Reply to Referee Comments
Dear Referees,

thank you for your comments and remarks to the manuscript. Reconsidering the points you
addressed have substantially improved the manuscript.

We have included a new chapter (now chapter 5), which we devote to the comparison of the model
and measurements. We compare the variability in the two datasets in order justify the conclusion of
the study, in which we apply the results from a model study to measurements.

In addition, numerous other and small changes have been made. We no longer include NO2, as
there are very few measurements. The paper now includes an appendix, which describes the
influence of the Pacific ocean and on limits in pressure on the results.

In the following, we present a point by point reply to your suggestions, followed by the marked up
manuscript. As a reference and for better readability, we have also added the manuscript as such.

Best regards,

Johannes Eckstein



Referee 1

Major Comments

1.

However, the question arises if the model can be used as an appropriate tool for the question. 1
think this question has not been addressed sufficiently in the paper. How well can data from a
course model resolution be representative of the state of the atmosphere as described here? The
representation of the model climatology vs. flight track interpolation should depend on the models
spatial and temporal resolution. If the grid or time span is too large (likely the case for global
models), the model would not be able to represent the variability of the observations. A test would
require to average the observations to the same model grid and then compare the variability.

As noted above, we have now included a separate section (Sec. 5) that treats this question.
We show the influence of the small scale variability on climatological mean values and
discuss the differences between model and measurement variability on longer time scales.

Furthermore, I do not see any evaluation of the model. How well does the model represent the
atmosphere? Especially water vapor is a gas that many models are not able to simulate
appropriately, which is also the case for NOx and NOy. A discussion on how much this study
depends on the performance of the model to represent chemical tracer should be added.

The new section also covers the differences between species. A detailed validation is
beyond the scope of this study, as we use the model as a tool for a different purpose. The
section describing the model has been expanded, including more references. A validation
of the model is not the focus of this study, but described by Hegglin (JGR), 2010.

Finally, little has been done to identify reasons for differences between the flight track comparison
and the global comparison, based on the atmospheric character of different trace gases dependent
on the region for instance. Depending on region, airmasses experience more pollution,
convection, stratosphere/troposphere exchange. The Pacific experiences a lot of pollution from
South East Asia in some seasons than the Atlantic. Since CARIBIC data do not cover the Pacific,
what implication does that have of the representation of the data compared to a global average? I
would suggest, plotting a lon/lat map for a certain altitude level, say 1 km below the tropopause.
This may help explain why some tracers are representative and why others may be not. Certainty
35-70 degrees is a very large region that covers a lot of different airmasses reaching from the
tropics to the polar regions.

We have included a section in the appendix that assesses the influence of the Pacific (Sec.
A1). The influence on climatological mean values is stronger for those species determined
by source regions in Asia.

Minor Comments

Page 3, Line 9. The assumption that species in the model show a similar variability has not been
supported. A climatology of trace gases from the course model resolution is expected to show a
much smaller variability than the observations. Wouldn’t you expect a different result if you would
run with a high model resolution spatial and temporal?

We now include a new section (Sec. 5) which treats the differences in model and
measurement variability. Setting up or running a model run with a higher resolution is
beyond the scope of this paper.



Page 4, line 15: Why is N2O5 counted twice, please explain.

N205 is measured by catalytic conversion to NO. One N20O5 molecule yields two NO
molecules, this is why every N has to be counted. This is explained in the manuscript.

Page 5: Line 6: is it +-4km (as stated above) or +- 4.25km?

It has been corrected here. It is +-4.25km, but heights are labeled with their centers, which
corresponds to +-4km.

Page 5, Line 17ff: Constraining the data to 35-75 degree N is not really removing different
characteristics of tropical or polar airmasses and you would expect a larger variability. Earlier
studies discussed differences in the characteristics of UTLS airmasses depending on the location
with the jet stream and therefore with the height ofthe tropopause, which strongly varies with
season. I think, constraining the comparison to 35-75 degrees N because of a good coverage of
aircraft data would the better argument. There should be some discussion on the variability of the
considered region.

True, the good coverage was also an argument that we now state in the text. The latitudinal
limit is for sure not sufficient to exclude all influence of lower higher or lower latitudes,
but is a first approximation. We do discuss data relative to the local tropopause, as all
fields are presented in Hrel TP.

Page 5, Line 23, if you define mid-latitude as 35-75deg, then please specify that here.
We have added a comment specifying this.

Page 6: Line 6-7: The temperature comparison for the data is taken from meteorological analysis.
Are those the same that were used to nudge the model? That would explain the high correlation
coefficient. Please clarify.

Temperature measured by CARIBIC is not considered for ERA-Interim, which was used
for nudging the model.

Page 7, Line 7-8: HrelTP does not look very similar to me. Distributions in the lower two rows in
Figure 1 are more often above the TP than the flight track interpolated data. What implications
will this have for the analysis?

We have reformulated the paragraph and revised our judgment. The reasoning is different:
Both, the distribution in HrelTP and the different climatologies, are influenced by the
sampling pattern. So the differences that show up in HrelTP do not imply differences in the
climatologies, but both are influenced for the same reasons.

Page 7: Line 18. The text describes that the variability of the model data if interpolated to the
flight track is only 40-70% of the actual observed data. Further, it is discussed that the variability
in the model cannot capture the small scale variability of the data. Then the assumption is made
that the variability of the model is similar for all species. I do not follow this conclusion. Why is
this the case?

This paragraph has been completely revised and a new section now covers this subject.



10.

11.

12.

13.

14.

15.

16.

Page 9: Line 19: How does the model represent CO2, N20O and CH4? If those are prescribed as
fixed boundary conditions, certainly the model would not identify the variability that exists in the
real data.

Boundary conditions are not fixed. For CO2, N20 and CH4, they are prescribed as latitude
dependent monthly means. We have included a short paragraph in the text on the boundary
conditions of chemical species.

Page 13: I am not surprised about the different characteristics, since the different coverage of
CARIBIC compared to the random distribution is very different, Figure 1 left column, the flight
track sample more tropical air masses (being more concentrated in the south). Furthermore, the
Pacific with different characteristic of tracers are not sampled by the CARIBIC data set. It would
help to see for example a figure of CO at the altitude considered for example 1 km below the
tropopause. A discussion on differences of the sampling location due to chemical characteristics
that are different depending on sampling tropical or polar air masses, or characteristic
longitudinal variability in different tracers would be helpful.

Whether the climatologies produced by the sampling pattern of CARIBIC are
representative is just the question that we are investigating in this study. Regional
differences are another, interesting subject, which is more difficult to investigate with
CARIBIC data. As a first step, the influence of the Pacific ocean is included as part of the
appendix of the paper.

Page 17: typo line 2 “while it is can be much”
The typo has been corrected.
Page 17: Line 10: models usually have a poor representation of NO and NOZ2, especially in the
UTLS it depends on lightning. Also convection is influencing NOx and can strongly vary with
location, which is usually not well represented in models. Couldn't this be the reason why there is
a larger uncertainty?
NOx production resulting from lightning activity is included in the model (Grewe et al.,
2001). The geographical restraint of CARIBIC flight routes to flight corridors and thereby to
the regions with high VMR of NOx has the stronger influence on representativeness.
Line 14: How is the model representing H2O in the stratosphere?
In the stratosphere and mesosphere the chemical H20 tendency (due to the methane
oxidation) is calculated with the help of the chemical submodel MECCA (Sander et al.,
2005).
Line 20; C2H6 and C3H8 are considered short-lived species with lifetimes of a few weeks or so.
We have changed the description to moderately long-lived.
Section 5.5 I think, the question should be changes for extended to: What would be a better
regional coverage improve the statistic? This could be easily addressed within this paper, since

one could extend the coverage over the pacific region, but keep the number of flights the same.

The influence of the Pacific is now covered in the appendix (Sec. A1). A more detailed
study of the influence of different regions could be the subject future studies.

Conclusions: Page 21: Line 14: Sentence is unclear.

The sentence has been reworded.
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC is-are often used to derive trace

ga%c—ﬁma{e}egie&chmatolo ies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to
i : i limatologies are representative of the true

state of the atmosphere. Climatologies are considered relative to the tropopause in mid-latitudes (35°N to 75°N) for trace
ases with different atmospheric lifetimes. Using the chemlstry -climate model EMAC, we sample the modelled trace gases

along CARIBIC flight tracks.
caleulatedRepresentativeness-cannow-be-Representativeness is then assessed by comparing the CARIBIC sampled model data
to the true-full climatological model state. Three statistical methods are applied for thispurpose-the-Kolomogerov-Smirnov
tests-and-the investigation of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and
(ii) relative differences.

Generally-representativeness Two requirements for any score describing representativeness are essential: Representativeness
is expected to deerease-with-increasing-variability-and-to-inerease-increase (i) with the number of available-samples-samples and

(ii) with decreasing variability of the species considered. Based on this-assumptienthese two requirements, we investigate the
suitability of the different statistical measures for eurprebleminvestigating representativeness. The Kolmogorov-Smirnov test

seems-too-s very strict and does not 1dent1fy any trace gas climatology as representative — not even leﬂg—lwed—weli—eb&eweekof

what extent such

long lived trace gases. In contrast, the va
%mmwm@m%mmiwm%mwh
differences show the expected behaviour and thus appear applicable for investigating representativeness.

Using-For the final analysis of climatological representativeness, we use the relative differences score we-investigate-the




---------------- o-and calculate a representativeness
uncertainty for each trace gas in percent.
In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measurements,

we compare the trace gas variability between model and measurements. We find that the variability- of CARIBICmeasurementsmodel
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reaches 50-100% of the measurement variability, The tendency of the model to underestimate the variability is caused by the
relatively coarse spatial and temporal model resolution.

In_conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies.
Long:lived species like CO2 have low uncertainties (< 0.47%), while shorter-lived species like O3 have larger uncertaintics
(10-15%). Finally, we shew-hew-translate the representativeness score ean-be-translated-into a number of flights that are nec-
essary to achieve a certain degree of representativeness. For example, increasing the number of flights from 334 to 1000 would

reduce the uncertainty in CO to a mere 1 %, while the uncertainty for shorter lived species like NO would drop from 80 % to
10 %.

1 Introduction

The UTLS (upper troposphere/lower stratosphere) is dynamically and chemically very complex and shows strong gradients in
temperature, humidity and in many trace gases (Gettelman et al., 2011). As the the-mid and upper troposphere have a strong
influence on the atmospheric greenhouse effect, the UTLS plays an important role in our climate system (Riese et al., 2012).
To characterize processes and evaluate the performance of chemistry-transport models in this area, we-require-spatially well
resolved data collected on a global scale are required.

Aircraft are a suitable platform to carry out these measurements as they are able to probe in situ and at a high frequency.
Measurements taken by commercial aircraft projects like [AGOS (In-Service Aircraft for a Global Observing System, Petzold
et al. (2015)) and CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner, Matsueda et al. (2008))
generate more continuous and regular datasets than research aircraft on sporadic campaigns and are therefore commonly given
the attribute representative. But what is meant by this adjective?

Ramsey and Hewitt (2005) give a general introduction to representativeness, coming from soil sciences. As they state, the
adjective representative has no meaning of its own, so a definition has to be given and ’it must be asked "representative of
what?"’

In the seepe-area of meteorology, Nappo et al. (1982) give the following definition: ’Representativeness is the extent to which
a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain
taken on a scale appropriate for a specific application.” Representativeness in their understanding ’is an exact condition, i.e., an
observation is or is not representative.” Only if ’a set of criteria for representativeness is established, analytical and statistical
methods can be used to estimate how well the criteria are met.’

The mathematical definition given by Nappo et al. (1982) is mostly applied to data collected in the boundary layer, where

it is used to answer the question whether a flux tower station is representative for-of the area in which it is positioned (e.g.
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by Schmid (1997), Laj et al. (2009) or Henne et al. (2010)). This can also be analysed by means of a cluster analysis with
backward trajectories (e.g. by Henne et al. (2008) or Balzani Loov et al. (2008)). By this method, source regions for measured
trace gases can be found and the type and origin of air masses contributing to an observed air mass determined, i.e. the airmass
the data is-—representative-forare representative of. Koppe et al. (2009) apply this method to aircraft data from the project
TAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument container, being
part of IAGOS).

Lary (2004) and Stiller (2010) discuss the representativeness error in the field of data assimilation. Lary (2004) uses repre-
sentativeness uncertainty as a synonym for variability within a grid cell, Stiller (2010) discusses the sampling error, which is
considered to be part of the representativeness uncertainty. Larsen et al. (2014) study the representativeness of one dimensional
measurements taken along the flight track of an aircraft to the three dimensional field that is being probed. But as they consider
single flight tracks, their methods and definitions do not apply here.

The study of Schutgens et al. (2016) is more related to this study. They consider the sampling error on a global scale,
comparing normal model means to means of model data collocated to satellite measurements. They find that this sampling
error reaches 20 — 60 % of the model error (difference between observations and collocated model values).

We have been motivated by Kunz et al. (2008). They analysed whether the dataset of the aircraft campaign SPURT (SPURen-
stofftransport in der Tropopausenregion - trace gas transport in the tropopause region, Engel et al. (2006)) is representative of
the larger MOZAIC dataset (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service Alr-
bus airCraft, the precursor of IAGOS-core). Kunz et al. (2008) investigate distributions of two substances (O3 and H5O) in two
atmospheric compartments (upper troposphere and lower stratosphere). They find that the smaller SPURT dataset is represen-
tative on every time scale of the larger MOZAIC set for O3, while this is not the case for H,O. While SPURT Og data can be
used for climatological investigations, the variability of HoO is too large to be fully captured by SPURT on the interseasonal
time scales.

This is similar to what is done in this study: We investigate the representativeness of data for different trace gases from
TAGOS-CARIBIC (see Sec. 2.1) for a climatology in the UTLS. Possible mathematical definitions of the word representative-
ness are first discussed with the help of this data. Then, its representativeness following these definitions is investigated. By
using data from the chemistry-climate model EMAC (see Sec. 2.2) along the flight tracks of IAGOS-CARIBIC and comparing

this to a larger sample taken from the model, it becomes possible to investigate the representativeness of the smaller of the two

model datasets. We assume-that-thed He B ed 50

on-them-and-theirvariability—Jn-this-way-also assess whether the complexity of the model is similar to that portrayed by the

measurements, using the variability as a measure for the complexity. We find that the variability of the model is high enough
and therefore quantify the representativeness of IAGOS-CARIBIC measurement data for a climatology in the UTLS ean-be

quantified-by using the two model datasets alone;u

In Sec. 2, more details on the data from IJAGOS-CARIBIC and the model run will be given. The general concept and defini-

tion of representativeness is discussed in Sec. 3. This section also gives details on sampling the model and on the variability,
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which is used to group results by species. The statistical methods are then explained in Sec. 4, namely the Kolmogorov-Smirnov
test, a variability analysis following the general idea of Kunz et al. (2008) and Rohrer and Berresheim (2006) and the relative
difference of two climatologies. We then discuss the variability of the model data in comparison to that of the measurements in
Sec. 5. The application of the methods to the different model samples is described in Sec. 6. After showing the result of each
of the three methods seperately, Sec. 6.4 discusses the representativeness of the IAGOS-CARIBIC measurement data, while

Sec. 6.5 answers the question how many flights are necessary to achieve representativeness. Sec. 7 summarizes and concludes.

2 Model and data
2.1 The observational IAGOS-CARIBIC dataset

Within JAGOS-CARIBIC (CARIBIC for short), an instrumented container is mounted in the cargo bay of a Lufthansa passen-
ger aircraft during typically four intercontinental flights per month, flying from Frankfurt, Germany (Munich, Germany, since
August, 2014), see also Brenninkmeijer et al. (2007) and www.caribic-atmospheric.com.

During each CARIBIC flight, about 100 trace trace gas and aerosol parameters are measured. Some are measured continu-
ously with a frequency between 5Hzand-1+/{5min}-and-commonly-available-every-5s~! and 0.2min ') and available from
the database binned to 10 swhile-others-, Others (e.g. non-methane hydrocarbons) are taken from up to 32 air samples collected
per flight. The substances considered in this study are NOy, HyO, O3, CO4, NO, +(CHj3)2CO (acetone), CO and CH, from
continuous measurements and NoO, CoHg and C3Hg from air samples. NOy, is the sum of all reactive nitrogen species, mea-
sured by catalytic conversion to NO (Brenninkmeijer et al., 2007). Data of NoO, CH4 and CO; were detrended by subtracting
the mean of each year from the values of that year and adding the overall mean.

The data of all flights from the year 2005 (beginning of the second phase of CARIBIC) to the end of December, 2013 (end
of the model run) are considered in this study. This dataset will be referred to as MEAScagigic.

As this study investigates representativeness using model data, the geolocation of the CARIBIC measurements at 10s res-
olution is used. In a second step, the gaps of the CARIBIC measurements and height information (due to technical problems

etc.) are mapped onto their representation in the model data to infer the representativeness of the measurement data.
2.2 The chemistry-climate model EMAC

EMAC (ECHAMS/MESSy Atmospheric Chemistry model; Jockel et al. (2006)) is a combination of the general circulation
model ECHAMS (Roeckner et al., 2006) and different submodels combined through the Modular Earth Submodel System
(MESSy, Jockel et al. (2005)). We use here a model configuration with 39 vertical levels reaching up to 80km and a horizontal
resolution of T42 (roughly 2.8° horizontal resolution).

The model integration used in this study simulated the time between January 1994 and December 2013, with data output
every eleven hours. Meteorology is nudged up to 1hPa using divergence, vorticity, ground pressure and temperature from

six-hourly ERA-Interim reanalysis. It includes the extensive EVAL-Chemistry using the kinetics for chemistry and photolysis
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of Sander et al. (2011). This set of equations has been designed to simulate tropospheric and stratospheric chemistry equally
well.

Boundary conditions for greenhouse gases (latitude dependent monthly means) are taken from Meinshausen et al. (2011)
and continued to 2013 from the RCP 6.0 scenario (Moss et al., 2010). Boundary conditions for ozone depleting substances
(CFCs and halons) are from the WMO-A1 scenario (WMO, 2010). Emissions for NOx, CO, and non-methane yolatile organic

compounds are taken from the EDGAR data base (http://edgar.jrc.ec.europa.eu/index php).
levels), but horizontal resolution, nudging and the chemistry are the same. The study by Jockel et al. (2016) gives a detailed
description and presents first validation results.

Hegglin et al. (2010) performed an extensive inter-model comparison including EMAC with the same horizontal resolution
as the setup for this study. Dynamical as well as chemical metrics have been used in this study, focussing on the UTLS. Overall,
they find EMAC performs well within the range of the models that were tested. The reader is referred to the study for further

The substances used-from the model used in this study are the same as those used-from-measurements;summing-up-from
measurements. NOy, which is simulated in its components, is summed up from N, NO, NOy, NO3, N2Os (counted twice
because measurements of NO, are taken by catalytic conversion), HNO,4, HNO3, HONO, HNO, PAN, CINO,, CINOs3,
BrNO; and BrNOs. Data of NoO, CHy and CO, was-detrendedby-subtracting-the-mean-of- each-year-from-the-values-o

year-and-adding-the-overall-meanwere detrended, using the same method applied to the measurements.

