We thank the reviewer for his/her careful reviews and helpful comments. The manuscript has been revised accordingly and our point-by-point responses are provided below. (Reviewer's comments are in italic and the responses in standard font).

Minor criticisms.

Line 280-282. Why is the OC to BC ratio in emissions of forest fires almost 3 times higher than that from other kinds of fires (grassland, savannah, and deforestation)?

 \rightarrow Reply: The OC to BC ratio in emissions strongly depends on the burning phases (smoldering versus flaming phases). For forest fires, most of the emissions come from the smoldering phase of burning, which has a higher OC to BC ratio. For other kinds of fires (grassland, savannah, and deforestation), the emissions come mainly from the flaming phase of burning, which yields a lower OC to BC ratio. We have added a note in the revised manuscript.

Lines 428-431. The authors note that the sum of ARI radiative effects from individual components (BC and POM) is greater than the radiative effects due to all aerosols. They then state that this is evidence of nonlinear interactions among aerosol components. The reader would appreciate more details on these nonlinear interactions, perhaps an example.

 \rightarrow Reply: In the MAM4 aerosol module, individual aerosol components (e.g., fire BC and fire POM) are internally mixed within aerosol modes, thus different aerosol components can influence each other in the ARI radiative effects. An example of nonlinear interactions among aerosol components includes: fire POM and water on fire BC particles enhance solar absorption by the fire BC. This will make the sum of radiative effects from fire POM and BC greater than that due to all fire aerosols. We have added a note in the revised manuscript.

Lines 450-452. *Again some explanation or examples of nonlinear interactions affecting ACI radiative effects would be helpful.*

→Reply: The sum of REaci from fire BC and POM (-0.62±0.03 W m⁻²) is smaller in magnitude than that of all fire aerosols (-0.70±0.05 W m⁻²). This is because the internal mixing of fire POM and fire BC by all fire aerosols enhances the cloud droplet number concentration in comparison to the sum of cloud droplet number concentrations from individual fire POM and fire BC (Jiang et al., 2013). We have added a note in the revised manuscript.

1	Impacts of Global Open Fire Aerosols on Direct Radiative, Cloud
2	and Surface-Albedo Effects Simulated with CAM5
3	
4	Yiquan Jiang ^{1,2} , Zheng Lu ² , Xiaohong Liu ^{2,*} , Yun Qian ³ , Kai Zhang ³ , Yuhang Wang ⁴
5	and Xiu-Qun Yang ¹
6	
7	
8	¹ CMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate
9	and Global Change Research, School of Atmospheric Sciences, Nanjing University,
10	Nanjing, China
11	² Den stand of Atmospheric Crimer II. in a fille stand of HV.
12	Department of Atmospheric Science, University of wyoming
13	³ Pacific Northwest National Laboratory, Pichland Washington, USA
14 15	Tucific Northwest Nutional Laboratory, Richland, Washington, USA
16	⁴ School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta
17	Georgia. USA
18	
19	
20	
21	*Corresponding author:
22	
23	Dr. Xiaohong Liu
24	Department of Atmospheric Science
25	University of Wyoming
26	Laramie, WY 82071
27	Phone (307) 766-3225
28	E-mail: xliu6@uwyo.edu

Abstract 30

31	Aerosols from open-land fires could significantly perturb the global radiation
32	balance and induce the climate change. In this study, Community Atmospheric Model
33	version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate
34	the spatial and seasonal characteristics of radiative effects (REs, relative to the case of
35	no fires) of open fire aerosols including black carbon (BC) and particulate organic
36	matter (POM) from 2003 to 2011. The global annual mean RE due to
37	aerosol-radiation interactions (REari) of all fire aerosols is 0.16 \pm 0.01 W m $^{-2}$ (1 σ
38	uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m ⁻²), while fire
39	POM induces a small overall effect (-0.05 W m ⁻² and 0.04 \pm 0.01 W m ⁻² , respectively
40	based on two methods). Strong positive REari is found in the Arctic and in the
41	oceanic regions west of southern Africa and South America as a result of amplified
42	absorption of fire BC above low-level clouds, in general agreement with satellite
43	observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of
44	all fire aerosols is -0.70 \pm 0.05 W m ⁻² , resulting mainly from the fire POM effect
45	$(-0.59\pm0.03 \text{ W m}^{-2})$. REari $(0.43\pm0.03 \text{ W m}^{-2})$ and REaci $(-1.38\pm0.23 \text{ W m}^{-2})$ in the
46	Arctic are stronger than those in the tropics (0.17 \pm 0.02 and -0.82 \pm 0.09 W m ⁻² ,
47	respectively for REari and REaci), although the fire aerosol burden is higher in the
48	tropics. The large cloud liquid water path over land areas and low solar zenith angle
49	of the Arctic favor the strong fire aerosol REaci (up to -15 W m^{-2}) during the Arctic
50	summer. Significant surface cooling, precipitation reduction and low-level cloud
51	amount increase are also found in the Arctic summer as a result of the fire aerosol
52	REaci based on the atmosphere-only simulations. The global annual mean RE due to 2

53	surface albedo changes (REsac) over land areas (0.03 \pm 0.10 W m ⁻²) is small and
54	statistically insignificant, and is mainly due to the fire BC-in-snow effect (0.02 W m^{-2})
55	with the maximum albedo effect occurring in spring (0.12 W m ⁻²) when snow starts to
56	melt.
57	
58	1. Introduction
59	Open fires or biomass burning of living and dead vegetation are an integral
60	component of the Earth system, and have significant impacts on the carbon cycle
61	[Ciais et al., 2013] and the climate [Bowman et al., 2009; Keywood et al., 2011; Liu et
62	al., 2014; Sommers et al., 2014; Voulgarakis and Field, 2015]. On one hand, open
63	fires can perturb the climate system by emitting greenhouse gases and aerosols
64	[Kaiser et al., 2012; Wiedinmyer et al., 2011]. On the other hand, climate states and
65	variabilities can play a critical role in determining the occurrence frequency and
66	intensity of open fires [Marlon et al., 2009; van der Werf et al., 2008; Westerling et
67	al., 2006; Bistinas et al., 2014]. However, there are still large unknowns regarding the
68	feedback mechanisms between open fire and climate interactions [Carslaw et al.,
69	2010; Liu et al., 2014]. A qualification of radiative forcing of fire aerosols as
70	conducted in this study is the first step to reduce these uncertainties.
71	Particles emitted from open fires can exert significant perturbations to the
72	climate system by scattering and absorbing the solar radiation in the atmosphere (i.e.,
73	direct effect) [Carslaw et al., 2010] and by changing the surface albedo when they are
74	deposited on the snow and ice (i.e., surface albedo effect) [Flanner et al., 2007; Quinn
75	et al., 2008; Randerson et al., 2006; Qian et al., 2011, 2015]. In addition, open fire or

76	smoke particles can modify the cloud properties, precipitation efficiency, and the
77	hydrological cycle by changing the atmospheric thermal structure (i.e., semi-direct
78	effect) [Koch and Del Genio, 2010; Andreae et al., 2004b] or acting as cloud
79	condensation nuclei (CCN) (i.e., indirect effects) [Andreae and Rosenfeld, 2008; Qian
80	et al., 2009; Lu and Sokolik, 2013].
81	The radiative effect (RE) [Boucher and Tanre, 2000] and radiative forcing (RF)
82	[Forster et al., 2007; Myhre et al., 2013a] are typical metrics used to assess and
83	compare anthropogenic and natural drivers of climate change. The aerosol RE
84	represents the instantaneous radiative impact of atmospheric particles on the Earth's
85	energy balance [Heald et al., 2014]. RF is calculated as the change of RE between
86	two different periods, e.g., the pre-industrial and the present-day times [Heald et al.,
87	2014; Liu et al., 2007], based on the aerosol and precursor gas emissions in the two
88	periods [Dentener et al., 2006; Lamarque et al., 2010].
89	RF due to aerosol and radiation interactions (RFari) of biomass burning aerosols
90	has been estimated since the IPCC second Assessment Report (AR2). Based on the
91	Aerosol Comparisons between Observations and Models (AeroCom) Phase II
92	simulations [Bond et al., 2013; Myhre et al., 2013b], RFari of biomass burning
93	aerosols in the IPCC Fifth Assessment Report (AR5) is estimated to be 0.0 W m^2
94	(ranging from -0.20 to 0.20 W m ⁻²), and RFari of biomass burning black carbon (BC)
95	and primary organic matter (POM) are of the opposite sign (i.e., 0.10 and -0.10 W m^{-2} ,
96	respectively).

There are also some studies that estimated the RE due to aerosol and radiation

98	interactions (REari) of fire aerosols by comparing the simulation with fire emissions
99	against the simulation with no fire emissions. For example, using the NCAR
100	Community Atmosphere Model version 4 (CAM4) with a bulk aerosol module, Tosca
101	et al. [2013] reported that the top-of-atmosphere (TOA) REari from global biomass
102	burning aerosols is 0.18 ± 0.10 W m ⁻² averaged for the period of 1997-2009. <i>Ward et al.</i>
103	[2012] estimated the REari from biomass burning aerosols in the pre-industrial (for
104	the year 1850), present-day (for the year 2000), and future time periods (for the year
105	2100), and found that the biomass burning aerosol REari for the year 2000 is 0.13 W
106	m^{-2} and -0.27 W m^{-2} in all-sky and clear-sky conditions, respectively.
107	RE due to aerosol and cloud interactions (REaci) of biomass burning aerosols can
108	be comparable in magnitude to or even stronger than the REari [Liu et al., 2014].
109	With a global aerosol-climate model, the REaci of biomass burning aerosols was
110	estimated to range from -1.74 to -1.00 W m ⁻² for the year 2000 in <i>Ward et al.</i> [2012].
111	The semi-direct radiative effect of biomass burning aerosols is not independently
112	assessed in IPCC reports. The magnitude was reported to be about 7.0 W m^{-2} in the
113	Southern American biomass burning regions by examining the radiative flux
114	difference with and without the biomass burning aerosol effect on clouds [Liu, 2005].
115	The RF or RE due to surface albedo changes (RFsac or REsac) of BC from open
116	fires and other sources has been estimated in previous studies. For biomass burning
117	emissions with a strong (1998) and weak (2001) boreal fire year, RE of fire
118	BC-in-snow was estimated to be 0.011 and 0.006 W m ⁻² , respectively [Flanner et al.,
119	2007]. Randerson et al. [2006] reported that BC from a boreal forest fire deposited on

snow and sea ice introduced a global annual mean RE of 8±5 W per m² of burned area
in the first year when the fire happened. A summary of BC-in-snow forcing/effect can
be found in *Bond et al.* [2013]. They reported that the present-day RE of fire
BC-in-snow ranges from 0.006 to 0.02 W m⁻² based on previous studies [*Jacobson*,
2004; *Rypdal et al.*, 2009; *Skeie et al.*, 2011; *Hansen et al.*, 2005; *Flanner et al.*, 2007,
2009; *Koch et al.*, 2009].

