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Abstract. In this study, methods are proposed to diagnose the causes of errors in air quality 9 

(AQ) modelling systems. We investigate the deviation between modelled and observed time 10 

series of surface ozone through a revised formulation for breaking down the mean square 11 

error (MSE) into bias, variance, and the minimum achievable MSE (mMSE). The bias 12 

measures the accuracy and implies the existence of systematic errors and poor 13 

representation of data complexity, the variance measures the precision and provides an 14 

estimate of the variability of the modelling results in relation to the observed data, and the 15 

mMSE reflects unsystematic errors and provides a measure of the associativity between the 16 

modelled and the observed fields through the correlation coefficient. Each of the error 17 

components is analysed independently and apportioned to resolved process based on the 18 

corresponding timescale (long scale, synoptic, diurnal, and intra-day) and as a function of 19 

model complexity. 20 

The apportionment of the error is applied to the AQMEII (Air Quality Model Evaluation 21 

International Initiative) group of models, which embrace the majority of regional AQ 22 

modelling systems currently used in Europe and North America.  23 

The proposed technique has proven to be a compact estimator of the operational metrics 24 

commonly used for model evaluation (bias, variance, and correlation coefficient), and has 25 

the further benefit of apportioning the error to the originating timescale, thus allowing for a 26 

clearer diagnosis of the process that caused the error.  27 

Keywords: Model evaluation; Time series analysis; Bias-variance decomposition; AQMEII  28 

1. INTRODUCTION 29 

Due to their use for regulatory applications and to support legislation, air quality (AQ) 30 

models must model correctly and be correctly applied, justifying the need for a thorough 31 

evaluation. A framework for the operational and scientific evaluation of geophysical models 32 

was already envisaged in the early ‘80s (Fox, 1981; Wilmott et al., 1985), the former being ‘a 33 

comparison with data exclusively within a particular application context’, and the latter 34 

defined as ‘some understanding of cause-and-effect relationship that relies on testing model 35 

components and extensively detailed data collection’ (Fox, 1981). Thirty years later, as AQ 36 
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models became more and more complex and their range of applicability widened, Dennis et 37 

al. (2010) further elaborated the concept of model evaluation by proposing a four-level 38 

evaluation, according to which different complementary aspects of the models should be 39 

tested, namely:  40 

a. Operational: the level of agreement of model results with observations; 41 

b. Dynamic: ability of the modelling system to respond to changes (in emissions, or in 42 

meteorological events);  43 

c. Diagnostic: identify and attribute the source of the error to the relevant process; 44 

d. Probabilistic: confidence and uncertainty levels of the modelled results. 45 

In the framework originally designed by Dennis et al. (2010), the diagnostic component 46 

plays a central role. It i) answers the fundamental issue left open by the operational 47 

screening, in other words whether the model provides the right answer for the right reason, 48 

ii) provides feedback to developers to help make model improvements, and iii) sets the 49 

basis for the probabilistic evaluation (Figure 1 of  Dennis et al., 2010).  50 

Over the years, and despite the increasing relevance of modelling systems for AQ 51 

applications, model evaluation continues to rely almost exclusively on operational 52 

evaluation, which basically involves gauging the model’s performance using distance, 53 

variability, and associativity metrics. This common practice has little or no impact on model 54 

improvement, as it does not target the source of the modelling error and does not 55 

discriminate between the reasons for appropriate or inappropriate performance.  56 

Such a requirement is even more pressing these days, with current state-of-the-science AQ 57 

modelling systems accounting for an increasing number of coupled physical processes and 58 

being described using hundreds of modules, which are the result of decades of targeted 59 

and, generally, independent investigations. Furthermore, AQ modelling systems typically 60 

depend on external sources for the inputs of meteorology and emissions data, as well as for 61 

boundary conditions. These fields are generally produced by other models (which, in turn, 62 

depend on external sources for initial and/or boundary conditions) and, after substantial 63 

processing, are used by the AQ modelling systems with no guarantee of being unbiased 64 

and/or accurate. The bias introduced by these inputs, along with the uncertainty associated 65 

with model error, the linearisation of non-linear processes, and omitted and unresolved 66 

variables and processes, all contribute to the model error. The extensive use of AQ models 67 

for AQ assessment and planning is equally important, and requires a good knowledge of the 68 

model capabilities and deficiencies that would allow for a more educated use of the 69 

modelling systems and their results. 70 

Recently, the AQMEII (Air Quality Model Evaluation International Initiative) activity (Rao et 71 

al., 2011) applied the approach proposed by Dennis et al. (2010), by organising model 72 
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evaluation activities (AQMEII 1, 2 and 3) using operational (Solazzo et al., 2012a,b; Solazzo 73 

et al., 2013a; Im et al., 2015a,b), probabilistic (Solazzo et al., 2013b; Kioutsioukis et al., 74 

2014), and diagnostic (Hogrefe et al., 2014; Makar et al., 2015) evaluation frameworks. 75 

The study we present here follows and complements the previous investigations based on 76 

the AQMEII models collected in the first and second phases of the activity (AQMEII1 in 2006 77 

and AQMEII2 in 2010). The main aim is to introduce a novel method that combines 78 

operational and diagnostic evaluations. This method helps apportion the model error to its 79 

components, thereby identifying the space/timescale at which it is most relevant and, when 80 

possible, to infer which process/es could have generated it. This work is designed to support 81 

the analysis of the currently ongoing third phase of the AQMEII activity (Galmarini et al., 82 

2015). 83 

2. MEAN SQUARE ERROR AS A COMPREHENSIVE METRIC 84 

For the model evaluation strategy proposed, we start by breaking down the Mean Square 85 

