can

::
be

::::::::::
illustrated

::::::
about

::::
data

:::::::::
collected

:::::
with5

::::::::::
instruments

:::
on

:::::
civil

:::::::
aircraft.

::::
As

:::
the

:::::::
aircraft

:::::
flies

::
at

::::::::
constant

::::::::
pressure

::::::
levels,

:::::
data

:::
are

:::::
also

:::::
taken

::
at
::::::

these
::::::::
pressure

::::::::
altitudes

::::
only.

:::
If

::::
data

::::
are

::::
then

::::::::
resorted

::::
into

:::::::
heights

::::::::
relative

::
to

::::
the

::::::::::
tropopause

:::::::::
(HrelTP),

::::
this

:::::
limit

:::
in

::::::::
pressure

::
is
:::

no
:::::::

longer
:::::::
visible.

::::::::::::
Nevertheless,

::
it

:::::::::
influences

:::
the

:::::::
results

::
as

::::
the

:::::::
volume

:::::::
mixing

::::::
rations

:::
of

:::::
many

:::::
trace

::::::::::
substances

:::
are

::::
not

::::
only

::
a
::::::::
function

::
of

:::::
their

:::::::
distance

::
to
::::
the

::::::::::
tropopause,

::::
but

::::
also

::
of

::::::::
pressure.

::::
The

:::::
effect

:::
on

::::
the

:::::::::::::
climatological

:::::::
values

:::
can

:::
be

::::::::::
illustrated

:::
by

::::::::::
calculating

::::
Rrel:::::

(see
::::::::
Equation

:::
4)

::::::
using

:::::::::::::
MODRANDLOC::::

and10

:::::::::::
MODregular

CARIBIC:::::::
within

:::::::::::::::::::::
10hPa< p < 500hPa.

:::::::
Figure

:::
12

::::::
shows

::::
the

:::::::
results

:::::
(right

:::::::
panel).

::::
For

::::::::::::
comparison,

::::
the

::::
left

:::::
panel

:::
of

::::::
Figure

:::
12

::::::
shows

::::
Rrel:::

of
:::
the

::::::
same

:::::::
datasets

::::::
when

:::::::
setting

::::::::::::::::::::::
180hPa< p < 280hPa,

:::
the

::::::
range

:::
at

::::::
which

:::::::::
CARIBIC

::::::::::
measures.

:::
The

:::::::::::::::::
representativeness

::::::::::
uncertainty

::
is
::::::
much

::::::
higher

::
in

::::::
almost

:::
all

:::::::
heights

:::
on

:::
the

:::::
right

::::
hand

::::
side

:::::::::::::::::::::::
(10hPa< p < 500hPa),

::::::
except

:::
just

::::::
above

:::
the

:::::::::::
tropopause,

:::::
where

::::::::::::
MODregular

CARIBIC::::::::
contains

:::::
most

:::::
data.

::::
Only

::::
the

::::
long

:::::
lived

:::::::
species CO2:

, N2O:::
and

:
CH4:::::

retain
:::::
their

:::
low

::::::::::::
uncertainties.

::::
For

:::
the

:::::
more

::::::::
variable

:::::::
species

::
to

:::
the

:::::
right

::
of

:::
the

::::::
figure,

::::
the

::::::::::::::::
representativeness

::::::::::
uncertainty

:::::::::
increases

::::::::
strongly,15

:::::::::
especially

::
in

:::
the

::::::::::::
troposphere,

:::::
where

::::
the

:::::::::
variability

:::::::::
increases

::
if

::::
data

:::::
taken

::
at

::::::
higher

::::::::
pressure

:::
are

:::::::::
included.
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Figure 12.
:::
Rrel:::::::::

calculated
:::::

from
::::::::::::

MODregular
CARIBIC ::::

and
::::::::::::

MODRANDLOC:::::
with

:::
the

::::::
range

:::
of

::
p
:::

set
:::

to
:::::::::::::::::::::
180hPa< p < 280hPa

:::::
(left)

::::
and

::::::::::::::::::
10hPa< p < 500hPa

:::::::
(right).

::::
Low

::::::
values

:::::::
indicate

:::::
small

::::::::::::
climatological

::::::::::
differences.

:::
The

:::::::::
difference

:::::::
between

::::
the

:::
two

::::::
panels

::::::
shows

:::
the

:::::::
influence

::
of
:::::::::
expanding

:::
the

:::::
limits

::
in

:
p
:::::
when

:::::::::
calculating

:::
the

::::::::::::
climatological

:::::
mean

:::::
values

::::
with

::::::
HrelTP

::::
used

:::
as

:
a
::::::
vertical

::::::::::
coordinate.

::::
The

:::::
strong

::::::::
increase

::
in

:::::::::::::::::
representativeness

::::::::::
uncertainty

::
is

::::::
always

:::::::
present

::
in

::::::::::::
measurement

::::
data

:::::
from

:::::::::::
commercial

:::::::
aircraft,

::::::
which

:::
can

::::
only

:::::::
collect

::::
data

::::
high

::::::
above

:::
the

::::::::::
tropopause

:::::
when

:::
the

::::::::::
tropopause

::
is
::
at
:::::
high

:::::::
pressure

::::
and

:::
far

::::::
below

:::::
when

::
it

:
is
:::
at

:::
low

::::::::
pressure
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Figure 13.
::::::::::::
|RA

rel/RB
rel− 1|,

:::::
given

::
in
:::::::

percent.
:::::

This
::
is

:::
the

:::::::
fraction

::
of

:::
the

:::::::::::::::
representativeness

::::::::::
uncertainty

:::::::::
introduced

::
in

::::
Rrel ::::::::

calculated
:::::

from

::::::::::
MODregular

CARIBIC::::
and

:::::::::::
MODRANDLOC:::

by
::::::::

including
::::

the
::::::
Pacific

:::::
ocean

::
in
:::::::::::::

MODRANDLOC,
::::
even

::::::
though

::
it
::
is
::::

not
:::::::
sampled

:::
by

:::::::::::
MODregular

CARIBIC.
:::::
Both,

:::::::
textRA

rel :::
and

:::::::
textRB

rel::::
have

::::
been

::::::::
calculed

::::
from

::::::::::
MODregular

CARIBIC::::
and

::::::::::::
MODRANDLOC,

::::::::
excluding

:::
the

::::::
Pacific

::
in

::::::::::::
MODRANDLOC ::

in
:::
the

:::::::::
calculation

::
of

:::::::
textRB

rel.

::::::
values.

::::
This

:::::
bias

::
is

::::::::
naturally

:::::::::
contained

::
in

:::
all

::::
data

:::::::::
measured

::
at

::::::::
constant

::::::::
pressure

:::
and

:::::
then

::::::
sorted

:::::::
relative

::
to

:::
the

::::::::::
tropopause

::::
and

::::::
should

::
be

:::::
kept

::
in

:::::
mind

:::::
when

::::::::::
examining

::::::::::::
climatologies

:::::
from

:::::::::::::
corresponding

::::::::::
platforms.

A2
::::::::::
Limitation

::
in

::::::::::
longitude:

::::
The

:::::::::
influence

:::
of

:::
the

:::::::
Pacific

::::::
Ocean

::
As

:::::::
visible

::
in

:::
Fig

:::
1,

::::
there

::::
are

::
no

::::::::::
CARIBIC

:::::::::::::
measurements

::::
over

:::
the

::::::
Pacific

:::::::
Ocean,

:::::
while

::::::::::::::
MODRANDLOC :::

and
::::::::::::::
MODRANDPATH::::

also

:::::
cover

:::
the

:::::::
Pacific.

::::
The

::::::::::
uncertainty

::::::::::
introduced

:::
by

::::::
taking

:::
the

:::::::
Pacific

:::
into

::::::::
account

::
in

:::::::::::::
MODRANDLOC::

is
:::::::::::
investigated

:::
by

::::::::::
calculating5

:::
Rrel:::::

from
::::::::::::
MODregular

CARIBIC::::
and

:::::::::::::
MODRANDLOC::

in
::::
two

::::::::
different

:::::::
setups.

:::
Rrel::

is
::::::::::
calculated

:::::
from

:::
full

:::::::::::::
MODRANDLOC::::

and
::::::::::::
MODregular

CARIBIC

::::::::
(denoted

::
by

:::::
RA

rel):::
and

::::::::::
compared

::
to

::::
Rrel :::::::::

calculated
::::
with

::::::::::::::
MODRANDLOC ::::::

limited
::
in
:::::::::
longitude

::
λ
::
to

::::::::::::::::::::
120◦W < λ < 120◦E

::::::::
(denoted

::
by

:::::
RB

rel).:::::
The

:::::
result

::
is
:::::::

shown
::
in

:::::::
Figure

:::
13

::
as

:::::::
relative

:::::::::::
differences

:::::::::::::
|RA

rel/RB
rel− 1|

::::::::
between

:::
the

::::
two

:::::::::::::
uncertainties.

::::
The

:::::::
relative

::::::::::
differences

:::::
show

:::
the

:::::
share

:::
of

:::
the

::::::::::
uncertainty

::::::::
inherent

::
in
::::::::::::

MODregular
CARIBIC::::::::

because
:::
the

:::::::
Pacific

::
is

::::::::
included

::
in

::::
the

::::::::
reference

:::::::
dataset

:::::::::::::
MODRANDLOC.

:
10

::::
The

::::::::::
importance

:::
of

:::
the

::::::
Pacific

::::::::
depends

:::
on

:::
the

:::::::
species

::::::
under

::::::::::::
consideration

::::
and

::::::::
whether

:::
the

:::::::::::
stratosphere

:::
or

:::::::::::
troposphere

:::
are

::::::::::
considered.

::::
The

::::::::
influence

:::
on

::::::::::::
stratospheric

::::::
values

::
is

::::
very

:::::
small

:::
for

:::
all

:::::::
species.

:::
In

::::::::
addition,

:::::
those

:::::::
heights

::::
with

::::
less

::::
data

::::
(top

::::
and

:::::::
bottom)

:::
are

:::::
most

::::::::
strongly

:::::::::
influenced

::
if
:::
the

:::::::
Pacific

::
is

:::
not

:::::::::::
considered.

:::
For

:::
the

::::::::::
long-lived

:::::::
species CO2 :::

and
:
N2O,

::::
the

::::::::::
uncertainty

::::::::
increases

:::::
only

::::
little

:::::
(less

::::
than

::
3%

:
)
::
if

:::
the

::::::
Pacific

:::
is

::::::::
included

::
in

:::
the

:::::::::
reference

:::::::::::
climatology

:::
of

::::::::::::::
MODRANDLOC.

:::
But

::::::::::::
tropospheric

CH4 :
is
:::::
more

::::::::::
influenced

:::
by

:::::::
surface

::::::
values.

::::::::::::
Interestingly,

:
ClNO2 ::

is
::::
also

:::
not

::::::::
affected,

::::::
which

:::::::
clearly

::::::
shows

::::
that

:::
the

:::::
effect

:::::
does15

:::
not

:::::::
depend

:::
on

::::::::
lifetime,

:::
but

:::
on

::::
the

::::::
source

:::::::
regions

::::
and

:::
the

::::::::::
chemistry.

:::::::::
Acetone, CO

::::
and C2H6 :::

are
:::
air

:::::::::
pollutants

:::::
with

::::::
strong
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Figure 14.
:::::::::
Timeseries

::
of

:
CO

:::
for

:::::
flight

:::
445

:::::
from

::::::::
Frankfurt

::
to

::::::
Tokyo.

::::::
Shown

::
is
:::
the

::::
time

:::::
series

:::
of

:::
the

::::::::::
interpolated

:::::
model

::::
data

::::
and

::
of

:::
the

::::::::::::
measurements.

::::::::::::
Measurements

::::
have

::::
been

::::::::
smoothed

:::::
three

:::::
times.

:::
The

:::::::
number

:::::::
indicates

:::
the

::::::
length

::
of

:::
the

::::::::
smoothing

:::::::
interval

:::
N .

:::::::
sources

::
in

:::::
Asia.

:::::
Parts

::
of

::::::
these

:::::::
sources

:::
are

::::::::
excluded

::
if
::::

the
::::::
Pacific

::
is
::::
not

::::::::::
considered,

::::::
which

::
is
:::::
why

:::
the

:::::::::
inclusion

::
of

:::
the

:::::::
Pacific

::
in

:::::::::::::
MODRANDLOC::

is
:::::::::::
responsible

:::
for

::::::
15-20%

::
of

::::
the

::::
total

:::::::::::
uncertainty.

::::
The

:::::::::
situation

::
is

:::::::
similar

:::
for

:
HNO3,

:
N2O5:

, BrNO3 :::
and

HONO.
::::
For

:::
the

:::::
other

:::::::
species,

::::
the

::::::::::
uncertainty

::::::::::
introduced

:::
by

:::
the

::::::
Pacific

::
is
::::::::
smaller.

Appendix B:
:::::::
Method

:::
of

::::::::::
smoothing

::::
This

:::::::
section

::::::
shortly

:::::::::
describes

:::
the

:::::::
method

:::
of

:::::::::
smoothing

:::::
used

:::
for

::::::::
creating

:::
the

::::::
dataset

::::::::::::::
MEASsmoothed

CARIBIC.5

:::::
Each

:::::::
species

:::
and

:::::
each

::::::
flight

::
is

::::::::::
considered

::::::::::
separately.