Biomass burning aerosols can have significant impacts on global and regional 126 precipitation and atmospheric circulation. With the change of fire emissions from year 127 128 1860 to 2000, Jones et al. [2007] found that biomass burning aerosols decrease the global near-surface air temperature by about 0.25°C, when considering the feedbacks 129 of sea surface temperature (SST) in the model. As shown in Tosca et al. [2013], the 130 131 direct and semi-direct effects of biomass burning aerosols reduce the precipitation near the equator and weaken the Hadley circulation. With a regional climate model, 132 Zhang et al. [2009] found that biomass burning aerosols may warm and stabilize the 133 134 lower troposphere and thus reinforce the dry season rainfall pattern in the Southern Amazonia. The absorption of shortwave radiation by biomass burning BC could 135 increase the vertical stratification and inhibit both the cloud formation and 136 precipitation [Ackerman et al., 2000; Tosca et al., 2014]. In contrast, biomass burning 137 aerosols could invigorate the convective clouds [Andreae et al., 2004a; Koren et al., 138 2005] through suppressing warm rain processes in the convection, and enhance the 139 latent heat release at higher levels [Andreae and Rosenfeld, 2008]. 140 Although there have been many studies quantifying the RE of fire aerosols, a 141

142	further investigation is still needed, as the current estimations of fire aerosol RE are
143	still associated with large uncertainties [e.g., Myhre and Samset, 2015; Chakrabarty et
144	al., 2014]. The REs of co-emitted fire POM versus BC are even less clear. In this
145	study, we estimate the present day (from year 2003 to 2011) open fire aerosol REs
146	(including REari, REaci and REsac) using the NCAR Community Atmosphere Model
147	version 5.3 (CAM5) with the four-mode version of the modal aerosol module
148	(MAM4). We use two methods to calculate the REari of fire aerosols (total, BC-only,
149	and POM-only). One method estimates the REari based on different model
150	simulations [Ghan, 2013], and the other one calculates the REari directly through
151	multiple diagnostic radiation calls in a single simulation. The spatial and seasonal
152	characteristics of fire aerosol REs, and the impacts on the global precipitation and
153	temperature are discussed.
154	Compared to earlier studies of fire aerosol REs [Tosca et al., 2013; Ward et al.,
155	2012], a number of improvements are made in this study. First, a higher model
156	horizontal resolution at 0.9° by 1.25° is used versus 1.9° by 2.5°. The higher
157	resolution allows more efficient transport of aerosols from the sources to remote
158	regions [Ma et al., 2013; 2014]. Model resolution has also been shown to be important
159	for aerosol REaci [Ma et al., 2015]. Second, the latest CAM5 model with MAM4 is
160	used. MAM4 with an additional primary carbon mode explicitly treats the
161	microphysical ageing of primary carbonaceous aerosols (POM/BC) in the atmosphere.
162	MAM4 has higher BC and POM burdens over the earlier three-mode version of
163	MAM (MAM3) in the remote regions by ~30% [Liu et al., 2016]. Third, daily instead

164	of monthly fire emissions are used, which allows the model to consider the effect of
165	fast changes in the fire emission flux on local atmospheric conditions. It is expected
166	that using the monthly mean emission flux the model can not consider the effect of
167	extremely strong fires, thus it might underestimate the fire aerosol REs for such cases.
168	Finally, a new methodology [Ghan, 2013] is used to more accurately diagnose the
169	REs of fire aerosols. Central to this method is that the REari must be calculated in the
170	presence of clouds (i.e., under the all-sky condition), and the REaci be calculated
171	under the condition of no aerosol effects on radiation. With the radiative forcing
172	decomposition of this method, REsac can also be quantified.
173	The paper is organized as follows. Section 2 introduces the model and
174	experiments. Section 3 describes the methods to diagnose the fire aerosol REs.
175	Section 4 presents the model results of fire aerosol REs, and impacts on global and
176	regional surface temperature and precipitation. Conclusions and discussion are given
177	in Section 5.
178	
179	2. Model, Experiment Design and Aerosol Radiative Effect Method
180	2.1 Model
181	In our study, we use the Community Earth System Model (CESM) version 1.2,
182	with the Community Atmosphere Model version 5.3 (CAM5.3) [Neale et al., 2010]
183	coupled with the Community Land Model version 4 (CLM4) [Oleson et al., 2010].
184	The SNow, ICe, and Aerosol Radiative model (SNICAR) [Flanner and Zender, 2005]
185	is turned on in the simulations to diagnose the biomass burning BC-in-snow effect.
186	CAM5 includes several major updates in its physics parameterizations compared to

187	previous CAM versions. A two-moment stratiform cloud microphysics scheme is
188	included in CAM5 to predict both the mass and number mixing ratios of cloud liquid
189	and cloud ice [Morrison and Gettelman, 2008]. MAM4, which was updated from
190	MAM3 [Liu et al., 2012], includes aerosol mass and number mixing ratios in four
191	lognormal modes: Aitken, accumulation, coarse, and primary carbon mode [Liu et al.,
192	2016]. An additional primary carbon mode is included in MAM4 on the top of
193	MAM3 to explicitly treat the microphysical ageing of primary carbonaceous aerosols
194	(POM and BC) in the atmosphere. POM and BC in MAM4 are emitted in the primary
195	carbon mode instead of directly in the accumulation mode as in MAM3. MAM4
196	significantly increases the BC and POM concentrations in the remote regions (e.g.,
197	over oceans and Arctic) due to reduced wet scavenging of POM and BC in the
198	primary carbon mode with a lower hygroscopicity than that in the accumulation mode.
199	The increase is relatively small in the land source regions [Liu et al., 2016].
200	
201	2.2 Experiment design
202	CAM5 was run with the finite volume dynamics core in a resolution of 0.9°
203	latitude by 1.25° longitude and 30 vertical levels. The model was run for the time
204	period of year 2003 to 2011 (i.e., for 9 years) with prescribed monthly SST and sea
205	ice. The year 2003 was run twice and the first year simulation was used as a model
206	spin-up. Global Fire Emissions Database version 3.1 (GFED 3.1) daily emissions
207	[Giglio et al., 2013] for BC, POM and sulfur dioxide (SO ₂) from 2003 to 2011 are

208 prescribed, and the vertical distribution of fire emissions is based on the AeroCom

209	protocol [Dentener et al., 2006]. Anthropogenic aerosol and precursor gas emissions
210	are from the IPCC AR5 dataset [Lamarque et al., 2010]. We performed our control
211	experiment (FIRE) with the GFED fire emissions turned on and a sensitivity
212	experiment (NOFIRE) with the fire emissions turned off. Differences between FIRE
213	and NOFIRE experiments are used to calculate the REs and atmospheric effects of
214	biomass burning aerosols on temperature and precipitation. Two additional
215	experiments (NOFIREBC and NOFIREPOM) were performed with fire BC and POM
216	emissions turned off, respectively. Differences between the control (FIRE) and these
217	two experiments represent the contribution from biomass burning BC and POM,
218	respectively. Other forcings (e.g., SST, greenhouse gases) of all these experiments are
219	kept the same. We performed ten ensemble members for each of these experiments.
220	Furthermore, we performed the other experiment (FIRE_BBFFBF) using the modified
221	CAM5 model that separately predicts the BC and POM from biomass burning (BB),
222	fossil fuel (FF) and biofuel (BF) sources, while other model features are kept the same
223	as the FIRE experiment. A summary of all the experiments in this study can be found
224	in Table 1.
225	

226 2.3 Methods of calculating fire aerosol radiative effects

The REs of all fire aerosols, fire BC, and fire POM are calculated from the

228 differences of TOA shortwave fluxes (ΔF) between the FIRE experiment and the

three other experiments (NOFIRE, NOFIREBC and NOFIREPOM), respectively. All

the atmospheric variables (including temperature, precipitation, and circulation) are

allowed to adjust in the experiments. However, with SST and sea ice prescribed in
these experiments, only the rapid adjustments are taken into account. Thus the *effective* radiative effects are actually calculated in this study.

$$\Delta F_{\text{fire aero}} = F_{\text{fire}} - F_{\text{nofire}}$$
(1)

$$\Delta F_{\text{fire bc}} = F_{\text{fire}} - F_{\text{nofirebc}}$$
(2)

$$\Delta F_{\text{fire pom}} = F_{\text{fire}} - F_{\text{nofirepom}}$$
(3)

The total TOA shortwave flux change can be broken into the REari, REaci, and 237 REsac. The aerosol REaci results from both the aerosol effect on clouds via acting as 238 239 CCN and the aerosol semi-direct effect on clouds via affecting the atmospheric states due to absorbing aerosols. We adopt the method of Ghan [2013] to separate the REari, 240 REaci, and REsac from the total effects of all fire aerosols, fire BC and fire POM, 241 242 respectively. The method is summarized as follows. F_{clean} is the radiative flux at TOA calculated from a *diagnostic radiation call* in the same control simulations, but 243 neglecting the scattering and absorption of solar radiation by aerosols. F_{clean,clear} is the 244 245 clear-sky radiative flux at TOA calculated from the same *diagnostic radiation call*, but neglecting scattering and absorption by both clouds and aerosols. 246