Error (MSE) (used here as unique metric to evaluate model performance) into the sum of 86 

the variance (and covariance) and the squared bias. The error and its components are then 87 

calculated on the spectrally decomposed time series of modelled and observed hourly 88 

ozone mixing ratios. The advantage of this evaluation strategy is twofold: 89 

 With respect to a conventional operational evaluation, the new method allows for a 90 

more detailed assessment of the distance between model results and observations 91 

given the breakdown of the error into bias, variance and covariance and their 92 

associated interpretations. 93 

 Decomposing the MSE into spectral signals allows for the precise identification of 94 

where each portion of the model error predominantly occurs. Given that specific 95 

processes are associated with specific scales, the apportionment of the error 96 

components to their relevant scales helps to more precisely identify which processes 97 

described in the model could be responsible for the error. Information about the 98 

nature of the error and the class of process can significantly help modellers and 99 

developers to improve model performance.  100 

The data used are produced by the modelling communities participating in AQMEII1 and 101 

AQMEII2 over the European (EU) and North American (NA) continental scale domains for 102 

the years 2006 (AQMEII1) and 2010 (AQMEII2).  103 

2. 1. ERROR DECOMPOSITION 104 

The MSE is the squared difference of the modelled (mod) and observed (obs) values: 105 

𝑀𝑆𝐸 = 𝐸(𝑚𝑜𝑑 − 𝑜𝑏𝑠)2 =
∑ (𝑚𝑜𝑑𝑖 − 𝑜𝑏𝑠𝑖)

2𝑛𝑡
𝑖=1

𝑛𝑡
 

EQ 1 

 

where E() denotes expectation and nt is the length of the time series. The bias is: 106 
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𝑏𝑖𝑎𝑠 = 𝐸(𝑚𝑜𝑑 − 𝑜𝑏𝑠) EQ 2 

 

i.e. 𝑏𝑖𝑎𝑠 = 𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅ . Thus, the following relationship holds:  107 

𝑀𝑆𝐸 = 𝑣𝑎𝑟(𝑚𝑜𝑑 − 𝑜𝑏𝑠) + 𝑏𝑖𝑎𝑠2 EQ 3 

 108 

which is a well-known property of the MSE, (var() is the variance operator). By using the 109 

property of the variance for correlated fields: 110 

𝑣𝑎𝑟(𝑚𝑜𝑑 − 𝑜𝑏𝑠) = 𝑣𝑎𝑟(𝑚𝑜𝑑) + 𝑣𝑎𝑟(𝑜𝑏𝑠) − 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠) EQ 4 

 111 

the final formulation for the MSE components reads: 112 

𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟(𝑚𝑜𝑑) + 𝑣𝑎𝑟(𝑜𝑏𝑠) − 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠), EQ 5 

 113 

where the covariance term (last term on the right-hand side of Eq 5) accounts for the 114 

degree of correlation between the modelled and observed time series. When the covariance 115 

term is zero, var(obs) is referred to as the incompressible part of the error and represents 116 

the lowest limit that the MSE of the model can achieve. When dealing with model 117 

evaluation, the modelled and observed time series are typically highly correlated and 118 

therefore, within the limits of the perfect match (correlation coefficient of unity), cov(mod, 119 

obs) = cov(obs,obs) = cov(mod,mod) = var(mod) = var(obs) and the MSE can be reduced to 120 

only the bias term. That implies that the development of a high-quality model needs to 121 

ensure: 122 

a. the highest possible precision in order to maximise the cov(mod, obs) term, and    123 

b. the highest possible accuracy, in order to minimise the bias. 124 

Elaborating on Eq 5, Theil (1961) derived the following:  125 

𝑀𝑆𝐸 = (𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅)2 + (𝜎𝑚𝑜𝑑 − 𝜎𝑜𝑏𝑠)
2 +  2(1 − 𝑟)𝑚𝑜𝑑𝑜𝑏𝑠 

EQ 6 

 126 

In Eq 6, the variance term is expressed as the difference between the standard deviation of 127 

the model and that of the observations, and the covariance term (last term on the right) 128 

includes r, the coefficient of correlation between the observed and modelled time series. 129 

The ratios of the three terms on the right-hand side of Eq 6 to the overall MSE are known as 130 

Theil’s coefficients (Pindick and Rubinfeld, 1998).  131 

The bias measures the departure of the modelled from the observed results, and is a 132 

measure of systematic error, since it measures the extent to which the average modelled 133 

values deviate from the observed ones. The bias is commonly used to express the degree of 134 

‘trueness’, i.e. “the closeness of agreement between the average value obtained from a 135 

large series of measurements and the true value” (Johnson, 2008). The variance shows 136 
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whether the modelled variability is compatible with that observed. Finally, the covariance 137 

term represents the unexplained proportion of the MSE due to the remaining unsystematic 138 

errors, i.e. it represents the remaining error after deviations from the mean values have 139 

been accounted for. This latter term is a measure of the lack of correlation of the model 140 

with comparable observations, and is considered the least ‘worrisome’ portion of the error 141 

(Pindick and Rubinfeld, 1998).   142 

Elaborating on Eq 6, the conditions that minimise the MSE are:   143 

{
 

 
𝜕𝑀𝑆𝐸

𝜕𝑚𝑜𝑑̅̅ ̅̅ ̅̅
= 2(𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅) = 0

𝜕𝑀𝑆𝐸

𝜕𝜎𝑚𝑜𝑑
= 2(𝜎𝑚 − 𝜎𝑜𝑏𝑠) + 2(1 − 𝑟)𝜎𝑜𝑏𝑠 = 0

 

i.e. the best agreement between modelled and observed values is achieved by:   144 
 145 