::::
For

::::::::::
smoothing

:
a
:::::::
certain

:::::::
interval

:::
of

:::
the

:::::
time

:::::
series

:::::::::::
(consisting

::
of

::
a

::::::
certain

:::::::
number

::
of
:::::
data

:::::
points

::::
N ),

:::
the

:::::
time

:::::
series

::
is
::::
first

:::
cut

::::
into

::::
the

:::::::::::::
corresponding

:::::::
number

::
of

::::::
pieces

::::
and

:::
the

:::::
mean

:::::
value

:::
of

:::
the

::
N

::::::::::
datapoints

:::::::::
calculated

::::::
within

:::::
each

:::::
piece.

:::
In

:
a
:::::::
second

:::::
step,

:::::
these

:::::
mean

::::::
values

:::
are

::::::::::
associated

::::
with

::::
the

:::::
center

:::
of

::::
each

::::::
piece

::
of

:::
the

::::
time

::::::
series.

::::::
Then,

:
a
::::::
linear

::::::::::::
interpolation

::
is

:::::::::
performed

::::::::
between

:::
the

:::::::
central

::::::
points.

::::
The

:::::::::::::
corresponding

::::::
mean

:::::
value

::
is

:::::::
applied

:::::::
directly

::::
from

::::
the

:::::::::
beginning

::
of

:::
the

:::::
flight

:::
to

:::
the

::::::
center

::
of

:::
the

::::
first

:::::::
interval

::::
and

::::
from

::::
the

:::::
center

:::
of

:::
the

:::
last

:::::::
interval

:::
to

:::
the

:::
end

:::
of

:::
the10

:::::
flight.

:::::::
Finally,

:::
the

:::::
gaps

::
in

:::
the

::::::::
original

::::
time

::::::
series

:::
are

:::::::
mapped

:::::
onto

:::
the

:::::::::
smoothed

:::::
data.

::::
The

:::::::
original

::::
and

:::
the

::::::::
resulting

:::::::::
smoothed

::::
time

:::::
series

::::
are

::::::
shown

::
in

::::::
Figure

:::
14

:::
for

:::::
three

::::::::
different

:::::::
lengths

::
of

:::
the

::::::::::
smoothing

:::::::
interval

:::
N .

:
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC is
::
are

:
often used to derive trace

gas climatologies
::::::::::::
climatologies

:::
of

:::::
trace

:::::
gases

:::
in

:::
the

::::::
upper

:::::::::::
troposphere

::::
and

::::::
lower

:::::::::::
stratosphere

::::::::
(UTLS). We investigate to

what extent such derived climatologies can be assumed to be representative for
::::::::::::
climatologies

:::
are

:::::::::::::
representative

::
of

:
the true

state of the atmosphere.
::::::::::::
Climatologies

::::
are

::::::::::
considered

:::::::
relative

:::
to

:::
the

:::::::::::
tropopause

::
in

::::::::::::
mid-latitudes

:::::::
(35◦N

::
to

:::::::
75◦N)

:::
for

:::::
trace

:::::
gases

::::
with

::::::::
different

::::::::::::
atmospheric

:::::::::
lifetimes. Using the chemistry-climate model EMAC,

:
we sample the modelled trace gases5

along CARIBIC flight tracks. Different trace gases are considered and climatologies relative to the mid-latitude tropopause are

calculated. Representativeness can now be
:::::::::::::::::
Representativeness

::
is

::::
then assessed by comparing the CARIBIC sampled model data

to the true
:::
full climatological model state. Three statistical methods are applied for this purpose: the Kolomogorov-Smirnov

test , and
:::
the

::::::::::::
investigation

::
of

:::::::::::::::::
representativeness:

::::
the

:::::::::::::::::::
Kolmogorov-Smirnov

::::
test

::::
and

::::
two scores based on

:::
(i) the variability and

:::
(ii) relative differences.10

Generally, representativeness
::::
Two

::::::::::::
requirements

:::
for

:::
any

:::::
score

::::::::::
describing

::::::::::::::::
representativeness

:::
are

:::::::::
essential:

:::::::::::::::::
Representativeness

is expected to decrease with increasing variability and to increase
:::::::
increase

::
(i)

:
with the number of available samples

:::::::
samples

::::
and

:::
(ii)

::::
with

::::::::::
decreasing

::::::::::
variability

::
of

:::
the

:::::::
species

::::::::::
considered. Based on this assumption

::::
these

::::
two

::::::::::::
requirements, we investigate the

suitability of the different statistical measures for our problem
::::::::::::
investigating

::::::::::::::::
representativeness. The Kolmogorov-Smirnov test

seems too
::
is

::::
very strict and does not identify any

::::
trace

:::
gas

:
climatology as representative – not even long lived well observed

::
of15

::::
long

:::::
lived trace gases. In contrast, the variability based scores pass the general requirements for representativeness formulated

above. In addition, even the simplest metric (relative differences ) seems
::::
two

::::::
scores

::::::
based

:::
on

:::::
either

::::::::::
variability

:::
or

:::::::
relative

::::::::::
differences

:::::
show

:::
the

::::::::
expected

:::::::::
behaviour

::::
and

::::
thus

:::::::
appear applicable for investigating representativeness.

Using
:::
For

::::
the

::::
final

::::::::
analysis

::
of
::::::::::::::

climatological
:::::::::::::::::
representativeness,

:::
we

::::
use

:
the relative differences score we investigate the

representativeness of a large number of different trace gases . For our final consideration we assume that the EMAC model is a20

reasonable representation of the real world and that representativeness in the model world can be translated to representativeness

1



for CARIBIC measurements. This assumption is justified by comparing the model variability to
::::
and

::::::::
calculate

:
a
::::::::::::::::
representativeness

::::::::::
uncertainty

:::
for

::::
each

:::::
trace

::::
gas

::
in

:::::::
percent.

::
In

:::::
order

::
to

::::::
justify

:::
the

:::::::
transfer

:::
of

::::::::::
conclusions

::::::
about

::::::::::::::::
representativeness

::
of

:::::::::
individual

:::::
trace

:::::
gases

:::::
from

:::
the

::::::
model

::
to

:::::::::::::
measurements,

:::
we

:::::::
compare

::::
the

::::
trace

::::
gas

:::::::::
variability

::::::::
between

:::::
model

::::
and

:::::::::::::
measurements.

::::
We

::::
find

:::
that

:
the variability of CARIBIC measurements

::::::
model

:::::::
reaches

::::::::
50-100%

:::
of

:::
the

::::::::::::
measurement

::::::::::
variability.

::::
The

:::::::::
tendency

::
of

:::
the

::::::
model

:::
to

:::::::::::::
underestimate

:::
the

:::::::::
variability

::
is
:::::::
caused

:::
by

:::
the5

::::::::
relatively

::::::
coarse

:::::::
spatial

:::
and

:::::::::
temporal

::::::
model

:::::::::
resolution.

::
In

:::::::::::
conclusion,

:::
we

::::::::
provide

:::::::::::::::::
representativeness

::::::::::::
uncertainties

:::
for

:::::::
several

::::::::
species

:::
for

:::::::::::
tropopause

::::::::::
referenced

:::::::::::::
climatologies.

::::::::::
Long-lived

:::::::
species

::::
like CO2 ::::

have
::::
low

::::::::::::
uncertainties

::::::::::
(≤ 0.4%),

:::::
while

::::::::::::
shorter-lived

:::::::
species

::::
like

:
O3 ::::

have
::::::
larger

::::::::::::
uncertainties

:::::::::
(10-15%). Finally, we show how

:::::::
translate the representativeness score can be translated into a number of flights

:::
that

::::
are nec-

essary to achieve a certain degree of representativeness.
:::
For

::::::::
example,

::::::::::
increasing

:::
the

:::::::
number

::
of

::::::
flights

:::::
from

::::
334

::
to

:::::
1000

::::::
would10

::::::
reduce

:::
the

:::::::::::
uncertainty

::
in CO

::
to

::
a

:::::
mere

::::
1%,

:::::
while

::::
the

::::::::::
uncertainty

:::
for

:::::::
shorter

:::::
lived

:::::::
species

:::
like

:
NO

:::::
would

:::::
drop

:::::
from

:::::
80%

::
to

:::::
10%.

1 Introduction

This supplement discusses further results of the study of the representativeness of IAGOS-CARIBIC data using the chemistry-

climate model EMAC. For abbreviations and methods, please refer to the main text. Four
::::
Two

:
points are discussed here:15

Section ?? briefly shows results of the comparison of model and measurement variability. The methods to describe represen-

tativeness developed and tested with model data were also applied to data from a random number generator. This is described

in Section 2. Section 3 discusses the sensitivity study of the Kolmogorov-Smirnov test using a subsample of MODCARIBIC.

Section ?? shows how the representativeness uncertainty of MODCARIBIC decreases if the pressure range is increased to

10hPa< p < 500hPa, i.e. how the climatologies produced with data from IAGOS-CARIBIC are dependent on the pressure20

at which samples are taken.

2 Comparing measurement and model variability

In order to compare model and measurement variability, the relative standard deviation σr = σ/µ (σ being the standard

deviation, µ the mean) was calculated for MEASCARIBIC (CARIBIC measurements) and MODCARIBIC in each month. σMODCARIBIC
r

and σMEASCARIBIC
r were calculated in each month. Figure ?? shows the correlation of σMODCARIBIC

r and σMEASCARIBIC
r . Monthly25

variability σr of MODCARIBIC over MEASCARIBIC. Colorcoding corresponds to the variability τ∗ of each species. Data closer

to the tropopause is plotted as larger circles.

As discussed in the main text, σMODCARIBIC
r reaches 40 to 70% of σMEASCARIBIC

r for all species. The correlation coefficient of the

two is 0.81. This shows that the model variability is similar for all species, justifying the use of results from the model datasets

for CARIBIC measurements
::::::

regular
CARIBIC.30

2



2 Calculating representativeness from random numbers

All three methods to investigate representativeness
::::::::::::::::::::
(Kolmogorov-Smirnov

::::
test,

::::::::::
variability

::::::::
analysis

::::
and

:::::::
relative

:::::::::::
differences)

have also been applied to data created with a random number generator. The results of this study are discussed
::::::::
presented

:
here.

To produce the random numbers, 20 sets of 108 numbers were taken from a normal distribution. These 20 sets are referred to

as species, well aware of the fact that they are purely artifial
:::::::
artificial. From species to species, the standard deviation σ was set5

to vary from 10−3 to 103, values of the exponent again
:::::::::
increasing

:
linearly. 20 mean values µ (increasing from 104 to 108, with

a linear increase in the exponent) where distributed randomly onto
::
to

:
the 20 species.

::::
This

::::::
results

:::
in

::
20

:::::::
species

:::::
with

::::::::
different

::::::
values

:::
for

:
σ
::::
and

::
µ.

::::
The

::::::::
statistics

:::
of

::::
each

:::::::
species

::::
will

:::
be

:::::::
indexed

:::
by

:::
the

:::::::
number

::
2.

::::
For

:::::
short,

::::
this

::::::
dataset

::::
will

:::
be

::::::
called

:::::::
RAND.

3000 samples were taken from each of the 20 species. The sample
:::
For

:::::
each

:::::::
sample,

:::
20

::::::::
numbers

:::::
were

::::
first

:::::::::
randomly

::::::
drawn

::::
from

:::::
each

:::::::
species.

::::::
These

:::::
new

::::::::
numbers

::::
and

:::
all

:::::
those

::::
that

::::
had

::::
been

:::::::
drawn

::::::
before

::::
then

::::::
make

::
up

::::
this

::::
one

::::::::
sample.

:::
So

:::
the

:
size10

increases by 20 for each sample, keeping the sample from before. This way, the relationship of the representativeness score

with the sample size is directly accessible. The statistics of each species will be denoted by the index 2, while samples
:::::::
Samples

are indexed by
:::
the

:::::::
number

:
1.

For short, this dataset will be named RAND.

The variability τ∗ of each species was
:
is
:
defined as in Equation 5

:
3 of the main text: τ∗ = log10(µ2/σ2), where high values15

of τ∗ stand for low variability
:::::::::::::::::
τ∗ = log10(σ2/µ2). The two requirements set up in Section 3.3 for representativeness in general

also have to hold here:

1. Representativeness has to increase with the number of samples.

2. Representativeness has to decrease with increasing variability of the underlying distribution.

With RAND defined in this way, it is possible to test representativeness using the variability analysis following Rohrer and20

Berresheim (2006) and Kunz et al. (2008) (see Section 4.2) and the relative differences (see Section 4.3). The Kolmogorov-

Smirnov test was positive for very few samples (less than fifty numbers, independent of τ∗) and will not be further discussed.

Its behaviour with aircraft data was subject of a sensitivity study, the results of which are shown in Sec. 3 of this supplement.

2.1 Variability analysis

The variabiltiy
:::::::::
variability analysis (defined in Section 4.2 and Eq. 3) was applied in a simplified manner. As RAND is inde-25

pendent of time, Rvar is reduced to just a single value containing the absolute difference of variability of each species of RAND

and the sample taken thereof: Rvar = |ν1− ν2|, where ν is the mean variability. Figure 1 shows a result. The exact result is a

matter of chance, as a random number generator is used. Similar to using MODCARIBIC ::::::

regular
CARIBIC:

and MODRANDPATH, a strong

dependance on τ∗ and a weak dependance on the number of samples is visible.

Similar to Rvar when using MODCARIBIC ::::::

regular
CARIBIC:and MODRANDPATH, the variability analysis using RAND meets the two30

requirements necessary for describing representativeness, which were described in Section 3.3 and above. This result supports

the findng
:::::::
finding that Rvar can be used as a statistic for describing representativeness.
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Figure 1. Representativeness score Rvar applied to RAND. Vertical lines indicate the values of τ∗ of each species.