3 Defining representativeness

As noted above and specified by Nappo et al. (1982) and Ramsey and Hewitt (2005), the word representative is meaningful
only if accompanied by an object. Ramsey and Hewitt (2005) raise three questions to be answered in order to address represen-
tativeness: 1. For what parameter is the sample data to be seen as representative: e.g. the mean, a trend or an area? 2. Of which
population is-are the sample data to be seen as representative? 3. To which degree is-are the data to be seen as representative?

To assess the representativeness of CARIBIC data, these three questions have to be answered as well.
3.1 Representative for what parameter?

First, it is crucial to define what we anticipate the CARIBIC data to be representative of, since 'the same set of measurements
may be deemed representative for some purpose but not other’ (Nappo et al., 1982). In this study, we investigate whether the
CARIBIC data can be used to construct a climatology in the UTLS. We consider monthly binned data in the height of =4k
£4.25km around the dynamical tropopause defined at the pressure at 3.5PVU and in mid-latitudes with 75°N < ¢ < 35°N.
In order to reference data to the tropopause, we use the geometric height in kilometers relative to the tropopause (HrelTP) at

each datapoint. For the measurements, this height is provided by the meteorological support of CARIBIC by KNMI (Konin-
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klijk Nederlands Meteorologisch Instituut) (http://www.knmi.nl/samenw/campaign_support/CARIBIC/), who use data from
ECMWEF (European Centre for Mendium-range Weather Forecast) for their calculation.

From model output, the height relative to the tropopause (HrelTP) can be calculated, as the pressure value of the dynamical
tropopause is known at each location, as well as the temperature and pressure profile. This Hrel TP value calculated from the
model data along the flight tracks of CARIBIC compares well with interpolated values from ECMWF provided by KNMI
(Pearson correlation coefficient of p = 0.97), which is expected as the meteorology of the model is nudged using ERA-Interim
data. The distribution of all values of HrelTP from the model is shown in Figure 1, showing a maximum right at the tropopause.
Data was-were used within £4.25km ef-around the tropopause in steps of 0.5 kmsJabelling-the-bins-according-to-the-central

Even though all data of trace gases (be it from model or measurements) is-are sorted into bins of HrelTP, it is important to

keep in mind the limits in pressure. These are inherent in the CARIBIC dataset, as the aircraft flies on constant flight levels
with 180hPa < p < 280hPa. In addition, we explicitly limit pressure to this range in order to exclude data from ascents and
descents of the aircraft. But since data is-are considered relative to the tropopause, these limits are no longer visible directly
from the resulting climatology, even though they can influence it strongly. The reason is that aircraft flying at constant pressure
can measure far above (below) the tropopause only if the tropopause is located at high (low) pressurevalues. The properties of
many trace substances are not only a function of their distance to the tropopause, but also of pressure. The limits in pressure
inherent in the sample therefore also influence the climatology. They have to be considered and should be explicitly stated. This
efffeet-effect is illustrated in the-supplementary-material-Appendix Al with the help of the methods developed in this study.
In addition to limiting in HrelTP and p, it is necessary to apply a limit in latitude . We limit the data by including only
mid-latitudes with 75°N < ¢ < 35°N., Tropical data with ¢ < 35°N are excluded because of the considerably higher dynamical
tropopause. Data with ¢ > 75°N are excluded because of the different chemistry in far northern latitudes, which leads to
considerably different vatues-mixing ratios for some some species that should not be combined with data from lower latitudes
in one climatology. In addition, this latitudinal band is well covered by CARIBIC measurements. Other regions or latitudinal

bands can be investigated using the same approach.

Like the limit in pressure, CARIBIC data are also limited in longitude, as the Pacific Ocean is never probed. The effect of
this limit on the climatology is discussed in Appendix A2.

As a summary, we can specify more closely the question (Representative for what parameter?) asked in the beginning: Is a

climatology compiled from CARIBIC data representative for-of the tropopause region in mid-latitudes?
3.2 Representative for-of which population?

When assessing the representativeness of the sample made up by all CARIBIC measurements (called MEAS see
Sec. 2.1), the population is the atmosphere around the tropopause and its composition. For many of the species measured
by CARIBIC, there is no other project that takes such multi-tracer in-situ meaurements as regularly at the same spatial and

temporal resolution. IAGOS-core and CONTRAIL sample with much higher frequency, but take measurements of only few
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Table 1. Summary of the specifications defining the three datasets MODexrrsic, , MODraNppaTH and MODgranprocraNDLOC

dataset EMAC on total sets  per month duration  p distribution
MODm% CARIBIC paths 334 up to 4 8-10h flight levels show up,
(2005-13) in 3 days p =223.42hPa
o(p) =18.94hPa
MODxxxppariganppary_ | random paths 1296 12 24h
in 28 days adjusted gaussian,
p=223.42hPa
o(p) =18.94hPa
MODrganprocranpLoc | random location 864 8 24h
in 28 days evenuniform,

min(p) = 10hPa
max(p) = 500hPa

substances while satellites do not resolve the small seale-struetures—scale structures necessary to disentangle the dynamics
around the tropopause. The population is therefore not accessible by the measurement platforms currently available.

This is the reason why the representativeness of the CARIBIC data is-are investigated by comparing the model data along
CARIBIC flight tracks to two larger samples taken from the model. These larger datasets are considered the population, in
reference to which the representativeness of the smaller dataset (model along CARIBIC paths) is assessed. Three datasets were
created from the model output: the model along CARIBIC paths and two random model samples. All are presented in the
following paragraphs, a summary being given in Table 1 and Figure 1.

MODmm: For the dataset MODCW%, the model output was interpolated linearly in latitude, longitude,
logarithm of pressure and time to the position of the CARIBIC aircraft, using the location at a resolution of 105 for all species,
independent of the time resolution in MEAScarigic. Figure 1 shows the flight paths considered in this study. Since CARIBIC
also measures temperature (at 10s resolution), the high pearson correlation coefficient of p = 0.97 of modelled to measured
temperature can serve as an indication that this interpolation leads to reasonable results, despite the eearse-coarser resolution

in time and space of the model output.

MODE Rigic: The measurement frequency for some species in MEAScagimic_is lower (e.g. those taken by whole air
samples), all species contain gaps because of instrument problems at some point and some of the species considered by the
model datasets are not measured at all. Sometimes, it is interesting to consider MODRgipc reduced 10 the exact number of
measurement points, i.e. reduced by all these measurement gaps. The model dataset along CARIBIC paths that has the same
gaps as MEAScarimic will be referred to as MODE AR e

As is visible in Fig-Figure 1 (central column), only three of the model levels lay in the pressure range sampled by CARIBIC.

—rre—direetly-to-thefull-model-output—but-To have comparable statistics,
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MODganppath: The dataset referred to as MODganppary i a larger set of flight paths used to sample the model. This
set was mainly used to investigate the representativeness of MODCW%. From the year 2005 to the end of 2013, 12
random flight paths were generated per month (1296 in total, evenly spaced in each month’s first 28 days) and the model fields
interpolated onto these paths. The starting point was randomly chosen in the northern hemisphere, as well as the direction taken
by the aircraft. The speed was set to 885.1km h~!, the median of the speed of the true CARIBIC aircraft. The flights start at
000U FC0:00 UTC and sample the model for ene-day-24h in 10s intervals. They are reflected at the north pole and at the
equator and reverse the sign of the increment in latitude direction once during flight. The first 100 of these paths are displayed
in Figure 1.

The pressure was kept constant for each of the random flights, reproducing the statistics of the pressure distribution for
CARIBIC as a whole. For this, a normal distribution centered around 223.42hPa with a standard deviation of 18.94hPa was
used to choose the pressure value for each of the random flights. All pressure values of p < 180hPa or p > 280hPa were

redistributed evenly between 200hPa and 250 hPa to exclude unrealistically high or low values and sharpen the maximum.

MODg s xnpars: The dependecy of representativeness on the number of flights is an important part of this study. Each of the
random paths was divided into three parts, resulting in 3888 eight hour flights, the duration of a typical intercontinental flight
with CARIBIC. Representativeness was then calculated with the different methods for MODganpeari and these subsamples,
increasing their size by including more of the 3888 shorter random flights. This dataset of randomized shorter flights will be

referred to as MOD3R ANDPATH:
MODganpLoc: For this sample, latitude and longitude were randomly drawn in the northern hemisphere (not aligned along

a route) and the definition of the pressure distribution widened, drawing pressure from an-even-a uniform distribution from
500hPa to 10hPa for each flight. Again, the datasets start at 6--086-0FC-0:00 UTC and the separate points are 10s apart,
collecting 8640 samples on a sampling day. Eight of these sets are distributed evenly in each month, summing to a total

of 864 sets of this type. This set was used to test whether MODcagrprc—is-tepresentative for o, is representative of a

climatology around the tropopause only within its pressure limits or also when expanding these limits.

As is visible in Figure 1, the distribution in HrelTP is very similar for all-datasets-MODganppaTy_and MODganproc
even though the pressure is presribed-prescribed in very different ways —This-is-an-impertant-prerequisitefor-the following
different (mean of 0.26 km), which is due to the larger amount of data in-each-height-bin-is-similarfor-all-three-datasetsfrom

MOD differ and this difference also affects the distribution in Hrel TP.
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Figure 1. Flight paths-path distribution (left), distribution in-p-of probed pressures (p, center) and HrelFP-height relative to the dynamical
tropopause (HrelTP, right) for the three datasets MODmf%(top), MODganpraru (center) and MODgranproc (bottom). Only parts

of the paths of MODganppart and MODganpLoc are shown ’IVILLl’Levl\(}\ng(\)ll\l,lvn\lll;l
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3.3 Confidence limits of the-representativeness

When defining representativeness, one more question remains: What are the confidence limits of the representativeness?

Three definitions for representativeness are discussed and applied in this study: The Kolmogorov-Smirnov test, the variabiltiy
variability analysis following Kunz et al. (2008) and the relative difference of two climatologies. The first method gives a yes-
no answer within a chosen statistical confidence level. The other two approaches are formulated in such a way as to return a
score. By (arbitrarily) setting a value for the score, the representative cases can be discriminated from the non-representative
cases (see Sec. 4 and Sec. 6), the score corresponding to a confidence level.

There are two more requirements that we define as having to be met by representativeness in general:
1. Representativeness has to increase with the number of samples (flights in the case of this study).
2. Representativeness has to decrease with increasing variability of the underlying distribution.

These two assumptions are implicitely also made by Kunz et al. (2008), as they investigate the representativeness of a smaller
for a larger dataset and for two species of different variability. The measure for variability we use in this study is explained in

the following section.
3.4 Defining a measure for variability

Therepresentativeness-Representativeness is expected to differ for different species because of their atmospheric variability or
atmospheric lifetime. This is part of the definition of representativeness given in Section 3.3. Kunz et al. (2008) also find that
O3 and H5O are different in their representativeness and attribute this to the variability. It is therefore reasonable to consider
results for representativeness relative to the variability of a species;-which-we-denote-by—+=. In this study, we use the relative
standard deviation ¢, as a measure for variability. It is calculated fremMODBgranpparafollowing Equation 1 using the mean g
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Figure 2. Variability #~¢,. calculated from-MOBrxnprarr-for different datasets using Equation 1. The species are sorted %%, species

with low variability ¢high-+")-listed to the left, using the values from MODganppatn for sorting. Note that lo ag.)=1",see Eq.

and standard deviation o of each species.

iglzlogm(*) 1)

0~

2‘:\Q

Figure 2 shows the sorted values of #*-¢;. for the species considered in this study, using the full time series to calculate g,.. It
is worthwile to note that in defining #*-variability in this way, we closely follow Junge (1974), who showed that under certain

constraints, the relationship

=a-77° @

holds, which links variability and lifetime 7 using two species- dependent constants a and b. e-is-therelative standard-deviation

tty—This relationship has frequently been called Junge rela-

tionship in the past (e.g. by Stroebe et al. (2006) or MacLeod et al. (2013)). And indeed, as is-visible in Figure 2, longer lived
species like CO4 or N3O show lower variabilitythigher+"}, while shorter lived species show higher variabilitydewer+).

It is important to note that the values determined from MEAScagigic are affected by the measurement frequency in case of
data sampled by whole air samples (N>O, C2Hg and C3Hg) and by gaps due to instrument problems. But the influence of these
a slightly higher variability than the model datasets for most species. The relationship of model and measurement variability is
discussed in more detail in Section 5. The model datasets are very similar, despite their different sampling patterns. They only
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In Sec. 3.3, we defined representativeness as having to decrease with increasing variability. Because we want to emphasize
the relationship of ¢, with 7 and in order to differentiate this variability (calculated from the complete time series) clearly from
other similar terms, we use 7* defined in Equation 3 to test the relationship of representativeness and variability.

7 = 10810(0r) = 10g1(a) = b 10gy0(7) ”

Sec. 4.2 will take a closer look at variability. It will be discussed how variability depends on the time scale for which it is
calculated. The values shown in Figure 2 and used for the calculation of 7* use the full time series, and thereby the overall
variability. If shorter time scales had been considered, the values for o, in Figure 2 would change, but not the order of the

species that follows from the values.
So including these thoughts on variability in the question formulated at the end of Section 3.1, we can specify more closely

the question we answer in this study: For which species is a climatology compiled from CARIBIC data representative for-of

the tropopause region in mid-latitudes?

4 Statistical methods

We use three different methods to evaluate representativeness: the Kolmogorov-Smirnov test, the variability analysis and rela-

tive differences.
4.1 Kolmogorov-Smirnov Testtest

The Kolmogorov-Smirnov two-sample test is a non-parametric statistical test that is used to examine whether two datasets have
been taken from the same distribution (e.g. Sachs and Hedderich (2009)). It considers all types of differences in the sample
distributions that can be apparent in the mean, the standard deviation, the kurtosis, etc. The test statistic is the maximum

absolute difference D in the cumulative empirical distribution functions E,, of the two samples z:
D = max|E} — Fy| 4)

The discriminating values D, have been derived depending on the accepted confidence limit «. In this study, the two em-

pirical distribution functions F; were taken from MODcarmre— oaes

. In addition to the Kolmogorov-Smirnov test, we also applied the Mann-Whitney test for the mean and Levene’s and the

Brown-Forsythe test for variance (see again Sachs and Hedderich (2009)). All results of applying these tests are presented in
Sec. 6.1.

and MODganpparh in each height bin and month;—see

4.2 Variability analysis

The variability analysis follows Rohrer and Berresheim (2006) and Kunz et al. (2008). Rohrer and Berresheim (2006) intro-
duced a variance analysis for ground-based observations, Kunz et al. (2008) then applied it to aircraft data. A timeseries of data

is subsequently divided into ever shorter time slices of increasing number and the variance is calculated for the data within

12
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each time slice. By taking the mean over the whole number of slices and doing this for all divisions in time, a line is calculated,
which is eharacteteristie-characteristic for the development of variance in time.

Instead of considering variance in each time slice, we use the relative standard deviation %%V:V\%,’ which is the definition
of variabiltiy-variability following Junge (1974). It is calculated in each time slice and the mean gives the value for the corre-
sponding time scale. In the following, time scale therefore refers to the length of the interval in time in which the variability is
calculated. By scaling the standard deviation o with the mean p, different species become comparable. Being a combination
of variability as defined by Junge (1974) and the variance analysis introduced by Rohrer and Berresheim (2006), this method
is called variability analysis in the following paragraphs.

Figure 3 shows the variability analysis for CO just below the tropopause for MODW%MODRANDPATH and
MODganproc: The time scale changes from about 5 min to 5a along the logarithmically spaced abscissa. As CO is a medium

long-lived trace gas with an atmospheric lifetime of 2-3 months and a pronounced annual cycle, the mean variability increases

regular

up to time scales of 1a. The variability of MODganpparh starger-and MODganpLoc s larger than that of MOD i pipic On
almost all time scales. For time scales of 30d and more, however, the lines of all three datasets run in parallel, showing an
increase up to 1a, from when on the variability does not increase. This is consistent with the annual cycle of CO, which is
also the cause for the relative decrease sharply at 0.5a and 1.5a. For time scales below 30d, the distribution of flights in one
month dominates the variability analysis. MODmmwincludes only up to four flights on consecutive days, the mean
variability does not decrease when going to time scales between 30d and 4 d, while in MODgaNppaTH, continuosly less data is
are included in each time slice, leading to a continuous drop in the variability. For time scales of less than 1d, the data eomes
come from a single flight, showing another drop in variability that is linked to using data from geographic regions that are ever
more close MMQMM. Since the variability analysis is so closely linked to the distribution
in time and space, the variability analysis of MODranpLOC shows an almost constant value in-the-for time scales shorter than
30d tnotshowmuntil time scales shorter than one day are reached, from when on the variability also drops.

Kunz et al. (2008) used the variance analysis to investigate whether the smaller SPURT dataset represents the variance
present in MOZAIC dataset. Following this thinking, we consider the variability as one possible criterion to judge the repre-

sentativeness of one dataset for another. A score R%:"

v describing the representativeness is defined from the difference of the

values of the variability analysis, using the following equation:

ohh ohh
Jh
R\t/ar - 1OglO ﬁ - ih (5)
231 Ho

t,h
xr

where o" stands for the standard deviation and at %" for the mean in time scale ¢ and height 4 of the datasets z. The overbar

implies that the mean over all time slices corresponding to the time scale ¢ of o /u are used. Considering Figure 3, the score
can be interpreted as the absolute value of the difference of the two lines at certain time scales .

Decreasing values of R%:" mean better representativeness, the value always being negative. Depending on t, the representa-

var
t,h

tiveness in different time scales can be evaluated. We used time scales of 30d, 0.25a, 0.5a, 1a, 2a and 5a to calculate Ry, .

t
var

When applying this method to all height bins, a profile in R}, is calculated for each species. This is one possible definition for
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Figure 3. Variability analysis calculated for CO for MODganppati, MODganpLoc and MODEE | at HrelTP = —1km (one kilometer
below the tropopause)forMODearme—and-MODBrarnoears. The time scales used to calculate Ry, using Equation 5 are indicated by vertical

lines.

representativeness. Yet it has to pass the two requirements of being related to number of samples and variability outlined in

Sec. 3.3. The results of testing this will be presented in Sec. 6.2.
4.3 Relative differencedifferences

The third approach to assess representativeness is to analyze the relative differences between the climatologies from two

differently large datasets. The procedure is summarized in Equation 6:

h N
1 2
Ry = logg 12 Z T ©
m=1 2

which was applied to each height bin h. ™" stands for the mean of the data in the month m and in height bin & of the datasets
x. The logarithm to the basis 10 was applied to the mean relative difference profile to end up with a profile in Ry, similar to

the score R?

var calculated from the variability analysis. Contrary to the Kolmogorov-Smirnov test or the variability analysis, this

test statistic does not contain any information on the underlying distribution, because it uses only the mean in each bin.