{
𝑚𝑜𝑑̅̅ ̅̅ ̅̅ = 𝑜𝑏𝑠̅̅ ̅̅ ̅

𝜎𝑚 = 𝑟𝜎𝑜𝑏𝑠
 EQ 7 

 146 

which analytically corresponds to the aforementioned items a and b. By inserting Eq 7 into 147 

Eq 6, the minimum achievable MSE (mMSE) is 148 

𝑚𝑀𝑆𝐸 = 𝜎𝑜𝑏𝑠
2 (1 − 𝑟2) EQ 8 

 149 

which is the unexplained portion of the error, as it reflects the share of observed variance 150 

that is not explained by the model (r2 is the coefficient of determination). The presence of 151 

an unexplained part of the error suggests a modification of the MSE decomposition in Eq 6 152 

in such a way as to explicitly include mMSE: 153 

𝑀𝑆𝐸 = (𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2
+ (𝜎𝑚𝑜𝑑 − 𝑟𝜎𝑜𝑏𝑠)

2 +𝑚𝑀𝑆𝐸 
EQ 9 

 154 

The decompositions in Eq 5, Eq 6, and Eq 9 contain all the relevant operational metrics 155 

usually applied to score modelling systems (bias, variance, correlation coefficient), and 156 

therefore prove to be a compact estimator of accuracy (bias), precision (variance) and 157 

associativity (unexplained portion through the correlation coefficient). Eq 9 has been 158 

explicitly derived in this study to help evaluate AQ models. Murphy (1988) provided 159 

examples of the scores that can be developed using the components of the MSE. 160 

Ideally, the entire error should be attributable to unsystematic fluctuations. From a model 161 

development perspective, the variance and covariance are possibly more revealing of model 162 

deficiencies than is the bias term, as they are produced by the AQ model itself, while the 163 

bias is also due to external sources (e.g. emissions, boundary conditions). From the 164 
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application viewpoint, however, it is the overall error that counts, which is mostly made up 165 

of the bias. 166 

2.2. SPECTRAL DECOMPOSITION OF MODELLED AND OBSERVED TIME SERIES  167 

Hourly time series of (modelled and observed) ozone concentrations have been 168 

decomposed using an iterative moving average approach known as the Kolmogorov-169 

Zurbenko (kz) low-pass filter (Zurbenko, 1986), whose applications to ozone are vastly 170 

documented in the literature (Rao et al., 1997; Wise and Comrie, 2005; Hogrefe et al., 2000 171 

and 2014; Galmarini et al., 2013; Kang et al., 2013; Solazzo and Galmarini, 2015). The kz 172 

filter depends on two parameters: the length of the moving average window m and the 173 

number of iterations k (kzm,k). Since the kz is a low-pass filter, the filtered time series 174 

consists of the low-frequency fluctuating component, while the difference between two 175 

filtered time series provides a band-pass filter. This latter property is used to decompose the 176 

ozone concentration time series as:   177 

O 3 = LT(O 3) + SY(O 3) + DU(O 3) +ID(O 3) EQ 10 

 178 

where LT is the long-term component (periods longer than 21 days); SY is the synoptic 179 

component (weather processes that last between 2.5 and 21 days); DU is the diurnal 180 

component (day/night alternation period between 0.5 and 2.5 days); and ID is the intra-day 181 

component accounting for fast-acting processes (less than 12 hours). The decomposition 182 

presented in Eq 10 is such that the original time series is perfectly returned by the 183 

summation of the components (see Appendix for details). Dealing with one year of data, any 184 

filter longer than the LT component would not be meaningful. The periods of the 185 

components correspond to well-defined peaks in the power spectrum of ozone, e.g. as 186 

detailed in Rao et al. (1997) and Hogrefe et al. (2000). 187 

The LT component is the baseline and incorporates the bias of the original (undecomposed) 188 

time series. The other components (SY, DU, and ID) are zero-mean fluctuations around the 189 

LT time series and are therefore unbiased. The band-pass nature of the SY, DU, and ID 190 

components is such that they only account for the processes occurring in the time window 191 

the filter allows the signal to ‘pass’. For instance, the DU component is insensitive to 192 

processes outside the range of 0.5 to 2.5 days.  193 

Further properties of the spectrally decomposed ozone time series of AQMEII derived by 194 

Galmarini et al. (2013), Hogrefe et al. (2014), and Solazzo and Galmarini (2015) are as 195 

follows: 196 

- The DU component accounts for more than half of the total variance, followed by 197 

the LT and SY components; 198 

- The ID component has the smallest influence due to the small amplitude of its 199 

fluctuations; 200 
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- The variance of the spectral component is neither strongly nor systematically 201 

associated with the area-type of the monitoring stations (i.e. rural, urban, suburban); 202 

- Due to the bias, most of the error is accounted for by the LT component, followed by 203 

the DU component. The ID contributes very little to the overall MSE. 204 

Further important technicalities of the spectral decomposition, including a method to 205 

estimate the contribution of the spectral cross-components (the overlapping regions of the 206 

power spectrum) to the total error, are reported in the Appendix.  207 

The signal decomposition of Eq 10 is applied to the full-year time series. However, to 208 

evaluate the model performance with regard to ozone, the analysis is restricted to the 209 

months of May to September, i.e. when the production of ozone due to photochemistry is 210 

most relevant.   211 

3. DATA AND MODELS USED 212 

The observational dataset derived from the surface AQ monitoring networks operating in 213 

the EU and NA constitutes the same dataset used in the first and second phases of AQMEII 214 

to support model evaluation. Only stations with over 75% valid records for the whole 215 

periods and located at altitudes below 1 000 m have been used for this analysis. Details of 216 

the modelled regions and number of receptor stations are reported in Table 1. 217 

Since the main scope of this study is to introduce the error apportionment methodology 218 