2.2 Relative differences

Similar to Rvar, Rrel is reduced to a simple relative difference when using RAND: Rrel = |µ1−µ2|/µ2, where µ is the mean

::
of

:::
the

:::::::
sample

:::::::
(index

::
1)

::::
and

:::
of

:::
the

::::::
whole

::::::
subset

:::::::
(index

::
2). Figure 2 shows the

:
a
:

result when applying Rrel to RAND. The

dependance on τ∗ is strong and linear. The result also depends on the number of samples, showing a slow increase with the

number of samples. This dependance is sometimes disturbed by better values which are reached by chance when drawing from5

RAND.

Like for MODCARIBIC ::::::

regular
CARIBIC:and MODRANDPATH, Rrel passes both conditions for a valid description of representativeness:

it depends on variability τ∗ and on the number of samples. The latter is also being influenced by chance and generally much

weaker.

The fact that Rrel passes the two conditions for a description of representativeness can be understood with some theoretical10

considerations. The standard error of the mean is defined by

σx =
σ√
n

(1)

where σx, the standard deviation of a sample, can be given by the following equation (N being the number of samples):

σx =

√√√√ 1

N

N∑
i=1

(xi−µ)2 (2)

For N = 1, this gives:15

σx = |xi−µ| (3)
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Figure 2. Like Figure 1, but for Rrel.

Plugging Eq. 3 into Eq. 1 gives:

|xi−µ|
µ

=
σ

µ
√
n
=

101/τ
∗

√
n

(4)

and therefore

Rrel = log10

(
|x−µ|
µ

)
=−0.5log10(n)+

1

τ∗
(5)

So ideally, Rrel should depend inversely on τ∗ and directly on the logarithm of the number of values. Figure 2 shows this is5

approximately true for RAND.

In the case of RAND, Rrel can
:::
and

::::
Rvar::::

can
:::::

both
:
be used to describe representativeness as it passes

::::
they

::::
pass

:
the two

conditions, while Rvar does not. Theoretical considerations make the finding plausible
::
for

::::
Rrel. RAND can be considered a

theoretical abstraction of MOD. The finding here therefore strongly supports that of Sections 5.2 and 5.3, where Rrel and Rvar

have also been found to be good descriptors of representativeness when using MODCARIBIC ::::::

regular
CARIBIC:and MODRANDPATH or10

MODRANDLOC. In the main text, we use Rrel for final results, as it more suitable to answer the question of representativeness

for a climatology.

3 Sensitivity study on the Kolmogorov-Smirnov test

When using MODCARIBIC::::::::
applying

:::
the

::::::::::::::::::::
Kolmogorov-Smirnov

:::
test

::
to

::::::::::::
MODregular

CARIBIC, MODRANDPATH or MODRANDLOC, the Kolmogorov-Smirnov

test proved not usable, returning all
:
it
::::::::
returned

:::::::
almost

::::
only negative results. This indicates that MODCARIBIC:::::::

regular
CARIBIC is not rep-15

resentative of MODRANDPATH in the definition of the Kolmogorov-Smirnov test. This behaviour was tested in a sensitivity study,

the results of which are described
::::::::
discussed

:
here.
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Figure 3. Flightroutes to Vancoucer, Canada, where each flight has been cut into 20 pieces and randomly chosen 30% of those pieces have

been plotted. These are tested against the whole data from flights to Vancouver to give one point in Figure 4.

One of the most frequent destinations within the CARIBIC project is Vancouver, Canada (near 120◦W, 45◦N, see Figure 3),

and only the subset of MODCARIBIC ::::::

regular
CARIBIC:to this destination is considered in this example to minimize effects stemming of

:::
that

:::::
may

:::::
come

:::::
from different flight routes. Parts of this reduced dataset were tested with the Kolmogorov-Smirnov test against

the whole reduced dataset for all variables. Data was not binned in months, including the whole distribution of datapoints

in each height. To produce these partial datasets, each flight was cut into an increasing number of pieces (corresponding to5

a certain time) and different percentages of these pieces were used in testing. Figure 3 exemplifies this methodfor
:::::
shows

:::
an

:::::::
example

:::
of

::::::::
applying

::::
this

:::::::
method,

:::
by

:
cutting each flight into 20 pieces and taking 30% of these by showing the corresponding

flightpaths.

::::
Data

::::
was

::::
not

:::::::
binned

::
in

::::::::
months. When applying the Kolmogorov-Smirnov test without binning in months, the result is a

profile in HrelTP for each variable. The result can then be diplayed in similar way to Figures 5 and 6.
:
7
::::
and

::
8. This matrix of10

height versus species was calculated for each combination of number of pieces and percent of pieces. In each combination, all

the profiles of the different variables were averaged to end up with one value betwween 1 and 0 characterizing the result of the

test for this combination of number of pieces and percent of pieces. The result can then give an impression of the strictness of

the Kolmogorov-Smirnov test.

Figure 4 shows the result of the study. Independent of the number of pieces, the result is positive if all pieces are considered,15

as the definition of the test prescribes. But only when removing short pieces (shorter than 20min) is the result also positive for

less pieces, even though 70% percent of the data is still needed. When removing whole flights (at the top of the plot), more the

90% of the data has to be taken into account to achieve a positive result of the Kolmogorov-Smirnov test. This result is very

6
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Figure 4. The Kolmogorov-Smirnov test applied to the flights to Vancouver, Canada, of MODCARIBIC :::::

regular
CARIBIC:and subsets of these flights.

Dotted lines indicate those lengths in time and those percentages that were tested. 0 stands for a passing the Kolmogorov-Smirnov test, 1 for

not passing.

similar also for other error probabilities α, taking values of 0.001, 0.01, 0.05 (in the figure), 0.1 and 0.2. The area of failing

increases only slightly with the error probability. This showcases the strictness of the test. The Kolmogorov-Smirnov test does

not seem suitable to test a dataset measured with aircraft for representativeness of a larger dataset.

4 Aircraft tropopause pressure bias

By calculating Rrel using MODCARIBIC and MODRANDLOC, an important fact can be illustrated about data collected with5

instruments on civil aircraft. If data is resorted into heights relative to the tropopause (HrelTP), it still contains data taken at

constant pressure altitudes in a limited range. Depending on the pressure at which the data was sampled, it contains information

from different meteorological situations. The height of the tropopause relative to the sample pressure determines the range

of values. The effect can be illustrated by calculating Rrel (see Equation 4) using MODRANDLOC and MODCARIBIC within

10hPa< p < 500hPa.10

Figure ?? shows the results (right hand panel). For comparison, the left hand panel of Figure ?? shows Rrel of the same

datasets when setting 180hPa< p < 280hPa, the range at which CARIBIC measures. On the right, the representativeness

uncertainty increases strongly in all heights except just above the tropopause, where MODCARIBIC contains most data. Only the

long lived species , and retain their low uncertainties. For the more variable species to the right of the figure, the representativeness

uncertainty increases strongly, especially in the troposphere, where the variability increases. Rrel calculated using MODCARIBIC15

and MODRANDLOC with the range of p set to 180hPa< p < 280hPa (left) and 10hPa< p < 500hPa (right).
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The strong increase in representativeness uncertainty is due to the bias always present in measurement data from commercial

aircraft, which can only collect data high above the tropopause when the tropopause is at high pressure and far below when it

is at low pressure values. This bias is naturally contained in all data measured at constant pressure and then sorted relative to

the tropopause and should be kept in mind when examining climatologies from corresponding platforms.

We thank all the members of the IAGOS-CARIBIC team, especially those who operate the CARIBIC container and Peter5

van Velthoven of KNMI who provides meteorological support. The collaboration with Lufthansa and Lufthansa Technik and

the financial support from the German Ministry for Education and Science (grant 01LK1223C) are gratefully acknowledged.

The data analyzed in this paper can be accessed by signing the CARIBIC data protocol to be downloaded at .

This work was partially performed on the computational resource bwUniCluster funded by the Ministry of Science, Research

and Arts and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC.10
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive cli-

matologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such cli-

matologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in

mid-latitudes (35◦N to 75◦N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC,

we sample the modelled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the5

CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation

of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and (ii) relative differences.

Two requirements for any score describing representativeness are essential: Representativeness is expected to increase

(i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two require-

ments, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-10

Smirnov test is very strict and does not identify any trace gas climatology as representative – not even of long lived trace gases.

In contrast, the two scores based on either variability or relative differences show the expected behaviour and thus appear

applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative

differences score and calculate a representativeness uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measure-15

ments, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100% of the

measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial

and temporal model resolution.

In conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies. Long-

lived species like CO2 have low uncertainties (≤ 0.4%), while shorter-lived species like O3 have larger uncertainties (10-15%).20

Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of
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representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a

mere 1%, while the uncertainty for shorter lived species like NO would drop from 80% to 10%.

1 Introduction

The UTLS (upper troposphere/lower stratosphere) is dynamically and chemically very complex and shows strong gradients

in temperature, humidity and in many trace gases (Gettelman et al., 2011). As the mid and upper troposphere have a strong5

influence on the atmospheric greenhouse effect, the UTLS plays an important role in our climate system (Riese et al., 2012).

To characterize processes and evaluate the performance of chemistry-transport models in this area, spatially well resolved data

collected on a global scale are required.

Aircraft are a suitable platform to carry out these measurements as they are able to probe in situ and at a high frequency.

Measurements taken by commercial aircraft projects like IAGOS (In-Service Aircraft for a Global Observing System, Petzold10

et al. (2015)) and CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner, Matsueda et al. (2008))

generate more continuous and regular datasets than research aircraft on sporadic campaigns and are therefore commonly given

the attribute representative. But what is meant by this adjective?

Ramsey and Hewitt (2005) give a general introduction to representativeness, coming from soil sciences. As they state, the

adjective representative has no meaning of its own, so a definition has to be given and ’it must be asked "representative of15

what?"’

In the area of meteorology, Nappo et al. (1982) give the following definition: ’Representativeness is the extent to which a

set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain

taken on a scale appropriate for a specific application.’ Representativeness in their understanding ’is an exact condition, i.e., an

observation is or is not representative.’ Only if ’a set of criteria for representativeness is established, analytical and statistical20

methods can be used to estimate how well the criteria are met.’

The mathematical definition given by Nappo et al. (1982) is mostly applied to data collected in the boundary layer, where it

is used to answer the question whether a flux tower station is representative of the area in which it is positioned (e.g. by Schmid

(1997), Laj et al. (2009) or Henne et al. (2010)). This can also be analysed by means of a cluster analysis with backward

trajectories (e.g. by Henne et al. (2008) or Balzani Lööv et al. (2008)). By this method, source regions for measured trace gases25

can be found and the type and origin of air masses contributing to an observed air mass determined, i.e. the airmass the data

are representative of. Köppe et al. (2009) apply this method to aircraft data from the project IAGOS-CARIBIC (Civil Aircraft

for the Regular Investigation of the Atmosphere Based on an Instrument container, being part of IAGOS).

Lary (2004) and Stiller (2010) discuss the representativeness error in the field of data assimilation. Lary (2004) uses repre-

sentativeness uncertainty as a synonym for variability within a grid cell, Stiller (2010) discusses the sampling error, which is30

considered to be part of the representativeness uncertainty. Larsen et al. (2014) study the representativeness of one dimensional

measurements taken along the flight track of an aircraft to the three dimensional field that is being probed. But as they consider

single flight tracks, their methods and definitions do not apply here.
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The study of Schutgens et al. (2016) is more related to this study. They consider the sampling error on a global scale,

comparing normal model means to means of model data collocated to satellite measurements. They find that this sampling

error reaches 20− 60% of the model error (difference between observations and collocated model values).

We have been motivated by Kunz et al. (2008). They analysed whether the dataset of the aircraft campaign SPURT (SPURen-

stofftransport in der Tropopausenregion - trace gas transport in the tropopause region, Engel et al. (2006)) is representative of5

the larger MOZAIC dataset (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIr-

bus airCraft, the precursor of IAGOS-core). Kunz et al. (2008) investigate distributions of two substances (O3 and H2O) in two

atmospheric compartments (upper troposphere and lower stratosphere). They find that the smaller SPURT dataset is represen-

tative on every time scale of the larger MOZAIC set for O3, while this is not the case for H2O. While SPURT O3 data can be

used for climatological investigations, the variability of H2O is too large to be fully captured by SPURT on the interseasonal10

time scales.

This is similar to what is done in this study: We investigate the representativeness of data for different trace gases from

IAGOS-CARIBIC (see Sec. 2.1) for a climatology in the UTLS. Possible mathematical definitions of the word representative-

ness are first discussed with the help of this data. Then, its representativeness following these definitions is investigated. By

using data from the chemistry-climate model EMAC (see Sec. 2.2) along the flight tracks of IAGOS-CARIBIC and comparing15

this to a larger sample taken from the model, it becomes possible to investigate the representativeness of the smaller of the two

model datasets. We also assess whether the complexity of the model is similar to that portrayed by the measurements, using

the variability as a measure for the complexity. We find that the variability of the model is high enough and therefore quantify

the representativeness of IAGOS-CARIBIC measurement data for a climatology in the UTLS by using the two model datasets

alone.20

In Sec. 2, more details on the data from IAGOS-CARIBIC and the model run will be given. The general concept and defini-

tion of representativeness is discussed in Sec. 3. This section also gives details on sampling the model and on the variability,

which is used to group results by species. The statistical methods are then explained in Sec. 4, namely the Kolmogorov-Smirnov

test, a variability analysis following the general idea of Kunz et al. (2008) and Rohrer and Berresheim (2006) and the relative

difference of two climatologies. We then discuss the variability of the model data in comparison to that of the measurements in25

Sec. 5. The application of the methods to the different model samples is described in Sec. 6. After showing the result of each

of the three methods seperately, Sec. 6.4 discusses the representativeness of the IAGOS-CARIBIC measurement data, while

Sec. 6.5 answers the question how many flights are necessary to achieve representativeness. Sec. 7 summarizes and concludes.