Figure 4 shows an example of relative differences between CO from MODWMand the larger dataset MODRraNDPATH -
The differences are small, mostly below an absolute value of 0.15. R, is defined (in Equation 6) as the logarithm to the base
10 of the mean over all months (not shown). The score increases towards the top and bottom in Figure 4 due to less data

there. Like for R¢

var?

t

decreasing values in Ry mean better representativeness. And like Ry,

Ry has to be tested for passing
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Figure 4. Relative differences of CO for MODm%and MODganppath. This is the basis used to calculate Rye;.

the requirements of being related to number of samples and variability (see Sec. 3.3) in order to be acceptable as a score for
representativeness. The results of testing this will be discussed in Sec. 6.3.

Other than just as a score, the value of R, can be understood as the average uncertainty for assuming the climatology of
MODmgmas a full model climatology. This is more obvious if taken to the power of 10, in which case the uncertainty

will take values between O and 1. Use of this will be made in Section 6.4.

5 Model and measurement variabilit

Representativeness was assessed using only model data in this study, yet the final goal was to investigate the representativeness
datasets (MODg anppaty and MODgaxnroc) in the analysis. The results derived from these model datasets will be interpreted
for MEAScagipic in Sec. 6. This means that conclusions drawn from model data alone will be applied to measurements.

To justify this reasoning, it is important to investigate the differences between the model and the real atmosphere. It is not
crucial that the model reproduces the exact values of the measurements, but rather that the complexity for each species in the
will be used as an indicator of its complexity and compared to the variability of MEAScarisic Similar to Equation 1, we use
the relative standard deviation g,, = o

a certain time scale, e.2. 20min, will be referred to as 20 min variability in the following, accordingly for other time scales.

as a measure for variability when comparing model and measurements. Variability of
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5.1 Influence of short time scales on the climatological mean

All model datasets have been created from gridded datafiles with a certain resolution (2.8° or about 200km, see Sec; 2.2).
Considering the median airspeed of the CARIBIC aircraft of 885.1kmh™", this model resolution corresponds to a time scale
of about 20min, MEAScarmmic has a time resoltution of up to 105, depending on the instrument; Model data has been linearly
interpolated to this high 10s resolution, but this does not introduce the variability that is present in the measurements. The
20min variability is therefore always larger in MEAScagmic, than in MODZRigic. To what extent this small scale variability
influences the climatological values is investigated here.

small scale variability on the climatological mean values. The reduction in variability was done separately for cach species and
height to account for differences in terms of model complexity between the species. In order to reduce the variability in the
time series, they were smoothed out, the method is presented in App. B, The smoothing number used in this method indicates
how much variability has been removed. The 20 min variability of MEAScarmsic was then calculated for several smoothing

numbers.

Figure 5 (left panel, solid lines) shows how the 20 min variability drops for all species if the data are smoothed progressivel

(increasing the smoothing number). The leftmost point for each species corresponds to the full 20 min variability, while this

variability drops to zero if the time intervals considered in smoothing become much longer than 20 min. The dashed lines show
the full model variability, which was not smoothed out. The crosspoints of the full and corresponding dashed line indicate the
smoothing numbers for which MEAScagisic. has the same 20min variability as MODZRigic. MEAScarmeic in which each
species has been smoothed to this point will be referred to as MEASEXRIIE.

Climatological mean values of MEASZIRIIE were then compared to mean values from MEAScagmsic with the full variability,
thereby determining the influence of the reduced 20min variability. A similar influence is expected by the coarse model
resolution, which by definition has the same 20 min variability as MEASEXRRE.

The mean relative difference of the climatologies for different species between MEASZGIRGE and MEAScarirc is displayed
in Figure 5 (right panel). The differences depend strongly on the species. Those species that are measured by air samples (N> 0O,
CoHe and C3Hs) have been shaded in grey, since they contain very little data far above and below the tropopause and are
therefore not considered in this section.

The mean relative differences are smaller than 1% for the long lived species to the left and reach 10-20% for the other
species. Largest values appear where the mixing ratios of the species are small and vertical gradients are strong, ie. in
stratospheric CO, acetone or H2O and tropospheric O3, E.g. HoO has very low stratospheric mixing ratios, that are reached in
small-scale intrusions of stratospheric air encountered during flight. If these small-scale structures are smoothed out, the mean

values become larger and the difference of MEASmoothed and MEAS is large and positive.
The relative differences show the influence of a lower variability that is equal to that of MODS™ ¢ This therefore shows

that the coarse model resolution does in principle not lead to very large errors in climatological mean values. Nevertheless, the
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Figure 5. Left panel: 20 min variability of i) MEAScarmsic, that has been smoothed out to an increasing degree, indicated by an increasin
smoothing number (solid lines) and of ii) MODS™  (dashed lines), both for HrelTP = —1km. The crosspoint of the dashed and

sampled

corresponding full line indicate the smoothing number that is needed to reproduce the 20min variability of MOD . Right panel:
Mean relative differences of MEASmohed and MEAScarpic. MEASIRd has been smoothed to have the same 20min variability as
MOD™! _ using the smoothing number from the left hand panel. The relative differences correspond to the error in the climatologies of

\M\QA%@%W%MM)&NQO& C2Hg and C3Hg are measured by air samples with a low measurement frequenc
and therefore not considered here.

model could have other defiencies in the description of the different species. These are made visible in the following section
by comparing model and measurement variability directly.

5.2 Comparing model and measurement variabilit

In this section, the variability of MODZ e is compared directly to that of MEASIARiESE. For this dataset, MEAScajsic
argues completely within the model world, it is important that the model has similar values for the variability, which is used as
an indicator of the underlying complexity. If the model cannot reproduce the measurement variability at all, it is not plausible
why conclusions on representativeness drawn from model data should also be true for the real atmosphere.
As has been discussed in Sec;, 4.2, variability depends on the time scale for which it is considered. In order to evaluate the
10 model performance, we compare g, on time scales of 30d and 1a. 30d variability includes data from typically 4 flights, so
this is a measure for the atmospheric variabilty on the global, large scale dynamics, 1a variability gives a good impression of
the annual cycle, as it includes data from many flights and different years, Figure 6 shows g’ /a,""2 for time scales of 30d

(left) and 1a (right), using the datasets MOD™¢  and MEASsmoothed
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Figure 6 shows that the variability in the measurements reached by the model differs between species. In general, the
variability reached for shorter lived species better fits that of the measurements. Short-lived species also undergo a more
complex chemistry in the model, which adds variability. The 30d variability shown in Figure 6 (left) reveals to what extent the
model is able to capture variability related to the large scale dynamics, Most species reach 40-80 %. NO is very short lived and
strongly determined by its daily cycle, which is the reason why the variability in the model reaches higher values.

The time scale of 1a shows the variability that represents seasonality. The model does a better job for this time scale than
for 30d, short lived species and CO2 reaching well over 60 % of the variability, approaching 100 % for some species. Here
again, the model chemistry increases the variability for shorter lived species to the right, There are species that are not as well
represented, while this also depends on the height considered (e.g. high values for stratospheric N»O).

The model variability is influenced by many factors including the dynamics, the representation of the chemistry and of the
sources included in the model, The limited horizontal and vertical resolution also plays a role, even though MEASHIGE is
used as a reference for the comparison. If compared to the original MEAScagigic, the percentages of variability reached by the
model drop by 10-20 % (not shown). It is beyond the scope of this paper to further disentangle what causes the defiencies of
the model and what leads to the differences between the species.

As is shown in Figure 6, the model reaches more than 50 % of the variability of the measurements, This ratio depends strongly
on the species and is higher for longer time scales, This points at a high complexity of the model and justifies the assumption
underlying this study: The representativeness evaluated from the model data alone is also valid for the real atmosphere and the
measurements taken by CARIBIC.
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6 Results

Here, we first present the results of the application of the Kolmogorov-Smirnov test (Sec. 6.1), the variability analysis (Sec. 6.2)
and the relative difference (Sec. 6.3) to MOsziﬁfrgl&and MODganppath- All have to be related to the number of flights
and the the-variabiltiy-variability of the species as discussed in Section 3.3.
data-These methods have also been applied to data not from an atmospheric model but from a random number generator,

leading to equivalent results. This-study-is-These are presented as supplementary material to the article. Sec. 6.4 interprets the

results by species as a representativeness uncertainty. Finally, Sec. 6.5 answers the question of how many flights are necessary

to achieve a certain degree of representativeness. In addition, Appendix A discusses the influence of the limitations in longitude
and in pressure which are inherent in the CARIBIC dataset.

6.1 Applying the Kolmogorov-Smirnov test

The application of the Kolmogorov-Smirnov test to MODCKW&MODCMWS%URIMLBIG and MODg snppaty. yields a first
important result. Independent of the trace gas and HrelTP-height considered, the result is always negative (not shown). This

regular

means that the data in each bin of MODcagigc—is- are not representative of the corresponding bin in MODgaNDpATH
when defining representativeness by a positive result of the Kolmogorov-Smirnov test. This is also true if the data is-are not
binned in months but only in HrelTP. The result also stays the same for all values of the confidence limit « (using values of
0.001, 0.01, 0.05, 0.1 and 0.2).

A similar finding for aircraft data has-have already been reported by Kunz et al. (2008). On the one hand side this could
mean that MOD, %\15 simply not representative of MODganppary- But if the other methods presented here are
considered, the conclusion seems more appropriate that the Kolmogorov-Smirnov test is simply not the eerreet-appropriate
way to answer the question. It can be considered as too strict for the type of data and the question considered here. This is

further-diseussed-with-the-help-also the result of a sensitivity study, the-results-of-which-are-presented-which is discussed as

supplementary material to this text.

In addition to binning into twelve months (January to December), we have also tested MODSEU¥  and MOD when

first binning into separate months (108 months in nine years) and then using this monthly mean data to compile a climatolo

For this monthly mean data, the Kolmogoroy-Smirnov test does give a positive result in some heights and months, But no
meaningful pattern could be determined from the results, Especially, the result does not depend on 77 (not shown). The same
is true for the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for variance, They give no positive
result for data binned directly into months. The result is positive for some months and heights if data are first binned into
separate months the monthly mean data used for testing, The postive results seem randomly distributed and no relationship to
7 could be found. These tests therefore also seem not to be suitable for answering the question of representativeness.
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Figure 7. Ry, calculated according to Equation 5 for a time scale of 1a for all species in all height bins, using MOD and

MODgranpeata. Low values indicate small differences in variability.

6.2 Applying the variability analysis

This section presents the results of the application of the variability analysis to MODm%and MODRANDPATH-

Equation 5 was applied for different time scales (30d, 0.25a, 0.5a, 1 a, 2a and 5a) to calculate Ry,,. The results are exemplarily

discussed for a time scale of 1a, shown in Figure 7, in which the results are sorted using the values of 7* displayed in Figure 2.

Ry.r shows a strong relationship-with-dependancy on 7*. This is visible from Figure 7, in which the results are sorted using
the-with decreasing values of 7* displayed-in-(from Figure 2:-thatis-), i.e. with increasingly higher atmospheric variabilty from
left to right. The Pearson correlation coefficient p of Ry, and 7* is high, |p| > 0.9 in all height bins, independent of the time

regular

scale. Ry, also shows a strong relationship to the number of samples: The amount of data in both MODcarire—cagpic.and

MODganppath decreases below and above the tropopause, and R,,; follows suit for practically all species.

The relation of Ry, and the number of flights was also tested by using MOD3 defined in Sec. 3.3. R, was correlated
with the number of flights for each species and height. When investigating a linear relationship, the Pearson correlation

coefficient was approximatel ~ 0.75 for the time scale of 5 a, increasing continously when considering shorter time scales
to =~ 0.95 for the time scale of 30d. Considering a logarithmic relationship inreases the goodness of fit for longer time

scales, while it decreases that for shorter time scales (|p| = 0.85 for both 5a and 30d).
Ry therefore passes the requirements of being inversely related to 7* and directly to the ameuntof-used-data-peintsnumber

regular

of included data points and flights. Figure 7 can therefore be used to judge upon the representativeness of MODcarisie¢aripic

for MODRANDPATH-
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Figure 8. R, calculated fer-according to Equation 6 for all species in all height bins, using MODW%Q and MODganpparu. Low
values indicate small differences in climatological mean values.

This shows that by using the relive-relative standard deviation (Equation 5) instead of the variance analysis applied by Kunz
et al. (2008), the difference in variability can be used to infer representativeness. Rohrer and Berresheim (2006) originally
introduced the variance analysis to investigate the sources and time scales of variability in a dataset and for this it remains a
valid method. In order to infer representativeness, it is more appropriate to use the relative standard deviation in the analysis

instead of the absolute variance.
6.3 Relative differences

R was calculated for each species in each height bin according to Equation 6, see-results are presented in Figure 8.

Figure 8 shows how low variability (decreasing to the left, values taken from Figure 2), is linked with good representativeness
(low values in Rys-or-good-representativeness;respeetively(see-See—4-3). Ry decreases linearly with increasing variability
7* with a high Pearson correlation coefficient greater than 0.95 for all height bins (not shown). The-relation-of Re-with-the
number-of-values—is-also-visible-As visibile in Figure 8as-the-values-deerease-, Ry also decreases with the number of data
points, this-rumber-having-its-maximum-which maximizes just around the tropopause and deereasing-decreases above and

below it (see Figure 1).
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sdata points was also tested by using MODj
described in Sec. 3.3. The Pearson correlation coefficient p between the number of shorter random flights and R was larger

than-0:9-p & .95 for all species in all heightséretshewn). Less variable species like CO2 show a better relationship with the
logarithm of the number of flights. This underlines how Ry is well correlated with the number of measurements.

Using R, as a measure passes both conditions: It is directly proportional to the number of flights and indirectly to the
variability. In addition to using-Figure 7, Figure 8 can therefore be used to judge upon the representativeness of MODearpie
el for MODRranpparH. Reel can be transformed into a relative difference in percent, by taking Ry to the power of ten. A
score of -2 stands for a mean relative difference of 1 %.

The score that discriminates representative from the non-representative case has to be arbitrarily chosen (see Nappo et al.
(1982) and Ramsey and Hewitt (2005)). This score gives the uncertainty within which the data is-are considered representative.
If a score of -2 is defined as representative (corresponding to 1% mean relative difference), then representative species and
heights can now be seperated from those species that are not representative using the results from Figure 8. But the score of

regular

-2 is arbitrary. If it is reduced to -1.5 (roughly 3% relative difference), MODcaripic can be seen as representative for

many more species.
6.4 Representativeness uncertainty of the CARIBIC measurement data

The last sections have shown Ry (see Equation 6) and R,,; (see Equation 5) to be adequate scores to describe representative-
ness. After reconsidering the question we asked in the Section 3.1 (Is a climatology compiled from CARIBIC data represen-
tative for-of the tropopause region in mid-latitudes?), we will use R in the following. It is more intuitive (compared to Ryq)
as it describes the difference to a larger dataset, e.g. in percentand-shews-the-slightly-hicher-cerrelationcoefficient. A further
discussion of R,,; is beyond the scope of this paper. As noted in Sec. 4.3, Ry is also comprehensible as an uncertainty errer
for using the smaller dataset to compile a climatology and will be called representativeness uncertainty correspondingly.

In order to asses the uncertainty for accepting CARIBIC measurement data to create a climatology, all-the-gaps{(e-g—due-te

of-measurements)-have-to-be-mapped-onto-MODmodel data have to contain the same amount of data as MEAScarsicot-the
ino-species-and-Hre ed-from his—we re-and-R aken he O0—recaleulated

inpressures—(see Table 1) was used as reference, as it has a random sampling pattern and represents the full model state,
independent of the sampling pressure. The limits in pressure where again set to 180hPa < p < 280hPa. The resultresulting

Ry is shown in Figure 9. Using different wording, R, in this formulation can also be considered the sampling error of the

measurements.

This result - deduced from model data only - is also valid for the real world if the €4 i

sampled

complexity of the model is sufficiently high for each species. This has been shown by comparing the variability of MOD
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Figure 9. Representativeness uncertainty for using the CARIBIC data (that is 334 long-distance flights, see Table 1) to compile a climatology:

10Rw! calculated from MODexrrsre—ranpLoc_and MODraxorocs ™4 | T ow values indicate small representativeness uncertainties. N0,

C2He and C3Hsg are measured from air samples, which increases the uncertainty, especially for C3Hs.

and MEASmoothed £or different time scales (see Sec. 5). The discussion of the following paragraphs is therefore also valid for

the real atmosphere, even though results have been derived from model data alone. Figure 9 answers the question we asked
in Sec. 3.2: For which species is a climatology compiled from CARIBIC data representative for-of the tropopause region in

mid-latitudes?

Theind  the timit o] ] | .

When considering the representativeness uncertainty of a climatology, it is also important to consider the annual cycle
of a species, e.g. 10% can be much for a species that is more or less constant, while it is ean-be-much for a species with

a strong seasonality.

—The following paragraphs
discuss representativeness by species, not explicitly considering the seasonal variations for each species. The monthly resolved

climatologies of CO, CO2 and O3 will be discussed exemplarily at the end of this section.
Many of the species that sum up to NO,, in the model are not actually measured by CARIBIC and therefore get-ne-value-are

not displayed in Figure 9. In general, the representativeness uncertainty is lowest where there are most measurements, which

species.
and-NO have-has the highest uncertainty of 90 %0-and-ap-te+06-%-in-the-ease-of-. We propose two possible reasons: On the

one hand, there are many gaps in the observations. But and-NO are-is also emitted by aircraft in the UTLS (Stevenson et al.,
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2004), and since CARIBIC flies in the flight corridors heavily frequented by commercial aircraft, it is unrealistic to assume a
climatology of these species to be representative of the UTLS on a whole.

H>O shows a strong gradient in its representativeness uncertainty, which is directly linked to the strong gradient in variability.
The dry stratosphere can be described by relatively few measurements, which is why the uncertainty is low, only reaching 25 %
at most. The humid and variable troposphere influenced by daily meteorology has a higher uncertainty, reaching more than
60 %.

NOy, being a pseudo-species made up of many substances, is more difficult to disassemble. The variabilty of many com-
ponents is higher in the troposphere, where the uncertainty is 30 % at its maximum. Above, it is smaller than 10% and the
climatology therefore quite trustworthy.

It is interesting to note that CoHg and C3Hg, both collected in whole air samples still reach uneertainty-values-uncertainties
comparable to those of other species in their range of 7*. This is due to the fact that these are rather-moderately long-lived
species for which only a mederate-smaller number of measurements are needed for a representative climatology. The cli-
matology of C3Hg comes with an uncertainty of up to 25 %, while that of CoHg is better with an uncertainty of less than
10%.

The climatology of Og is very trustworthy, the uncertainty being smaller than 10 % for most height bins. The higher values
in the tropospheric bins should not raise much concern, as O3 increases strongly with height in the UTLS and an uncertainty
of 15 % will be practically unnoticable compared to the vertical increase.

This is not true for acetone, where the gradient is just opposite to O3. The climatology is trustable with an uncertainty only
up to 10% in upper levels, while it increases to 20% in the lower heights, where the influence of spatially and temporally
variable sources at the ground is stronger.