(rather than to strictly evaluate the models), the analysis is presented for continental areas 219 

for convenience and easier display of the results. However, given the size of the domains 220 

and the heterogeneity of climatic and emission conditions, dedicated analyses for three sub-221 

regions in both continents are proposed in the Supplementary material (Figure S1 to Figure S3).   222 

There are profound differences between the modelling systems that participated in 223 

AQMEII1 and AQMEII2. The two sets of models have been applied to different years (2006 224 

for phase 1 and 2010 for phase 2) and are therefore dissimilar with respect to the input data 225 

of emissions and boundary conditions for chemistry. The AQ models of the second phase 226 

are coupled (online chemistry feedbacks on meteorology), while those of the first phase are 227 

not. The effect of using online models for simulating ozone accounts for the impact of 228 

aerosols on radiation and therefore on temperature and photolysis rates (Baklanov et al., 229 

2014).  230 

The model settings and input data for phase I are described in Solazzo et al. (2012a, b; 231 

2013a), Schere et al. (2012), and Pouliot et al. (2012); for phase II, similar information is 232 

presented in Im et al. (2015a, b), Brunner et al. (2015), and Pouliot et al. (2015).   233 

Table 2 summarises the features of the modelling systems analysed in this study with regard 234 

to ozone concentrations in the EU or NA. The modelling contribution to the two phases of 235 

AQMEII consists of 12 and 9 models and of 8 and 3 models for EU and NA, respectively.  236 
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Detailed analysis of the main differences in emissions, boundary conditions, and 237 

meteorology between the modelled years of 2006 (AQMEII1) and 2010 (AQMEII2) is 238 

presented in Stoeckenius et al. (2015). A summary of the performance of the two suites of 239 

model runs is provided in Makar et al. (2015), showing that the AQMEII1 models generally 240 

performed better than the AQMEII2 models, based on standard operational metrics. 241 

However, the use of standard evaluation methods does not allow for the assessment of 242 

whether the feedback processes have an effect on the deterioration of model performance, 243 

or rather the different sets of emissions and boundary conditions. We try to assess the 244 

problem using the error apportionment methods outlined above.    245 

4. RESULTS FOR THE SPATIALLY AVERAGED TIME SERIES 246 

4.1 MSE OF SPECTRAL COMPONENTS   247 

Figure 1 reports the MSE share of the spectral components and cross components for each 248 

model, for both phases of AQMEII, spatially averaged over the two continental areas.  249 

The LT share of the total MSE is the largest in absolute value for both continents and both 250 

simulated years. The LT share ranges between 9.9% (GEM-AQ, AQMEII1, NA) and 86.7% 251 

(WRF/Chem, AQMEII1, NA), and averages at 34% and 46.5% for the EU and 50.6% and 252 

47% for NA (AQMEII1 and AQMEII2, respectively).  253 

The second largest share of the total MSE is of the DU component, accounting for 20% (all 254 

cases), followed by the SY component. Depending on the model, the MSE share of the 255 

remaining spectral components and cross-components varies significantly. Being the 256 

intermediate time scales, the overlap of the DU and SY components is likely to be more 257 

significant than the overlap of the LT and ID scales. The contribution of DUcc and SYcc to the 258 

total error can be as high as 17% (DUcc for GEM-AQ, AQMEII1, NA) and 16% (SYcc for MM5-259 

CAMx, AQMEII1, EU). Overall, the DUcc terms (interaction of DU with the neighbouring SY 260 

and ID scales) are significant in both continents (10%), while the share of the SY 261 

component and cross-components is more significant in the EU.  262 

The ID component has a little impact or negligible on the total MSE (negligible in some 263 

instances), exceeding the 3% share only for the two EU instances of the L.-Euros model. 264 

The results of Figure 1 help identify the time-scales and associated processes for which the 265 

largest improvement in model accuracy can be achieved. The LT component has the largest 266 

share of the error due to the bias (error breakdown is discussed in the next section), but 267 

‘internal’ chemical processes, transport, and deposition also occur at this timescale.  Diurnal 268 

processes are the second largest source of error, including, among others, chemistry, 269 

boundary layer dynamics, radiation forcing, and their interactions. The processes in the SY 270 

band bridge meteorological and chemical processes, and discern between the fast-acting 271 

diurnal processes and the baseline. As such, although the SY signal is not as strong as that of 272 
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the DU components (variance of SY is comparable to the variance of ID, see Hogrefe et al., 273 

2014), it accounts for a significant portion of the total error, as discussed next. 274 

4.2 THE QUALITY OF THE ERROR: ERROR APPORTIONMENT 275 

The error breakdown (Eq 9) of each spectral component complements the analysis 276 

presented in the previous section, and is reported in Figure 2. The bias (only included in the LT 277 

component) is the average amount by which the modelled time series is displaced with 278 

respect to the observed time series, and is the main source of error. The bias can be either 279 

due to ‘internal’ model errors, or inherited from external drivers (emissions, meteorology, 280 

boundary conditions). While the former are of interest for model development because 281 

they are generated by systematic modelling errors, the bias introduced by external drivers is 282 

responsible for the largest share of modelling errors.    283 

From the continental average error breakdown of Figure 2 we can conclude that the majority 284 

of EU models (in both AQMEII phases) have small bias (continental-wide average), with the 285 

important exceptions of CCLM-CMAQ and Muscat models in AQMEII1, and CMAQ in 286 

AQMEII2, which introduced large positive biases. The bias for the NA continent is more 287 

uniformly distributed across the models (model over-prediction in both AQMEII phases), 288 

possibly indicating a common source of (external) bias in the NA models. The error 289 

introduced by external fields is reflected by the bias of the baseline component (LT). For the 290 

period between May and September, the error in modelled ozone due to the boundary 291 

condition is typically small (Solazzo et al., 2012; Im et al., 2015; Giordano et al., 2015; 292 