2 Model and data

2.1 The observational IAGOS-CARIBIC dataset30

Within IAGOS-CARIBIC (CARIBIC for short), an instrumented container is mounted in the cargo bay of a Lufthansa passen-

ger aircraft during typically four intercontinental flights per month, flying from Frankfurt, Germany (Munich, Germany, since

August, 2014), see also Brenninkmeijer et al. (2007) and www.caribic-atmospheric.com.
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During each CARIBIC flight, about 100 trace trace gas and aerosol parameters are measured. Some are measured continu-

ously with a frequency between 5s−1 and 0.2min−1) and available from the database binned to 10s. Others (e.g. non-methane

hydrocarbons) are taken from up to 32 air samples collected per flight. The substances considered in this study are NOy, H2O,

O3, CO2, NO, (CH3)2CO (acetone), CO and CH4 from continuous measurements and N2O, C2H6 and C3H8 from air sam-

ples. NOy is the sum of all reactive nitrogen species, measured by catalytic conversion to NO (Brenninkmeijer et al., 2007).5

Data of N2O, CH4 and CO2 were detrended by subtracting the mean of each year from the values of that year and adding the

overall mean.

The data of all flights from the year 2005 (beginning of the second phase of CARIBIC) to the end of December, 2013 (end

of the model run) are considered in this study. This dataset will be referred to as MEASCARIBIC.

As this study investigates representativeness using model data, the geolocation of the CARIBIC measurements at 10s res-10

olution is used. In a second step, the gaps of the CARIBIC measurements and height information (due to technical problems

etc.) are mapped onto their representation in the model data to infer the representativeness of the measurement data.

2.2 The chemistry-climate model EMAC

EMAC (ECHAM5/MESSy Atmospheric Chemistry model; Jöckel et al. (2006)) is a combination of the general circulation

model ECHAM5 (Roeckner et al., 2006) and different submodels combined through the Modular Earth Submodel System15

(MESSy, Jöckel et al. (2005)). We use here a model configuration with 39 vertical levels reaching up to 80km and a horizontal

resolution of T42 (roughly 2.8◦ horizontal resolution).

The model integration used in this study simulated the time between January 1994 and December 2013, with data output

every eleven hours. Meteorology is nudged up to 1hPa using divergence, vorticity, ground pressure and temperature from

six-hourly ERA-Interim reanalysis. It includes the extensive EVAL-Chemistry using the kinetics for chemistry and photolysis20

of Sander et al. (2011). This set of equations has been designed to simulate tropospheric and stratospheric chemistry equally

well.

Boundary conditions for greenhouse gases (latitude dependent monthly means) are taken from Meinshausen et al. (2011)

and continued to 2013 from the RCP 6.0 scenario (Moss et al., 2010). Boundary conditions for ozone depleting substances

(CFCs and halons) are from the WMO-A1 scenario (WMO, 2010). Emissions for NOx, CO, and non-methane volatile organic25

compounds are taken from the EDGAR data base (http://edgar.jrc.ec.europa.eu/index.php).

The setup of the model in this study is similar to that made for the run RC1SD-base-08 of the Earth System Chemistry

integrated Modelling (ESCiMo) initiative, presented by Jöckel et al. (2016). It differs in vertical resolution (47 versus 39

levels), but horizontal resolution, nudging and the chemistry are the same. The study by Jöckel et al. (2016) gives a detailed

description and presents first validation results.30

Hegglin et al. (2010) performed an extensive inter-model comparison including EMAC with the same horizontal resolution

as the setup for this study. Dynamical as well as chemical metrics have been used in this study, focussing on the UTLS. Overall,

they find EMAC performs well within the range of the models that were tested. The reader is referred to the study for further

details.
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The substances from the model used in this study are the same as those from measurements. NOy, which is simulated in

its components, is summed up from N, NO, NO2, NO3, N2O5 (counted twice because measurements of NOy are taken by

catalytic conversion), HNO4, HNO3, HONO, HNO, PAN, ClNO2, ClNO3, BrNO2 and BrNO3. Data of N2O, CH4 and

CO2 were detrended, using the same method applied to the measurements.

3 Defining representativeness5

As noted above and specified by Nappo et al. (1982) and Ramsey and Hewitt (2005), the word representative is meaningful

only if accompanied by an object. Ramsey and Hewitt (2005) raise three questions to be answered in order to address represen-

tativeness: 1. For what parameter is the sample data to be seen as representative: e.g. the mean, a trend or an area? 2. Of which

population are the sample data to be seen as representative? 3. To which degree are the data to be seen as representative? To

assess the representativeness of CARIBIC data, these three questions have to be answered as well.10

3.1 Representative for what parameter?

First, it is crucial to define what we anticipate the CARIBIC data to be representative of, since ’the same set of measurements

may be deemed representative for some purpose but not other’ (Nappo et al., 1982). In this study, we investigate whether the

CARIBIC data can be used to construct a climatology in the UTLS. We consider monthly binned data in the height of±4.25km
around the dynamical tropopause defined at the pressure at 3.5PVU and in mid-latitudes with 75◦N< ϕ< 35◦N.15

In order to reference data to the tropopause, we use the geometric height in kilometers relative to the tropopause (HrelTP) at

each datapoint. For the measurements, this height is provided by the meteorological support of CARIBIC by KNMI (Konin-

klijk Nederlands Meteorologisch Instituut) (http://www.knmi.nl/samenw/campaign_support/CARIBIC/), who use data from

ECMWF (European Centre for Mendium-range Weather Forecast) for their calculation.

From model output, the height relative to the tropopause (HrelTP) can be calculated, as the pressure value of the dynamical20

tropopause is known at each location, as well as the temperature and pressure profile. This HrelTP value calculated from the

model data along the flight tracks of CARIBIC compares well with interpolated values from ECMWF provided by KNMI

(Pearson correlation coefficient of ρ= 0.97), which is expected as the meteorology of the model is nudged using ERA-Interim

data. The distribution of all values of HrelTP from the model is shown in Figure 1, showing a maximum right at the tropopause.

Data were used within ±4.25km around the tropopause in steps of 0.5km.25

Even though all data of trace gases (be it from model or measurements) are sorted into bins of HrelTP, it is important to

keep in mind the limits in pressure. These are inherent in the CARIBIC dataset, as the aircraft flies on constant flight levels

with 180hPa< p < 280hPa. In addition, we explicitly limit pressure to this range in order to exclude data from ascents and

descents of the aircraft. But since data are considered relative to the tropopause, these limits are no longer visible directly from

the resulting climatology, even though they can influence it strongly. The reason is that aircraft flying at constant pressure can30

measure far above (below) the tropopause only if the tropopause is located at high (low) pressure. The properties of many trace

substances are not only a function of their distance to the tropopause, but also of pressure. The limits in pressure inherent in

5
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the sample therefore also influence the climatology. They have to be considered and should be explicitly stated. This effect is

illustrated in Appendix A1 with the help of the methods developed in this study.

In addition to limiting in HrelTP and p, it is necessary to apply a limit in latitude ϕ. We limit the data by including only mid-

latitudes with 75◦N< ϕ< 35◦N. Tropical data with ϕ < 35◦N are excluded because of the considerably higher dynamical

tropopause. Data with ϕ > 75◦N are excluded because of the different chemistry in far northern latitudes, which leads to5

considerably different mixing ratios for some some species that should not be combined with data from lower latitudes in one

climatology. In addition, this latitudinal band is well covered by CARIBIC measurements. Other regions or latitudinal bands

can be investigated using the same approach.

Like the limit in pressure, CARIBIC data are also limited in longitude, as the Pacific Ocean is never probed. The effect of

this limit on the climatology is discussed in Appendix A2.10

As a summary, we can specify more closely the question (Representative for what parameter?) asked in the beginning: Is a

climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

3.2 Representative of which population?

When assessing the representativeness of the sample made up by all CARIBIC measurements (called MEASCARIBIC, see

Sec. 2.1), the population is the atmosphere around the tropopause and its composition. For many of the species measured by15

CARIBIC, there is no other project that takes such multi-tracer in-situ meaurements as regularly at the same spatial and tem-

poral resolution. IAGOS-core and CONTRAIL sample with much higher frequency, but take measurements of only few sub-

stances while satellites do not resolve the small scale structures necessary to disentangle the dynamics around the tropopause.

The population is therefore not accessible by the measurement platforms currently available.

This is the reason why the representativeness of the CARIBIC data are investigated by comparing the model data along20

CARIBIC flight tracks to two larger samples taken from the model. These larger datasets are considered the population, in

reference to which the representativeness of the smaller dataset (model along CARIBIC paths) is assessed. Three datasets were

created from the model output: the model along CARIBIC paths and two random model samples. All are presented in the

following paragraphs, a summary being given in Table 1 and Figure 1.

MODregular
CARIBIC: For the dataset MODregular

CARIBIC, the model output was interpolated linearly in latitude, longitude, logarithm of25

pressure and time to the position of the CARIBIC aircraft, using the location at a resolution of 10s for all species, independent

of the time resolution in MEASCARIBIC. Figure 1 shows the flight paths considered in this study. Since CARIBIC also measures

temperature (at 10s resolution), the high pearson correlation coefficient of ρ= 0.97 of modelled to measured temperature can

serve as an indication that this interpolation leads to reasonable results, despite the coarser resolution in time and space of the

model output.30

MODsampled
CARIBIC: The measurement frequency for some species in MEASCARIBIC is lower (e.g. those taken by whole air sam-

ples), all species contain gaps because of instrument problems at some point and some of the species considered by the model

datasets are not measured at all. Sometimes, it is interesting to consider MODregular
CARIBIC reduced to the exact number of measure-
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Table 1. Summary of the specifications defining the three datasets MODregular
CARIBIC, MODRANDPATH and MODRANDLOC.

dataset EMAC on total sets per month duration p distribution

MODregular
CARIBIC CARIBIC paths

(2005-13)

334 up to 4

in 3 days

8-10h flight levels show up,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDPATH random paths 1296 12

in 28 days

24h adjusted gaussian,

p= 223.42hPa

σ(p) = 18.94hPa

MODRANDLOC random location 864 8

in 28 days

24h uniform,

min(p) = 10hPa

max(p) = 500hPa

ment points, i.e. reduced by all these measurement gaps. The model dataset along CARIBIC paths that has the same gaps as

MEASCARIBIC will be referred to as MODsampled
CARIBIC.

As is visible in Figure 1 (central column), only three of the model levels lay in the pressure range sampled by CARIBIC. To

have comparable statistics, MODregular
CARIBIC was to two random model samples.

MODRANDPATH: The dataset referred to as MODRANDPATH is a larger set of flight paths used to sample the model. This set was5

mainly used to investigate the representativeness of MODregular
CARIBIC. From the year 2005 to the end of 2013, 12 random flight paths

were generated per month (1296 in total, evenly spaced in each month’s first 28 days) and the model fields interpolated onto

these paths. The starting point was randomly chosen in the northern hemisphere, as well as the direction taken by the aircraft.

The speed was set to 885.1kmh−1, the median of the speed of the true CARIBIC aircraft. The flights start at 0:00UTC and

sample the model for 24h in 10s intervals. They are reflected at the north pole and at the equator and reverse the sign of the10

increment in latitude direction once during flight. The first 100 of these paths are displayed in Figure 1.

The pressure was kept constant for each of the random flights, reproducing the statistics of the pressure distribution for

CARIBIC as a whole. For this, a normal distribution centered around 223.42hPa with a standard deviation of 18.94hPa was

used to choose the pressure value for each of the random flights. All pressure values of p < 180hPa or p > 280hPa were

redistributed evenly between 200hPa and 250hPa to exclude unrealistically high or low values and sharpen the maximum.15

MOD3
RANDPATH: The dependecy of representativeness on the number of flights is an important part of this study. Each of the

random paths was divided into three parts, resulting in 3888 eight hour flights, the duration of a typical intercontinental flight

with CARIBIC. Representativeness was then calculated with the different methods for MODRANDPATH and these subsamples,

increasing their size by including more of the 3888 shorter random flights. This dataset of randomized shorter flights will be

referred to as MOD3
RANDPATH.20

MODRANDLOC: For this sample, latitude and longitude were randomly drawn in the northern hemisphere (not aligned along

a route) and the definition of the pressure distribution widened, drawing pressure from a uniform distribution from 500hPa to

7



10hPa for each flight. Again, the datasets start at 0:00UTC and the separate points are 10s apart, collecting 8640 samples on

a sampling day. Eight of these sets are distributed evenly in each month, summing to a total of 864 sets of this type. This set

was used to test whether MODregular
CARIBIC is representative of a climatology around the tropopause only within its pressure limits

or also when expanding these limits.