247

248

$$\Delta F = \Delta (F - F_{clean}) + \Delta (F_{clean} - F_{clean, clear}) + \Delta F_{clean, clear}$$
(4)
(REari) (REaci) (REsac)

In the method above, REaci includes both aerosol indirect and semi-direct effects. The fire BC has a much weaker indirect effect due to its lower mass burden and lower hygroscopicity compared to fire POM [*Koch et al.*, 2011]. Thus the fire aerosol semi-direct effect can be approximately represented by the REaci of fire BC. The fire

253	aerosol indirect effect can be estimated as the difference of fire aerosol REaci and
254	semi-direct effect. With the sea ice prescribed in these experiments, the radiative
255	effect of fire aerosols on sea ice albedo is not considered in REsac.
256	We undertake another method to estimate the fire aerosol REari from the
257	experiment (FIRE_BBFFBF). With explicit predictions of fire POM and fire BC in
258	FIRE_BBFFBF, the REari of fire BC and fire POM are estimated by two diagnostic
259	radiation calls, each time neglecting the scattering and absorption of solar radiation of
260	fire BC and fire POM, respectively. This more direct method is named as BBFFBF,
261	and the REari of fire BC and fire POM will be compared with those from the method
262	of Ghan [2013]. The fire BC-in-snow effect is calculated from SNICAR, and
263	compared with the REsac estimated from Ghan [2013].
264	
265	3. Results
266	3.1 Simulation of biomass burning aerosols
267	The biomass burning BC and POM from forest, grass and agriculture fires are
268	significant contributors to the total BC and POM emissions. Figure 1 shows the
269	seasonal variation of GFED fire emissions (including forest, grass and agriculture
270	fires) in the global, tropical (25°S to 25°N), and Arctic (60°N to 90°N) regions.
271	Global fire emission is the largest during the boreal summer as well as in the boreal
272	autumn (September/October), when it is the fire season in the tropical regions of the
273	Southern Hemisphere (SH). The tropical fire emission contributes the most to the
274	annual global fire emission (80% for BC and 85% for OC, respectively), compared to

275	other regions. Arctic is the other important fire region, where the emission maximum
276	is found during the boreal summer. In the boreal summer, the OC emission in the
277	Arctic regions is about 50% of that in the tropical region. The BC emission in the
278	Arctic is much smaller than that of the tropical regions even in the boreal summer fire
279	season. The dominant fire type in the SH tropics is deforestation, savanna and
280	grassland fires, while that in the Arctic is the forest fires. The OC to BC ratio (OC/BC)
281	of forest fires is almost three times higher than that of deforestation, savanna and
282	grassland fires [van der Werf et al., 2010]. This is because for forest fires, most of the
283	emissions come from the smoldering phase of burning, which has a higher OC to BC
284	ratio. For deforestation, savanna and grassland fires, the emissions come mainly from
285	the flaming phase of burning, which yields a lower OC to BC ratio.
286	Figure S1 in the supplemental materials shows the latitudinal and longitudinal
287	distributions of vertically integrated concentrations (column burdens) of BC and POM
288	from BB, FF, and BF sources based on the FIRE_BBFFBF experiment. The BC and
289	POM from BB source are mainly distributed in the tropical and sub-tropical regions
290	(southern Africa, South America and Southeast Asia) and in the mid- to high latitudes
291	(North of 45°N) of the Northern Hemisphere (NH) (Northeast Asia, Alaska and
292	Canada). The largest column burdens of biomass burning aerosols are located in
293	southern Africa and adjacent oceanic areas (1.5 and 20 mg m^{-2} for BC and POM,
294	respectively). The biomass burning aerosols are important aerosol species in the
295	Arctic regions, and contribute up to 53% and 86% to the total burden of BC and POM
296	in the Arctic (from 60° N to 90°N), respectively. In comparison, the maximum

297	column burdens of fossil fuel BC and POM are found in East Asia, South Asia,
298	Western Europe and North America. The maximum column burdens of biofuel BC
299	and POM occur in East Asia, South Asia and Central Africa. The biofuel and fossil
300	fuel sources are dominant contributors to BC and POM in East Asia and South Asia.
301	In other regions of the world, biomass burning is the primary source of BC and POM.
302	Globally, the biomass burning contributes 41% and 70% to the total burdens of BC
303	and POM, respectively. Biomass burning can also emit SO ₂ . However, it only
304	contributes $\sim 3\%$ to the total global sulfate burden (figure not shown), so only
305	radiative effects of biomass burning POM and BC are discussed in this study.
306	The simulated aerosol optical depth (AOD) and single scattering albedo (SSA)
307	(including aerosols from all sources) are validated with observations from the
308	AErosol RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov) at sites
309	significantly affected by biomass burning activity in southern Africa, South America
310	and the Arctic regions, as shown in Figures 2 and 3 (see Figure S2 in the
311	supplemental materials for the site locations). The AERONET AOD and SSA data are
312	averaged for the years from 2003 to 2011 to match the simulation period, although
313	there are missing AERONET data for some periods. We note that <i>Tosca et al.</i> [2013]
314	and Ward et al. [2012] applied scaling factors (from 1 to 3 varying by regions) to fire
315	emissions to improve modeled AOD magnitudes, whereas here we do not apply any
316	such scaling. In southern Africa, modeled monthly AOD agrees with observations
317	within a factor of 2 for the three sites (Figure 2a-2c). The underestimation of AOD is
318	found in the tropical site (Mongu) (Figure 2a) during the boreal autumn (the fire

319	season). The simulated AOD in the two other sites (Skukuza and Ascension Island) is
320	generally consistent with observations in both the magnitude and seasonal trend. The
321	simulated SSA in southern Africa ranges between 0.75 and 0.95 and generally
322	matches the observed SSA magnitude and seasonal cycle in the two land sites (Mongu
323	and Skukuza) (Figure 3a-3b). However, an overestimation of SSA is found in the
324	oceanic site (Ascension Island) (Figure 3c). The reason for this overestimation of SSA
325	and thus the underestimation of absorption AOD (AAOD) is unclear and could be due
326	to that the model has not treated the absorption enhancement of aged fire BC during
327	its transport.
328	The simulated AOD in South America is generally consistent with observations
329	within a factor of 2 (Figure 2d-2f). The seasonal variation of simulated AOD
330	generally matches the observations. The underestimation of AOD in Alta Floresta and
331	Cuiaba-Miranda is most obvious in September and October (the fire season), which
332	may be attributed to the underestimation of fire emissions. However, the modeled
333	AOD is higher than observations before the fire season for Alta Floresta and Rio
334	Branco, which could be due to the overestimation of fire emission in this period. The
335	simulated SSA in South America ranges mostly between 0.87–0.95 and matches the
336	observations reasonably well (Figure 3d-3f). The modeled SSA is too low during the
337	fire season and exhibits too strong a seasonality. It implies that the model
338	underestimation of scattering aerosols (e.g., POM) may be more severe than that of
339	BC during the fire season.
340	In the Arctic, small AOD (less than 0.3) and large SSA (larger than 0.9) are

341	observed for the three sites. The observed large SSA in the fire season (boreal
342	summer) is consistent with the high OC/BC ratio of fire emissions in the Arctic
343	(Figure 1). The model significantly underestimates the observed AOD in the Arctic in
344	both fire and non-fire seasons. The underestimation of AOD can be due to (1) the
345	underestimation of fire emissions in the NH high latitudes [e.g., Stohl et al., 2013]
346	and/or fossil fuel emissions in Asia [e.g., Cohen and Wang, 2014], (2) the excessive
347	scavenging of aerosols during their transport from the NH mid-latitude industrial
348	regions by liquid-phase clouds [Wang et al., 2013a], and (3) the coarse horizontal
349	resolution (~100 km) of the model [Ma et al., 2014]. Although MAM4 increases the
350	column burdens of POM and BC by up to 40 % in many remote regions compared to
351	MAM3, it still underestimates the surface BC concentrations in the Arctic [Liu et al.,
352	2016]. The modeled SSA in the Arctic is lower than observations, which implies that
353	the simulation of AAOD is better than that of AOD and the underestimation of
354	non-absorbing aerosols (e.g., sulfate and POM) in the Arctic may be more severe than
355	that of BC.

357 3.2 Radiative effect due to aerosol-radiation interactions

358 The annual mean REari of all fire aerosols (including BC, POM and sulfate)

estimated with the method of BBFFBF and with the method of *Ghan* [2013] is shown

in Figure 4a-4b. The fire sulfate is not included in the calculation of REari of all fire

aerosols with the method of BBFFBF. Its effect is minor since the global annual mean

burden of fire sulfate (0.09 mg m^{-2}) is much smaller than that of fire POM (1.25 mg

363	m ⁻²), both of which are light-scattering. The statistical significance of REari estimated
364	with the Ghan [2013] method over the interannual variability and ensemble member
365	diversity is shown in Figure 4 (and also later figures). The REari of all fire aerosols
366	from the two methods agree with each other very well. Thus, we will report the REari
367	of all fire aerosols with the Ghan [2013] method below. The global annual mean
368	REari of all fire aerosols is positive (0.16 \pm 0.01 W m ⁻²), which indicates a warming
369	effect from all fire aerosols. The REari is positive on the globe except in some land
370	areas (e.g., southern Africa, South America, Great Lakes, North Canada, and East
371	Siberia). The maximum positive REari is located in ocean areas west of southern
372	Africa (~5.0 W m ⁻²) and South America (~1.5 W m ⁻²). Positive REari up to 1 W m ⁻² is
373	found in the Arctic (60°N to 90°N). The different signs of REari between land and
374	ocean areas of southern Africa and South America result from the differences in cloud
375	fraction and cloud liquid water path (LWP) between land and ocean regions. In the
376	fire season (August-September-October) of the SH tropical regions, cloud fraction
377	and cloud LWP over the land areas (10% and 20 g m ⁻² , respectively) are much smaller
378	than those over the adjacent ocean areas (70% and 70 g m ⁻² , respectively). The
379	biomass burning aerosols are transported above the low-level stratocumulus clouds,
380	and when biomass burning BC resides above clouds, its absorption of solar radiation
381	is significantly enhanced due to the reflection of solar radiation by underlying clouds
382	[<i>Abel et al.</i> , 2005; <i>Zhang et al.</i> , 2016].
383	A comparison of modeled REari in the boreal autumn
384	(September-October-November) over the South Atlantic Ocean with satellite