The climatology of CO is very good, the uncertainty in stratospheric height bins being less than 5 %. The troposphere, again
stronger under the influence of sources, has a higher uncertainty reaching up to 10 %.

The long-lived trace gases CHy, NoO and CO (all detrended as described in Sec. 2.1) all have representativeness uncer-
tainties of less than 5%0.4 %, which is lower than their seasonal variability. This is interesting especially for NoO, which is
measured only in the whole air samples.

As example and summary, the representativeness uncertainty will be applied to climatologies of -CO, CO2 and O3, shown

in Figure 10. CO is shown for MODcrrrsre— e (

top left, panel A), MODgranpLoc (top right, panel B) and CARIBIC mea-
surements (MEAScarigic, center left, panel C). The white space in these figures has three possible reasons: the aircraft could
have never flown in that bin, there could be measurement gaps in CO or a gap in HrelTP. The measurement gaps of CO and

HrelTP from MEAScarisic have been mapped onto MODearrsrc

nsampled

but HrelTP differs slightly and therefore also the white space. The representation of CO in the model, comparing top and
center left figure (panels A and C), is similar to measurements (in the troposphere more so than in the stratosphere), but was

not subject of this study. We compared the top row e%mm%and MODganpLoc, panels A and B) and
found that R is a good descriptor for the representativeness of one for the other. By assuming-accepting the result from the
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model to be valid also for measurements, we can now use the score calculated from the two model samples to determine the
representativeness uncertainty of MEAScarigic.

By again defining Ry = —1 (10 % uncertainty, one third of the seasonal variation) as the limit for representativeness, the
climatology of MEAScarsic in-(Figure 10¢eenter-left, center left, panel C) was shaded in grey where it is not representative.
The representativeness uncertainty shown in Figure 9 only serves as a first indication of the expected uncertainty when resolv-
ing monthwise. The center right panel (panel D) displays the standard deviation of CO from MODganpLoc. By comparing
the center panels (C and D), it becomes evident that the variability specific to CO is one of the reasons for the higher repre-
sentativeness uncertainty in spring, while it cannot explain all the features. The number of flights is a different reason, which
explains the higher uncertainty in January, the month with the least flights (not shown).

The limit of 10% should not be applied in general and has to be adapted to the species under consideration. This becomes
evident by the bottom row in Figure 10 (panels E and F), which shows climatologies of CO3 and O3. CO2 shows a small
annual variation around a high background value. So 10 % uncertainty could be easily reached by a single measurement, which
would certainly not be representative for-of the whole year. The shading for CO5 in Figure 10 was set at a threshold of 0.3 %,
again just above one third of the seasonal variation. The high values in spring in the upper troposphere show an even lower
uncertainty, the uncertainty of all data being less than 0.7 % (not shown). The opposite is true for O3, for which the threshold
was set to 15 % uncertainty (around one fourth of the seasonal variation). Many tropospheric values in spring or at times of
high gradients in the stratosphere at the beginning and end of spring have an uncertainty higher than these 15 %.

As the results in Figure 9 are sorted by the variability of the species and this is linked to their lifetime in following Junge
(1974), conclusions are possible for species even if they have not been explicitly considered in this study. This is true for SF,
for example, which is measured in whole air samples by CARIBIC but was set to 0 in the model run and could therefore not be
included in this study. As it is long-lived in both troposphere and stratosphere (Ravishankara et al., 1993), a climatology from

CARIBIC SFg measurements can be considered to be representative even though it is measured only by whole air samples.

Two limitations are inherent in the CARIBIC data: the Pacific Ocean is never sampled and the pressure is limited to flight
levels. The influence of both these limitations is discussed in Appendix A.

6.5 Number of flights for representativeness

One last question remains to be answered: For those substances not representative yet, how often does one have to fly in order

to achieve a representative climatology?

testing-This question can be answered with the help of MOD3 . Figure 11 shows the representativeness uncertainty for
some species and different numbers of these-agai elati i
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- flights. As has been
discussed in Section 6.4, the yearly variation of a species is one of the factors that determines the threshold of the uncertainty
with which the species can be considered to be representative.

Asis-displayed E.g., for (detrended) COs, the mean value of MODgayproc is 385.7ppmy with a yearly variation of 2.5 to
3.5ppmy. A representativeness uncertainty of at least 0.5 % has therefore to be set as the minimum threshold for CO,. This
can be reached with only few flights, much less than those included in MODi5c. indicated by the dashed line in Figure 11

at 334 flightsfrom 2005-2013 is already representative for

O
1 aVa ava 10 1 a O 1 " 1
W W—varta

5 t St W S &

aireraft—on the other hand, the yearly cycle proposes an uncertainty of 507 or more, While this is the minimum value to
reproduce the yearly cycle at all, it may still not be sufficient for the application. With the number of CARIBIC flights, the
uncertainty in O3 is low already (< 57% in this height), while the uncertainty is continuosly reduced if the number of flights
increases,

As is indicated by Figure 11, highly variable species like NO need many flights in order for their climatologies to reach
low uncertainties. Even 1000 flights, approximately ten more years of flying the CARIBIC observatory, will not reduce the
uncertainty below 10%.

Other species that are not included in Figure 11 can be deduced from their value of 77 with the help of Figure 2. Those species
measured in air samples need even more CARIBIC flights than indicated by the number in Figure ??, as the measurement
frequency is much lower.

7 Conclusions

We describe and assess the degree of climatological representativeness of data from the passenger aircraft project IAGOS-CARIBIC.

After a general discussion of eurrepresentativeness-coneept-the concept of representativeness, we apply general rules to in-
vestigate the-feasibility-of-compiling-whether climatologies from IAGOS-CARIBIC trace gas measurements can be seen as

27



10

15

@HrelTP=0km

102 ¢ -
S 10t
3 NO
S 109 H20
o ---03
o ---Cco
D 4n-1 —CH4
= 10
) , ——CO02
= I
T, !
|
y 10 !
S I
— |
10 -3 | ; | !
10 103
No of flights

Figure 11. Representativeness uncertainty for different numbers of flights for some species. The number of flights in MEAScarmic is
indicated by the vertical dashed line. Other species can be deduced from their value of 7* with the help of Figure 2.

representative. We answer the specific question: For which species is a climatology compiled from CARIBIC data representa-
tive for-of the tropopause region in mid-latitudes?
In order to answer this question, three-four datasets were created from a nudged model run of the chemistry-climate model

EMAC:—sampling-. Two datasets sample the model at the geolocation of CARIBIC measurement data (MODcagrgre)-and
using the two-different random-samples oo . and MODS ™! ) These datasets are contrasted to the much larger datasets

regular

MODganpeara (random flight tracks with similar properties as those of MODexarpre,

) and MODganpLoc (random

locations).

applying-As a first step, we demonstrate that these model datasets are appropriate to answer our guestion, which asks for the
representativeness of CARIBIC measurement data. In order to justify the validity of the conclusions drawn from model data to
the measurements, we compare model and measurement variability, using the variability as an indication of the models ability
to reproduce changes in space and time. To compare like with like, variability on scales smaller than the model resolution is
removed from the measurements, With this prerequisite the model reproduces 50-100% of the variability of the measurements,
depending on time scale, height relative to the tropopause and species. This is sufficient to transfer our results from the model
world to the real atmosphere.

Three methods to describe representativeness are developed and applied: (i) the Kolmogorov-Smirnov test s—a—(and the
Mann-Whitney, Brown-Forsythe and Levene’s test), (ii) variability analysis following Kunz et al. (2008) and a-relative differences
test=(iil) a test interpreting the relative difference between two datasets. Two fundamental requirements are essential for

28



10

15

20

25

30

representativeness: its increase (i) with the number of measurements and (ii) with decreasing atmospheric variability of the

species, which is related to atmospheric lifetime following Junge (1974). By formulating the variability analysis and relative
differences as scores (RVar and Ry respectlvely) we %hewgvevnvlg%tratethat they pass fhe{we—fequemeﬂﬂweﬁeﬁﬂed—a%—hamg

othese two requirements, while the statistical
tests are all too strict. Ry i i Swer stion-aski -(describing the representativeness of for-a

elimatology-Ita climatology) is better suited for answering the question and is therefore used for the-in the remaining analysis.

WM%%Ma representativeness uncertainty of +0-%-Jttis-used-to
iesin percent and this measure is used in the
show that CO», N2 O -and CHy4 shave

waw&g&co C,Hg, and Oy %&M&Ww used to compile
representative climatologies around the tropopause;-while-acetene;-. NO,, and H>O are only usable in the stratosphere—Jower
stratosphere (uncertainties of 5% to 8 % there, higher elsewhere), while NO and C3Hg cannot be used for a representative
climatology (uncertainties of 25% and more). Naturally, the resultsstrongly-depend-on-the-aceepted-uneertainty-of 10 % and
would-change-f-this limitissetto-a-different-value—

interpretation of results strongly depends on the chosen threshold uncertainty and should depend on the seasonal variability

In addition, the uncertainty can be translated into a number of flights necessary to achieve representativeness. E-ge—for-1500
This is demonstrated for some species
by showing the relationship of the number of flights and the representativeness uncertainty. For long-lived species like CO,
and CH,, the number strongly deereasing with height334 IAGOS-CARIBIC flights used in this study already provide enough
data, while short-lived species like NO need around 1000 flights to reduce the uncertainty to 10 %, sufficient to reproduce the

strong annual cycle.
The general concept of using two sets of model data to calculate the representativeness is easily applicable to other questions.

One model data—set-dataset should mirror the measurements, the other should be much larger, taking into account certain
statistical properties of the measurement data-setdataset, so that the two data-sets-datasets become comparable.

Questioning the representativeness of sampled data is important. Patterns might occur when sorting or averaging sparsely
sampled data, but these patterns are not necessarily meaningful. We discuss and show a way to address this problem of rep-
resentativeness by using model data. Iafellewing By help of the methods presented here, representativeness is given a sound

mathematical description, returning an uncertainty characterizing the specific dataset.

Appendix A: Limitations in longitude and pressure
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MEAS is limited in longitude (the Pacific Ocean is never sampled) and pressure (as all civil aircraft, CARIBIC flies
at a certain pressure level). Both limitations influence the climatologies calculated from the dataset. They are discussed in the
following sections.

Al Limitation in pressure: Aircraft tropopause pressure bias

By calculating Ry using MODGARipic and MODganproc, an_important fact can be illustrated about data collected with
instruments on civil aircraft. As the aircraft flies at constant pressure levels, data are also taken at these pressure altitudes
only, If data are then resorted into heights relative to the tropopause (HrelTP), this limit in pressure is no longer visible.
Nevyertheless, it influences the results as the volume mixing rations of many trace substances are not only a function of their
distance to the tropopause, but also of pressure.

The effect on the climatological values can be illustrated by calculating R,.; (see Equation 4) using MOD and
MOD Rzimic. Within 10hPa < p < 500hPa, Figure 12 shows the results (right paneD). For comparison, the left panel of
Figure 12 shows Ry of the same datasets when setting 180hPa < p < 280hPa, the range at which CARIBIC measures.
The representativeness uncertainty is much higher in almost all heights on the right hand side (10hPa < p < 500hPa). except
just above the tropopause, where MODGRzipc contains most data. Only the long lived species CO2. N2O and CH, retain their
low uncertainties, For the more variable species to the right of the figure, the representativeness uncertainty increases strongly,

especially in the troposphere, where the variability increases if data taken at higher pressure are included.
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Figure 12. R, calculated from MOD™S®  and MODganpioc With the range of p set to 180hPa < p < 280hPa (left) and

10hPa < p < 500hPa (right). Low values indicate small climatological differences. The difference between the two panels shows the

influence of expanding the limits in p when calculating the climatological mean values with HrelTP used as a vertical coordinate.

The strong increase in representativeness uncertainty is always present in measurement data from commercial aircraft, which

can only collect data high above the tropopause when the tropopause is at high pressure and far below when it is at low pressure
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Figure 13. |R% /R? i in Ry calculated from

MOD™ " and MOD ¢ by including the Pacific ocean in MODgannioc, even though it is not sampled by MODI "™ Both,

text RY and text RE, have been calculed from MOD e . and MODgannLoc, excluding the Pacific in MODganpLoc in the calculation of

textRy.

values. This bias is naturally contained in all data measured at constant pressure and then sorted relative to the tropopause and

should be kept in mind when examining climatologies from corresponding platforms.

A2 Limitation in longitude: The influence of the Pacific Ocean

As visible in Fig 1, there are no CARIBIC measurements over the Pacific Ocean, while MODganproc and MODganpears also
cover the Pacific. The uncertainty introduced by taking the Pacific into account in MODranproc s investigated by calculating
(denoted by Ry)) and compared to Ry calculated with MODganproc limited in longitude A to 120°W < A < 120°F (denoted
by Ryy). The result is shown in Figure 13 as relative differences |Rj/Riéi — 1| between the two uncertainties. The relative
differences show the share of the uncertainty inherent in MODCAzm;c because the Pacific is included in the reference dataset
MODganDLOC-

The importance of the Pacific depends on the species under consideration and whether the stratosphere or troposphere are
considered, The influence on stratospheric values is very small for all species, In addition, those heights with less data (top and
bottom) are most strongly influenced if the Pacific is not considered. For the long:lived species CO2 and N2 O, the uncertainty
increases only little (less than 3%) if the Pacific is included in the reference climatology of MODgannroc. But tropospheric
CH, is more influenced by surface values, Interestingly, CINOx is also not affected, which clearly shows that the effect does
not depend on lifetime, but on the source regions and the chemistry. Acetone, CO and CyHg are air pollutants with strong
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Figure 14. Timeseries of CO for flight 445 from Frankfurt to Tokyo. Shown is the time series of the interpolated model data and of the

measurements. Measurements have been smoothed three times. The number indicates the length of the smoothing interval V.

sources in Asia. Parts of these sources are excluded if the Pacific is not considered, which is why the inclusion of the Pacific

in MOD is responsible for 15-20% of the total uncertainty. The situation is similar for HNOs, N2Os, BrNO3 and
HONO. For the other species, the uncertainty introduced by the Pacific is smaller.

Appendix B: Method of smoothin

This section shortly describes the method of smoothing used for creating the dataset MEASARIC.

Each species and each flight is considered separately. For smoothing a certain interval of the time series (consisting of a
certain number of data points V), the time series is first cut into the corresponding number of pieces and the mean value of the
NN datapoints calculated within each piece, In a second step, these mean values are associated with the center of each piece of
the time series. Then, a linear interpolation is performed between the central points. The corresponding mean value is applied
directly from the beginning of the flight to the center of the first interval and from the center of the last interval to the end of the
flight, Finally, the gaps in the original time series are mapped onto the smoothed data. The original and the resulting smoothed
time series are shown in Figure 14 for three different lengths of the smoothing interval IV
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC is-are often used to derive trace

gas—climatelogies—climatologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to
what extent such derived-elimatelogies—ean-be-assumed-to-berepresentativefor-climatologies are representative of the true

state of the atmosphere. Climatologies are considered relative to the tropopause in mid-latitudes (35°N to 75°N) for trace
ases with different atmospheric lifetimes. Using the chemlstry -climate model EMAC, we sample the modelled trace gases

along CARIBIC flight tracks.

eﬂwﬁ&#&w&%wame%&&%%assessed by comparing the CARIBIC sampled model data
to the true-full climatological model state. Three statistical methods are applied for thispurpese-the Kelomogerov-Smirnov

tests-and-the investigation of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and
(ii) relative differences.
mmmm
se-increase (i) with the number of available-samples-samples and
(ii) with decreasing variability of the species considered. Based on this-assumptionthese two requirements, we investigate the
suitability of the different statistical measures for eurprobleminvestigating representativeness. The Kolmogorov-Smirnov test

seems-too-s very strict and does not 1dent1fy any trace gas climatology as representatlve not even bﬂg—lwed—weﬂ—ebseﬂ%drof
glggjmtrace gases. In contrast, the varia y

is expected to

differences show the expected behaviour and thus appear applicable for investigating representativeness.
Using-For the final analysis of climatological representativeness, we use the relative differences score we-investigate-the
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------- o-and calculate a representativeness
uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measurements,

we compare the trace gas variability between model and measurements. We find that the variability- of CARIBICmeasurementsmodel

reaches 50-100% of the measurement variability, The tendency of the model to underestimate the variability is caused by the
relatively coarse spatial and temporal model resolution.

In_conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies.
Long:lived species like CO2 have low uncertainties (< 0.47%), while shorter-lived species like O3 have larger uncertaintics
(10-15%). Finally, we shew-hew-translate the representativeness score ean-be-translated-into a number of flights that are nec-
essary to achieve a certain degree of representativeness. For example, increasing the number of flights from 334 to 1000 would

reduce the uncertainty in CO to a mere 1 %, while the uncertainty for shorter lived species like NO would drop from 80 % to
10 %.

1 Introduction

This supplement discusses further results of the study of the representativeness of IAGOS-CARIBIC data using the chemistry-

climate model EMAC. For abbreviations and methods, please refer to the main text. Feur-Two points are discussed here:

ity—The methods to describe represen-
tativeness developed and tested with model data were also applied to data from a random number generator. This is described

in Section 2. Section 3 discusses the sensitivity study of the Kolmogorov-Smirnov test using a subsample of MODeagmpre-

for-CARIBIC regular
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2 Calculating representativeness from random numbers

All three methods to investigate representativeness (Kolmogorov-Smirnov test, variability analysis and relative differences

have also been applied to data created with a random number generator. The results of this study are diseussed-presented here.

To produce the random numbers, 20 sets of 108 numbers were taken from a normal distribution. These 20 sets are referred to
as species, well aware of the fact that they are purely artifialartificial. From species to species, the standard deviation o was set
to vary from 1073 to 103, values of the exponent again-increasing linearly. 20 mean values y (increasing from 10* to 108, with
a linear increase in the exponent) where distributed randomly ente-to the 20 species. This results in 20 species with different

values for ¢ and p. The statistics of each species will be indexed by the number 2. For short, this dataset will be called RAND.
3000 samples were taken from each of the 20 species. The-sampleFor each sample, 20 numbers were first randomly drawn

from each species. These new numbers and all those that had been drawn before then make up this one sample. So the size
increases by 20 for each sample;keeping-the-samplefrom-before. This way, the relationship of the representativeness score

with the sample size is directly accessible. statisties ach-s S ; : s-Samples
are indexed by the number 1.

The variability 7* of each species was-is defined as in Equation 5-3 of the main text: #*=Jlog{ft2/eo)-where-high-values
of = stand-for low-variabilityT* = log, (09 //12). The two requirements set up in Section 3.3 for representativeness in general

also have to hold here:
1. Representativeness has to increase with the number of samples.
2. Representativeness has to decrease with increasing variability of the underlying distribution.

With RAND defined in this way, it is possible to test representativeness using the variability analysis following Rohrer and
Berresheim (2006) and Kunz et al. (2008) (see Section 4.2) and the relative differences (see Section 4.3). The Kolmogorov-
Smirnov test was positive for very few samples (less than fifty numbers, independent of 7*) and will not be further discussed.