Hogrefe et al., 2014), while the emissions of ozone precursors and VOCs are problematic, 293 

especially in the EU (Makar et al., 2015; Brunner et al., 2015). We further notice that the 294 

absence of bias in some models may be caused by the presence of compensating bias, i.e. 295 

spatially distributed biases of opposite signs. The spatial distribution of the MSE is discussed 296 

in the next section. In all cases, the MSEbest model is, by definition, the model with lowest 297 

MSE and thus the one with the smallest LT bias.  298 

The variance share of LT error is generally small (1 - 2.5 ppb). This is not entirely 299 

unexpected, as the LT component has a high signal-to-noise ratio with a well-structured 300 

seasonal cycle, peaking in summer. While such a cycle is typically well reproduced by the 301 

models, its phase and/or the amplitude are not always well captured (Solazzo et al., 2012; 302 

Im et al., 2015), leading to the variance error. In detail, the mMSE error of the LT component 303 

outweighs the variance error in most cases (in both the EU and NA), and is due to the 304 

unexplained portion of observed variance, thus to the sparseness of the modelled values. 305 

The processes responsible for the mMSE error of the LT component (such as deposition, 306 

transport, stratospheric mixing and photochemistry) act at timescales of more than 21 days.   307 

The DU error (on average 3-4 ppb for AQMEII1 and 2-3 ppb for AQMEII2) makes up the 308 

second highest contribution to the total error. The portioning between variance and the 309 

mMSE error varies greatly from model to model. However, a comparison of the two AQMEII 310 
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phases shows that the mMSE is predominant for AQMEII2, while the variance error 311 

(typically due to model under-prediction of the observed variability) is most relevant in 312 

several cases of AQMEII1. Therefore, at the DU scale, the ‘quality’ of the error of the 313 

AQMEII2 phase is higher than that of its AQMEII1 counterpart. One possible explanation is 314 

the fact that coupled models were used in AQMEII2, while AQMEII1 exclusively used non-315 

coupled models. As already mentioned (end of section 3), Makar et al. (2015) found that 316 

AQMEII1 models performed better overall with respect to AQMEII2. An analysis of the LT 317 

component showed that the bias in the AQMEII2 models is higher, possibly due to the 2010 318 

emission inventory, while an analysis of the DU error found that the variance error in the 319 

AQMEII2 models is significantly reduced with respect to the AQMEII1 models, and is almost 320 

null. We postulate that the inclusion of feedback effects may have been beneficial, and that 321 

the reduced performance of AQMEII2 models is likely due to external bias. The residual 322 

mMSE error of the DU component (1-2 ppb on average for both continents) is mostly likely 323 

generated by a number of processes, including chemistry, cloudiness, boundary layer 324 

transition and vertical mixing. 325 

The SY error (almost entirely due to mMSE in AQMEII2) is comparable across all models 326 

applied to the same continental domain (except for GEM-AQ and WRF/Chem, NA), 327 

indicating that a possible common source of error may be due to missing processes in the 328 

models related to the interaction between chemistry and transport.  329 

Finally, the error of the ID component is less than 1 ppb (on average 0.2 ppb for AQMEII2) 330 

and is generated by both variance (most commonly model over-prediction) and mMSE. The 331 

fast-acting photochemical processes are, therefore, modelled with satisfactory precision.  332 

4.3. SPATIAL DISTRIBUTION OF THE SPECTRAL ERROR COMPONENTS 333 

Maps of MSE by spectral components are reported in Figure 3 to Figure 6. As anticipated by the 334 

error analysis, the LT is the most problematic source of error for both continents, although 335 

the variety in the models’ behaviour does not allow for generalisation.  336 

Some of the cases presented in Figure 2, where the bias was null (MM5-CAMx, MM5-DEHM 337 

for AQMEII1 and CosmoArt for AQMEII2, both in EU), show bias compensation, typically due 338 

to model underestimation in the central part of the EU (Germany, eastern France) and 339 

model overestimation in the rest of the continent. The case of the CosmoArt model (Figure 5c) 340 

clearly shows the effect of the spatial averaging in masking the error that is only cancelled 341 

when a continental average is calculated. The model is in fact affected by severe bias and 342 

component errors.   343 

The Po valley in Italy and the southern part of the EU are the most problematic areas, 344 

affected by severe LT errors (Figure 3 and Figure 5). The central and northern parts of the EU are 345 

less problematic, especially for AQMEII2. The other components of the error are 346 

significantly smaller than the LT error, with some exceptions (especially for the DU 347 
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component). The length of the segment is in fact normalised to the largest error for each 348 

model, to facilitate the interpretation and the relative weight of each error component. 349 

Concerning NA (Figure 4 and Figure 6), the DU error has more weight and competes with the LT 350 

error in the central and south-eastern parts of the continent. For AQMEII2, the SY error is as 351 

significant as the LT error on the East Coast (Wrf/Chem, Figure 6c). The greatest LT error is 352 

observed in the coastal areas (east and west) and across the north-eastern border between 353 

the US and Canada (due primarily to model underestimation in the east and north, and 354 

model overestimation in the west).  355 

The analysis presented provides a detailed breakdown of the error in terms of error 356 

components, spectral decomposition and spatial distribution, thereby avoiding the pitfalls of 357 

extreme averaging and providing a comprehensive analysis of where the error occurs and 358 

the associated timescales and processes, and whether the error is internally generated or 359 

stems from the model’s input data.  360 

5. MSE DECOMPOSITION AND COMPLEXITY 361 

In regression analysis and statistical learning theories, the problem of under- and over-362 

fitting complex systems is at the root of the MSE decomposition into bias and variance. The 363 

trade-off between bias and variance is strictly dependent on the complexity of the model. 364 