385	observations is shown in Figure 5. The observed above-cloud aerosol REari is
386	calculated with the method of Zhang et al. [2014] using the Aqua/MODIS and
387	Terra/MODIS products, respectively. The observed above-cloud aerosol REari over
388	southeastern Atlantic Ocean is 3-12 W m^{-2} , with higher values near the coasts. The
389	simulated REari agrees better with Aqua/MODIS observed REari than with
390	Terra/MODIS in both the magnitude and spatial pattern. REari estimated from
391	Terra/MODIS (morning time) is stronger than the one estimated from Aqua/MODIS
392	(afternoon time) due to the larger amount of underlying clouds in the morning [Min
393	and Zhang, 2014]. Over South America during the fire season (August to September),
394	the clear-sky fire aerosol REari is estimated to be -5.2 W m ^{-2} by Sena and Artaxo
395	[2015], which is larger than our model result (-2.1 W m^{-2}). This is consistent with the
396	underestimation of modeled AOD in South America compared to the AERONET data
397	(Figure 2).
398	The seasonal variation of REari of all fire aerosols with the Ghan [2013] method
399	is shown in the supplemental Figure S3. The REari has a maximum (1.13 W m^{-2}) in
400	the boreal summer (June-July-August, JJA) over the Arctic regions, partially due to

401 the low solar zenith angles there. The maximum positive REari in the tropical regions

402 occurs in the boreal summer and autumn (September, October and November, SON)

403 during the fire season of southern Africa and South America. The REari reaches a

404 positive maximum in Southeast Asia during the fire season in March, April and May

405 (MAM).

406 The REari of fire BC is shown in Figure 4c-4d. The fire BC REari calculated

407	from the two methods are similar in magnitudes and spatial patterns, and there is
408	much less noise with the BBFFBF method. The global annual mean fire BC REari is
409	about 0.25 ± 0.01 W m ⁻² and positive over the globe (the regions with negative values
410	in Figure 4d are in general not statistically significant). Unlike all fire aerosols, fire
411	BC generates a positive forcing in the land regions of southern Africa and South
412	America, and the amplification effect of low-level clouds on fire BC positive forcing
413	can be clearly seen in southern Africa and adjacent Atlantic Ocean.
414	The global annual mean REari of fire POM from the two methods somewhat
415	differs from each other (Figure 4e-4f). The BBFFBF method gives a small negative
416	value (-0.05 W m ⁻²), while the <i>Ghan</i> [2013] method shows a small positive value
417	$(0.04 \pm 0.01 \text{ W m}^{-2})$. The difference is mainly in the Arctic regions where the positive
418	forcing from Ghan [2013] is larger than that from the BBFFBF method. This is
419	because the removal of fire POM emissions in the NOFIREPOM experiment affects
420	the properties of aerosol particles within which co-emitted fire BC is internally mixed
421	with fire POM, causing a decrease of BC burden in the Arctic (by $\sim 0.05 \text{ mg m}^{-2}$)
422	compared to the FIRE experiment. Thus, one should be careful in using the Ghan
423	[2013] method to diagnose the radiative forcing of a single component within
424	co-emitted aerosols. The REari of fire POM is negative in most of the globe. However,
425	positive forcing can be found over oceanic regions west of southern Africa and South
426	America, North Pacific Ocean and the Polar regions where large amount of low-level
427	clouds, sea ice or land ice exist. The multiple scatterings between the above-cloud fire
428	POM and low-level clouds or between the fire POM and the Earth's bright surface

429	with high albedos could reduce the amount of solar radiation reflected by these
430	low-level clouds and bright surface in the case without the fire POM [Zhang et al.,
431	2016]. With the BBFFBF method the sum of REari from fire POM and fire BC (i.e.,
432	0.20 W m^{-2}) is larger than that of all fire aerosols (0.15 W m ⁻²). It reflects the
433	nonlinear interactions among different aerosol components [Ghan et al., 2012]. For
434	example, fire POM and water on internally-mixed fire BC particles enhance solar
435	absorption by the fire BC. The nonlinearity is stronger with the Ghan [2013] method.
436	
437	3.3 Radiative effect due to aerosol-cloud interactions
438	The annual mean REaci due to all fire aerosols, fire BC, and fire POM are shown
439	in Figure 6. The REaci diagnosed with the Ghan [2013] method includes both aerosol
440	indirect and semi-direct effects. The fire aerosol semi-direct effect (to be discussed
441	below) is much smaller (-0.04 \pm 0.03 W m ⁻² on the global mean) than the indirect
442	effect, and the REaci is mostly from the fire aerosol indirect effect. The global annual
443	mean REaci of all fire aerosols is -0.70 \pm 0.05 W m ⁻² (Figure 6a). In the tropical
444	regions, the strong negative REaci is located in the adjacent ocean areas of southern
445	Africa, South America and Australia, with the maximum REaci of -8.0 W m^{-2} over
446	the South Atlantic Ocean. The strong negative REaci also occurs in the Arctic (60°N
447	to 90°N). The REaci in East Siberia, Alaska and Canada is as large as -6.0 W m ⁻² .
448	The fire BC has a weak indirect effect by acting as CCN, but can reduce the cloud
449	amount through its semi-direct effect. The REaci of fire BC (Figure 6b) can
450	approximate the fire BC semi-direct effect with a small global annual mean value of

451	-0.04 ± 0.03 W m ⁻² . However, stronger positive effect can be found in the western
452	Pacific (3.0 W m ⁻²) and Arctic regions (1.0 W m ⁻²). The global annual mean REaci of
453	fire POM is -0.59 \pm 0.03 W m ⁻² (Figure 6c), and dominates the cloud effect of all fire
454	aerosols. The sum of REaci from fire BC and POM (-0.62 \pm 0.03 W m ⁻²) is smaller in
455	<u>magnitude</u> than that of all fire aerosols (-0.70 \pm 0.05 W m ⁻²) due to the non-linear
456	interactions of fire BC and fire POM [Jiang et al., 2013] as well as the negative REaci
457	of fire sulfate. As an example of the non-linear interactions, the internal mixing of fire
458	POM and fire BC by all fire aerosols enhances the cloud droplet number
459	concentration in comparison to the sum of cloud droplet number concentrations from
460	individual fire POM and fire BC [Jiang et al., 2013].
461	The seasonal variation of all fire aerosol REaci is shown in Figure 7. The
462	maximum of fire aerosol REaci is in the boreal summer (i.e., the fire season in NH)
463	located in the NH high latitudes (60°N to 90°N). The largest summer REaci is found
464	in the land areas and is as large as -15 W m^{-2} . The fire aerosol REaci in the tropical
465	regions is most significant in the boreal summer (up to -15 W m^{-2}) and autumn (up to
466	-10 W m ⁻²) over the ocean areas. The different spatial distributions of fire aerosol
467	REaci in the NH high latitudes and in the tropics result from the difference in cloud
468	distributions between the two regions. During the fire season the cloud LWP over the
469	land areas in the NH mid- and high latitudes is three times larger than that over the
470	ocean areas in the tropics. Larger cloud LWP favors the stronger REaci, because the
471	larger LWP associated with the warm cloud and rain processes favors the aerosol
472	indirect effect via slowing down the autoconversion of cloud water to rain [Ghan et

al., 2012; *Jiang et al.*, 2015]. Meanwhile, in the NH high latitudes, the lower solar
zenith angle in the boreal summer favors the stronger REaci. Like the fire aerosol
REari, the smallest fire aerosol REaci occurs in the boreal spring.

Seasonal variations of zonal mean fire aerosol REari, REaci, cloud LWP,
low-level (from surface to 750 hPa) cloud amount, and vertically-integrated (burden)
concentrations of fire POM and fire BC are shown in Figure 8. The seasonal variation
of fire BC and fire POM burdens is largest in the SH low latitudes (from 30°S to 0°N)
and NH mid- and high latitudes (50°N to 90°N). Distinct features of these two areas

lower than that in SH (0.8 mg m⁻²), while the maximum POM burdens in these two
areas are comparable. Interestingly, the REari is larger in the boreal summer in NH
than that in the boreal autumn in SH, although the fire BC burden is much lower in
the NH summer. It is mainly due to the larger amount of low clouds in the NH high

can also be noticed that the maximum fire BC burden in NH (0.3 mg m^{-2}) is much

latitudes, which enhances the absorption of fire BC. The maximum REari in the NH

summer is found near the North Pole (70 °N to 90 °N), and not around 60 °N where

the fire aerosol burden is highest. The REaci of fire aerosols is about 3 times larger in

the boreal summer in NH than that in the boreal autumn in SH, although the burden of

490 fire POM in NH is comparable to that in SH. The larger cloud LWP in the NH

summer around 40-70°N favors the stronger REaci there.