Its behaviour with aircraft data was subject of a sensitivity study, the results of which are shown in Sec. 3 of this supplement.
2.1 Variability analysis

The variabiltiy-variability analysis (defined in Section 4.2 and Eq. 3) was applied in a simplified manner. As RAND is inde-
pendent of time, Ry, is reduced to just a single value containing the absolute difference of variability of each species of RAND
and the sample taken thereof: Ry, = |1 — 12|, where v is the mean variability. Figure 1 shows a result. The exact result is a
matter of chance, as a random number generator is used. Similar to using MODm%and MODgaNDPATH, @ Strong
dependance on 7* and a weak dependance on the number of samples is visible.

Similar to Ry, when using MODm%and MODganppath, the variability analysis using RAND meets the two
requirements necessary for describing representativeness, which were described in Section 3.3 and above. This result supports

the findng-finding that Ry, can be used as a statistic for describing representativeness.
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Figure 1. Representativeness score Ry, applied to RAND. Vertical lines indicate the values of 7* of each species.

2.2 Relative differences

Similar to Ry, Ryer is reduced to a simple relative difference when using RAND: Ry = |1 — pi2|/pt2, where i is the mean
of the sample (index 1) and of the whole subset (index 2). Figure 2 shows the-a result when applying R to RAND. The
dependance on 7* is strong and linear. The result also depends on the number of samples, showing a slow increase with the

number of samples. This dependance is sometimes disturbed by better values which are reached by chance when drawing from
RAND.

Like for MODmmand MODganNDrATH, Rrel passes both conditions for a valid description of representativeness:

it depends on variability 7* and on the number of samples. The latter is also being influenced by chance and generally much

weaker.

The fact that R, passes the two conditions for a description of representativeness can be understood with some theoretical

considerations. The standard error of the mean is defined by

o= ()

where oz, the standard deviation of a sample, can be given by the following equation (/V being the number of samples):

2

For N = 1, this gives:

oz = |fz —,U| 3)
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Figure 2. Like Figure 1, but for Ry.

Plugging Eq. 3 into Eq. 1 gives:
- 1 1/7*
|Z; — _ o 10 @
I pyno o y/n

and therefore

T — 1
R, = logy, <| . M|> =—0.5log;y(n) + s (@)

5 So ideally, R, should depend inversely on 7* and directly on the logarithm of the number of values. Figure 2 shows this is
approximately true for RAND.

In the case of RAND, R ean-and Ry, can both be used to describe representativeness as itpasses-they pass the two
conditions;—while-Ryz—doeesnot. Theoretical considerations make the finding plausible for R,;. RAND can be considered a
theoretical abstraction of MOD. The finding here therefore strongly supports that of Sections 5.2 and 5.3, where R, and Ry,

10 have also been found to be good descriptors of representativeness when using MODmEiﬁfgnand MODRANDPATH OF
MODganpLoc- In the main text, we use Ry for final results, as it more suitable to answer the question of representativeness

for a climatology.

3 Sensitivity study on the Kolmogorov-Smirnov test

regular

When usi applying the Kolmogorov-Smirnov test to MOD , MODgaNDpPaTH Of MODRANDLOC, the Kelmeogorov-Smirs
15 testproved-notusable;returning-allit returned almost only negative results. This indicates that MODCW%&B not rep-
resentative of MODganppary in the definition of the Kolmogorov-Smirnov test. This behaviour was tested in a sensitivity study,

the results of which are deseribed-discussed here.
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Figure 3. Flightroutes to Vancoucer, Canada, where each flight has been cut into 20 pieces and randomly chosen 30% of those pieces have

been plotted. These are tested against the whole data from flights to Vancouver to give one point in Figure 4.

One of the most frequent destinations within the CARIBIC project is Vancouver, Canada (near 120°W, 45°N, see Figure 3),
and only the subset of MODW%&tO this destination is considered in this example to minimize effects stemming-of
that may come from different flight routes. Parts of this reduced dataset were tested with the Kolmogorov-Smirnov test against

the whole reduced dataset for all variables.

in-each-height—To produce these partial datasets, each flight was cut into an increasing number of pieces (corresponding to
a certain time) and different percentages of these pieces were used in testing. Figure 3 exemplifies-this-methodfer-shows an
example of applying this method, by cutting each flight into 20 pieces and taking 30% of these by showing the corresponding
flightpaths.

Data was not binned in months. When applying the Kolmogorov-Smirnov test without binning in months, the result is a
profile in HrelTP for each variable. The result can then be diplayed in similar way to Figures 5-and-6-7 and 8. This matrix of
height versus species was calculated for each combination of number of pieces and percent of pieces. In each combination, all
the profiles of the different variables were averaged to end up with one value betwween 1 and O characterizing the result of the
test for this combination of number of pieces and percent of pieces. The result can then give an impression of the strictness of
the Kolmogorov-Smirnov test.

Figure 4 shows the result of the study. Independent of the number of pieces, the result is positive if all pieces are considered,
as the definition of the test prescribes. But only when removing short pieces (shorter than 20 min) is the result also positive for
less pieces, even though 70% percent of the data is still needed. When removing whole flights (at the top of the plot), more the

90% of the data has to be taken into account to achieve a positive result of the Kolmogorov-Smirnov test. This result is very
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Figure 4. The Kolmogorov-Smirnov test applied to the flights to Vancouver, Canada, of Mom%and subsets of these flights.

Dotted lines indicate those lengths in time and those percentages that were tested. 0 stands for a passing the Kolmogorov-Smirnov test, 1 for

not passing.

similar also for other error probabilities «, taking values of 0.001, 0.01, 0.05 (in the figure), 0.1 and 0.2. The area of failing
increases only slightly with the error probability. This showcases the strictness of the test. The Kolmogorov-Smirnov test does

not seem suitable to test a dataset measured with aircraft for representativeness of a larger dataset.
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive cli-
matologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such cli-
matologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in
mid-latitudes (35°N to 75°N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC,
we sample the modelled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the
CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation
of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and (ii) relative differences.

Two requirements for any score describing representativeness are essential: Representativeness is expected to increase
(i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two require-
ments, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-
Smirnov test is very strict and does not identify any trace gas climatology as representative — not even of long lived trace gases.
In contrast, the two scores based on either variability or relative differences show the expected behaviour and thus appear
applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative
differences score and calculate a representativeness uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measure-
ments, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100 % of the
measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial
and temporal model resolution.

In conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies. Long-
lived species like CO have low uncertainties (< 0.4 %), while shorter-lived species like O3 have larger uncertainties (10-15 %).

Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of
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representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a

mere 1%, while the uncertainty for shorter lived species like NO would drop from 80 % to 10 %.

1 Introduction

The UTLS (upper troposphere/lower stratosphere) is dynamically and chemically very complex and shows strong gradients
in temperature, humidity and in many trace gases (Gettelman et al., 2011). As the mid and upper troposphere have a strong
influence on the atmospheric greenhouse effect, the UTLS plays an important role in our climate system (Riese et al., 2012).
To characterize processes and evaluate the performance of chemistry-transport models in this area, spatially well resolved data
collected on a global scale are required.

Aircraft are a suitable platform to carry out these measurements as they are able to probe in situ and at a high frequency.
Measurements taken by commercial aircraft projects like IAGOS (In-Service Aircraft for a Global Observing System, Petzold
et al. (2015)) and CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner, Matsueda et al. (2008))
generate more continuous and regular datasets than research aircraft on sporadic campaigns and are therefore commonly given
the attribute representative. But what is meant by this adjective?

Ramsey and Hewitt (2005) give a general introduction to representativeness, coming from soil sciences. As they state, the
adjective representative has no meaning of its own, so a definition has to be given and ’it must be asked "representative of
what?"

In the area of meteorology, Nappo et al. (1982) give the following definition: Representativeness is the extent to which a
set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain
taken on a scale appropriate for a specific application.” Representativeness in their understanding ’is an exact condition, i.e., an
observation is or is not representative.” Only if ’a set of criteria for representativeness is established, analytical and statistical
methods can be used to estimate how well the criteria are met.’

The mathematical definition given by Nappo et al. (1982) is mostly applied to data collected in the boundary layer, where it
is used to answer the question whether a flux tower station is representative of the area in which it is positioned (e.g. by Schmid
(1997), Laj et al. (2009) or Henne et al. (2010)). This can also be analysed by means of a cluster analysis with backward
trajectories (e.g. by Henne et al. (2008) or Balzani L66v et al. (2008)). By this method, source regions for measured trace gases
can be found and the type and origin of air masses contributing to an observed air mass determined, i.e. the airmass the data
are representative of. Koppe et al. (2009) apply this method to aircraft data from the project IAGOS-CARIBIC (Civil Aircraft
for the Regular Investigation of the Atmosphere Based on an Instrument container, being part of IAGOS).

Lary (2004) and Stiller (2010) discuss the representativeness error in the field of data assimilation. Lary (2004) uses repre-
sentativeness uncertainty as a synonym for variability within a grid cell, Stiller (2010) discusses the sampling error, which is
considered to be part of the representativeness uncertainty. Larsen et al. (2014) study the representativeness of one dimensional
measurements taken along the flight track of an aircraft to the three dimensional field that is being probed. But as they consider

single flight tracks, their methods and definitions do not apply here.
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The study of Schutgens et al. (2016) is more related to this study. They consider the sampling error on a global scale,
comparing normal model means to means of model data collocated to satellite measurements. They find that this sampling
error reaches 20 — 60 % of the model error (difference between observations and collocated model values).

We have been motivated by Kunz et al. (2008). They analysed whether the dataset of the aircraft campaign SPURT (SPURen-
stofftransport in der Tropopausenregion - trace gas transport in the tropopause region, Engel et al. (20006)) is representative of
the larger MOZAIC dataset (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service Alr-
bus airCraft, the precursor of IAGOS-core). Kunz et al. (2008) investigate distributions of two substances (O3 and H5O) in two
atmospheric compartments (upper troposphere and lower stratosphere). They find that the smaller SPURT dataset is represen-
tative on every time scale of the larger MOZAIC set for O3, while this is not the case for HoO. While SPURT Og data can be
used for climatological investigations, the variability of HoO is too large to be fully captured by SPURT on the interseasonal
time scales.

This is similar to what is done in this study: We investigate the representativeness of data for different trace gases from
TAGOS-CARIBIC (see Sec. 2.1) for a climatology in the UTLS. Possible mathematical definitions of the word representative-
ness are first discussed with the help of this data. Then, its representativeness following these definitions is investigated. By
using data from the chemistry-climate model EMAC (see Sec. 2.2) along the flight tracks of IAGOS-CARIBIC and comparing
this to a larger sample taken from the model, it becomes possible to investigate the representativeness of the smaller of the two
model datasets. We also assess whether the complexity of the model is similar to that portrayed by the measurements, using
the variability as a measure for the complexity. We find that the variability of the model is high enough and therefore quantify
the representativeness of IAGOS-CARIBIC measurement data for a climatology in the UTLS by using the two model datasets
alone.

In Sec. 2, more details on the data from IAGOS-CARIBIC and the model run will be given. The general concept and defini-
tion of representativeness is discussed in Sec. 3. This section also gives details on sampling the model and on the variability,
which is used to group results by species. The statistical methods are then explained in Sec. 4, namely the Kolmogorov-Smirnov
test, a variability analysis following the general idea of Kunz et al. (2008) and Rohrer and Berresheim (2006) and the relative
difference of two climatologies. We then discuss the variability of the model data in comparison to that of the measurements in
Sec. 5. The application of the methods to the different model samples is described in Sec. 6. After showing the result of each
of the three methods seperately, Sec. 6.4 discusses the representativeness of the IAGOS-CARIBIC measurement data, while

Sec. 6.5 answers the question how many flights are necessary to achieve representativeness. Sec. 7 summarizes and concludes.

2 Model and data
2.1 The observational IAGOS-CARIBIC dataset

Within JAGOS-CARIBIC (CARIBIC for short), an instrumented container is mounted in the cargo bay of a Lufthansa passen-
ger aircraft during typically four intercontinental flights per month, flying from Frankfurt, Germany (Munich, Germany, since

August, 2014), see also Brenninkmeijer et al. (2007) and www.caribic-atmospheric.com.
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During each CARIBIC flight, about 100 trace trace gas and aerosol parameters are measured. Some are measured continu-
ously with a frequency between 5s~! and 0.2min~!) and available from the database binned to 10s. Others (e.g. non-methane
hydrocarbons) are taken from up to 32 air samples collected per flight. The substances considered in this study are NO,,, H>O,
O3, CO2, NO, (CH3)2CO (acetone), CO and CH, from continuous measurements and NoO, CoHg and C3Hg from air sam-
ples. NOy is the sum of all reactive nitrogen species, measured by catalytic conversion to NO (Brenninkmeijer et al., 2007).
Data of N,O, CH4 and CO5 were detrended by subtracting the mean of each year from the values of that year and adding the
overall mean.

The data of all flights from the year 2005 (beginning of the second phase of CARIBIC) to the end of December, 2013 (end
of the model run) are considered in this study. This dataset will be referred to as MEAScarigic-

As this study investigates representativeness using model data, the geolocation of the CARIBIC measurements at 10s res-
olution is used. In a second step, the gaps of the CARIBIC measurements and height information (due to technical problems

etc.) are mapped onto their representation in the model data to infer the representativeness of the measurement data.
2.2 The chemistry-climate model EMAC

EMAC (ECHAMS/MESSy Atmospheric Chemistry model; Jockel et al. (2006)) is a combination of the general circulation
model ECHAMS (Roeckner et al., 2006) and different submodels combined through the Modular Earth Submodel System
(MESSy, Jockel et al. (2005)). We use here a model configuration with 39 vertical levels reaching up to 80km and a horizontal
resolution of T42 (roughly 2.8° horizontal resolution).

The model integration used in this study simulated the time between January 1994 and December 2013, with data output
every eleven hours. Meteorology is nudged up to 1hPa using divergence, vorticity, ground pressure and temperature from
six-hourly ERA-Interim reanalysis. It includes the extensive EVAL-Chemistry using the kinetics for chemistry and photolysis
of Sander et al. (2011). This set of equations has been designed to simulate tropospheric and stratospheric chemistry equally
well.

Boundary conditions for greenhouse gases (latitude dependent monthly means) are taken from Meinshausen et al. (2011)
and continued to 2013 from the RCP 6.0 scenario (Moss et al., 2010). Boundary conditions for ozone depleting substances
(CFCs and halons) are from the WMO-A1 scenario (WMO, 2010). Emissions for NO,, CO, and non-methane volatile organic
compounds are taken from the EDGAR data base (http://edgar.jrc.ec.europa.eu/index.php).

The setup of the model in this study is similar to that made for the run RC1SD-base-08 of the Earth System Chemistry
integrated Modelling (ESCiMo) initiative, presented by Jockel et al. (2016). It differs in vertical resolution (47 versus 39
levels), but horizontal resolution, nudging and the chemistry are the same. The study by Jockel et al. (2016) gives a detailed
description and presents first validation results.

Hegglin et al. (2010) performed an extensive inter-model comparison including EMAC with the same horizontal resolution
as the setup for this study. Dynamical as well as chemical metrics have been used in this study, focussing on the UTLS. Overall,
they find EMAC performs well within the range of the models that were tested. The reader is referred to the study for further

details.
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The substances from the model used in this study are the same as those from measurements. NO,,, which is simulated in
its components, is summed up from N, NO, NO2, NOs, NoOs (counted twice because measurements of NO, are taken by
catalytic conversion), HNO4, HNO3, HONO, HNO, PAN, CINO,, CINO3, BrNOs and BrNOg. Data of No,O, CH, and

COg were detrended, using the same method applied to the measurements.

3 Defining representativeness

As noted above and specified by Nappo et al. (1982) and Ramsey and Hewitt (2005), the word representative is meaningful
only if accompanied by an object. Ramsey and Hewitt (2005) raise three questions to be answered in order to address represen-
tativeness: 1. For what parameter is the sample data to be seen as representative: e.g. the mean, a trend or an area? 2. Of which
population are the sample data to be seen as representative? 3. To which degree are the data to be seen as representative? To

assess the representativeness of CARIBIC data, these three questions have to be answered as well.
3.1 Representative for what parameter?

First, it is crucial to define what we anticipate the CARIBIC data to be representative of, since 'the same set of measurements
may be deemed representative for some purpose but not other’ (Nappo et al., 1982). In this study, we investigate whether the
CARIBIC data can be used to construct a climatology in the UTLS. We consider monthly binned data in the height of +4.25km
around the dynamical tropopause defined at the pressure at 3.5PVU and in mid-latitudes with 75°N < ¢ < 35°N.

In order to reference data to the tropopause, we use the geometric height in kilometers relative to the tropopause (HrelTP) at
each datapoint. For the measurements, this height is provided by the meteorological support of CARIBIC by KNMI (Konin-
klijk Nederlands Meteorologisch Instituut) (http://www.knmi.nl/samenw/campaign_support/CARIBIC/), who use data from
ECMWEF (European Centre for Mendium-range Weather Forecast) for their calculation.

From model output, the height relative to the tropopause (HrelTP) can be calculated, as the pressure value of the dynamical
tropopause is known at each location, as well as the temperature and pressure profile. This HrelTP value calculated from the
model data along the flight tracks of CARIBIC compares well with interpolated values from ECMWF provided by KNMI
(Pearson correlation coefficient of p = 0.97), which is expected as the meteorology of the model is nudged using ERA-Interim
data. The distribution of all values of HrelTP from the model is shown in Figure 1, showing a maximum right at the tropopause.
Data were used within +4.25km around the tropopause in steps of 0.5 km.

Even though all data of trace gases (be it from model or measurements) are sorted into bins of HrelTP, it is important to
keep in mind the limits in pressure. These are inherent in the CARIBIC dataset, as the aircraft flies on constant flight levels
with 180hPa < p < 280hPa. In addition, we explicitly limit pressure to this range in order to exclude data from ascents and
descents of the aircraft. But since data are considered relative to the tropopause, these limits are no longer visible directly from
the resulting climatology, even though they can influence it strongly. The reason is that aircraft flying at constant pressure can
measure far above (below) the tropopause only if the tropopause is located at high (low) pressure. The properties of many trace

substances are not only a function of their distance to the tropopause, but also of pressure. The limits in pressure inherent in
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the sample therefore also influence the climatology. They have to be considered and should be explicitly stated. This effect is
illustrated in Appendix A1 with the help of the methods developed in this study.

In addition to limiting in HrelTP and p, it is necessary to apply a limit in latitude . We limit the data by including only mid-
latitudes with 75°N < ¢ < 35°N. Tropical data with ¢ < 35°N are excluded because of the considerably higher dynamical
tropopause. Data with ¢ > 75°N are excluded because of the different chemistry in far northern latitudes, which leads to
considerably different mixing ratios for some some species that should not be combined with data from lower latitudes in one
climatology. In addition, this latitudinal band is well covered by CARIBIC measurements. Other regions or latitudinal bands
can be investigated using the same approach.