Over-fitting occurs when too many parameters and modules are added to the model: each 365 

new module added to describe a process is a new source of variance due to internal 366 

parameterisation and linearisation. In other words, over-fitting is associated with the 367 

stochasticity inherent to the data/model, and contributes to the increase in variance and 368 

consequent decrease in bias. Under-fitting occurs due to an oversimplification of the 369 

modelled processes, and is an important source of bias as it is associated with the 370 

deterministic property of the modelling activity (Hastie et al., 2009).  371 

The problem of the bias-variance trade-off becomes markedly more complicated when 372 

dealing with complex models with many degrees of freedom, such as AQ modelling systems. 373 

Adding new modules to cope with unexplained physical processes can lead to a reduction in 374 

the bias due to that specific process, but also feeds new variance and possibly new bias into 375 

the model due to the non-linear interaction of the new module with existing ones, since 376 

reducing the bias while preserving the variance is non-trivial. Rao (2005), in the context of 377 

dispersion modelling, provided the theoretical variations of the total model uncertainty by 378 

exploiting the components of the difference between the modelled and observed variance 379 

(Figure 1 of Rao et al., 2005). Rao (2005) used the number of meteorological parameters in 380 

the model as a measure of model complexity, and concluded that the optimal model 381 

complexity could not be defined a priori, but is a trial-and-error combination of the model, 382 

the measurement error and the stochastic uncertainty. 383 

In this study we attempt to derive the curves of the MSE components as a function of model 384 

complexity. Figure 7 shows an example of the approach used to break down model complexity 385 
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(which basically relies on the resolved timescale of the model). The complexity of the model 386 

is assumed to increase when the resolved timescale is shortened: the shorter the timescale, 387 

the more complex the model. The timescale of the resolved processes is thus used as a 388 

measure of the complexity, and is obtained by recursively applying the kz filter to the ozone 389 

time series. The minimum complexity is assumed to be represented by a model that cannot 390 

resolve any temporal scale below 1 month (far right of Figure 7), while the maximum 391 

complexity corresponds to the hourly time series, i.e. the standard model’s output (far left 392 

of Figure 7).  393 

In Figure 8, we report the spatially averaged curves of bias, variance, and covariance according 394 

to Eq 6 as a function of model complexity. According to the regression analysis theories 395 

outlined above, we would expect the variance to increase according to the complexity 396 

(
𝑑𝜎𝑚

2

𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
> 0), and the distance between the modelled and observed variance to 397 

decrease (
𝑑(𝜎𝑚−𝜎𝑜)

2

𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
< 0), and the opposite for the bias. The curves of variance in Figure 8 398 

indeed turn downwards as predicted by the theory, while the curves of bias have a mixed 399 

behaviour but are, basically, constant (
𝑑(𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅−𝑜𝑏𝑠̅̅ ̅̅ ̅)2

𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
≈ 0). More specifically: 400 

- The (𝜎𝑚−𝜎𝑜)
2 term decreases steadily but slowly to a timescale of 1 day, after 401 

which it drastically drops to significantly lower values. This indicates that i) the 402 

complexity of the AQ systems increases exponentially at the DU timescales (not 403 

entirely surprising, given the day/night behavioural properties of ozone); ii) the 404 

efforts made to improve the model capabilities on the short-term processes 405 

governing the ozone dynamics improve the model precision; iii) there is a possible 406 

lack of parameterisation and modelling of the processes of transport and chemical 407 

transformation over periods longer than 1-2 days.  408 

- The fact that the bias varies only by small amounts indicates that a fully evolved 409 

model, capable of reproducing processes at the shortest timescales (turbulent 410 

dispersion, fast chemical reactions, even day/night variability, etc.) is no more 411 

accurate than a basic model that only accounts for long-term processes. This might 412 

indicate that i) the bias at the shorter timescales is introduced entirely by the larger 413 

timescales, and/or ii) the bias is continuously fed into the model by an external 414 

source acting at all scales, as for example the emissions data or boundary conditions.      415 

In Figure S4 to Figure S7 we propose the same analysis as that in Figure 8 but replicated for all 416 

receptors individually (with no spatial average). In most cases (both continents, both 417 

AQMEII phases), the (𝜎𝑚−𝜎𝑜)
2 term decreases sharply after a timescale of resolved 418 

processes of 1 day; the bias term confirms the independency to complexity at all 419 

receptors; the covariance is complementary to the variance.  420 

5. CONCLUSIONS 421 
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This study presents a novel approach to model evaluation, and aims to combine standard 422 

operational statistics with the time allocation of the component error. The methodology we 423 

propose tackles the issue of diagnostic evaluation from the angle of the spectral 424 

decomposition and error breakdown of model/data signals, introducing a compact operator 425 

for the quantification of bias, variance, and the correlation coefficient. 426 

When the analytical decomposition of the error into bias, variance and mMSE is applied to 427 

the decomposition of the signals into long-term, synoptic, inter-diurnal and diurnal 428 

components, information can be gathered that helps reduce the spectrum of possible 429 

sources of errors and pinpoint the processes that are most active at a particular scale which 430 

need to be improved. The procedure is denoted here as error apportionment and provides 431 

an improved and more powerful capacity to identify the nature of the error and associate it 432 

with a specific part of the spectrum of the model/measurement signal. The AQMEII set of 433 

models and measurements have been used in the evaluation procedure. 434 

After analysing the ozone concentrations gathered in the two phases of AQMEII, which 435 

cover a number of modelling systems in two different years and geographical areas, we 436 

conclude that:  437 

- The bias component of the error is by far the most important source of error, and is 438 

mainly associated with long-term processes and/or input fields (likely emissions data 439 

or boundary conditions). With regard to the model application, any effort to improve 440 