492

487

488

481

493 3.4 Surface albedo effect

494 Here we compare the modeled BC-in-snow (BCS) concentrations with

495	observation data collected from multiple field campaigns over the Arctic [Doherty et
496	al., 2010] and Northern China [Wang et al., 2013b; Qian et al., 2014]. Figure 9a
497	shows the simulated (from FIRE and NOFIRE experiments) and observed BCS
498	concentrations as a function of latitude. The range of observed BCS concentrations is
499	between 1 and 200 ng g^{-1} in the Arctic and between 50 and 2000 ng g^{-1} in Northern
500	China, respectively. Both FIRE and NOFIRE experiments capture the meridional
501	gradient in BCS concentrations between the mid-latitudes (Northern China) and high
502	latitudes (Arctic). The mean and median concentrations of BCS are both
503	overestimated in Northern China, implying the high biases from the anthropogenic
504	emissions and/or model physics (Figure 9b). The mean and median BCS
505	concentrations from the FIRE experiment agree slightly better with observations than
506	those from the NOFIRE experiment in the Arctic (Figure 9b). This suggests that fire
507	emissions are important for BCS concentrations in the Arctic.
508	The annual mean REsac of all fire aerosols estimated with Ghan [2013] and the
509	fire BCS effect diagnosed from SNICAR are shown in Figure 10a. We note that the
510	radiative effect due to BC deposition on sea ice is not considered since sea ice is
511	prescribed in the simulations. The global annual mean REsac $(0.03 \pm 0.10 \text{ W m}^{-2})$ is
512	much smaller compared to the REari and REaci. The REsac over land is maximum in
513	spring (0.12 \pm 0.27 W m ⁻²) and winter (0.06 \pm 0.16 W m ⁻²). The REsac over land in
514	summer and autumn is very small (less than 0.01 W m ⁻²). We note that the mean
515	REsac calculated with Ghan [2013] is much smaller than the standard deviation
516	resulted from the internal variability.

517	The annual mean fire BCS effect calculated from SNICAR is shown in Figure
518	10b and 10c. The spatial distribution of the fire BCS effect is similar to the fire REsac,
519	implying that the fire REsac has a significant contribution from the fire BCS effect.
520	Averaged when only snow is present, the fire BCS effect is larger (0.048 W m ⁻²). The
521	global mean fire BCS effect (with the presence of snow) can be as large as 0.06 W m^{-2}
522	in spring. The maximum fire BCS effect (up to 1 W m^{-2}) is located in Greenland and
523	the very northern reaches of Canada, while that in the other Arctic regions and North
524	China is smaller.
525	The positive REsac in Siberia, North America and Canada can be a result of BCS
526	effect. However, the REsac in these regions is larger than the BCS effect especially in
527	spring. The snow melting and snow depth change due to the BCS warming may
528	induce a larger positive REsac than the albedo change due to BCS itself. The negative
529	REsac over land can be a result of atmospheric feedbacks caused by fire aerosols
530	[Ghan, 2013].
531	
532	3.5 Fire aerosol effects on shortwave radiation, global temperature and precipitation
533	Here, we show the annual mean net shortwave flux change at TOA (i.e., total
534	radiative effect), in the atmosphere and at surface, and changes in surface air
535	temperature, convective and large-scale precipitation due to all fire aerosols in Figure
536	11 and Table 2. The global mean net shortwave flux change at TOA due to all fire
537	aerosols is -0.55 \pm 0.07 W m ⁻² , which indicates that fire aerosols lead to the reduction
538	of shortwave flux into the Earth's system. The zonal mean TOA shortwave flux

reduction in the Arctic regions $(-1.35 \pm 1.03 \text{ W m}^{-2})$ is much larger than that in the 539 tropical regions ($-0.66 \pm 0.09 \text{ W m}^{-2}$). The cooling at TOA is mostly from fire aerosol 540 541 REaci. The maximum negative RE is located in the land areas of the Arctic and ocean areas of the tropics. Although the global mean total radiative effect is negative, 542 positive effect is found in some land areas (e.g., Africa, Greenland). 543 The shortwave atmospheric absorption change in the tropical regions is larger 544 than that in the Arctic regions. It is because BC burden in the tropics (0.17 mg m^{-2}) is 545 larger than that in the Arctic (0.09 mg m⁻²). Strong absorption ($\sim 8 \text{ W m}^{-2}$) in the 546 atmosphere is found in the land areas of southern Africa and South America and in 547 the Southeast Atlantic. The surface shortwave flux change in the Arctic is mostly 548 from the TOA shortwave flux reduction due to the fire aerosol REaci, while the 549 550 surface shortwave flux change in the tropics is mostly due to the fire BC absorption in the atmosphere. 551

The fire aerosols lead to the reduction of the global mean surface air temperature (T_s) by 0.03 ± 0.03 K, consistent with the reduction of shortwave fluxes at TOA and at surface. The largest surface cooling is found in the Arctic and tropical regions by up to 0.6 K. The cooling of the Arctic is related to the strong fire aerosol REaci, while the cooling in the tropics is mainly from the surface shortwave flux reduction due to the fire BC absorption. The T_s change in the ocean areas is very small since the SST is prescribed in our simulations.

The global mean total precipitation is reduced by 0.010 ± 0.002 mm day⁻¹ due to all fire aerosols (Table 2). Unlike the T_s change, the precipitation reduction in the

561	tropics $(0.016 \pm 0.01 \text{ mm day}^{-1})$ is much larger than that in the Arctic $(0.001 \pm 0.02 \text{ mm day}^{-1})$
562	mm day ⁻¹ , not statistically significant). The reduction in the tropics is mainly from the
563	large-scale precipitation decrease ($0.015 \pm 0.003 \text{ mm day}^{-1}$). The net decrease in the
564	convective precipitation is very small in the tropics $(0.001 \pm 0.009 \text{ mm day}^{-1}, \text{ not})$
565	statistically significant), as the convective precipitation is significantly decreased near
566	the equator and increased in the regions away from the equator, partly consistent with
567	the results of <i>Tosca et al.</i> [2013]. The precipitation reduction in southern Africa is
568	consistent with the recent findings of Hodnebrog et al. [2016]. The shortwave flux
569	reduction at surface leads to a stabilization of the atmospheric boundary layer and a
570	suppression of the convection near the equator. The strong atmospheric absorption by
571	fire BC leads to the reduction of low-level clouds and large-scale precipitation in the
572	tropics. Both effects lead to a significant reduction of total precipitation near the
573	equator. The precipitation decrease in the NH high latitudes is mainly from the
574	reduction of convective precipitation. We note that the temperature and (especially)
575	precipitation changes reported here do not represent the complete impact of fire
576	aerosols, since the SSTs are fixed in our simulations. Fully-coupled atmosphere and
577	ocean models will be used to further investigate the impact of fire aerosols.
578	Figure 12 shows the changes of T_s , total precipitation, cloud LWP, and low-level
579	cloud cover in the summer due to all fire aerosols. The T_s is reduced by more than 1 K
580	in most of land areas around 60°N. The maximum cooling (larger than 1.5 K) is found
581	in East Siberia, Alaska and Canada. A decrease of total precipitation (by about 0.2
582	mm day ⁻¹) is found in these regions. Accompanying the surface cooling and

precipitation reduction, a significant increase of cloud LWP and low-level cloud cover
is found there. This is a result of the indirect effect of fire aerosols in the land areas of
the Arctic (60°N to 90°N). The fire POM leads to the reduction of cloud droplet
effective radius and the increase of cloud droplet number concentration, consistent
with observed fire effects on clouds in Canada and the United States [*Peng et al.*,
2002].

589

590 **4. Discussion and Conclusions**

Although many studies have been conducted on the fire aerosol RE and RF [e.g., 591 Bond et al., 2013; Myhre et al., 2013b; Ward et al., 2012; Tosca et al., 2013], the 592 current estimations are still associated with large uncertainties. In this study, the fire 593 aerosol RE (including REari, REaci and REsac) is calculated based on a new method 594 from Ghan [2013]. In addition, the fire aerosol REari and fire BC-in-snow effect are 595 diagnosed from an experiment of CESM which tracks the open fire BC and POM 596 597 separately from fossil fuel and biofuel sources and compared with the estimates from the Ghan [2013] method. 598 The BC and POM burdens from open fires are largest in the tropical regions 599

600 (southern Africa, South America and Southeast Asia) and in the NH mid- to high

- latitudes (North of 45°N) (Northeast Asia, Alaska and Canada). Fire aerosols
- 602 contribute 41% and 70% to the global burden of BC and POM, respectively. When
- 603 comparing with the AERONET AOD and SSA data, modeled monthly AOD agrees
- 604 with observations within a factor of 2 for most of the southern African and South

American sites. The model underestimation of AOD is found in the South American sites near fire source regions, which is most obvious in the fire season (September and October). The model underestimates the observed AOD in the Arctic regions in both fire and non-fire seasons. The modeled SSA in southern Africa and South America is generally in agreement with observations, while the modeled SSA in the Arctic is lower.

The annual mean REari of all fire aerosols is 0.16 ± 0.01 W m⁻² and positive over 611 most areas except in some land areas (e.g., southern Africa, North Canada, and East 612 Siberia). The annual maximum REari is found in the oceanic areas west of southern 613 Africa (5 W m⁻²) and South America (1.5 W m⁻²). The positive REari over the land 614 regions of southern Africa and South America is smaller, although the fire aerosol 615 616 burdens are higher. The annual zonal mean REari in the Arctic regions can reach 0.43 ± 0.028 W m⁻², and is larger than that in the tropical regions (0.17\pm0.017 W m⁻²), 617 although the fire aerosol burden is higher in the tropics. The annual mean REari of 618 fire BC is about 0.25 ± 0.01 W m⁻² and positive over the globe. Fire POM induces a 619 weak negative REari globally (-0.05 W m^{-2}) with the BBFFBF method and a small 620 positive value $(0.04 \pm 0.01 \text{ W m}^{-2})$ with the *Ghan* [2013] method. The positive REari 621 of fire POM is found over oceanic areas west of southern Africa and South America, 622 North Pacific, and polar regions where the low-level cloud coverage is large or the 623 surface albedo is higher. 624

The global annual mean REaci of all fire aerosols is -0.70 ± 0.05 W m⁻² and the maximum effect is located in the ocean areas west of southern Africa and South

America and land areas of the NH high latitudes. The maximum fire aerosol REaci occurs in the NH high latitudes in the boreal summer, which results from the large cloud LWP over the land areas and the low solar zenith angle. Associated with the strong indirect effects of fire aerosols in the Arctic summer, significant surface cooling, precipitation reduction, and low-level cloud cover increase are found in these regions.