Like the limit in pressure, CARIBIC data are also limited in longitude, as the Pacific Ocean is never probed. The effect of
this limit on the climatology is discussed in Appendix A2.

As a summary, we can specify more closely the question (Representative for what parameter?) asked in the beginning: Is a

climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?
3.2 Representative of which population?

When assessing the representativeness of the sample made up by all CARIBIC measurements (called MEAScaRrsIC, See
Sec. 2.1), the population is the atmosphere around the tropopause and its composition. For many of the species measured by
CARIBIC, there is no other project that takes such multi-tracer in-situ meaurements as regularly at the same spatial and tem-
poral resolution. IAGOS-core and CONTRAIL sample with much higher frequency, but take measurements of only few sub-
stances while satellites do not resolve the small scale structures necessary to disentangle the dynamics around the tropopause.
The population is therefore not accessible by the measurement platforms currently available.

This is the reason why the representativeness of the CARIBIC data are investigated by comparing the model data along
CARIBIC flight tracks to two larger samples taken from the model. These larger datasets are considered the population, in
reference to which the representativeness of the smaller dataset (model along CARIBIC paths) is assessed. Three datasets were
created from the model output: the model along CARIBIC paths and two random model samples. All are presented in the
following paragraphs, a summary being given in Table 1 and Figure 1.

MODEE . For the dataset MODE . the model output was interpolated linearly in latitude, longitude, logarithm of
pressure and time to the position of the CARIBIC aircraft, using the location at a resolution of 10s for all species, independent
of the time resolution in MEAScagrisic. Figure 1 shows the flight paths considered in this study. Since CARIBIC also measures
temperature (at 10s resolution), the high pearson correlation coefficient of p = 0.97 of modelled to measured temperature can
serve as an indication that this interpolation leads to reasonable results, despite the coarser resolution in time and space of the
model output.

MODSCT]?;;‘}C: The measurement frequency for some species in MEAScarisic is lower (e.g. those taken by whole air sam-
ples), all species contain gaps because of instrument problems at some point and some of the species considered by the model

. ce . . . oul
datasets are not measured at all. Sometimes, it is interesting to consider MOD{ s pipic reduced to the exact number of measure-
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Table 1. Summary of the specifications defining the three datasets MOD s ppic» MODgraNDPaTH and MODRgANDLOC-

dataset EMAC on total sets  per month duration  p distribution
MODER CARIBIC paths 334 up to 4 8-10h flight levels show up,
(2005-13) in 3 days p=223.42hPa
o(p) = 18.94hPa
MODganppata | random paths 1296 12 24h adjusted gaussian,
in 28 days p=223.42hPa
o(p) = 18.94hPa
MODgaNDLOC random location 864 8 24h uniform,
in 28 days min(p) = 10hPa

max(p) = 500hPa

ment points, i.e. reduced by all these measurement gaps. The model dataset along CARIBIC paths that has the same gaps as
MEAScarisic Will be referred to as MODSC'AXEEC}C.

As is visible in Figure 1 (central column), only three of the model levels lay in the pressure range sampled by CARIBIC. To
have comparable statistics, MODSERo . was to two random model samples.

MODganppath: The dataset referred to as MODganppars 1S a larger set of flight paths used to sample the model. This set was
mainly used to investigate the representativeness of MODS o . From the year 2005 to the end of 2013, 12 random flight paths
were generated per month (1296 in total, evenly spaced in each month’s first 28 days) and the model fields interpolated onto
these paths. The starting point was randomly chosen in the northern hemisphere, as well as the direction taken by the aircraft.
The speed was set to 885.1km h~!, the median of the speed of the true CARIBIC aircraft. The flights start at 0:00 UTC and
sample the model for 24h in 10s intervals. They are reflected at the north pole and at the equator and reverse the sign of the
increment in latitude direction once during flight. The first 100 of these paths are displayed in Figure 1.

The pressure was kept constant for each of the random flights, reproducing the statistics of the pressure distribution for
CARIBIC as a whole. For this, a normal distribution centered around 223.42hPa with a standard deviation of 18.94 hPa was
used to choose the pressure value for each of the random flights. All pressure values of p < 180hPa or p > 280hPa were
redistributed evenly between 200hPa and 250 hPa to exclude unrealistically high or low values and sharpen the maximum.

MOD% anppaTh: The dependecy of representativeness on the number of flights is an important part of this study. Each of the
random paths was divided into three parts, resulting in 3888 eight hour flights, the duration of a typical intercontinental flight
with CARIBIC. Representativeness was then calculated with the different methods for MODgranpparr and these subsamples,
increasing their size by including more of the 3888 shorter random flights. This dataset of randomized shorter flights will be
referred to as MOD3 AxppaTH-

MODganpLOC: For this sample, latitude and longitude were randomly drawn in the northern hemisphere (not aligned along

a route) and the definition of the pressure distribution widened, drawing pressure from a uniform distribution from 500 hPa to



10hPa for each flight. Again, the datasets start at 0:00 UT'C and the separate points are 10s apart, collecting 8640 samples on

a sampling day. Eight of these sets are distributed evenly in each month, summing to a total of 864 sets of this type. This set

was used to test whether MOD?E‘Q}';IC is representative of a climatology around the tropopause only within its pressure limits

or also when expanding these limits.

As is visible in Figure 1, the distribution in HrelTP is very similar for MODganppaty and MODganpLoc even though the
pressure is prescribed in very different ways (mean of 0.79km and 0.64km respectively). The distribution of MODrCeilgglc
is different (mean of 0.26km), which is due to the larger amount of data from southern latitudes (not shown). The different

regular

regional sampling is one of the reasons why climatologies from MOD ;g g;c and MODganpparh differ and this difference also

affects the distribution in Hrel TP.
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Figure 1. Flight path distribution (left), distribution of probed pressures (p, center) and height relative to the dynamical tropopause (HrelTP,
regular

right) for the three datasets MOD g1 (top), MODranpratn (center) and MODgranpLoc (bottom). Only parts of the paths of MODganppaTs

and MODganpLoc are shown in the left column.
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3.3 Confidence limits of representativeness

When defining representativeness, one more question remains: What are the confidence limits of the representativeness?

Three definitions for representativeness are discussed and applied in this study: The Kolmogorov-Smirnov test, the variability
analysis following Kunz et al. (2008) and the relative difference of two climatologies. The first method gives a yes-no answer
within a chosen statistical confidence level. The other two approaches are formulated in such a way as to return a score. By
(arbitrarily) setting a value for the score, the representative cases can be discriminated from the non-representative cases (see
Sec. 4 and Sec. 6), the score corresponding to a confidence level.

There are two more requirements that we define as having to be met by representativeness in general:
1. Representativeness has to increase with the number of samples (flights in the case of this study).
2. Representativeness has to decrease with increasing variability of the underlying distribution.

These two assumptions are implicitely also made by Kunz et al. (2008), as they investigate the representativeness of a smaller
for a larger dataset and for two species of different variability. The measure for variability we use in this study is explained in

the following section.
3.4 Defining a measure for variability

Representativeness is expected to differ for different species because of their atmospheric variability or atmospheric lifetime.
This is part of the definition of representativeness given in Section 3.3. Kunz et al. (2008) also find that O3 and Hy O are different
in their representativeness and attribute this to the variability. It is therefore reasonable to consider results for representativeness
relative to the variability of a species. In this study, we use the relative standard deviation o,- as a measure for variability. It is
calculated following Equation 1 using the mean y and standard deviation ¢ of each species.
7= (1)
Figure 2 shows the sorted values of o, for the species considered in this study, using the full time series to calculate o,.. It
is worthwile to note that in defining variability in this way, we closely follow Junge (1974), who showed that under certain

constraints, the relationship
Or=—=0a-T 2)

holds, which links variability and lifetime 7 using two species-dependent constants a and b. This relationship has frequently
been called Junge relationship in the past (e.g. by Stroebe et al. (2006) or MacLeod et al. (2013)). And indeed, as visible in
Figure 2, longer lived species like CO5 or NoO show lower variability, while shorter lived species show higher variability.

It is important to note that the values determined from MEAScarsic are affected by the measurement frequency in case of
data sampled by whole air samples (N3O, Ca2Hg and C3Hg) and by gaps due to instrument problems. But the influence of these

gaps is small, as can be seen by the small differences of the two values for MODEERY - and MODEA! .. MEAScarisic has
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Figure 2. Variability o, calculated for different datasets using Equation 1. The species are sorted by o, species with low variability listed to

the left, using the values from MODganpparu for sorting. Note that log, (o) = 7%, see Eq. 3.

a slightly higher variability than the model datasets for most species. The relationship of model and measurement variability is
discussed in more detail in Section 5. The model datasets are very similar, despite their different sampling patterns. They only
differ for short-lived species (to the right in Figure 2), which have a strong daily cycle, e.g NO.

In Sec. 3.3, we defined representativeness as having to decrease with increasing variability. Because we want to emphasize
the relationship of o, with 7 and in order to differentiate this variability (calculated from the complete time series) clearly from

other similar terms, we use 7* defined in Equation 3 to test the relationship of representativeness and variability.

7" =logyg(0r) = logyg(a) —b-logyo(7) ”

Sec. 4.2 will take a closer look at variability. It will be discussed how variability depends on the time scale for which it is
calculated. The values shown in Figure 2 and used for the calculation of 7* use the full time series, and thereby the overall
variability. If shorter time scales had been considered, the values for o, in Figure 2 would change, but not the order of the
species that follows from the values.

So including these thoughts on variability in the question formulated at the end of Section 3.1, we can specify more closely
the question we answer in this study: For which species is a climatology compiled from CARIBIC data representative of the

tropopause region in mid-latitudes?
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4 Statistical methods

We use three different methods to evaluate representativeness: the Kolmogorov-Smirnov test, the variability analysis and rela-

tive differences.
4.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov two-sample test is a non-parametric statistical test that is used to examine whether two datasets have
been taken from the same distribution (e.g. Sachs and Hedderich (2009)). It considers all types of differences in the sample
distributions that can be apparent in the mean, the standard deviation, the kurtosis, etc. The test statistic is the maximum

absolute difference D in the cumulative empirical distribution functions F}, of the two samples x:
D = max|F} — By 4)

The discriminating values D, have been derived depending on the accepted confidence limit «. In this study, the two empirical
distribution functions F; were taken from MODrCei‘EZI‘];IC and MODganppath in each height bin and month. In addition to the
Kolmogorov-Smirnov test, we also applied the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for

variance (see again Sachs and Hedderich (2009)). All results of applying these tests are presented in Sec. 6.1.
4.2 Variability analysis

The variability analysis follows Rohrer and Berresheim (2006) and Kunz et al. (2008). Rohrer and Berresheim (2006) intro-
duced a variance analysis for ground-based observations, Kunz et al. (2008) then applied it to aircraft data. A timeseries of data
is subsequently divided into ever shorter time slices of increasing number and the variance is calculated for the data within
each time slice. By taking the mean over the whole number of slices and doing this for all divisions in time, a line is calculated,
which is characteristic for the development of variance in time.

Instead of considering variance in each time slice, we use the relative standard deviation o, = %, which is the definition of
variability following Junge (1974). It is calculated in each time slice and the mean gives the value for the corresponding time
scale. In the following, time scale therefore refers to the length of the interval in time in which the variability is calculated.
By scaling the standard deviation o with the mean p, different species become comparable. Being a combination of variability
as defined by Junge (1974) and the variance analysis introduced by Rohrer and Berresheim (2006), this method is called
variability analysis in the following paragraphs.

Figure 3 shows the variability analysis for CO just below the tropopause for MODrCeiLl'{l?gIC, MODganppath and MODgaNDLOC-
The time scale changes from about 5min to 5a along the logarithmically spaced abscissa. As CO is a medium long-lived trace
gas with an atmospheric lifetime of 2-3 months and a pronounced annual cycle, the mean variability increases up to time scales
of 1a. The variability of MODganppara and MODganproc is larger than that of MODrCeilﬁfgIC on almost all time scales. For

time scales of 30d and more, however, the lines of all three datasets run in parallel, showing an increase up to 1a, from when

on the variability does not increase. This is consistent with the annual cycle of CO, which is also the cause for the relative
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Figure 3. Variability analysis calculated for CO for MODgranppath, MODganpLOC and MODypipic at HrelTP = —1km (one kilometer

below the tropopause). The time scales used to calculate Ry, using Equation 5 are indicated by vertical lines.

decrease sharply at 0.5a and 1.5a. For time scales below 30d, the distribution of flights in one month dominates the variability
analysis. MODrCeiﬁ?]IHC includes only up to four flights on consecutive days, the mean variability does not decrease when going
to time scales between 30d and 4d, while in MODganppaTH, continuosly less data are included in each time slice, leading
to a continuous drop in the variability. For time scales of less than 1d, the data come from a single flight, showing another
drop in variability that is linked to using data from geographic regions that are ever more close in the case of MODrCeiLl‘Ql?lgIC and
MODganpraTH- Since the variability analysis is so closely linked to the distribution in time and space, the variability analysis
of MODganpLoc shows an almost constant value for time scales shorter than 30d until time scales shorter than one day are
reached, from when on the variability also drops.

Kunz et al. (2008) used the variance analysis to investigate whether the smaller SPURT dataset represents the variance
present in MOZAIC dataset. Following this thinking, we consider the variability as one possible criterion to judge the repre-
sentativeness of one dataset for another. A score Rigﬁ describing the representativeness is defined from the difference of the

values of the variability analysis, using the following equation:

t,h Ui’h U;’h
RV;]I == ].Oglo th - th (5)
Hq Ho

where o stands for the standard deviation and at u%;" for the mean in time scale ¢ and height h of the datasets x. The overbar

implies that the mean over all time slices corresponding to the time scale ¢ of o/ are used. Considering Figure 3, the score

can be interpreted as the absolute value of the difference of the two lines at certain time scales .
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Decreasing values of R% mean better representativeness, the value always being negative. Depending on ¢, the representa-

tiveness in different time scales can be evaluated. We used time scales of 30d, 0.25a, 0.5a, 1a, 2a and 5a to calculate R%".

t
var

When applying this method to all height bins, a profile in R}, is calculated for each species. This is one possible definition for
representativeness. Yet it has to pass the two requirements of being related to number of samples and variability outlined in

Sec. 3.3. The results of testing this will be presented in Sec. 6.2.
4.3 Relative differences

The third approach to assess representativeness is to analyze the relative differences between the climatologies from two
differently large datasets. The procedure is summarized in Equation 6:
h 1o " = "]
Ry =logy, (12 Z m) ©)
m=1 Ho
which was applied to each height bin h. ™" stands for the mean of the data in the month 7 and in height bin & of the datasets
x. The logarithm to the basis 10 was applied to the mean relative difference profile to end up with a profile in Ry, similar to
the score R!,, calculated from the variability analysis. Contrary to the Kolmogorov-Smirnov test or the variability analysis, this
test statistic does not contain any information on the underlying distribution, because it uses only the mean in each bin.
Figure 4 shows an example of relative differences between CO from MODrCeiLI‘{l}’];IC and the larger dataset MODgaNDpATH-
The differences are small, mostly below an absolute value of 0.15. R is defined (in Equation 6) as the logarithm to the base
10 of the mean over all months (not shown). The score increases towards the top and bottom in Figure 4 due to less data

there. Like for R?

var?

t
var?

decreasing values in R, mean better representativeness. And like R}, ., R has to be tested for passing
the requirements of being related to number of samples and variability (see Sec. 3.3) in order to be acceptable as a score for
representativeness. The results of testing this will be discussed in Sec. 6.3.

Other than just as a score, the value of R, can be understood as the average uncertainty for assuming the climatology of
MODEC/%‘E?EIC as a full model climatology. This is more obvious if taken to the power of 10, in which case the uncertainty will

take values between 0 and 1. Use of this will be made in Section 6.4.

5 Model and measurement variability

Representativeness was assessed using only model data in this study, yet the final goal was to investigate the representativeness
of MEAScaRrBIC. MODrCeilg?lgIC and MOD?XE?IC are used as a placeholder for MEAScarmic and compared to other model
datasets (MODganppata and MODganpLoc) in the analysis. The results derived from these model datasets will be interpreted
for MEAScariic in Sec. 6. This means that conclusions drawn from model data alone will be applied to measurements.
To justify this reasoning, it is important to investigate the differences between the model and the real atmosphere. It is not
crucial that the model reproduces the exact values of the measurements, but rather that the complexity for each species in the
sampled

model is similar to the real complexity. This will be investigated in the following two sections. The variability of MOD:,gigic

will be used as an indicator of its complexity and compared to the variability of MEAScagrisic. Similar to Equation 1, we use
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Figure 4. Relative differences of CO for MODEER". . and MODganpeats. This is the basis used to calculate Ryer.

the relative standard deviation o, = o/ as a measure for variability when comparing model and measurements. Variability of

a certain time scale, e.g. 20 min, will be referred to as 20 min variability in the following, accordingly for other time scales.
5.1 Influence of short time scales on the climatological mean

All model datasets have been created from gridded datafiles with a certain resolution (2.8° or about 200km, see Sec. 2.2).
Considering the median airspeed of the CARIBIC aircraft of 885.1km h~?, this model resolution corresponds to a time scale
of about 20 min. MEAScarisic has a time resoltution of up to 10s, depending on the instrument. Model data has been linearly
interpolated to this high 10s resolution, but this does not introduce the variability that is present in the measurements. The
20min variability is therefore always larger in MEAScagisic than in MODS AR .. To what extent this small scale variability
influences the climatological values is investigated here.

By reducing the 20 min variability in MEAScarsic to that of MOD?XE;{C, it is possible to determine the influence of the
small scale variability on the climatological mean values. The reduction in variability was done separately for each species and
height to account for differences in terms of model complexity between the species. In order to reduce the variability in the
time series, they were smoothed out, the method is presented in App. B. The smoothing number used in this method indicates
how much variability has been removed. The 20min variability of MEAScarisic Was then calculated for several smoothing
numbers.

Figure 5 (left panel, solid lines) shows how the 20 min variability drops for all species if the data are smoothed progressively
(increasing the smoothing number). The leftmost point for each species corresponds to the full 20 min variability, while this

variability drops to zero if the time intervals considered in smoothing become much longer than 20 min. The dashed lines show
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Figure 5. Left panel: 20 min variability of i) MEAScarisic, that has been smoothed out to an increasing degree, indicated by an increasing

sampled

smoothing number (solid lines) and of ii) MOD_ g (dashed lines), both for HrelTP = —1km. The crosspoint of the dashed and cor-
responding full line indicate the smoothing number that is needed to reproduce the 20min variability of MOD?K};‘}C. Right panel: Mean
relative differences of MEASESShed and MEAScarmic. MEASEE has been smoothed to have the same 20 min variability as MODEEe!
using the smoothing number from the left hand panel. The relative differences correspond to the error in the climatologies of MOD&"%;‘}C
due to the coarse model resolution. N2O, CoHg and C3Hg are measured by air samples with a low measurement frequency and therefore

not considered here.

the full model variability, which was not smoothed out. The crosspoints of the full and corresponding dashed line indicate the

smoothing numbers for which MEAScarisic has the same 20min variability as MODSCTRPEC. MEAScarigic in which each

species has been smoothed to this point will be referred to as MEAS{RSohed

Climatological mean values of MEAS{MSohed. were then compared to mean values from MEAScarpic with the full variabil-
ity, thereby determining the influence of the reduced 20 min variability. A similar influence is expected by the coarse model
resolution, which by definition has the same 20 min variability as MEASgRhed.

