

## S1. Characterization of Experimental Chamber

Known amounts of NO<sub>2</sub> in N<sub>2</sub> were flowed through the sample illumination chamber and IBBCEAS cell in order to characterize the observed HONO for different experimental variables. The current set up facilitates an efficient NO<sub>2</sub> surface hydrolysis, forming HONO. Results are shown in Fig. S1 for both dark and light experiments as a function of RH. An input NO<sub>2</sub> concentration of 6.0 ppm, based on the reported value from the supplier (Linde), was further diluted with N<sub>2</sub> using needle valves and mass flow meters with uncertainties of  $\pm 0.5$  mL/min. The figure displays the measured NO<sub>2</sub> and HONO concentrations detected by the IBBCEAS as a function of RH. The total concentration measured from the sum of NO<sub>2</sub> and twice the HONO calculation following the mass balance implied by Equation 1, is within error of that calculated from the NO<sub>2</sub> concentration coming from the cylinder:  $(3.6 \pm 0.3) \times 10^{12}$  molecules/cm<sup>2</sup> measured compared to  $(4.76 \pm 2.4) \times 10^{12}$  molecules/cm<sup>2</sup> calculated from the dilution of the NO<sub>2</sub> cylinder. This suggests that this technique can quantify the total concentration of NO<sub>2</sub> + HONO here, though cannot accurately speciate NO<sub>2</sub> and HONO. Fig. S1b shows that the total concentration decreases upon illumination, due to the photolysis of NO<sub>2</sub> and HONO. The HONO concentration measured is independent of relative humidity within the 30% coefficient of variability measured between samples. No NO<sub>2</sub> was detected. This shows that the NO<sub>2</sub> to HONO conversion is complete within error, and that there is no significant impact on the IBBCEAS NO<sub>2</sub> + HONO response as a function of relative humidity. We note that, if the photochemical product distribution between NO<sub>2</sub> and HONO changes with relative humidity, this will impact the total amount measured because it takes two NO<sub>2</sub> molecules to make one HONO molecule. Thus a change from only NO<sub>2</sub> production to only HONO production would appear as a 50% change in the total amount detected as HONO. However, the changes measured as a function of RH are larger than can be explained by this mechanism.

Thus the total product concentrations from grime photochemistry may be safely compared as a function of RH. No values are shown below 13% in Fig. 3 and Fig. S1 because the RH meter is not sensitive below 10% and thus we cannot accurately report RH values. As well, when N<sub>2</sub> is flowed through the chamber without humidification, the total signal for NO<sub>2</sub> and HONO does not reach a plateau even after one hour. This indicates that the NO<sub>2</sub> is being irreversibly lost to the walls, likely forming complexes with the metal (Nishino and Finlayson-Pitts, 2012).



**Figure S1: Concentrations of HONO and NO<sub>2</sub> for NO<sub>2</sub> flowed through the chamber and IBBCEAS cell as a function of RH a) in the dark and b) in the light. Only HONO concentrations are shown in Fig. S1b because no NO<sub>2</sub> was detected. The error bars represent one standard deviation of the average of three experiments.**

## References

Nishino, N. and Finlayson-Pitts, B. J.: Thermal and photochemical reactions of NO<sub>2</sub> on chromium(III) oxide surfaces at atmospheric pressure, *Phys Chem Chem Phys*, 14(45), 15840–15848, doi:10.1039/c2cp42292a, 2012.