Modeled BCS concentrations from the FIRE experiment are evaluated against 633 observations in Northern China and in the Arctic, and generally agree with the 634 observations for the mean and median values in the Arctic regions. The high bias of 635 modeled BCS concentrations in Northern China may not result from the fire BC 636 because differences in BCS concentrations between FIRE and NOFIRE experiments 637 are very small in North China. The global annual mean REsac is 0.03 ± 0.10 W m⁻² 638 (statistically insignificant) with the maximum effect in spring (0.12 W m^{-2}) . The 639 REsac is mainly due to the effect of fire BC deposit on snow (0.02 W m^{-2}) diagnosed 640 from SNICAR with the maximum effect as large as 0.06 W m^{-2} (when snow is present) 641 in spring. 642

The fire aerosols reduce the global mean surface air temperature (T_s) by $0.03 \pm$ 0.03 K and precipitation by 0.01 ± 0.002 mm day⁻¹. The maximum cooling (~1 K) due to fire aerosols occurs around 60°N in summer, and a suppression of precipitation (~0.1 mm day⁻¹) is also found there. The strong cooling is a result of the strong indirect effects (-15 W m⁻²) in the land areas of the Arctic regions (60°N to 90°N). A significant reduction of precipitation in southern Africa is also noticed. We note that

these results are based on the simulations with fixed SSTs and may not represent thefull climate responses.

651	In our study, the global radiative effect of fire aerosols is estimated from
652	simulations performed with the 4-mode version Modal aerosol module (MAM4) [Liu
653	et al., 2016], daily fire emissions with prescribed vertical emission profiles, and
654	higher model resolution (0.9° by 1.25°) compared to earlier modeling studies of fire
655	aerosols [Tosca et al., 2013; Ward et al., 2012]. In their studies, the GFED fire
656	aerosol emissions were increased by a factor of 1-3 depending on regions to match the
657	observed AOD. In our study, we do not apply the scaling factor to the fire aerosol
658	emissions. Our global annual mean REari of fire aerosols (0.16 ± 0.01 W m ⁻²) is,
659	however, close to 0.18 W m ⁻² in <i>Tosca et al.</i> [2013] and 0.13 W m ⁻² in <i>Ward et al.</i>
660	[2012]. The similar fire aerosol REari from our study but with smaller fire emissions
661	than these previous studies can result from (1) the use of MAM4 in our study which
662	more realistically represents the external/internal mixing of BC with other soluble
663	aerosol species; (2) the more accurate estimation of REari of fire aerosols in the
664	presence of low-level clouds with the method of <i>Ghan</i> [2013]; and (3) the inclusion of
665	vertical emissions of fire aerosols, which allows more efficient transport of fire
666	aerosols from sources. The REaci due to fire aerosols in our study (-0.70 \pm 0.05 W m ⁻²)
667	is smaller than -1.64 W m ⁻² in <i>Ward et al.</i> [2012] due to the lower fire POM emissions
668	used in this study compared to Ward et al. [2012].
669	We note that there are limitations and uncertainties with our study. The model
670	still underestimates observed AODs (mostly within a factor of 2) at the sites

671	predominantly influenced by biomass burning aerosols during the fire season, which
672	implies that the fire aerosol radiative forcing can be stronger than estimated in this
673	study. The RE estimates of fire POM and fire BC with the Ghan [2013] approach may
674	not be accurate due to the internal mixing of co-emitted fire components (POM and
675	BC). In our simulations, sea ice is prescribed, and thus the fire BC effect on sea ice
676	albedo is not considered. The brown carbon component of POM [Feng et al., 2013] is
677	not treated in the current CESM model, which may result in an underestimation of
678	atmospheric absorption of fire aerosols.
679	
680	Acknowledgments
681	This work is supported by the Office of Science of the US Department of Energy
682	(DOE) as the NSF-DOE-USDA Joint Earth System Modeling (EaSM) Program, the
683	National Key Basic Research Program (973 Program) of China under Grant No.
684	2010CB428504, and the National Natural Science Foundation of China (NSFC) under
685	Grant No.41505062. The Pacific Northwest National Laboratory is operated for the
686	DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830. The
687	authors would like to acknowledge the use of computational resources
688	(ark:/85065/d7wd3xhc) at the NCAR-Wyoming Supercomputing Center provided by
689	the National Science Foundation and the State of Wyoming, and supported by
690	NCAR's Computational and Information Systems Laboratory. The fire emission data
691	were obtained from the Global Fire Emissions Database (GFED,
692	http://www.globalfiredata.org). The AERONET data were obtained from
693	http://aeronet.gsfc.nasa.gov. We thank Xiangjun Shi for the help with processing the 31

694 AERONET data.

695

696 **References**

697

Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M. A.: The direct radiative effect of biomass burning aerosols over southern Africa, Atmos. Chem. Phys., 5, 1999-2018, 10.5194/acp-5-1999-2005, 2005.

- Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and
 Welton, E. J.: Reduction of Tropical Cloudiness by Soot, Science, 288, 1042-1047,
 10.1126/science.288.5468.1042, 2000.
- Andreae, M. O., and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1.
 The nature and sources of cloud-active aerosols, Earth-Science Reviews, 89,
 13-41, http://dx.doi.org/10.1016/j.earscirev.2008.03.001, 2008.
- Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M.,
 and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon, Science, 303,
 1337-1342, 10.1126/science.1092779, 2004.
- Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships
 versus emergent patterns in the global controls of fire frequency, Biogeosciences,
 11, 5087-5101, 10.5194/bg-11-5087-2014, 2014.
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. 713 J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, 714 P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., 715 Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, 716 J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., 717 Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate 718 system: A scientific assessment, J Geophys Res-Atmos, 118, 5380-5552, Doi 719 10.1002/Jgrd.50171, 2013. 720
- Boucher, O., and Tanré, D.: Estimation of the aerosol perturbation to the Earth's
 Radiative Budget over oceans using POLDER satellite aerosol retrievals,
 Geophysical Research Letters, 27, 1103-1106, 10.1029/1999GL010963, 2000.

- Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, 724 M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. 725 H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., 726 Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and 727 S. J.: Fire in the Earth System, Science, 324, 481-484. 728 Pyne, 10.1126/science.1163886, 2009. 729
- Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, 730 S., and Kulmala, M.: A review of natural aerosol interactions and feedbacks 731 within the Earth Atmos. Chem. Phys., 10, 1701-1737, 732 system, 10.5194/acp-10-1701-2010, 2010. 733
- Chakrabarty, R. K., Beres, N. D., Moosmüller, H., China, S., Mazzoleni, C., Dubey,
 M. K., Liu, L., and Mishchenko, M. I.: Soot superaggregates from flaming
 wildfires and their direct radiative forcing, Scientific Reports, 4, 5508,
 10.1038/srep05508.
- Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., 738 739 DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate 740 Change 2013: The Physical Science Basis. Contribution of Working Group I to 741 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 742 edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., 743 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge 744 University Press, Cambridge, United Kingdom and New York, NY, USA, 465-745 570, 2013. 746
- Cohen, J. B., and Wang, C.: Estimating global black carbon emissions using a
 top-down Kalman Filter approach, Journal of Geophysical Research: Atmospheres,
 119, 2013JD019912, 10.1002/2013JD019912, 2014.
- Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P.,
- Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J. P.,
- 752 Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary
- aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for

- AeroCom, Atmos. Chem. Phys., 6, 4321-4344, 10.5194/acp-6-4321-2006, 2006.
- Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.:
 Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647-11680,
 10.5194/acp-10-11647-2010, 2010.
- Feng, Y., V. Ramanathan, and V. R. Kotamarthi: Brown carbon: a significant
 atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13(17), 8607–8621,
 doi:10.5194/acp-13-8607-2013, 2013.
- Flanner, M. G., and Zender, C. S.: Snowpack radiative heating: Influence on Tibetan
 Plateau climate, Geophysical Research Letters, 32, L06501, Artn L06501, Doi
 10.1029/2004gl022076, 2005.
- Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate
 forcing and response from black carbon in snow, Journal of Geophysical Research:
 Atmospheres, 112, D11202, 10.1029/2006JD008003, 2007.
- Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
 Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
 from carbonaceous particles, Atmos. Chem. Phys., 9, 2481-2497,
 10.5194/acp-9-2481-2009, 2009.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.,
 Haywood, J., Lean, J., Lowe, D. C., and Myhre, G.: Changes in atmospheric
 constituents and in radiative forcing. Chapter 2, in: Climate Change 2007. The
 Physical Science Basis, 2007.
- Ghan, S. J.: Technical Note: Estimating aerosol effects on cloud radiative forcing,
 Atmos. Chem. Phys., 13, 9971-9974, 10.5194/acp-13-9971-2013, 2013.
- Ghan, S. J., Liu, X., Easter, R. C., Zaveri, R., Rasch, P. J., Yoon, J.-H., and Eaton, B.:
- Toward a Minimal Representation of Aerosols in Climate Models: Comparative
 Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing,
 Journal of Climate, 25, 6461-6476, doi:10.1175/JCLI-D-11-00650.1, 2012.
- Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and
 annual burned area using the fourth-generation global fire emissions database
 (GFED4), Journal of Geophysical Research: Biogeosciences, 118, 317-328,

784 10.1002/jgrg.20042, 2013.