The mean relative difference of the climatologies for different species between MEASSC“A‘i{’I‘gﬁdC and MEAScarisic is displayed
in Figure 5 (right panel). The differences depend strongly on the species. Those species that are measured by air samples (N2 O,
CoHg and C3Hg) have been shaded in grey, since they contain very little data far above and below the tropopause and are
therefore not considered in this section.

The mean relative differences are smaller than 1% for the long lived species to the left and reach 10-20% for the other
species. Largest values appear where the mixing ratios of the species are small and vertical gradients are strong, i.e. in strato-
spheric CO, acetone or HyO and tropospheric Os. E.g. HoO has very low stratospheric mixing ratios, that are reached in

small-scale intrusions of stratospheric air encountered during flight. If these small-scale structures are smoothed out, the mean

values become larger and the difference of MEAS%‘&‘;{’{%?% and MEAScaggic is large and positive.
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Figure 6. o) /o MFAS given in percent for time scales of 30d (left) and 1a (right), where MOD stands for MOD{rE . and MEAS stands
for MEASEbed Values greater than 50 % indicate the high model complexity.

The relative differences show the influence of a lower variability that is equal to that of MODET%;}C. This therefore shows
that the coarse model resolution does in principle not lead to very large errors in climatological mean values. Nevertheless, the
model could have other defiencies in the description of the different species. These are made visible in the following section

by comparing model and measurement variability directly.

5.2 Comparing model and measurement variability

In this section, the variability of MOD{ e . is compared directly to that of MEASIISOhed  For this dataset, MEAScarisic

has been altered in such a way to reproduce the 20 min variability of MODSCaXE;dIC, see the preceeding section. As this study
argues completely within the model world, it is important that the model has similar values for the variability, which is used as
an indicator of the underlying complexity. If the model cannot reproduce the measurement variability at all, it is not plausible
why conclusions on representativeness drawn from model data should also be true for the real atmosphere.

As has been discussed in Sec. 4.2, variability depends on the time scale for which it is considered. In order to evaluate the
model performance, we compare o, on time scales of 30d and 1a. 30d variability includes data from typically 4 flights, so
this is a measure for the atmospheric variabilty on the global, large scale dynamics. 1a variability gives a good impression of
the annual cycle, as it includes data from many flights and different years. Figure 6 shows o™MOP /gMEAS for time scales of 30d
(left) and 1a (right), using the datasets MOD{nb - and MEASEthed

Figure 6 shows that the variability in the measurements reached by the model differs between species. In general, the
variability reached for shorter lived species better fits that of the measurements. Short-lived species also undergo a more
complex chemistry in the model, which adds variability. The 30d variability shown in Figure 6 (left) reveals to what extent the
model is able to capture variability related to the large scale dynamics. Most species reach 40-80 %. NO is very short lived and

strongly determined by its daily cycle, which is the reason why the variability in the model reaches higher values.
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The time scale of 1a shows the variability that represents seasonality. The model does a better job for this time scale than
for 30d, short lived species and CO4 reaching well over 60 % of the variability, approaching 100 % for some species. Here
again, the model chemistry increases the variability for shorter lived species to the right. There are species that are not as well
represented, while this also depends on the height considered (e.g. high values for stratospheric N2O).

The model variability is influenced by many factors including the dynamics, the representation of the chemistry and of the
sources included in the model. The limited horizontal and vertical resolution also plays a role, even though MEAS{TShed. i
used as a reference for the comparison. If compared to the original MEAScarisic, the percentages of variability reached by the
model drop by 10-20% (not shown). It is beyond the scope of this paper to further disentangle what causes the defiencies of
the model and what leads to the differences between the species.

As is shown in Figure 6, the model reaches more than 50 % of the variability of the measurements. This ratio depends strongly
on the species and is higher for longer time scales. This points at a high complexity of the model and justifies the assumption
underlying this study: The representativeness evaluated from the model data alone is also valid for the real atmosphere and the

measurements taken by CARIBIC.

6 Results

Here, we first present the results of the application of the Kolmogorov-Smirnov test (Sec. 6.1), the variability analysis (Sec. 6.2)
and the relative difference (Sec. 6.3) to MOD?}%‘Q%IC and MODganpeara- All have to be related to the number of flights and the
variability of the species as discussed in Section 3.3. These methods have also been applied to data not from an atmospheric
model but from a random number generator, leading to equivalent results. These are presented as supplementary material to
the article. Sec. 6.4 interprets the results by species as a representativeness uncertainty. Finally, Sec. 6.5 answers the question
of how many flights are necessary to achieve a certain degree of representativeness. In addition, Appendix A discusses the

influence of the limitations in longitude and in pressure which are inherent in the CARIBIC dataset.

6.1 Applying the Kolmogorov-Smirnov test

The application of the Kolmogorov-Smirnov test to MOD&;‘{%IC and MODg anppath Yields a first important result. Independent

of the trace gas and height considered, the result is always negative (not shown). This means that the data in each bin of
MODrCeilll{l?;IC are not representative of the corresponding bin in MODganppaty When defining representativeness by a positive
result of the Kolmogorov-Smirnov test. This is also true if the data are not binned in months but only in HrelTP. The result also
stays the same for all values of the confidence limit « (using values of 0.001, 0.01, 0.05, 0.1 and 0.2).

A similar finding for aircraft data have already been reported by Kunz et al. (2008). On the one hand side this could mean
that MODgﬂf};m is simply not representative of MODganpparh. But if the other methods presented here are considered, the
conclusion seems more appropriate that the Kolmogorov-Smirnov test is simply not the appropriate way to answer the question.
It can be considered as too strict for the type of data and the question considered here. This is also the result of a sensitivity

study, which is discussed as supplementary material to this text.
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Figure 7. Ry, calculated according to Equation 5 for a time scale of la for all species in all height bins, using MOD¢ s and

MODganprara- Low values indicate small differences in variability.

In addition to binning into twelve months (January to December), we have also tested MODrCeilll{l?gIC and MODg anpparn When

first binning into separate months (108 months in nine years) and then using this monthly mean data to compile a climatology.
For this monthly mean data, the Kolmogorov-Smirnov test does give a positive result in some heights and months. But no
meaningful pattern could be determined from the results. Especially, the result does not depend on 7* (not shown). The same
is true for the Mann-Whitney test for the mean and Levene’s and the Brown-Forsythe test for variance. They give no positive
result for data binned directly into months. The result is positive for some months and heights if data are first binned into
separate months the monthly mean data used for testing. The postive results seem randomly distributed and no relationship to

7* could be found. These tests therefore also seem not to be suitable for answering the question of representativeness.

6.2 Applying the variability analysis

This section presents the results of the application of the variability analysis to MODgi‘g%;IC and MODganppata- Equation 5

was applied for different time scales (30d, 0.25a, 0.5a, 1 a, 2a and 5a) to calculate R,;. The results are exemplarily discussed
for a time scale of 1a, shown in Figure 7, in which the results are sorted using the values of 7* displayed in Figure 2.

Ryar shows a strong dependancy on 7*. This is visible from Figure 7, in which the results are sorted with decreasing values
of 7* (from Figure 2), i.e. with increasingly higher atmospheric variabilty from left to right. The Pearson correlation coefficient
p of Ry, and 7 is high, |p| > 0.9 in all height bins, independent of the time scale. Ry, also shows a strong relationship to the

regular

number of samples: The amount of data in both MOD ;¢ 5;c and MODgranppaTH decreases below and above the tropopause,

and R,,, follows suit for practically all species.
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Figure 8. R, calculated according to Equation 6 for all species in all height bins, using MOD2%% . and MODganpeats. Low values indicate

small differences in climatological mean values.

The relation of R, and the number of flights was also tested by using MOD}} \xppary defined in Sec. 3.3. Ry, was correlated
with the number of flights for each species and height. When investigating a linear relationship, the Pearson correlation coef-
ficient was approximately |p| = 0.75 for the time scale of 5a, increasing continously when considering shorter time scales to
|p| = 0.95 for the time scale of 30d. Considering a logarithmic relationship inreases the goodness of fit for longer time scales,
while it decreases that for shorter time scales (|p| /= 0.85 for both 5a and 30d).

Ryar therefore passes the requirements of being inversely related to 7 and directly to the number of included data points and
flights. Figure 7 can therefore be used to judge upon the representativeness of MODgﬂi&c for MODRANDPATH-

This shows that by using the relative standard deviation (Equation 5) instead of the variance analysis applied by Kunz et al.
(2008), the difference in variability can be used to infer representativeness. Rohrer and Berresheim (2006) originally introduced

the variance analysis to investigate the sources and time scales of variability in a dataset and for this it remains a valid method.

In order to infer representativeness, it is more appropriate to use the relative standard deviation in the analysis instead of the

absolute variance.

6.3 Relative differences

R;e1 was calculated for each species in each height bin according to Equation 6, results are presented in Figure 8.

Figure 8 shows how low variability (decreasing to the left, values taken from Figure 2), is linked with good representativeness
(low values in Ry). Ry decreases linearly with increasing variability 7* with a high Pearson correlation coefficient greater
than 0.95 for all height bins (not shown). As visibile in Figure 8, Ry also decreases with the number of data points, which

maximizes just around the tropopause and decreases above and below it (see Figure 1).
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This dependance on the number of data points was also tested by using MOD} snppary described in Sec. 3.3. The Pearson
correlation coefficient p between the number of shorter random flights and R} was p ~ 0.95 for all species in all heights. Less
variable species like CO5 show a better relationship with the logarithm of the number of flights. This underlines how R is
well correlated with the number of measurements.

Using R, as a measure passes both conditions: It is directly proportional to the number of flights and indirectly to the
variability. In addition to Figure 7, Figure 8 can therefore be used to judge upon the representativeness of MODSER . for
MODganpratH- Rrel can be transformed into a relative difference in percent, by taking R to the power of ten. A score of -2
stands for a mean relative difference of 1 %.

The score that discriminates representative from the non-representative case has to be arbitrarily chosen (see Nappo et al.
(1982) and Ramsey and Hewitt (2005)). This score gives the uncertainty within which the data are considered representative.
If a score of -2 is defined as representative (corresponding to 1% mean relative difference), then representative species and
heights can now be seperated from those species that are not representative using the results from Figure 8. But the score of -2

regular

is arbitrary. If it is reduced to -1.5 (roughly 3 % relative difference), MODyg g1 can be seen as representative for many more

species.
6.4 Representativeness uncertainty of the CARIBIC measurement data

The last sections have shown Ry (see Equation 6) and R,,; (see Equation 5) to be adequate scores to describe representative-
ness. After reconsidering the question we asked in the Section 3.1 (Is a climatology compiled from CARIBIC data represen-
tative of the tropopause region in mid-latitudes?), we will use Ry in the following. It is more intuitive (compared to Ry,,) as
it describes the difference to a larger dataset, e.g. in percent. A further discussion of Ry, is beyond the scope of this paper. As
noted in Sec. 4.3, R, is also comprehensible as an uncertainty for using the smaller dataset to compile a climatology and will
be called representativeness uncertainty correspondingly.

In order to asses the uncertainty for accepting CARIBIC measurement data to create a climatology, model data have to
contain the same amount of data as MEAScagrpic, which is why MOD?;“%E?C (see Sec. 2) will be used in the following. In
addition, MODganpLoC (see Table 1) was used as reference, as it has a random sampling pattern and represents the full model
state, independent of the sampling pressure. The limits in pressure where again set to 180hPa < p < 280hPa. The resulting
Rie1 is shown in Figure 9. Using different wording, Ry in this formulation can also be considered the sampling error of the
measurements.

This result - deduced from model data only - is also valid for the real world if the complexity of the model is sufficiently
high for each species. This has been shown by comparing the variability of MODZrblet . and MEASEISOhed. for different time
scales (see Sec. 5). The discussion of the following paragraphs is therefore also valid for the real atmosphere, even though
results have been derived from model data alone. Figure 9 answers the question we asked in Sec. 3.2: For which species is a
climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

When considering the representativeness uncertainty of a climatology, it is also important to consider the annual cycle of

a species, e.g. 10% can be much for a species that is more or less constant, while it is much for a species with a strong
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Figure 9. Representativeness uncertainty for using the CARIBIC data (that is 334 long-distance flights, see Table 1) to compile a climatology:
10R=! calculated from MODganpLoc and MODETIEEC. Low values indicate small representativeness uncertainties. N2O, C2Hg and C3Hg

are measured from air samples, which increases the uncertainty, especially for C3Hs.

seasonality. The following paragraphs discuss representativeness by species, not explicitly considering the seasonal variations
for each species. The monthly resolved climatologies of CO, CO5 and O3 will be discussed exemplarily at the end of this
section.

Many of the species that sum up to NO,, in the model are not actually measured by CARIBIC and therefore are not displayed
in Figure 9. In general, the representativeness uncertainty is lowest where there are most measurements, which is just around
the tropopause (see Figure 1). This effect overlays the physical reasons for the different uncertainties for the considered species.

NO has the highest uncertainty of 90 %. We propose two possible reasons: On the one hand, there are many gaps in the obser-
vations. But NO is also emitted by aircraft in the UTLS (Stevenson et al., 2004), and since CARIBIC flies in the flight corridors
heavily frequented by commercial aircraft, it is unrealistic to assume a climatology of these species to be representative of the
UTLS on a whole.

H>0 shows a strong gradient in its representativeness uncertainty, which is directly linked to the strong gradient in variability.
The dry stratosphere can be described by relatively few measurements, which is why the uncertainty is low, only reaching 25 %
at most. The humid and variable troposphere influenced by daily meteorology has a higher uncertainty, reaching more than
60 %.

NOy, being a pseudo-species made up of many substances, is more difficult to disassemble. The variabilty of many com-
ponents is higher in the troposphere, where the uncertainty is 30 % at its maximum. Above, it is smaller than 10% and the

climatology therefore quite trustworthy.
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It is interesting to note that CoHg and C3Hg, both collected in whole air samples still reach uncertainties comparable to those
of other species in their range of 7*. This is due to the fact that these are moderately long-lived species for which only a smaller
number of measurements are needed for a representative climatology. The climatology of C3Hg comes with an uncertainty of
up to 25 %, while that of CoHg is better with an uncertainty of less than 10 %.

The climatology of Oj is very trustworthy, the uncertainty being smaller than 10 % for most height bins. The higher values
in the tropospheric bins should not raise much concern, as O3 increases strongly with height in the UTLS and an uncertainty
of 15% will be practically unnoticable compared to the vertical increase.

This is not true for acetone, where the gradient is just opposite to Os. The climatology is trustable with an uncertainty only
up to 10% in upper levels, while it increases to 20% in the lower heights, where the influence of spatially and temporally
variable sources at the ground is stronger.

The climatology of CO is very good, the uncertainty in stratospheric height bins being less than 5 %. The troposphere, again
stronger under the influence of sources, has a higher uncertainty reaching up to 10 %.

The long-lived trace gases CHy, NoO and CO- (all detrended as described in Sec. 2.1) all have representativeness uncertain-
ties of less than 0.4 %, which is lower than their seasonal variability. This is interesting especially for N5 O, which is measured
only in the whole air samples.

As example and summary, the representativeness uncertainty will be applied to climatologies of CO, CO4 and Oz, shown in
Figure 10. CO is shown for MOD?X’%E‘}C (top left, panel A), MODganpLOC (top right, panel B) and CARIBIC measurements
(MEAScariBIc, center left, panel C). The white space in these figures has three possible reasons: the aircraft could have never
flown in that bin, there could be measurement gaps in CO or a gap in HrelTP. The measurement gaps of CO and HrelTP
from MEAScarisic have been mapped onto MOD?A“RPE(}C, but HrelTP differs slightly and therefore also the white space. The
representation of CO in the model, comparing top and center left figure (panels A and C), is similar to measurements (in the
troposphere more so than in the stratosphere), but was not subject of this study. We compared the top row (MODSCaXlRp}eBC}C and
MODganpLoc, panels A and B) and found that R is a good descriptor for the representativeness of one for the other. By
accepting the result from the model to be valid also for measurements, we can now use the score calculated from the two model
samples to determine the representativeness uncertainty of MEAScarsic-

By again defining R;; = —1 (10 % uncertainty, one third of the seasonal variation) as the limit for representativeness, the
climatology of MEAScarisic (Figure 10, center left, panel C) was shaded in grey where it is not representative. The representa-
tiveness uncertainty shown in Figure 9 only serves as a first indication of the expected uncertainty when resolving monthwise.
The center right panel (panel D) displays the standard deviation of CO from MODganpLoc. By comparing the center panels
(C and D), it becomes evident that the variability specific to CO is one of the reasons for the higher representativeness uncer-
tainty in spring, while it cannot explain all the features. The number of flights is a different reason, which explains the higher
uncertainty in January, the month with the least flights (not shown).

The limit of 10% should not be applied in general and has to be adapted to the species under consideration. This becomes
evident by the bottom row in Figure 10 (panels E and F), which shows climatologies of CO4 and O3. CO2 shows a small

annual variation around a high background value. So 10 % uncertainty could be easily reached by a single measurement, which
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Figure 10. Climatology of CO, built from MODZPl . (panel A), MODganpioc (panel B) and the CARIBIC measurements (MEAScarisic,
panel C). Areas of 10" Ry; > 0.1, calculated from the top row, were used to shade non-representative areas in the climatology of MEAScarigic
in grey. Panel D displays the 1o standard deviation of CO from MODganproc. The bottom row (panels E and F) displays climatologies from
MEAScarisic of COz (left) and O3, shaded with 10" R > 0.003 and 10" Ry > 0.15, respectively.
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would certainly not be representative of the whole year. The shading for CO5 in Figure 10 was set at a threshold of 0.3 %,
again just above one third of the seasonal variation. The high values in spring in the upper troposphere show an even lower
uncertainty, the uncertainty of all data being less than 0.7 % (not shown). The opposite is true for O3, for which the threshold
was set to 15 % uncertainty (around one fourth of the seasonal variation). Many tropospheric values in spring or at times of
high gradients in the stratosphere at the beginning and end of spring have an uncertainty higher than these 15 %.

As the results in Figure 9 are sorted by the variability of the species and this is linked to their lifetime in following Junge
(1974), conclusions are possible for species even if they have not been explicitly considered in this study. This is true for SFg,
for example, which is measured in whole air samples by CARIBIC but was set to 0 in the model run and could therefore not be
included in this study. As it is long-lived in both troposphere and stratosphere (Ravishankara et al., 1993), a climatology from
CARIBIC SFg measurements can be considered to be representative even though it is measured only by whole air samples.