As is visible in Figure 1, the distribution in HrelTP is very similar for MODRANDPATH and MODRANDLOC even though the5

pressure is prescribed in very different ways (mean of 0.79km and 0.64km respectively). The distribution of MODregular
CARIBIC

is different (mean of 0.26km), which is due to the larger amount of data from southern latitudes (not shown). The different

regional sampling is one of the reasons why climatologies from MODregular
CARIBIC and MODRANDPATH differ and this difference also

affects the distribution in HrelTP.
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Figure 1. Flight path distribution (left), distribution of probed pressures (p, center) and height relative to the dynamical tropopause (HrelTP,

right) for the three datasets MODregular
CARIBIC (top), MODRANDPATH (center) and MODRANDLOC (bottom). Only parts of the paths of MODRANDPATH

and MODRANDLOC are shown in the left column.
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3.3 Confidence limits of representativeness

When defining representativeness, one more question remains: What are the confidence limits of the representativeness?

Three definitions for representativeness are discussed and applied in this study: The Kolmogorov-Smirnov test, the variability

analysis following Kunz et al. (2008) and the relative difference of two climatologies. The first method gives a yes-no answer

within a chosen statistical confidence level. The other two approaches are formulated in such a way as to return a score. By5

(arbitrarily) setting a value for the score, the representative cases can be discriminated from the non-representative cases (see

Sec. 4 and Sec. 6), the score corresponding to a confidence level.

There are two more requirements that we define as having to be met by representativeness in general:

1. Representativeness has to increase with the number of samples (flights in the case of this study).

2. Representativeness has to decrease with increasing variability of the underlying distribution.10

These two assumptions are implicitely also made by Kunz et al. (2008), as they investigate the representativeness of a smaller

for a larger dataset and for two species of different variability. The measure for variability we use in this study is explained in

the following section.

3.4 Defining a measure for variability

Representativeness is expected to differ for different species because of their atmospheric variability or atmospheric lifetime.15

This is part of the definition of representativeness given in Section 3.3. Kunz et al. (2008) also find that O3 and H2O are different

in their representativeness and attribute this to the variability. It is therefore reasonable to consider results for representativeness

relative to the variability of a species. In this study, we use the relative standard deviation σr as a measure for variability. It is

calculated following Equation 1 using the mean µ and standard deviation σ of each species.

σr =
σ

µ
(1)20

Figure 2 shows the sorted values of σr for the species considered in this study, using the full time series to calculate σr. It

is worthwile to note that in defining variability in this way, we closely follow Junge (1974), who showed that under certain

constraints, the relationship

σr =
σ

µ
= a · τ−b (2)

holds, which links variability and lifetime τ using two species-dependent constants a and b. This relationship has frequently25

been called Junge relationship in the past (e.g. by Stroebe et al. (2006) or MacLeod et al. (2013)). And indeed, as visible in

Figure 2, longer lived species like CO2 or N2O show lower variability, while shorter lived species show higher variability.

It is important to note that the values determined from MEASCARIBIC are affected by the measurement frequency in case of

data sampled by whole air samples (N2O, C2H6 and C3H8) and by gaps due to instrument problems. But the influence of these

gaps is small, as can be seen by the small differences of the two values for MODregular
CARIBIC and MODsampled

CARIBIC. MEASCARIBIC has30
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Figure 2. Variability σr calculated for different datasets using Equation 1. The species are sorted by σr , species with low variability listed to

the left, using the values from MODRANDPATH for sorting. Note that log10(σr) = τ∗, see Eq. 3.

a slightly higher variability than the model datasets for most species. The relationship of model and measurement variability is

discussed in more detail in Section 5. The model datasets are very similar, despite their different sampling patterns. They only

differ for short-lived species (to the right in Figure 2), which have a strong daily cycle, e.g NO.

In Sec. 3.3, we defined representativeness as having to decrease with increasing variability. Because we want to emphasize

the relationship of σr with τ and in order to differentiate this variability (calculated from the complete time series) clearly from5

other similar terms, we use τ∗ defined in Equation 3 to test the relationship of representativeness and variability.

τ∗ = log10(σr) = log10(a)− b · log10(τ) (3)

Sec. 4.2 will take a closer look at variability. It will be discussed how variability depends on the time scale for which it is

calculated. The values shown in Figure 2 and used for the calculation of τ∗ use the full time series, and thereby the overall

variability. If shorter time scales had been considered, the values for σr in Figure 2 would change, but not the order of the10

species that follows from the values.

So including these thoughts on variability in the question formulated at the end of Section 3.1, we can specify more closely

the question we answer in this study: For which species is a climatology compiled from CARIBIC data representative of the

tropopause region in mid-latitudes?
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4 Statistical methods

We use three different methods to evaluate representativeness: the Kolmogorov-Smirnov test, the variability analysis and rela-

tive differences.

4.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov two-sample test is a non-parametric statistical test that is used to examine whether two datasets have5

been taken from the same distribution (e.g. Sachs and Hedderich (2009)). It considers all types of differences in the sample

distributions that can be apparent in the mean, the standard deviation, the kurtosis, etc. The test statistic is the maximum

absolute difference D̂ in the cumulative empirical distribution functions F̂x of the two samples x:

D̂ = max|F̂1− F̂2| (4)

The discriminating valuesDα have been derived depending on the accepted confidence limit α. In this study, the two empirical10

distribution functions F̂i were taken from MODregular
CARIBIC and MODRANDPATH in each height bin and month. In addition to the

Kolmogorov-Smirnov test, we also applied the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for

variance (see again Sachs and Hedderich (2009)). All results of applying these tests are presented in Sec. 6.1.

4.2 Variability analysis

The variability analysis follows Rohrer and Berresheim (2006) and Kunz et al. (2008). Rohrer and Berresheim (2006) intro-15

duced a variance analysis for ground-based observations, Kunz et al. (2008) then applied it to aircraft data. A timeseries of data

is subsequently divided into ever shorter time slices of increasing number and the variance is calculated for the data within

each time slice. By taking the mean over the whole number of slices and doing this for all divisions in time, a line is calculated,

which is characteristic for the development of variance in time.

Instead of considering variance in each time slice, we use the relative standard deviation σr = σ
µ , which is the definition of20

variability following Junge (1974). It is calculated in each time slice and the mean gives the value for the corresponding time

scale. In the following, time scale therefore refers to the length of the interval in time in which the variability is calculated.

By scaling the standard deviation σ with the mean µ, different species become comparable. Being a combination of variability

as defined by Junge (1974) and the variance analysis introduced by Rohrer and Berresheim (2006), this method is called

variability analysis in the following paragraphs.25

Figure 3 shows the variability analysis for CO just below the tropopause for MODregular
CARIBIC, MODRANDPATH and MODRANDLOC.

The time scale changes from about 5min to 5a along the logarithmically spaced abscissa. As CO is a medium long-lived trace

gas with an atmospheric lifetime of 2-3 months and a pronounced annual cycle, the mean variability increases up to time scales

of 1a. The variability of MODRANDPATH and MODRANDLOC is larger than that of MODregular
CARIBIC on almost all time scales. For

time scales of 30d and more, however, the lines of all three datasets run in parallel, showing an increase up to 1a, from when30

on the variability does not increase. This is consistent with the annual cycle of CO, which is also the cause for the relative
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Figure 3. Variability analysis calculated for CO for MODRANDPATH, MODRANDLOC and MODregular
CARIBIC at HrelTP =−1km (one kilometer

below the tropopause). The time scales used to calculate Rvar using Equation 5 are indicated by vertical lines.

decrease sharply at 0.5a and 1.5a. For time scales below 30d, the distribution of flights in one month dominates the variability

analysis. MODregular
CARIBIC includes only up to four flights on consecutive days, the mean variability does not decrease when going

to time scales between 30d and 4d, while in MODRANDPATH, continuosly less data are included in each time slice, leading

to a continuous drop in the variability. For time scales of less than 1d, the data come from a single flight, showing another

drop in variability that is linked to using data from geographic regions that are ever more close in the case of MODregular
CARIBIC and5

MODRANDPATH. Since the variability analysis is so closely linked to the distribution in time and space, the variability analysis

of MODRANDLOC shows an almost constant value for time scales shorter than 30d until time scales shorter than one day are

reached, from when on the variability also drops.

Kunz et al. (2008) used the variance analysis to investigate whether the smaller SPURT dataset represents the variance

present in MOZAIC dataset. Following this thinking, we consider the variability as one possible criterion to judge the repre-10

sentativeness of one dataset for another. A score Rt,hvar describing the representativeness is defined from the difference of the

values of the variability analysis, using the following equation:

Rt,hvar = log10

(∣∣∣∣∣∣
[
σt,h1

µt,h1

]
−

[
σt,h2

µt,h2

]∣∣∣∣∣∣
)

(5)

where σt,hx stands for the standard deviation and at µt,hx for the mean in time scale t and height h of the datasets x. The overbar

implies that the mean over all time slices corresponding to the time scale t of σ/µ are used. Considering Figure 3, the score15

can be interpreted as the absolute value of the difference of the two lines at certain time scales t.
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Decreasing values of Rt,hvar mean better representativeness, the value always being negative. Depending on t, the representa-

tiveness in different time scales can be evaluated. We used time scales of 30d, 0.25a, 0.5a, 1a, 2a and 5a to calculate Rt,hvar .

When applying this method to all height bins, a profile in Rtvar is calculated for each species. This is one possible definition for

representativeness. Yet it has to pass the two requirements of being related to number of samples and variability outlined in

Sec. 3.3. The results of testing this will be presented in Sec. 6.2.5

4.3 Relative differences

The third approach to assess representativeness is to analyze the relative differences between the climatologies from two

differently large datasets. The procedure is summarized in Equation 6:

Rhrel = log10

(
1

12

12∑
m=1

|µm,h1 −µm,h2 |
µm,h2

)
(6)

which was applied to each height bin h. µm,hx stands for the mean of the data in the month m and in height bin h of the datasets10

x. The logarithm to the basis 10 was applied to the mean relative difference profile to end up with a profile in Rrel, similar to

the score Rtvar calculated from the variability analysis. Contrary to the Kolmogorov-Smirnov test or the variability analysis, this

test statistic does not contain any information on the underlying distribution, because it uses only the mean in each bin.

Figure 4 shows an example of relative differences between CO from MODregular
CARIBIC and the larger dataset MODRANDPATH.

The differences are small, mostly below an absolute value of 0.15. Rrel is defined (in Equation 6) as the logarithm to the base15

10 of the mean over all months (not shown). The score increases towards the top and bottom in Figure 4 due to less data

there. Like for Rtvar, decreasing values in Rrel mean better representativeness. And like Rtvar, Rrel has to be tested for passing

the requirements of being related to number of samples and variability (see Sec. 3.3) in order to be acceptable as a score for

representativeness. The results of testing this will be discussed in Sec. 6.3.

Other than just as a score, the value of Rrel can be understood as the average uncertainty for assuming the climatology of20

MODregular
CARIBIC as a full model climatology. This is more obvious if taken to the power of 10, in which case the uncertainty will

take values between 0 and 1. Use of this will be made in Section 6.4.

5 Model and measurement variability

Representativeness was assessed using only model data in this study, yet the final goal was to investigate the representativeness

of MEASCARIBIC. MODregular
CARIBIC and MODsampled

CARIBIC are used as a placeholder for MEASCARIBIC and compared to other model25

datasets (MODRANDPATH and MODRANDLOC) in the analysis. The results derived from these model datasets will be interpreted

for MEASCARIBIC in Sec. 6. This means that conclusions drawn from model data alone will be applied to measurements.

To justify this reasoning, it is important to investigate the differences between the model and the real atmosphere. It is not

crucial that the model reproduces the exact values of the measurements, but rather that the complexity for each species in the

model is similar to the real complexity. This will be investigated in the following two sections. The variability of MODsampled
CARIBIC30

will be used as an indicator of its complexity and compared to the variability of MEASCARIBIC. Similar to Equation 1, we use
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Figure 4. Relative differences of CO for MODregular
CARIBIC and MODRANDPATH. This is the basis used to calculate Rrel.

the relative standard deviation σr = σ/µ as a measure for variability when comparing model and measurements. Variability of

a certain time scale, e.g. 20min, will be referred to as 20min variability in the following, accordingly for other time scales.

5.1 Influence of short time scales on the climatological mean

All model datasets have been created from gridded datafiles with a certain resolution (2.8◦ or about 200km, see Sec. 2.2).

Considering the median airspeed of the CARIBIC aircraft of 885.1kmh−1, this model resolution corresponds to a time scale5

of about 20min. MEASCARIBIC has a time resoltution of up to 10s, depending on the instrument. Model data has been linearly

interpolated to this high 10s resolution, but this does not introduce the variability that is present in the measurements. The

20min variability is therefore always larger in MEASCARIBIC than in MODsampled
CARIBIC. To what extent this small scale variability

influences the climatological values is investigated here.