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G.,

Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M.,

- 787 Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman,
- 788 C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller,
- R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D.,
- Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki,
- B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, Journal of
 Geophysical Research: Atmospheres, 110, D18104, 10.1029/2005JD005776,
 2005.
- Heald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady-Pereira, K. E.,
 Alvarado, M. J., and Holmes, C. D.: Contrasting the direct radiative effect and
 direct radiative forcing of aerosols, Atmos. Chem. Phys., 14, 5513-5527,
 10.5194/acp-14-5513-2014, 2014.
- Houghton, J. T.: Climate change 1995: The science of climate change: contribution of
 working group I to the second assessment report of the Intergovernmental Panel
 on Climate Change, Cambridge University Press, 1996.
- IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of
 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
 on Climate Change, 1535 pp., Cambridge University Press, Cambridge, United
 Kingdom and New York, NY, USA, doi:10.1017/CBO9781107415324.
- Jacobson, M. Z.: Climate response of fossil fuel and biofuel soot, accounting for
 soot's feedback to snow and sea ice albedo and emissivity, Journal of Geophysical
 Research: Atmospheres, 109, D21201, 10.1029/2004JD004945, 2004.
- 808Jiang, Y., Liu, X., Yang, X.-Q., and Wang, M.: A numerical study of the effect of809different aerosol types on East Asian summer clouds and precipitation,810AtmosphericEnvironment,70,51-63,
- 811 http://dx.doi.org/10.1016/j.atmosenv.2012.12.039, 2013.
- Jiang, Y., Yang, X.-Q., and Liu, X.: Seasonality in anthropogenic aerosol effects on
- East Asian climate simulated with CAM5, Journal of Geophysical Research:

- Atmospheres, 120, 2015JD023451, 10.1002/2015JD023451, 2015.
- Jones, A., Haywood, J. M., and Boucher, O.: Aerosol forcing, climate response and
 climate sensitivity in the Hadley Centre climate model, Journal of Geophysical
 Research: Atmospheres, 112, D20211, 10.1029/2007JD008688, 2007.
- Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L.,
- 819 Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.:
- Biomass burning emissions estimated with a global fire assimilation system based
 on observed fire radiative power, Biogeosciences, 9, 527-554,
 10.5194/bg-9-527-2012, 2012.
- Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C. P.,
 Torseth, K., Edwards, D., Thompson, A. M., Lohmann, U., and Burrows, J.: Fire
 in the Air: Biomass Burning Impacts in a Changing Climate, Critical Reviews in
 Environmental Science and Technology, 43, 40-83,
 10.1080/10643389.2011.604248, 2011.
- Koch, D., Menon, S., Del Genio, A., Ruedy, R., Alienov, I., and Schmidt, G. A.:
 Distinguishing Aerosol Impacts on Climate over the Past Century, Journal of
 Climate, 22, 2659-2677, 10.1175/2008JCLI2573.1, 2009.
- 831 Koch, D., Balkanski, Y., Bauer, S. E., Easter, R. C., Ferrachat, S., Ghan, S. J., Hoose,
- 832 C., Iversen, T., Kirkevåg, A., Kristjansson, J. E., Liu, X., Lohmann, U., Menon, S.,
- Quaas, J., Schulz, M., Seland, Ø., Takemura, T., and Yan, N.: Soot microphysical
 effects on liquid clouds, a multi-model investigation, Atmos. Chem. Phys., 11,
- 835 1051-1064, 10.5194/acp-11-1051-2011, 2011.
- Koch, D., and Del Genio, A. D.: Black carbon semi-direct effects on cloud cover:
 review and synthesis, Atmos. Chem. Phys., 10, 7685-7696,
 10.5194/acp-10-7685-2010, 2010.
- Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.: Aerosol
 invigoration and restructuring of Atlantic convective clouds, Geophysical
 Research Letters, 32, L14828, 10.1029/2005GL023187, 2005.
- Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
- Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J.,

- Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N.,
 McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–
 2000) gridded anthropogenic and biomass burning emissions of reactive gases and
 aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017-7039,
 10.5194/acp-10-7017-2010, 2010.
- Liu, X., J. E. Penner, B. Das, D. Bergmann, J. M. Rodriguez, S. Strahan, M. Wang
 and Y. Feng: Uncertainties in global aerosol simulations: Assessment using three
 meteorological datasets, Journal of Geophysical Research, 112, D11212,
 doi:10.1029/2006JD008216, 2007.
- Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F., 853 Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., 854 Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, 855 C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of 856 aerosols in climate models: description and evaluation in the Community 857 5. 709-739, Atmosphere Model CAM5. Geosci. Model 858 Dev. 10.5194/gmd-5-709-2012, 2012. 859
- Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and
 Rasch, P. J.: Description and evaluation of a new four-mode version of the Modal
 Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere
 Model, Geosci. Model Dev., 9, 505-522, 10.5194/gmd-9-505-2016, 2016.
- Liu, Y.: Atmospheric response and feedback to radiative forcing from biomass
 burning in tropical South America, Agricultural and Forest Meteorology, 133,
 40-53, http://dx.doi.org/10.1016/j.agrformet.2005.03.011, 2005.
- Liu, Y., Goodrick, S., and Heilman, W.: Wildland fire emissions, carbon, and climate:
 Wildfire–climate interactions, Forest Ecology and Management, 317, 80-96,
 http://dx.doi.org/10.1016/j.foreco.2013.02.020, 2014.
- Lu, Z., and Sokolik, I. N.: The effect of smoke emission amount on changes in cloud
 properties and precipitation: A case study of Canadian boreal wildfires of 2007,
 Journal of Geophysical Research: Atmospheres, 118, 2013JD019860,
 10.1002/2013JD019860, 2013.

- Ma, P.-L., P. J. Rasch, H. Wang, K. Zhang, R. C. Easter, S. Tilmes, J. D. Fast, X. Liu,
 J.-H. Yoon, and J.-F. Lamarque: The role of circulation features on black carbon
 transport into the Arctic in the Community Atmosphere Model version 5 (CAM5),
 J. Geophys. Res. Atmos., 118, 4657–4669, 2013.
- Ma, P. L., Rasch, P. J., Fast, J. D., Easter, R. C., Gustafson Jr, W. I., Liu, X., Ghan, S.
 J., and Singh, B.: Assessing the CAM5 physics suite in the WRF-Chem model:
 implementation, resolution sensitivity, and a first evaluation for a regional case
 study, Geosci. Model Dev., 7, 755-778, 10.5194/gmd-7-755-2014, 2014.
- Ma, P.-L., P. J. Rasch, M. Wang, H. Wang, S. J. Ghan, R. C. Easter, W. I. Gustafson
 Jr., X. Liu, Y. Zhang, and H.-Y. Ma: How does increasing horizontal resolution in
 a global climate model improve the simulation of aerosol-cloud interactions?,
 Geophys. Res. Lett., 42, 5058–5065, doi:10.1002/2015GL064183, 2015.
- Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edwards, M.
 E., Higuera, P. E., Power, M. J., Anderson, R. S., Briles, C., Brunelle, A.,
 Carcaillet, C., Daniels, M., Hu, F. S., Lavoie, M., Long, C., Minckley, T., Richard,
 P. J. H., Scott, A. C., Shafer, D. S., Tinner, W., Umbanhowar, C. E., and Whitlock,
 C.: Wildfire responses to abrupt climate change in North America, Proceedings of
 the National Academy of Sciences, 106, 2519-2524, 10.1073/pnas.0808212106,
 2009.
- McCarthy, J. J.: Climate change 2001: impacts, adaptation, and vulnerability:
 contribution of Working Group II to the third assessment report of the
 Intergovernmental Panel on Climate Change, Cambridge University Press, 2001.
- Min M., and Zhang Z.: On the influence of cloud fraction diurnal cycle and sub-grid
 cloud optical thickness variability on all-sky direct aerosol radiative forcing, J.
 Quant. Spectros. Radiat. Transfer, doi:10.1016/j.jgsrt.2014.03.014, 2014.
- Morrison, H., and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
 Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3).
- Part I: Description and Numerical Tests, Journal of Climate, 21, 3642-3659,
 doi:10.1175/2008JCLI2105.1, 2008.
- 903 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian,

- H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., 904 Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J. F., Lin, G., 905 Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., 906 Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, 907 P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J. H., Zhang, K., Zhang, H., and Zhou, 908 C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II 909 simulations, Atmos. Chem. Phys., 13, 1853-1877, 10.5194/acp-13-1853-2013, 910 2013. 911
- Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, 912 D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, 913 G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, 914 in: Climate Change 2013: The Physical Science Basis. Contribution of Working 915 916 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. 917 K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge 918 University Press, Cambridge, United Kingdom and New York, NY, USA, 659-919 740, 2013. 920
- Myhre, G., and Samset, B. H.: Standard climate models radiation codes underestimate
 black carbon radiative forcing, Atmos. Chem. Phys., 15, 2883-2888,
 10.5194/acp-15-2883-2015, 2015.
- Neale, R., Chen, C., Gettelman, A., Lauritzen, P., Park, S., Williamson, D., Garcia, R.,
 Kinnison, D., Lamarque, J., and Marsh, D.: Description of the NCAR Community
 Atmosphere Model (CAM 5.0), 2010.
- 927 Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J.,
- Levis, S., Swenson, S. C., Thornton, E., and Feddema, J.: Technical description of
 version 4.0 of the Community Land Model (CLM), 2010.
- Peng, Y., Lohmann, U., Leaitch, R., Banic, C., and Couture, M.: The cloud
 albedo-cloud droplet effective radius relationship for clean and polluted clouds
 from RACE and FIRE.ACE, Journal of Geophysical Research: Atmospheres, 107,
- 933 AAC 1-1-AAC 1-6, 10.1029/2000JD000281, 2002.

- Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the
 impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle
 and monsoon climate, Atmos. Chem. Phys., 11, 1929-1948,
 10.5194/acp-11-1929-2011, 2011.
- Qian, Y., Gong, D., Fan, J., Leung, L. R., Bennartz, R., Chen, D., and Wang, W.:
 Heavy pollution suppresses light rain in China: Observations and modeling,
 Journal of Geophysical Research: Atmospheres, 114, D00K02,
 10.1029/2008JD011575, 2009.
- Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A sensitivity study
 on modeling black carbon in snow and its radiative forcing over the Arctic and
 Northern China, Environmental Research Letters, 9, 064001,
 10.1088/1748-9326/9/6/064001, 2014.
- Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J.,
 Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing particles in
 snow and ice: Measurement and modeling of climatic and hydrological impact,
 Advances in Atmospheric Sciences, 32, 64-91, 10.1007/s00376-014-0010-0,
 2015.
- Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., 951 Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and 952 Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and 953 mitigation strategies, Chem. Phys., 1723-1735, possible Atmos. 8, 954 10.5194/acp-8-1723-2008, 2008. 955
- Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G.,
 Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J.
 W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G., and Zender, C. S.:
 The Impact of Boreal Forest Fire on Climate Warming, Science, 314, 1130-1132,
- 960 2006.
- Rypdal, K., Rive, N., Berntsen, T. K., Klimont, Z., Mideksa, T. K., Myhre, G., and
 Skeie, R. B.: Costs and global impacts of black carbon abatement strategies,
 Tellus B, 61, 625-641, 10.1111/j.1600-0889.2009.00430.x, 2009.