the current capabilities of AQ modelling systems are likely to have little practical 441 

impact if this primary issue is not addressed and solved; 442 

- Most relevant to model development, the variance error (the discrepancy between 443 

modelled and observed variance) is mainly associated with the DU component. At 444 

timescale of 1-2 days, the complexity of modelling systems increases substantially 445 

and many processes are involved; the fact that the variance error of the DU 446 

component for the AQMEII2 runs is reduced with respect to the AQMEII1 runs might 447 

indicate the benefits of including feedback in the models. Such a conclusion could 448 

not be drawn with simpler operational evaluation strategies; 449 

- The limited magnitude of the variability of the SY and LT signals produces little 450 

variance errors for these two components, and only becomes comparable to the LT 451 

or DU error when the bias is negligible or the total MSE is small; 452 

- The mMSE error is predominant in some instances of the analysed models, and is 453 

due to the random distribution of modelled values. There are many causes of mMSE 454 

error, including all ‘internal’ processes that produce non-systematic errors such as 455 

noise, representativeness, the linearisation of non-linear process, and turbulence 456 

closure;   457 

- The analysis of the spatial distribution of the error highlights the diversity in the 458 

behaviour of each modelling system. The common spatial structures of the LT error 459 

(for example in the central and southern EU) may reveal common sources of error 460 
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(e.g. emissions data), while the error of the other components (especially DU and SY) 461 

are peculiar to each model and need to be assessed individually. 462 

 463 

Analyses of the modelling results for the third phase of AQMEII are currently building on the 464 

methodology outlined in this study, with specific attention being given to the diagnostic of 465 

the error of the LT component in relation to external forcing (emissions and boundary 466 

conditions) and of the DU component with respect to the variance error.  467 

 468 

 469 

 470 

APPENDIX 471 

As in Hogrefe et al. (2000) and Galmarini et al. (2013), the time windows (m) and the 472 
smoothing parameter (k) have been selected as follows: 473 

ID(t) = x(t) – kz3,3(x(t)) 
DU(t) = kz3,3(x(t)) – kz13,5(x(t)) 
SY(t) = kz13,5(x(t)) – kz103,5(x(t)) 

LT(t) = kz103,5(x(t)) 
x(t)=ID(t)+DU(t)+SY(t)+LT(t) 

 

EQ. S.1 

where x(t) is the time series vector. 474 

A clear-cut separation of the components of EQ. S.1 cannot be achieved, as the separation is 475 

a non-linear function of the parameters m and k (Rao et al., 1997). It follows that the 476 

components of EQ. S.1 are not completely orthogonal and that some level of overlapping 477 

energy exists (Kang et al., 2013). Galmarini et al. (2013) found that the explained variance by 478 

the spectral components account for 75 to 80% of the total variance, the remaining portion 479 

being explained by the interactions between the components.  480 

 481 

Assuming a spectral decomposition which is valid for the modelling and the observational 482 

time series, the MSE formulation outlined in Galmarini et al. (2013) holds: 483 

𝑀𝑆𝐸(𝑂3) = 𝑀𝑆𝐸(𝐿𝑇 + 𝑆𝑌 + 𝐷𝑈 + 𝐼𝐷)

=∑𝑀𝑆𝐸(𝑠𝑝𝑒𝑐 𝑐𝑜𝑚𝑝) + ∑𝑀𝑆𝐸(𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑚𝑝)  
EQ. S.2 

 484 

Where spec comp are the diagonal terms, and LT, SY, DU, ID and cross comp are the off-485 

diagonal terms deriving from the squared nature of the MSE: LToSYm, SYoLTm, SYoDUm, 486 
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DUoSYm, DUoIDm, IDoDUm, LTmSYm,  LToSYo, DUmSYm, DUmIDm, DUoSYo, DUoIDo (o and m 487 

represent observed and modelled fields, respectively). For simplicity, the cross-components 488 

are assumed to be symmetric, so the o and m subscripts are dropped. This simplification has 489 

little impact on the MSE breakdown since, as shown by Galmarini et al. (2013), the diagonal 490 

terms alone account for over 80% of the total variance. 491 

To isolate the contribution to MSE of a single spectral component, we proceed as follows. 492 

We subtract a component (e.g. LT) from the whole time series: 493 

MSE(O3-LT(O3)) = 

MSE(SY)+MSE(DU)+MSE(ID)+2MSE(IDDU)+2MSE(IDSY)+2MSE(DUSY) 
EQ. S.3 

 494 

By removing EQ. S.3 from EQ. S.2, the contribution of LT and its cross-component is isolated: 495 

EQ. S.2- EQ. S.3 = MSE(LT) + MSE(LTID) +MSE(LTSY) + MSE(LTDU) EQ. S.4 

 496 

We can further elaborate on EQ. S.4 to isolate the contribution of each cross-component. 497 

For instance, the case of SYLT: 498 

 499 

MSE(SY-ID-DU)–MSE(SY)–MSE(LT) = [MSE(SY)+MSE(LT)+ 2MSE(SYLT)] – MSE(SY) – 

MSE(LT) = 2MSE(SYLT) 
EQ. S.5 

 500 

The procedure in EQ. S.5 has been applied to derive the contribution of all cross-501 

components. 502 

 503 
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FIGURES 625 

Figure 1. Share (in %) of the total MSE in the main spectral components and the cross components (see Appendix for 626 
detail) for a) AQMEII1 and b) AQMEII2. Top panel: EU; lower panel: NA. 627 

Figure 2. MSE (ppb
2
) breakdown in bias, variance and mMSE of the spectral components ID, DU, SY, LT, based on Eq 9.  The 628 

sign within the share of bias and variance indicates model overestimation (+) or underestimation (-) of mean concentration 629 
(bias) and variance. a) AQMEII1 and b) AQMEII2. Top panel: EU; lower panel: NA. 630 