By reducing the 20min variability in MEASCARIBIC to that of MODsampled
CARIBIC, it is possible to determine the influence of the10

small scale variability on the climatological mean values. The reduction in variability was done separately for each species and

height to account for differences in terms of model complexity between the species. In order to reduce the variability in the

time series, they were smoothed out, the method is presented in App. B. The smoothing number used in this method indicates

how much variability has been removed. The 20min variability of MEASCARIBIC was then calculated for several smoothing

numbers.15

Figure 5 (left panel, solid lines) shows how the 20min variability drops for all species if the data are smoothed progressively

(increasing the smoothing number). The leftmost point for each species corresponds to the full 20min variability, while this

variability drops to zero if the time intervals considered in smoothing become much longer than 20min. The dashed lines show
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Figure 5. Left panel: 20min variability of i) MEASCARIBIC, that has been smoothed out to an increasing degree, indicated by an increasing

smoothing number (solid lines) and of ii) MODsampled
CARIBIC (dashed lines), both for HrelTP =−1km. The crosspoint of the dashed and cor-

responding full line indicate the smoothing number that is needed to reproduce the 20min variability of MODsampled
CARIBIC. Right panel: Mean

relative differences of MEASsmoothed
CARIBIC and MEASCARIBIC. MEASsmoothed

CARIBIC has been smoothed to have the same 20min variability as MODsampled
CARIBIC,

using the smoothing number from the left hand panel. The relative differences correspond to the error in the climatologies of MODsampled
CARIBIC

due to the coarse model resolution. N2O, C2H6 and C3H8 are measured by air samples with a low measurement frequency and therefore

not considered here.

the full model variability, which was not smoothed out. The crosspoints of the full and corresponding dashed line indicate the

smoothing numbers for which MEASCARIBIC has the same 20min variability as MODsampled
CARIBIC. MEASCARIBIC in which each

species has been smoothed to this point will be referred to as MEASsmoothed
CARIBIC.

Climatological mean values of MEASsmoothed
CARIBIC were then compared to mean values from MEASCARIBIC with the full variabil-

ity, thereby determining the influence of the reduced 20min variability. A similar influence is expected by the coarse model5

resolution, which by definition has the same 20min variability as MEASsmoothed
CARIBIC.

The mean relative difference of the climatologies for different species between MEASsmoothed
CARIBIC and MEASCARIBIC is displayed

in Figure 5 (right panel). The differences depend strongly on the species. Those species that are measured by air samples (N2O,

C2H6 and C3H8) have been shaded in grey, since they contain very little data far above and below the tropopause and are

therefore not considered in this section.10

The mean relative differences are smaller than 1% for the long lived species to the left and reach 10-20% for the other

species. Largest values appear where the mixing ratios of the species are small and vertical gradients are strong, i.e. in strato-

spheric CO, acetone or H2O and tropospheric O3. E.g. H2O has very low stratospheric mixing ratios, that are reached in

small-scale intrusions of stratospheric air encountered during flight. If these small-scale structures are smoothed out, the mean

values become larger and the difference of MEASsmoothed
CARIBIC and MEASCARIBIC is large and positive.15
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Figure 6. σMOD
r /σMEAS

r given in percent for time scales of 30d (left) and 1a (right), where MOD stands for MODsampled
CARIBIC and MEAS stands

for MEASsmoothed
CARIBIC. Values greater than 50% indicate the high model complexity.

The relative differences show the influence of a lower variability that is equal to that of MODsampled
CARIBIC. This therefore shows

that the coarse model resolution does in principle not lead to very large errors in climatological mean values. Nevertheless, the

model could have other defiencies in the description of the different species. These are made visible in the following section

by comparing model and measurement variability directly.

5.2 Comparing model and measurement variability5

In this section, the variability of MODsampled
CARIBIC is compared directly to that of MEASsmoothed

CARIBIC. For this dataset, MEASCARIBIC

has been altered in such a way to reproduce the 20min variability of MODsampled
CARIBIC, see the preceeding section. As this study

argues completely within the model world, it is important that the model has similar values for the variability, which is used as

an indicator of the underlying complexity. If the model cannot reproduce the measurement variability at all, it is not plausible

why conclusions on representativeness drawn from model data should also be true for the real atmosphere.10

As has been discussed in Sec. 4.2, variability depends on the time scale for which it is considered. In order to evaluate the

model performance, we compare σr on time scales of 30d and 1a. 30d variability includes data from typically 4 flights, so

this is a measure for the atmospheric variabilty on the global, large scale dynamics. 1a variability gives a good impression of

the annual cycle, as it includes data from many flights and different years. Figure 6 shows σMOD
r /σMEAS

r for time scales of 30d

(left) and 1a (right), using the datasets MODsampled
CARIBIC and MEASsmoothed

CARIBIC15

Figure 6 shows that the variability in the measurements reached by the model differs between species. In general, the

variability reached for shorter lived species better fits that of the measurements. Short-lived species also undergo a more

complex chemistry in the model, which adds variability. The 30d variability shown in Figure 6 (left) reveals to what extent the

model is able to capture variability related to the large scale dynamics. Most species reach 40-80%. NO is very short lived and

strongly determined by its daily cycle, which is the reason why the variability in the model reaches higher values.20
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The time scale of 1a shows the variability that represents seasonality. The model does a better job for this time scale than

for 30d, short lived species and CO2 reaching well over 60% of the variability, approaching 100% for some species. Here

again, the model chemistry increases the variability for shorter lived species to the right. There are species that are not as well

represented, while this also depends on the height considered (e.g. high values for stratospheric N2O).

The model variability is influenced by many factors including the dynamics, the representation of the chemistry and of the5

sources included in the model. The limited horizontal and vertical resolution also plays a role, even though MEASsmoothed
CARIBIC is

used as a reference for the comparison. If compared to the original MEASCARIBIC, the percentages of variability reached by the

model drop by 10-20% (not shown). It is beyond the scope of this paper to further disentangle what causes the defiencies of

the model and what leads to the differences between the species.

As is shown in Figure 6, the model reaches more than 50% of the variability of the measurements. This ratio depends strongly10

on the species and is higher for longer time scales. This points at a high complexity of the model and justifies the assumption

underlying this study: The representativeness evaluated from the model data alone is also valid for the real atmosphere and the

measurements taken by CARIBIC.

6 Results

Here, we first present the results of the application of the Kolmogorov-Smirnov test (Sec. 6.1), the variability analysis (Sec. 6.2)15

and the relative difference (Sec. 6.3) to MODregular
CARIBIC and MODRANDPATH. All have to be related to the number of flights and the

variability of the species as discussed in Section 3.3. These methods have also been applied to data not from an atmospheric

model but from a random number generator, leading to equivalent results. These are presented as supplementary material to

the article. Sec. 6.4 interprets the results by species as a representativeness uncertainty. Finally, Sec. 6.5 answers the question

of how many flights are necessary to achieve a certain degree of representativeness. In addition, Appendix A discusses the20

influence of the limitations in longitude and in pressure which are inherent in the CARIBIC dataset.

6.1 Applying the Kolmogorov-Smirnov test

The application of the Kolmogorov-Smirnov test to MODregular
CARIBIC and MODRANDPATH yields a first important result. Independent

of the trace gas and height considered, the result is always negative (not shown). This means that the data in each bin of

MODregular
CARIBIC are not representative of the corresponding bin in MODRANDPATH when defining representativeness by a positive25

result of the Kolmogorov-Smirnov test. This is also true if the data are not binned in months but only in HrelTP. The result also

stays the same for all values of the confidence limit α (using values of 0.001, 0.01, 0.05, 0.1 and 0.2).

A similar finding for aircraft data have already been reported by Kunz et al. (2008). On the one hand side this could mean

that MODregular
CARIBIC is simply not representative of MODRANDPATH. But if the other methods presented here are considered, the

conclusion seems more appropriate that the Kolmogorov-Smirnov test is simply not the appropriate way to answer the question.30

It can be considered as too strict for the type of data and the question considered here. This is also the result of a sensitivity

study, which is discussed as supplementary material to this text.
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Figure 7. Rvar calculated according to Equation 5 for a time scale of 1a for all species in all height bins, using MODregular
CARIBIC and

MODRANDPATH. Low values indicate small differences in variability.

In addition to binning into twelve months (January to December), we have also tested MODregular
CARIBIC and MODRANDPATH when

first binning into separate months (108 months in nine years) and then using this monthly mean data to compile a climatology.

For this monthly mean data, the Kolmogorov-Smirnov test does give a positive result in some heights and months. But no

meaningful pattern could be determined from the results. Especially, the result does not depend on τ∗ (not shown). The same

is true for the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for variance. They give no positive5

result for data binned directly into months. The result is positive for some months and heights if data are first binned into

separate months the monthly mean data used for testing. The postive results seem randomly distributed and no relationship to

τ∗ could be found. These tests therefore also seem not to be suitable for answering the question of representativeness.

6.2 Applying the variability analysis

This section presents the results of the application of the variability analysis to MODregular
CARIBIC and MODRANDPATH. Equation 510

was applied for different time scales (30d, 0.25a, 0.5a, 1a, 2a and 5a) to calculate Rvar. The results are exemplarily discussed

for a time scale of 1a, shown in Figure 7, in which the results are sorted using the values of τ∗ displayed in Figure 2.

Rvar shows a strong dependancy on τ∗. This is visible from Figure 7, in which the results are sorted with decreasing values

of τ∗ (from Figure 2), i.e. with increasingly higher atmospheric variabilty from left to right. The Pearson correlation coefficient

ρ of Rvar and τ∗ is high, |ρ|> 0.9 in all height bins, independent of the time scale. Rvar also shows a strong relationship to the15

number of samples: The amount of data in both MODregular
CARIBIC and MODRANDPATH decreases below and above the tropopause,

and Rvar follows suit for practically all species.
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Figure 8. Rrel calculated according to Equation 6 for all species in all height bins, using MODregular
CARIBIC and MODRANDPATH. Low values indicate

small differences in climatological mean values.

The relation of Rvar and the number of flights was also tested by using MOD3
RANDPATH defined in Sec. 3.3. Rvar was correlated

with the number of flights for each species and height. When investigating a linear relationship, the Pearson correlation coef-

ficient was approximately |ρ| ≈ 0.75 for the time scale of 5a, increasing continously when considering shorter time scales to

|ρ| ≈ 0.95 for the time scale of 30d. Considering a logarithmic relationship inreases the goodness of fit for longer time scales,

while it decreases that for shorter time scales (|ρ| ≈ 0.85 for both 5a and 30d).5

Rvar therefore passes the requirements of being inversely related to τ∗ and directly to the number of included data points and

flights. Figure 7 can therefore be used to judge upon the representativeness of MODregular
CARIBIC for MODRANDPATH.

This shows that by using the relative standard deviation (Equation 5) instead of the variance analysis applied by Kunz et al.

(2008), the difference in variability can be used to infer representativeness. Rohrer and Berresheim (2006) originally introduced

the variance analysis to investigate the sources and time scales of variability in a dataset and for this it remains a valid method.10

In order to infer representativeness, it is more appropriate to use the relative standard deviation in the analysis instead of the

absolute variance.

6.3 Relative differences

Rrel was calculated for each species in each height bin according to Equation 6, results are presented in Figure 8.

Figure 8 shows how low variability (decreasing to the left, values taken from Figure 2), is linked with good representativeness15

(low values in Rrel). Rrel decreases linearly with increasing variability τ∗ with a high Pearson correlation coefficient greater

than 0.95 for all height bins (not shown). As visibile in Figure 8, Rrel also decreases with the number of data points, which

maximizes just around the tropopause and decreases above and below it (see Figure 1).
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This dependance on the number of data points was also tested by using MOD3
RANDPATH described in Sec. 3.3. The Pearson

correlation coefficient ρ between the number of shorter random flights and Rrel was ρ≈ 0.95 for all species in all heights. Less

variable species like CO2 show a better relationship with the logarithm of the number of flights. This underlines how Rrel is

well correlated with the number of measurements.

Using Rrel as a measure passes both conditions: It is directly proportional to the number of flights and indirectly to the5

variability. In addition to Figure 7, Figure 8 can therefore be used to judge upon the representativeness of MODregular
CARIBIC for

MODRANDPATH. Rrel can be transformed into a relative difference in percent, by taking Rrel to the power of ten. A score of -2

stands for a mean relative difference of 1%.

The score that discriminates representative from the non-representative case has to be arbitrarily chosen (see Nappo et al.

(1982) and Ramsey and Hewitt (2005)). This score gives the uncertainty within which the data are considered representative.10

If a score of -2 is defined as representative (corresponding to 1% mean relative difference), then representative species and

heights can now be seperated from those species that are not representative using the results from Figure 8. But the score of -2

is arbitrary. If it is reduced to -1.5 (roughly 3% relative difference), MODregular
CARIBIC can be seen as representative for many more

species.

6.4 Representativeness uncertainty of the CARIBIC measurement data15

The last sections have shown Rrel (see Equation 6) and Rvar (see Equation 5) to be adequate scores to describe representative-

ness. After reconsidering the question we asked in the Section 3.1 (Is a climatology compiled from CARIBIC data represen-

tative of the tropopause region in mid-latitudes?), we will use Rrel in the following. It is more intuitive (compared to Rvar) as

it describes the difference to a larger dataset, e.g. in percent. A further discussion of Rvar is beyond the scope of this paper. As

noted in Sec. 4.3, Rrel is also comprehensible as an uncertainty for using the smaller dataset to compile a climatology and will20

be called representativeness uncertainty correspondingly.

In order to asses the uncertainty for accepting CARIBIC measurement data to create a climatology, model data have to

contain the same amount of data as MEASCARIBIC, which is why MODsampled
CARIBIC (see Sec. 2) will be used in the following. In

addition, MODRANDLOC (see Table 1) was used as reference, as it has a random sampling pattern and represents the full model

state, independent of the sampling pressure. The limits in pressure where again set to 180hPa< p < 280hPa. The resulting25

Rrel is shown in Figure 9. Using different wording, Rrel in this formulation can also be considered the sampling error of the

measurements.