- Sena, E. T., and Artaxo, P.: A novel methodology for large-scale daily assessment of
 the direct radiative forcing of smoke aerosols, Atmospheric Chemistry and
 Physics, 15, 5471-5483, 10.5194/acp-15-5471-2015, 2015.
- Skeie, R. B., Berntsen, T., Myhre, G., Pedersen, C. A., Ström, J., Gerland, S., and
 Ogren, J. A.: Black carbon in the atmosphere and snow, from pre-industrial times
 until present, Atmos. Chem. Phys., 11, 6809-6836, 10.5194/acp-11-6809-2011,
 2011.
- Sommers, W. T., Loehman, R. A., and Hardy, C. C.: Wildland fire emissions, carbon,
 and climate: Science overview and knowledge needs, Forest Ecology and
 Management, 317, 1-8, http://dx.doi.org/10.1016/j.foreco.2013.12.014, 2014.
- Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V.
 M., and Novigatsky, A. N.: Black carbon in the Arctic: the underestimated role of
 gas flaring and residential combustion emissions, Atmos. Chem. Phys., 13,

977 8833-8855, 10.5194/acp-13-8833-2013, 2013.

- Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V.: Observational
 evidence of fire-driven reduction of cloud fraction in tropical Africa, Journal of
 Geophysical Research: Atmospheres, 2014JD021759, 10.1002/2014JD021759,
 2014.
- Tosca, M. G., Randerson, J. T., and Zender, C. S.: Global impact of smoke aerosols
 from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys.,
 13, 5227-5241, 10.5194/acp-13-5227-2013, 2013.
- van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P. S.,
 Giglio, L., Murdiyarso, D., Peters, W., Morton, D. C., Collatz, G. J., Dolman, A.
 J., and DeFries, R. S.: Climate regulation of fire emissions and deforestation in
 equatorial Asia, Proceedings of the National Academy of Sciences, 105,
 20350-20355, 10.1073/pnas.0803375105, 2008.
- van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.
 S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire
 emissions and the contribution of deforestation, savanna, forest, agricultural, and
- 993 peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707-11735,

- 994 10.5194/acp-10-11707-2010, 2010.
- Voulgarakis, A., and Field, R. D.: Fire influences on atmospheric composition, air
 quality and climate, Current Pollution Reports, 1, 70-81,
 10.1007/s40726-015-0007-z, 2015.
- Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon,
 J. H., Ma, P. L., and Vinoj, V.: Sensitivity of remote aerosol distributions to
 representation of cloud–aerosol interactions in a global climate model, Geosci.
 Model Dev., 6, 765-782, 10.5194/gmd-6-765-2013, 2013a.
- Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other light-absorbing
 impurities in snow across Northern China, Journal of Geophysical Research:
 Atmospheres, 118, 1471-1492, 10.1029/2012JD018291, 2013b.
- Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., and Hess,
 P. G.: The changing radiative forcing of fires: global model estimates for past,
 present and future, Atmos. Chem. Phys., 12, 10857-10886,
 10.5194/acp-12-10857-2012, 2012.
- Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and
 earlier spring increase western U.S. forest wildfire activity, Science, 313, 940-943,
 10.1126/science.1128834, 2006.
- Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A.,
 Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high
 resolution global model to estimate the emissions from open burning, Geosci.
 Model Dev., 4, 625-641, 10.5194/gmd-4-625-2011, 2011.
- Zhang, Y., Fu, R., Yu, H., Qian, Y., Dickinson, R., Silva Dias, M. A. F., da Silva Dias,
 P. L., and Fernandes, K.: Impact of biomass burning aerosol on the monsoon
 circulation transition over Amazonia, Geophysical Research Letters, 36, L10814,
 10.1029/2009GL037180, 2009.
- ID20 Zhang, Z., Meyer, K., Platnick, S., Oreopoulos, L., Lee, D., and Yu, H.: A novel
 method for estimating shortwave direct radiative effect of above-cloud aerosols
 using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789,
 10.5194/amt-7-1777-2014, 2014.

- 1024 Zhang, Z., Meyer, K., Yu, H., Platnick, S., Colarco, P., Liu, Z., and Oreopoulos, L.:
- 1025 Shortwave direct radiative effects of above-cloud aerosols over global oceans
- derived from 8 years of CALIOP and MODIS observations, Atmos. Chem. Phys.,
- 1027 16, 2877-2900, 10.5194/acp-16-2877-2016, 2016.
- 1028

1029	Figure Captions	
------	------------------------	--

Figure 1. Seasonal variation of GFED monthly fire (a) organic carbon (OC) and (b) 1031 black carbon (BC) emissions (Tg C month⁻¹) averaged for the period of year 2003 to 1032 2011 in the global, tropical (25°S to 25°N) and Arctic (60°N to 90°N) regions. 1033 1034 Figure 2. Comparison of modeled seasonal variations of aerosol optical depth (AOD) 1035 for the period of 2003-2011 with observations for the same period from the 1036 AERONET sites. The upper, middle, and bottom panels represent the sites in southern 1037 Africa, South America, and the Arctic, respectively. 1038 1039 1040 Figure 3. Same as Figure 2, but for the comparison of single scattering albedo (SSA) at 550 nm. 1041 1042 Figure 4. Annual mean radiative effect due to aerosol-radiation interactions (REari) 1043 $(W m^{-2})$ averaged over the period of 2003-2011 due to (a) all fire aerosols, (c) fire BC, 1044 and (e) fire POM estimated with the method of BBFFBF (left panels), and with the 1045 method of Ghan (2013) ((b), (d), and (f) in the right panels). The plus signs in Figure 1046 4(b), (d) and (f) denote the regions where the radiative effect estimated with Ghan 1047 [2013] is statistically significant at the 0.05 level. 1048 1049 Figure 5. (a) September-October-November (SON) mean fire aerosol radiative effect 1050 due to aerosol-radiation interactions (REari) (W m⁻²) for the period of 2003-2011 over 1051 the Southeast Atlantic Ocean due to all fire aerosols. (b) and (c) are the same as (a), 1052 but for the above-cloud aerosol REari for the period of 2007-2011 estimated using 1053 Aqua/MODIS and Terra/MODIS products [Zhang et al., 2014], respectively. 1054 1055 Figure 6. Annual mean radiative effect due to aerosol-cloud interactions (REaci) (W 1056 m^{-2}) averaged over the period of 2003-2011 due to (a) all fire aerosols, (b) fire BC, 1057 1058 and (c) fire POM. The plus signs denote the regions where the radiative effect is statistically significant at the 0.1 level. 1059 1060 Figure 7. Seasonal variation of radiative effect of all fire aerosols due to aerosol-cloud 1061 interactions (REaci) (W m^{-2}) for the period of 2003-2011 for (a) 1062 December-January-February (DJF), (b) March-April-May (MAM), (c) 1063 June-July-August (JJA), and (d) September-October-November (SON). The plus signs 1064 denote the regions where the radiative effect is statistically significant at the 0.05 1065 level. 1066 1067 Figure 8. Month-latitude cross sections of zonal mean and monthly (a) 1068 vertically-integrated concentrations (mg m^{-2}) of fire BC and (b) fire POM, (c) cloud 1069 liquid water path (LWP, in g m^{-2}), (d) low-level cloud cover (CLDLOW, in %), (e) 1070 radiative effect due to aerosol-radiation interactions (REari, in W m⁻²), and (f) 1071 radiative effect due to aerosol-cloud interactions (REaci, in W m⁻²) of all fire aerosols. 1072

1075	
1074	Figure 9. Evaluation of CAM5 simulated black carbon (BC) concentration for the
1075	period of 2003-2011 (in ng g^{-1}) in the top snow layer against observations in the
1076	Arctic [Doherty et al., 2010] and Northern China [Wang et al., 2013b]. The top snow
1077	layer ranges in thickness from 1 to 3 cm. Configuration of the two CAM5 simulations
1078	(FIRE and NOFIRE) is summarized in Table 1. Panel (a) shows the comparisons at
1079	different latitudes. The box and whisker plot in panel (b) shows the minimum and
1080	maximum value with the bar, the 25th and 75th percentiles with the box, the 50th
1081	percentile (i.e., median) by the bar within the box, and the mean value with the dot.
1082	
1083	Figure 10. (a) Annual mean radiative effect due to surface albedo changes (REsac, W
1084	m ⁻²) averaged over the period of 2003-2011 of all fire aerosols over land regions, and
1085	annual mean surface effect of fire BC-in-snow calculated from SNICAR averaged (b)
1086	over all times and (c) only when snow is present. The plus signs in (a) denote the
1087	regions where the radiative effect is statistically significant at the 0.1 level.
1088	
1089	Figure 11. Annual mean net shortwave flux changes (W m ⁻²) over the period of
1090	2003-2011 (a) at top of the atmosphere, (b) in the atmosphere, (c) at surface, and
1091	changes of (d) surface air temperature (TS, K), (e) convective precipitation (mm d^{-1}),
1092	and (f) large-scale precipitation (mm d^{-1}) due to all fire aerosols. The plus signs
1093	denote the regions where the change is statistically significant at the 0.1 level.
1094	
1095	Figure 12. Changes in (a) surface air temperature (K), (b) total precipitation (mm d^{-1}),
1096	(c) cloud liquid water path (g m^{-2}), and (d) low-level cloud cover (%) due to all fire
1097	aerosols in the boreal summer (JJA) averaged for the period of 2003-2011. The plus
1098	signs denote the regions where the change is statistically significant at the 0.1 level.
1099	
1100	