Two limitations are inherent in the CARIBIC data: the Pacific Ocean is never sampled and the pressure is limited to flight

levels. The influence of both these limitations is discussed in Appendix A.
6.5 Number of flights for representativeness

One last question remains to be answered: For those substances not representative yet, how often does one have to fly in order
to achieve a representative climatology?

This question can be answered with the help of MOD} , \ppary- Figure 11 shows the representativeness uncertainty for some
species and different numbers of flights. As has been discussed in Section 6.4, the yearly variation of a species is one of the
factors that determines the threshold of the uncertainty with which the species can be considered to be representative.

E.g., for (detrended) CO5, the mean value of MODganpLoc 18 385.7 ppmv with a yearly variation of 2.5 to 3.5 ppmv. A
representativeness uncertainty of at least 0.5 % has therefore to be set as the minimum threshold for COs. This can be reached
with only few flights, much less than those included in MODEA®*! . indicated by the dashed line in Figure 11 at 334 flights.

For Og, on the other hand, the yearly cycle proposes an uncertainty of 50 % or more. While this is the minimum value to
reproduce the yearly cycle at all, it may still not be sufficient for the application. With the number of CARIBIC flights, the
uncertainty in Og is low already (< 5% in this height), while the uncertainty is continuosly reduced if the number of flights
increases.

As is indicated by Figure 11, highly variable species like NO need many flights in order for their climatologies to reach
low uncertainties. Even 1000 flights, approximately ten more years of flying the CARIBIC observatory, will not reduce the
uncertainty below 10%.

Other species that are not included in Figure 11 can be deduced from their value of 7* with the help of Figure 2. Those species
measured in air samples need even more CARIBIC flights than indicated by the number in Figure ??, as the measurement

frequency is much lower.
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indicated by the vertical dashed line. Other species can be deduced from their value of 7* with the help of Figure 2.

7 Conclusions

We describe and assess the degree of climatological representativeness of data from the passenger aircraft project [AGOS-
CARIBIC. After a general discussion of the concept of representativeness, we apply general rules to investigate whether
climatologies from IAGOS-CARIBIC trace gas measurements can be seen as representative. We answer the specific question:
For which species is a climatology compiled from CARIBIC data representative of the tropopause region in mid-latitudes?

In order to answer this question, four datasets were created from a nudged model run of the chemistry-climate model
EMAC. Two datasets sample the model at the geolocation of CARIBIC measurement data (MODSER . and MODE P! ),
These datasets are contrasted to the much larger datasets MODganpparn (random flight tracks with similar properties as those
of MODrCeiL]‘;?gIC) and MODganpLoc (random locations).

As a first step, we demonstrate that these model datasets are appropriate to answer our question, which asks for the rep-
resentativeness of CARIBIC measurement data. In order to justify the validity of the conclusions drawn from model data to
the measurements, we compare model and measurement variability, using the variability as an indication of the models ability
to reproduce changes in space and time. To compare like with like, variability on scales smaller than the model resolution is
removed from the measurements. With this prerequisite the model reproduces 50-100 % of the variability of the measurements,
depending on time scale, height relative to the tropopause and species. This is sufficient to transfer our results from the model
world to the real atmosphere.

Three methods to describe representativeness are developed and applied: (i) the Kolmogorov-Smirnov test (and the Mann-

Whitney, Brown-Forsythe and Levene’s test), (ii) variability analysis following Kunz et al. (2008) and (iii) a test interpreting
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the relative difference between two datasets. Two fundamental requirements are essential for representativeness: its increase
(i) with the number of measurements and (ii) with decreasing atmospheric variability of the species, which is related to atmo-
spheric lifetime following Junge (1974). By formulating the variability analysis and relative differences as scores (Ry,r and Ry
respectively), we demonstrate that they pass these two requirements, while the statistical tests are all too strict. Ry (describ-
ing the representativeness of a climatology) is better suited for answering the question and is therefore used in the remaining
analysis.

The score R, is easily converted to a representativeness uncertainty in percent and this measure is used in the discussion.
The results show that CO2, NoO and CH4 have very low uncertainties (below 0.4 %). CO, C2Hg, and O3 reach higher values
(5% - 20%), but can still be used to compile representative climatologies around the tropopause. NOy and H,O are only
usable in the lower stratosphere (uncertainties of 5% to 8% there, higher elsewhere), while NO and C3Hg cannot be used
for a representative climatology (uncertainties of 25 % and more). Naturally, the interpretation of results strongly depends on
the chosen threshold uncertainty and should depend on the seasonal variability of the species under consideration. This is
demonstrated by setting different limits for climatologies of CO5, CO and Og.

In addition, the uncertainty can be translated into a number of flights necessary to achieve representativeness. This is demon-
strated for some species by showing the relationship of the number of flights and the representativeness uncertainty. For long-
lived species like CO5 and CHy, the 334 IAGOS-CARIBIC flights used in this study already provide enough data, while
short-lived species like NO need around 1000 flights to reduce the uncertainty to 10 %, sufficient to reproduce the strong
annual cycle.

The general concept of using two sets of model data to calculate the representativeness is easily applicable to other questions.
One model dataset should mirror the measurements, the other should be much larger, taking into account certain statistical
properties of the measurement dataset, so that the two datasets become comparable.

Questioning the representativeness of sampled data is important. Patterns might occur when sorting or averaging sparsely
sampled data, but these patterns are not necessarily meaningful. We discuss and show a way to address this problem of repre-
sentativeness by using model data. By help of the methods presented here, representativeness is given a sound mathematical

description, returning an uncertainty characterizing the specific dataset.

Appendix A: Limitations in longitude and pressure

MEAScarisic is limited in longitude (the Pacific Ocean is never sampled) and pressure (as all civil aircraft, CARIBIC flies
at a certain pressure level). Both limitations influence the climatologies calculated from the dataset. They are discussed in the

following sections.

Al Limitation in pressure: Aircraft tropopause pressure bias
regular

By calculating Rye; using MOD 4 ggic and MODgranpLOC, an important fact can be illustrated about data collected with instru-

ments on civil aircraft. As the aircraft flies at constant pressure levels, data are also taken at these pressure altitudes only. If
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data are then resorted into heights relative to the tropopause (HrelTP), this limit in pressure is no longer visible. Nevertheless,
it influences the results as the volume mixing rations of many trace substances are not only a function of their distance to the
tropopause, but also of pressure.

The effect on the climatological values can be illustrated by calculating R, (see Equation 4) using MODganpLoc and
MODER - within 10hPa < p < 500hPa. Figure 12 shows the results (right panel). For comparison, the left panel of Fig-
ure 12 shows R, of the same datasets when setting 180hPa < p < 280hPa, the range at which CARIBIC measures. The
representativeness uncertainty is much higher in almost all heights on the right hand side (10hPa < p < 500hPa), except just
above the tropopause, where MODrCeilﬁ?glC contains most data. Only the long lived species CO2, NoO and CHy retain their
low uncertainties. For the more variable species to the right of the figure, the representativeness uncertainty increases strongly,

especially in the troposphere, where the variability increases if data taken at higher pressure are included.
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Figure 12. Ry calculated from MODEERe . and MODganproc With the range of p set to 180hPa < p < 280hPa (left) and 10hPa <
p < 500hPa (right). Low values indicate small climatological differences. The difference between the two panels shows the influence of

expanding the limits in p when calculating the climatological mean values with Hrel TP used as a vertical coordinate.

The strong increase in representativeness uncertainty is always present in measurement data from commercial aircraft, which
can only collect data high above the tropopause when the tropopause is at high pressure and far below when it is at low pressure
values. This bias is naturally contained in all data measured at constant pressure and then sorted relative to the tropopause and

should be kept in mind when examining climatologies from corresponding platforms.
A2 Limitation in longitude: The influence of the Pacific Ocean

As visible in Fig 1, there are no CARIBIC measurements over the Pacific Ocean, while MODganprLoc and MODganppaTh also
cover the Pacific. The uncertainty introduced by taking the Pacific into account in MODganpLoC 1S investigated by calculating
Ry from MODrCeing?lgIC and MODganproc in two different setups. Ry is calculated from full MODganproc and MODrCeiLl‘zl?lgIC

(denoted by RQI) and compared to Ry calculated with MODgaNproc limited in longitude A to 120°W < A < 120°E (denoted
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Figure 13. R /RS, — 1

MODE% _ and MODganproc by including the Pacific ocean in MODganproc, even though it is not sampled by MOD{ER" .. Both,

, given in percent. This is the fraction of the representativeness uncertainty introduced in Ry calculated from

text RA and textRE, have been calculed from MODEERY  and MODganproc, excluding the Pacific in MODganpioc in the calculation of

rel
textRE,.

by RE)). The result is shown in Figure 13 as relative differences |R%,/RE, — 1| between the two uncertainties. The relative

differences show the share of the uncertainty inherent in MODgi‘gglc because the Pacific is included in the reference dataset

MODganbLOC-

The importance of the Pacific depends on the species under consideration and whether the stratosphere or troposphere are
considered. The influence on stratospheric values is very small for all species. In addition, those heights with less data (top and
bottom) are most strongly influenced if the Pacific is not considered. For the long-lived species CO2 and N2O, the uncertainty
increases only little (less than 3%) if the Pacific is included in the reference climatology of MODganpLOC- But tropospheric
CHy is more influenced by surface values. Interestingly, CINOs is also not affected, which clearly shows that the effect does
not depend on lifetime, but on the source regions and the chemistry. Acetone, CO and CyHg are air pollutants with strong
sources in Asia. Parts of these sources are excluded if the Pacific is not considered, which is why the inclusion of the Pacific
in MODganpLoc is responsible for 15-20% of the total uncertainty. The situation is similar for HNOg, N2Oj5, BrNO3 and

HONO. For the other species, the uncertainty introduced by the Pacific is smaller.

Appendix B: Method of smoothing

This section shortly describes the method of smoothing used for creating the dataset MEAS{MSothed,.

Each species and each flight is considered separately. For smoothing a certain interval of the time series (consisting of a

certain number of data points V), the time series is first cut into the corresponding number of pieces and the mean value of the
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Figure 14. Timeseries of CO for flight 445 from Frankfurt to Tokyo. Shown is the time series of the interpolated model data and of the

measurements. Measurements have been smoothed three times. The number indicates the length of the smoothing interval N.

N datapoints calculated within each piece. In a second step, these mean values are associated with the center of each piece of
the time series. Then, a linear interpolation is performed between the central points. The corresponding mean value is applied
directly from the beginning of the flight to the center of the first interval and from the center of the last interval to the end of the
flight. Finally, the gaps in the original time series are mapped onto the smoothed data. The original and the resulting smoothed

time series are shown in Figure 14 for three different lengths of the smoothing interval V.
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Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive cli-
matologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such cli-
matologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in
mid-latitudes (35°N to 75°N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC,
we sample the modelled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the
CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation
of representativeness: the Kolmogorov-Smirnov test and two scores based on (i) the variability and (ii) relative differences.

Two requirements for any score describing representativeness are essential: Representativeness is expected to increase
(i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two require-
ments, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-
Smirnov test is very strict and does not identify any trace gas climatology as representative — not even of long lived trace gases.
In contrast, the two scores based on either variability or relative differences show the expected behaviour and thus appear
applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative
differences score and calculate a representativeness uncertainty for each trace gas in percent.

In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measure-
ments, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100 % of the
measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial
and temporal model resolution.

In conclusion, we provide representativeness uncertainties for several species for tropopause referenced climatologies. Long-
lived species like CO5 have low uncertainties (< 0.4 %), while shorter-lived species like O3 have larger uncertainties (10-15 %).

Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of
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representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a

mere 1%, while the uncertainty for shorter lived species like NO would drop from 80 % to 10 %.

1 Introduction

This supplement discusses further results of the study of the representativeness of IAGOS-CARIBIC data using the chemistry-
climate model EMAC. For abbreviations and methods, please refer to the main text. Two points are discussed here:

The methods to describe representativeness developed and tested with model data were also applied to data from a random
number generator. This is described in Section 2. Section 3 discusses the sensitivity study of the Kolmogorov-Smirnov test

. regular
using a subsample of MODxrpic-

2 Calculating representativeness from random numbers

All three methods to investigate representativeness (Kolmogorov-Smirnov test, variability analysis and relative differences)
have also been applied to data created with a random number generator. The results of this study are presented here.

To produce the random numbers, 20 sets of 108 numbers were taken from a normal distribution. These 20 sets are referred
to as species, well aware of the fact that they are purely artificial. From species to species, the standard deviation o was set to
vary from 1073 to 102, values of the exponent increasing linearly. 20 mean values j (increasing from 10 to 108, with a linear
increase in the exponent) where distributed randomly to the 20 species. This results in 20 species with different values for o
and p. The statistics of each species will be indexed by the number 2. For short, this dataset will be called RAND.

3000 samples were taken from each of the 20 species. For each sample, 20 numbers were first randomly drawn from each
species. These new numbers and all those that had been drawn before then make up this one sample. So the size increases by 20
for each sample. This way, the relationship of the representativeness score with the sample size is directly accessible. Samples
are indexed by the number 1.

The variability 7* of each species is defined as in Equation 3 of the main text: 7* = log;,(c2/112). The two requirements set

up in Section 3.3 for representativeness in general also have to hold here:
1. Representativeness has to increase with the number of samples.
2. Representativeness has to decrease with increasing variability of the underlying distribution.

With RAND defined in this way, it is possible to test representativeness using the variability analysis following Rohrer and
Berresheim (2006) and Kunz et al. (2008) (see Section 4.2) and the relative differences (see Section 4.3). The Kolmogorov-
Smirnov test was positive for very few samples (less than fifty numbers, independent of 7*) and will not be further discussed.

Its behaviour with aircraft data was subject of a sensitivity study, the results of which are shown in Sec. 3 of this supplement.
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Figure 1. Representativeness score Ry, applied to RAND. Vertical lines indicate the values of 7* of each species.

2.1 Variability analysis

The variability analysis (defined in Section 4.2 and Eq. 3) was applied in a simplified manner. As RAND is independent of
time, Ry, is reduced to just a single value containing the absolute difference of variability of each species of RAND and the
sample taken thereof: Ry, = |v1 — 12|, where v is the mean variability. Figure 1 shows a result. The exact result is a matter of

regular

chance, as a random number generator is used. Similar to using MOD 3 pg1c and MODganppaTH, @ Strong dependance on 7*

and a weak dependance on the number of samples is visible.
Similar to R,,, when using MOD?iﬂ?;IC and MODganppaTH, the variability analysis using RAND meets the two require-
ments necessary for describing representativeness, which were described in Section 3.3 and above. This result supports the

finding that Ry, can be used as a statistic for describing representativeness.

2.2 Relative differences

Similar to Ryy, Ry is reduced to a simple relative difference when using RAND: Ry = |11 — p2|/p2, where p is the mean of
the sample (index 1) and of the whole subset (index 2). Figure 2 shows a result when applying R..; to RAND. The dependance
on 7" is strong and linear. The result also depends on the number of samples, showing a slow increase with the number of
samples. This dependance is sometimes disturbed by better values which are reached by chance when drawing from RAND.
Like for MODrCeilg?lglc and MODganppatH, Rrel passes both conditions for a valid description of representativeness: it depends

on variability 7% and on the number of samples. The latter is also being influenced by chance and generally much weaker.
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Figure 2. Like Figure 1, but for Ry.

The fact that Ry passes the two conditions for a description of representativeness can be understood with some theoretical

considerations. The standard error of the mean is defined by
oo O )

where oz, the standard deviation of a sample, can be given by the following equation (/V being the number of samples):

2

For N = 1, this gives:

oz =T — u 3)

Plugging Eq. 3 into Eq. 1 gives:

Tl _ o 107

= = 4
1t mno /n @

and therefore

T — 1
Rrel - loglo <| L ‘u|> = _0510g10(n) + F (5)

So ideally, R, should depend inversely on 7* and directly on the logarithm of the number of values. Figure 2 shows this is

approximately true for RAND.
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Figure 3. Flightroutes to Vancoucer, Canada, where each flight has been cut into 20 pieces and randomly chosen 30% of those pieces have

been plotted. These are tested against the whole data from flights to Vancouver to give one point in Figure 4.

In the case of RAND, R, and Ry, can both be used to describe representativeness as they pass the two conditions. Theoret-
ical considerations make the finding plausible for R..;. RAND can be considered a theoretical abstraction of MOD. The finding
here therefore strongly supports that of Sections 5.2 and 5.3, where R and Ry, have also been found to be good descriptors

regular

of representativeness when using MOD ;g ipic @and MODganppath 0f MODganproc. In the main text, we use Ry for final

results, as it more suitable to answer the question of representativeness for a climatology.

3 Sensitivity study on the Kolmogorov-Smirnov test

When applying the Kolmogorov-Smirnov test to MODICC%?];IC, MODganppath 0f MODganpLOC, it returned almost only neg-

ative results. This indicates that MOD?%;;IC is not representative of MODganpparh in the definition of the Kolmogorov-
Smirnov test. This behaviour was tested in a sensitivity study, the results of which are discussed here.

One of the most frequent destinations within the CARIBIC project is Vancouver, Canada (near 120°W, 45°N, see Figure 3),
and only the subset of MODEEN"  to this destination is considered in this example to minimize effects that may come
from different flight routes. Parts of this reduced dataset were tested with the Kolmogorov-Smirnov test against the whole
reduced dataset for all variables. To produce these partial datasets, each flight was cut into an increasing number of pieces

(corresponding to a certain time) and different percentages of these pieces were used in testing. Figure 3 shows an example of

applying this method, by cutting each flight into 20 pieces and taking 30% of these by showing the corresponding flightpaths.
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Figure 4. The Kolmogorov-Smirnov test applied to the flights to Vancouver, Canada, of MODS/%'#?;IC and subsets of these flights. Dotted

lines indicate those lengths in time and those percentages that were tested. O stands for a passing the Kolmogorov-Smirnov test, 1 for not

passing.

Data was not binned in months. When applying the Kolmogorov-Smirnov test without binning in months, the result is a
profile in HrelTP for each variable. The result can then be diplayed in similar way to Figures 7 and 8. This matrix of height
versus species was calculated for each combination of number of pieces and percent of pieces. In each combination, all the
profiles of the different variables were averaged to end up with one value betwween 1 and O characterizing the result of the test
for this combination of number of pieces and percent of pieces. The result can then give an impression of the strictness of the
Kolmogorov-Smirnov test.

Figure 4 shows the result of the study. Independent of the number of pieces, the result is positive if all pieces are considered,
as the definition of the test prescribes. But only when removing short pieces (shorter than 20 min) is the result also positive for
less pieces, even though 70% percent of the data is still needed. When removing whole flights (at the top of the plot), more the
90% of the data has to be taken into account to achieve a positive result of the Kolmogorov-Smirnov test. This result is very
similar also for other error probabilities «, taking values of 0.001, 0.01, 0.05 (in the figure), 0.1 and 0.2. The area of failing
increases only slightly with the error probability. This showcases the strictness of the test. The Kolmogorov-Smirnov test does

not seem suitable to test a dataset measured with aircraft for representativeness of a larger dataset.
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