This result - deduced from model data only - is also valid for the real world if the complexity of the model is sufficiently

high for each species. This has been shown by comparing the variability of MODsampled
CARIBIC and MEASsmoothed

CARIBIC for different time

scales (see Sec. 5). The discussion of the following paragraphs is therefore also valid for the real atmosphere, even though30

results have been derived from model data alone. Figure 9 answers the question we asked in Sec. 3.2: For which species is a

climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

When considering the representativeness uncertainty of a climatology, it is also important to consider the annual cycle of

a species, e.g. 10% can be much for a species that is more or less constant, while it is much for a species with a strong

20



C
O

2

C
H

4

N
2O C

O

C
2H

6

A
ce

to
ne

C
3H

8

O
3

N
O

y

H
2O N

O

H
re

lT
P

 [k
m

]
-4

-3

-2

-1

0

1

2

3

4

10
^R

re
l (

re
pr

es
en

t. 
un

ce
rt

.)
 [%

]

0  

0.2

0.5

1  

2  

5  

10 

25 

50 

100

Figure 9. Representativeness uncertainty for using the CARIBIC data (that is 334 long-distance flights, see Table 1) to compile a climatology:

10Rrel calculated from MODRANDLOC and MODsampled
CARIBIC. Low values indicate small representativeness uncertainties. N2O, C2H6 and C3H8

are measured from air samples, which increases the uncertainty, especially for C3H8.

seasonality. The following paragraphs discuss representativeness by species, not explicitly considering the seasonal variations

for each species. The monthly resolved climatologies of CO, CO2 and O3 will be discussed exemplarily at the end of this

section.

Many of the species that sum up to NOy in the model are not actually measured by CARIBIC and therefore are not displayed

in Figure 9. In general, the representativeness uncertainty is lowest where there are most measurements, which is just around5

the tropopause (see Figure 1). This effect overlays the physical reasons for the different uncertainties for the considered species.

NO has the highest uncertainty of 90%. We propose two possible reasons: On the one hand, there are many gaps in the obser-

vations. But NO is also emitted by aircraft in the UTLS (Stevenson et al., 2004), and since CARIBIC flies in the flight corridors

heavily frequented by commercial aircraft, it is unrealistic to assume a climatology of these species to be representative of the

UTLS on a whole.10

H2O shows a strong gradient in its representativeness uncertainty, which is directly linked to the strong gradient in variability.

The dry stratosphere can be described by relatively few measurements, which is why the uncertainty is low, only reaching 25%

at most. The humid and variable troposphere influenced by daily meteorology has a higher uncertainty, reaching more than

60%.

NOy, being a pseudo-species made up of many substances, is more difficult to disassemble. The variabilty of many com-15

ponents is higher in the troposphere, where the uncertainty is 30% at its maximum. Above, it is smaller than 10% and the

climatology therefore quite trustworthy.
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It is interesting to note that C2H6 and C3H8, both collected in whole air samples still reach uncertainties comparable to those

of other species in their range of τ∗. This is due to the fact that these are moderately long-lived species for which only a smaller

number of measurements are needed for a representative climatology. The climatology of C3H8 comes with an uncertainty of

up to 25%, while that of C2H6 is better with an uncertainty of less than 10%.

The climatology of O3 is very trustworthy, the uncertainty being smaller than 10% for most height bins. The higher values5

in the tropospheric bins should not raise much concern, as O3 increases strongly with height in the UTLS and an uncertainty

of 15% will be practically unnoticable compared to the vertical increase.

This is not true for acetone, where the gradient is just opposite to O3. The climatology is trustable with an uncertainty only

up to 10% in upper levels, while it increases to 20% in the lower heights, where the influence of spatially and temporally

variable sources at the ground is stronger.10

The climatology of CO is very good, the uncertainty in stratospheric height bins being less than 5%. The troposphere, again

stronger under the influence of sources, has a higher uncertainty reaching up to 10%.

The long-lived trace gases CH4, N2O and CO2 (all detrended as described in Sec. 2.1) all have representativeness uncertain-

ties of less than 0.4%, which is lower than their seasonal variability. This is interesting especially for N2O, which is measured

only in the whole air samples.15

As example and summary, the representativeness uncertainty will be applied to climatologies of CO, CO2 and O3, shown in

Figure 10. CO is shown for MODsampled
CARIBIC (top left, panel A), MODRANDLOC (top right, panel B) and CARIBIC measurements

(MEASCARIBIC, center left, panel C). The white space in these figures has three possible reasons: the aircraft could have never

flown in that bin, there could be measurement gaps in CO or a gap in HrelTP. The measurement gaps of CO and HrelTP

from MEASCARIBIC have been mapped onto MODsampled
CARIBIC, but HrelTP differs slightly and therefore also the white space. The20

representation of CO in the model, comparing top and center left figure (panels A and C), is similar to measurements (in the

troposphere more so than in the stratosphere), but was not subject of this study. We compared the top row (MODsampled
CARIBIC and

MODRANDLOC, panels A and B) and found that Rrel is a good descriptor for the representativeness of one for the other. By

accepting the result from the model to be valid also for measurements, we can now use the score calculated from the two model

samples to determine the representativeness uncertainty of MEASCARIBIC.25

By again defining Rrel =−1 (10% uncertainty, one third of the seasonal variation) as the limit for representativeness, the

climatology of MEASCARIBIC (Figure 10, center left, panel C) was shaded in grey where it is not representative. The representa-

tiveness uncertainty shown in Figure 9 only serves as a first indication of the expected uncertainty when resolving monthwise.

The center right panel (panel D) displays the standard deviation of CO from MODRANDLOC. By comparing the center panels

(C and D), it becomes evident that the variability specific to CO is one of the reasons for the higher representativeness uncer-30

tainty in spring, while it cannot explain all the features. The number of flights is a different reason, which explains the higher

uncertainty in January, the month with the least flights (not shown).

The limit of 10% should not be applied in general and has to be adapted to the species under consideration. This becomes

evident by the bottom row in Figure 10 (panels E and F), which shows climatologies of CO2 and O3. CO2 shows a small

annual variation around a high background value. So 10% uncertainty could be easily reached by a single measurement, which35
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Figure 10. Climatology of CO, built from MODsampled
CARIBIC (panel A), MODRANDLOC (panel B) and the CARIBIC measurements (MEASCARIBIC,

panel C). Areas of 10ˆRrel > 0.1, calculated from the top row, were used to shade non-representative areas in the climatology of MEASCARIBIC

in grey. Panel D displays the 1σ standard deviation of CO from MODRANDLOC. The bottom row (panels E and F) displays climatologies from

MEASCARIBIC of CO2 (left) and O3, shaded with 10ˆRrel > 0.003 and 10ˆRrel > 0.15, respectively.

23



would certainly not be representative of the whole year. The shading for CO2 in Figure 10 was set at a threshold of 0.3%,

again just above one third of the seasonal variation. The high values in spring in the upper troposphere show an even lower

uncertainty, the uncertainty of all data being less than 0.7% (not shown). The opposite is true for O3, for which the threshold

was set to 15% uncertainty (around one fourth of the seasonal variation). Many tropospheric values in spring or at times of

high gradients in the stratosphere at the beginning and end of spring have an uncertainty higher than these 15%.5

As the results in Figure 9 are sorted by the variability of the species and this is linked to their lifetime in following Junge

(1974), conclusions are possible for species even if they have not been explicitly considered in this study. This is true for SF6,

for example, which is measured in whole air samples by CARIBIC but was set to 0 in the model run and could therefore not be

included in this study. As it is long-lived in both troposphere and stratosphere (Ravishankara et al., 1993), a climatology from

CARIBIC SF6 measurements can be considered to be representative even though it is measured only by whole air samples.10

Two limitations are inherent in the CARIBIC data: the Pacific Ocean is never sampled and the pressure is limited to flight

levels. The influence of both these limitations is discussed in Appendix A.

6.5 Number of flights for representativeness

One last question remains to be answered: For those substances not representative yet, how often does one have to fly in order

to achieve a representative climatology?15

This question can be answered with the help of MOD3
RANDPATH. Figure 11 shows the representativeness uncertainty for some

species and different numbers of flights. As has been discussed in Section 6.4, the yearly variation of a species is one of the

factors that determines the threshold of the uncertainty with which the species can be considered to be representative.

E.g., for (detrended) CO2, the mean value of MODRANDLOC is 385.7ppmv with a yearly variation of 2.5 to 3.5ppmv. A

representativeness uncertainty of at least 0.5% has therefore to be set as the minimum threshold for CO2. This can be reached20

with only few flights, much less than those included in MODsampled
CARIBIC, indicated by the dashed line in Figure 11 at 334 flights.

For O3, on the other hand, the yearly cycle proposes an uncertainty of 50% or more. While this is the minimum value to

reproduce the yearly cycle at all, it may still not be sufficient for the application. With the number of CARIBIC flights, the

uncertainty in O3 is low already (< 5% in this height), while the uncertainty is continuosly reduced if the number of flights

increases.25

As is indicated by Figure 11, highly variable species like NO need many flights in order for their climatologies to reach

low uncertainties. Even 1000 flights, approximately ten more years of flying the CARIBIC observatory, will not reduce the

uncertainty below 10%.

Other species that are not included in Figure 11 can be deduced from their value of τ∗ with the help of Figure 2. Those species

measured in air samples need even more CARIBIC flights than indicated by the number in Figure ??, as the measurement30

frequency is much lower.
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indicated by the vertical dashed line. Other species can be deduced from their value of τ∗ with the help of Figure 2.

7 Conclusions

We describe and assess the degree of climatological representativeness of data from the passenger aircraft project IAGOS-

CARIBIC. After a general discussion of the concept of representativeness, we apply general rules to investigate whether

climatologies from IAGOS-CARIBIC trace gas measurements can be seen as representative. We answer the specific question:

For which species is a climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?5

In order to answer this question, four datasets were created from a nudged model run of the chemistry-climate model

EMAC. Two datasets sample the model at the geolocation of CARIBIC measurement data (MODregular
CARIBIC and MODsampled

CARIBIC).

These datasets are contrasted to the much larger datasets MODRANDPATH (random flight tracks with similar properties as those

of MODregular
CARIBIC) and MODRANDLOC (random locations).

As a first step, we demonstrate that these model datasets are appropriate to answer our question, which asks for the rep-10

resentativeness of CARIBIC measurement data. In order to justify the validity of the conclusions drawn from model data to

the measurements, we compare model and measurement variability, using the variability as an indication of the models ability

to reproduce changes in space and time. To compare like with like, variability on scales smaller than the model resolution is

removed from the measurements. With this prerequisite the model reproduces 50-100% of the variability of the measurements,

depending on time scale, height relative to the tropopause and species. This is sufficient to transfer our results from the model15

world to the real atmosphere.

Three methods to describe representativeness are developed and applied: (i) the Kolmogorov-Smirnov test (and the Mann-

Whitney, Brown-Forsythe and Levene’s test), (ii) variability analysis following Kunz et al. (2008) and (iii) a test interpreting
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the relative difference between two datasets. Two fundamental requirements are essential for representativeness: its increase

(i) with the number of measurements and (ii) with decreasing atmospheric variability of the species, which is related to atmo-

spheric lifetime following Junge (1974). By formulating the variability analysis and relative differences as scores (Rvar and Rrel

respectively), we demonstrate that they pass these two requirements, while the statistical tests are all too strict. Rrel (describ-

ing the representativeness of a climatology) is better suited for answering the question and is therefore used in the remaining5

analysis.

The score Rrel is easily converted to a representativeness uncertainty in percent and this measure is used in the discussion.

The results show that CO2, N2O and CH4 have very low uncertainties (below 0.4%). CO, C2H6, and O3 reach higher values

(5% - 20%), but can still be used to compile representative climatologies around the tropopause. NOy and H2O are only

usable in the lower stratosphere (uncertainties of 5% to 8% there, higher elsewhere), while NO and C3H8 cannot be used10

for a representative climatology (uncertainties of 25% and more). Naturally, the interpretation of results strongly depends on

the chosen threshold uncertainty and should depend on the seasonal variability of the species under consideration. This is

demonstrated by setting different limits for climatologies of CO2, CO and O3.

In addition, the uncertainty can be translated into a number of flights necessary to achieve representativeness. This is demon-

strated for some species by showing the relationship of the number of flights and the representativeness uncertainty. For long-15

lived species like CO2 and CH4, the 334 IAGOS-CARIBIC flights used in this study already provide enough data, while

short-lived species like NO need around 1000 flights to reduce the uncertainty to 10%, sufficient to reproduce the strong

annual cycle.

The general concept of using two sets of model data to calculate the representativeness is easily applicable to other questions.

One model dataset should mirror the measurements, the other should be much larger, taking into account certain statistical20

properties of the measurement dataset, so that the two datasets become comparable.

Questioning the representativeness of sampled data is important. Patterns might occur when sorting or averaging sparsely

sampled data, but these patterns are not necessarily meaningful. We discuss and show a way to address this problem of repre-

sentativeness by using model data. By help of the methods presented here, representativeness is given a sound mathematical

description, returning an uncertainty characterizing the specific dataset.25

Appendix A: Limitations in longitude and pressure

MEASCARIBIC is limited in longitude (the Pacific Ocean is never sampled) and pressure (as all civil aircraft, CARIBIC flies

at a certain pressure level). Both limitations influence the climatologies calculated from the dataset. They are discussed in the

following sections.

A1 Limitation in pressure: Aircraft tropopause pressure bias30

By calculating Rrel using MODregular
CARIBIC and MODRANDLOC, an important fact can be illustrated about data collected with instru-

ments on civil aircraft. As the aircraft flies at constant pressure levels, data are also taken at these pressure altitudes only. If

26



data are then resorted into heights relative to the tropopause (HrelTP), this limit in pressure is no longer visible. Nevertheless,

it influences the results as the volume mixing rations of many trace substances are not only a function of their distance to the

tropopause, but also of pressure.

The effect on the climatological values can be illustrated by calculating Rrel (see Equation 4) using MODRANDLOC and

MODregular
CARIBIC within 10hPa< p < 500hPa. Figure 12 shows the results (right panel). For comparison, the left panel of Fig-5

ure 12 shows Rrel of the same datasets when setting 180hPa< p < 280hPa, the range at which CARIBIC measures. The

representativeness uncertainty is much higher in almost all heights on the right hand side (10hPa< p < 500hPa), except just

above the tropopause, where MODregular
CARIBIC contains most data. Only the long lived species CO2, N2O and CH4 retain their

low uncertainties. For the more variable species to the right of the figure, the representativeness uncertainty increases strongly,

especially in the troposphere, where the variability increases if data taken at higher pressure are included.
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Figure 12. Rrel calculated from MODregular
CARIBIC and MODRANDLOC with the range of p set to 180hPa< p < 280hPa (left) and 10hPa<

p < 500hPa (right). Low values indicate small climatological differences. The difference between the two panels shows the influence of

expanding the limits in p when calculating the climatological mean values with HrelTP used as a vertical coordinate.

10

The strong increase in representativeness uncertainty is always present in measurement data from commercial aircraft, which

can only collect data high above the tropopause when the tropopause is at high pressure and far below when it is at low pressure

values. This bias is naturally contained in all data measured at constant pressure and then sorted relative to the tropopause and

should be kept in mind when examining climatologies from corresponding platforms.

A2 Limitation in longitude: The influence of the Pacific Ocean15

As visible in Fig 1, there are no CARIBIC measurements over the Pacific Ocean, while MODRANDLOC and MODRANDPATH also

cover the Pacific. The uncertainty introduced by taking the Pacific into account in MODRANDLOC is investigated by calculating

Rrel from MODregular
CARIBIC and MODRANDLOC in two different setups. Rrel is calculated from full MODRANDLOC and MODregular

CARIBIC

(denoted by RA
rel) and compared to Rrel calculated with MODRANDLOC limited in longitude λ to 120◦W < λ < 120◦E (denoted
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Figure 13. |RA
rel/RB

rel− 1|, given in percent. This is the fraction of the representativeness uncertainty introduced in Rrel calculated from

MODregular
CARIBIC and MODRANDLOC by including the Pacific ocean in MODRANDLOC, even though it is not sampled by MODregular

CARIBIC. Both,

textRA
rel and textRB

rel have been calculed from MODregular
CARIBIC and MODRANDLOC, excluding the Pacific in MODRANDLOC in the calculation of

textRB
rel.

by RB
rel). The result is shown in Figure 13 as relative differences |RA

rel/RB
rel− 1| between the two uncertainties. The relative

differences show the share of the uncertainty inherent in MODregular
CARIBIC because the Pacific is included in the reference dataset

MODRANDLOC.

The importance of the Pacific depends on the species under consideration and whether the stratosphere or troposphere are

considered. The influence on stratospheric values is very small for all species. In addition, those heights with less data (top and5

bottom) are most strongly influenced if the Pacific is not considered. For the long-lived species CO2 and N2O, the uncertainty

increases only little (less than 3%) if the Pacific is included in the reference climatology of MODRANDLOC. But tropospheric

CH4 is more influenced by surface values. Interestingly, ClNO2 is also not affected, which clearly shows that the effect does

not depend on lifetime, but on the source regions and the chemistry. Acetone, CO and C2H6 are air pollutants with strong

sources in Asia. Parts of these sources are excluded if the Pacific is not considered, which is why the inclusion of the Pacific10

in MODRANDLOC is responsible for 15-20% of the total uncertainty. The situation is similar for HNO3, N2O5, BrNO3 and

HONO. For the other species, the uncertainty introduced by the Pacific is smaller.

Appendix B: Method of smoothing

This section shortly describes the method of smoothing used for creating the dataset MEASsmoothed
CARIBIC.

Each species and each flight is considered separately. For smoothing a certain interval of the time series (consisting of a15

certain number of data points N ), the time series is first cut into the corresponding number of pieces and the mean value of the
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Figure 14. Timeseries of CO for flight 445 from Frankfurt to Tokyo. Shown is the time series of the interpolated model data and of the

measurements. Measurements have been smoothed three times. The number indicates the length of the smoothing interval N .

N datapoints calculated within each piece. In a second step, these mean values are associated with the center of each piece of

the time series. Then, a linear interpolation is performed between the central points. The corresponding mean value is applied

directly from the beginning of the flight to the center of the first interval and from the center of the last interval to the end of the

flight. Finally, the gaps in the original time series are mapped onto the smoothed data. The original and the resulting smoothed

time series are shown in Figure 14 for three different lengths of the smoothing interval N .5
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive cli-

matologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such cli-

matologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in

mid-latitudes (35◦N to 75◦N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC,

we sample the modelled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the5

CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation

of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and (ii) relative differences.

Two requirements for any score describing representativeness are essential: Representativeness is expected to increase

(i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two require-

ments, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-10

Smirnov test is very strict and does not identify any trace gas climatology as representative – not even of long lived trace gases.

In contrast, the two scores based on either variability or relative differences show the expected behaviour and thus appear

applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative

differences score and calculate a representativeness uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measure-15

ments, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100% of the

measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial

and temporal model resolution.

In conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies. Long-

lived species like CO2 have low uncertainties (≤ 0.4%), while shorter-lived species like O3 have larger uncertainties (10-15%).20

Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of

1



representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a

mere 1%, while the uncertainty for shorter lived species like NO would drop from 80% to 10%.

1 Introduction

This supplement discusses further results of the study of the representativeness of IAGOS-CARIBIC data using the chemistry-

climate model EMAC. For abbreviations and methods, please refer to the main text. Two points are discussed here:5

The methods to describe representativeness developed and tested with model data were also applied to data from a random

number generator. This is described in Section 2. Section 3 discusses the sensitivity study of the Kolmogorov-Smirnov test

using a subsample of MODregular
CARIBIC.

2 Calculating representativeness from random numbers

All three methods to investigate representativeness (Kolmogorov-Smirnov test, variability analysis and relative differences)10

have also been applied to data created with a random number generator. The results of this study are presented here.

To produce the random numbers, 20 sets of 108 numbers were taken from a normal distribution. These 20 sets are referred

to as species, well aware of the fact that they are purely artificial. From species to species, the standard deviation σ was set to

vary from 10−3 to 103, values of the exponent increasing linearly. 20 mean values µ (increasing from 104 to 108, with a linear

increase in the exponent) where distributed randomly to the 20 species. This results in 20 species with different values for σ15

and µ. The statistics of each species will be indexed by the number 2. For short, this dataset will be called RAND.

3000 samples were taken from each of the 20 species. For each sample, 20 numbers were first randomly drawn from each

species. These new numbers and all those that had been drawn before then make up this one sample. So the size increases by 20

for each sample. This way, the relationship of the representativeness score with the sample size is directly accessible. Samples

are indexed by the number 1.20

The variability τ∗ of each species is defined as in Equation 3 of the main text: τ∗ = log10(σ2/µ2). The two requirements set

up in Section 3.3 for representativeness in general also have to hold here:

1. Representativeness has to increase with the number of samples.

2. Representativeness has to decrease with increasing variability of the underlying distribution.

With RAND defined in this way, it is possible to test representativeness using the variability analysis following Rohrer and25

Berresheim (2006) and Kunz et al. (2008) (see Section 4.2) and the relative differences (see Section 4.3). The Kolmogorov-

Smirnov test was positive for very few samples (less than fifty numbers, independent of τ∗) and will not be further discussed.

Its behaviour with aircraft data was subject of a sensitivity study, the results of which are shown in Sec. 3 of this supplement.
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Figure 1. Representativeness score Rvar applied to RAND. Vertical lines indicate the values of τ∗ of each species.

2.1 Variability analysis

The variability analysis (defined in Section 4.2 and Eq. 3) was applied in a simplified manner. As RAND is independent of

time, Rvar is reduced to just a single value containing the absolute difference of variability of each species of RAND and the

sample taken thereof: Rvar = |ν1− ν2|, where ν is the mean variability. Figure 1 shows a result. The exact result is a matter of

chance, as a random number generator is used. Similar to using MODregular
CARIBIC and MODRANDPATH, a strong dependance on τ∗5

and a weak dependance on the number of samples is visible.

Similar to Rvar when using MODregular
CARIBIC and MODRANDPATH, the variability analysis using RAND meets the two require-

ments necessary for describing representativeness, which were described in Section 3.3 and above. This result supports the

finding that Rvar can be used as a statistic for describing representativeness.

2.2 Relative differences10

Similar to Rvar, Rrel is reduced to a simple relative difference when using RAND: Rrel = |µ1−µ2|/µ2, where µ is the mean of

the sample (index 1) and of the whole subset (index 2). Figure 2 shows a result when applying Rrel to RAND. The dependance

on τ∗ is strong and linear. The result also depends on the number of samples, showing a slow increase with the number of

samples. This dependance is sometimes disturbed by better values which are reached by chance when drawing from RAND.

Like for MODregular
CARIBIC and MODRANDPATH, Rrel passes both conditions for a valid description of representativeness: it depends15

on variability τ∗ and on the number of samples. The latter is also being influenced by chance and generally much weaker.
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Figure 2. Like Figure 1, but for Rrel.

The fact that Rrel passes the two conditions for a description of representativeness can be understood with some theoretical

considerations. The standard error of the mean is defined by

σx =
σ√
n

(1)

where σx, the standard deviation of a sample, can be given by the following equation (N being the number of samples):

σx =

√√√√ 1

N

N∑
i=1

(xi−µ)2 (2)5

For N = 1, this gives:

σx = |xi−µ| (3)

Plugging Eq. 3 into Eq. 1 gives:

|xi−µ|
µ

=
σ

µ
√
n
=

101/τ
∗

√
n

(4)

and therefore10

Rrel = log10

(
|x−µ|
µ

)
=−0.5log10(n)+

1

τ∗
(5)

So ideally, Rrel should depend inversely on τ∗ and directly on the logarithm of the number of values. Figure 2 shows this is

approximately true for RAND.
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Figure 3. Flightroutes to Vancoucer, Canada, where each flight has been cut into 20 pieces and randomly chosen 30% of those pieces have

been plotted. These are tested against the whole data from flights to Vancouver to give one point in Figure 4.

In the case of RAND, Rrel and Rvar can both be used to describe representativeness as they pass the two conditions. Theoret-

ical considerations make the finding plausible for Rrel. RAND can be considered a theoretical abstraction of MOD. The finding

here therefore strongly supports that of Sections 5.2 and 5.3, where Rrel and Rvar have also been found to be good descriptors

of representativeness when using MODregular
CARIBIC and MODRANDPATH or MODRANDLOC. In the main text, we use Rrel for final

results, as it more suitable to answer the question of representativeness for a climatology.5

3 Sensitivity study on the Kolmogorov-Smirnov test

When applying the Kolmogorov-Smirnov test to MODregular
CARIBIC, MODRANDPATH or MODRANDLOC, it returned almost only neg-

ative results. This indicates that MODregular
CARIBIC is not representative of MODRANDPATH in the definition of the Kolmogorov-

Smirnov test. This behaviour was tested in a sensitivity study, the results of which are discussed here.

One of the most frequent destinations within the CARIBIC project is Vancouver, Canada (near 120◦W, 45◦N, see Figure 3),10

and only the subset of MODregular
CARIBIC to this destination is considered in this example to minimize effects that may come

from different flight routes. Parts of this reduced dataset were tested with the Kolmogorov-Smirnov test against the whole

reduced dataset for all variables. To produce these partial datasets, each flight was cut into an increasing number of pieces

(corresponding to a certain time) and different percentages of these pieces were used in testing. Figure 3 shows an example of

applying this method, by cutting each flight into 20 pieces and taking 30% of these by showing the corresponding flightpaths.15
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Figure 4. The Kolmogorov-Smirnov test applied to the flights to Vancouver, Canada, of MODregular
CARIBIC and subsets of these flights. Dotted

lines indicate those lengths in time and those percentages that were tested. 0 stands for a passing the Kolmogorov-Smirnov test, 1 for not

passing.

Data was not binned in months. When applying the Kolmogorov-Smirnov test without binning in months, the result is a

profile in HrelTP for each variable. The result can then be diplayed in similar way to Figures 7 and 8. This matrix of height

versus species was calculated for each combination of number of pieces and percent of pieces. In each combination, all the

profiles of the different variables were averaged to end up with one value betwween 1 and 0 characterizing the result of the test

for this combination of number of pieces and percent of pieces. The result can then give an impression of the strictness of the5

Kolmogorov-Smirnov test.

Figure 4 shows the result of the study. Independent of the number of pieces, the result is positive if all pieces are considered,

as the definition of the test prescribes. But only when removing short pieces (shorter than 20min) is the result also positive for

less pieces, even though 70% percent of the data is still needed. When removing whole flights (at the top of the plot), more the

90% of the data has to be taken into account to achieve a positive result of the Kolmogorov-Smirnov test. This result is very10

similar also for other error probabilities α, taking values of 0.001, 0.01, 0.05 (in the figure), 0.1 and 0.2. The area of failing

increases only slightly with the error probability. This showcases the strictness of the test. The Kolmogorov-Smirnov test does

not seem suitable to test a dataset measured with aircraft for representativeness of a larger dataset.
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