Figure 3 Spatial distribution of the MSE in the spectral components for the EU models of AQMEII1. The segments are 631 
centred at the rural receptors’ position (clockwise from north: MSE of ID, DU, SY, and LT). Their length is proportional to 632 
the MSE magnitude, coded according to the colour scale. For each model, the colour scale extends from zero up to the 75

th
 633 

percentile, and the last value of the scale is the maximum MSE. The colour of the MSE values above the 75
th

 percentile 634 
represents the maximum value. The thick dashed LT segment indicates model underestimation (low model bias). 635 

Figure 4 As in Figure 3, but for the NA models of AQMEII1. 636 

Figure 5. As in Figure 3, but for the EU models of AQMEII2. 637 

Figure 6 As in Figure 3, but for the NA models of AQMEII2. 638 

Figure 7 Example of the model complexity as time-resolved scale of the transport and dispersion processes: the minimum 639 
complexity (far right) is a poor time-resolving time series obtained as kz(250,5). The complexity increases towards the left, 640 
with the scale of resolved processes becoming finer up to the maximum complexity (far left), which represents the full time 641 
series. 642 

Figure 8 Evolution of error components (Red: bias; Blue: variance; Black: covariance) as a function of model complexity. 643 
Complexity increases from left (min.) to right (max.) and is calculated as the temporal scale of the resolved process using 644 
the kz filter on the modelled signal: kz(i,5), i=2,…,250. 645 
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TABLES 663 

Table 1. Features of the modelled domains 664 

 
Europe North America 

phase 1 phase 2 phase 1 phase 2 

Simulated year 2006 2010 2006 2010 

Extension (-10,39)W; (30,65)N (-125,-55)W; (26,51)N 

Number of receptors 
(min validity=75%; max altitude = 1 000 m) 

1 339 1 360 672 652 
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Table 2. Modelling systems participating in the first (Table a) and second (Table b)  phases of AQMEII for Europe and North 686 
America 687 

a) 688 
Model 

Grid(km) Emissions Chemical BC 
Code Met AQ 

EUROPE 

DK1 MM5 DEHM 50 
Global emission 

databases, EMEP 
Satellite 

measurements 

FR3 MM5 Polyphemus 24 Standard§ Standard 

HR1 
PARLAM-

PS 
EMEP 50 EMEP model 

From ECMWF and 
forecasts 

UK2 WRF CMAQ 18 Standard§ Standard 

US4 WRF WRF/Chem 22.5 Standard§ Standard 

FI1 ECMWF SILAM 24 
Standard 

anthropogenic; 
In-house biogenic 

Standard 

FR4 MM5 Chimere 25 MEGAN, Standard Standard 

PL1 GEM GEM-AQ 25 

Standard over 
AQMEII region;  

Global EDGAR/GEIA 
over the rest of the 

global domain  

Global variable grid 
setup (no boundary 

conditions) 

NL1 ECMWF 
Lotos-
EUROS 

25 Standard§ Standard 

DE1 COSMO Muscat 24 Standard§ Standard 

US3 MM5 CAMx 15 MEGAN, Standard Standard 

DE3 
COSMO-

CLM 
CMAQ 24 Standard§ Standard 

NORTH AMERICA 

CA1 GEM AURAMS 45 Standard* Climatology 

PL1 GEM GEM-AQ 25 

Standard over 
AQMEII region;  

Global EDGAR/GEIA 
over the rest of the 

global domain  

Global variable grid 
setup (no boundary 

conditions) 

PT1 MM5 CAMx 24 Standard LMDZ-INCA 

US1 WRF CAMQ 12 Standard Standard 

US3 WRF CAMx 12 Standard Standard 

FR4b WRF CHIMERE    

DK1 MM5 DEHM 50 
Global emission 

databases, EMEP 
Satellite 

measurements 

DE3 
COSMO-

CLM 
CMAQ 24 Standard§ Standard 

ES3 WRF WRF/Chem 23 Standard Standard 
§ Standard anthropogenic emissions and biogenic emissions derived from meteorology (temperature and solar radiation) and land use 689 
distribution implemented in the meteorological driver. 690 
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*Standard anthropogenic inventory but independent emission processing, exclusion of wildfires, and different versions of BEIS(v3.09) 691 
used. 692 
Refer to Solazzo et al. (2012a-b) and references therein for details.  693 
 694 
b) 695 

Model 
Grid  Emissions Chemical BC 

Code Met AQ 

EUROPE 

AT1 WRF WRF/Chem 23 km Standard Standard 

CH1 COSMO Cosmo-ART 0.22 Standard Standard 

ES2a NMMB BSCCTM 0.20 Standard Standard 

ES3 WRF WRF/Chem 23 km Standard Standard 

NL2 RACMO LOTOS-EUROS 0.5 x 0.25 Standard Standard 

UK5 WRF CMAQ 18 km Standard Standard 

UK4 MetUM UKCA RAQ 0.22 Standard Standard 

DE3 COSMO Muscat 0.25 Standard Standard 

NORTH AMERICA 

ES1 WRF WRF/CHem 36 km Standard Standard 

US6 WRF CMAQ 12km Standard Standard 

CA2f GEM MACH 15 km Standard Standard 
Standard Boundary conditions: 3-D daily chemical boundary conditions were provided by the ECMWF IFS-MOZART model run in the 696 
context of the MACC-II project (Monitoring Atmospheric Composition and Climate - Interim Implementation) at 3-hourly and 1.125 spatial 697 
resolution. Refer to Im et al. (2015a-b) for details. 698 

Standard Emissions: based on the TNO-MACC-II (Netherlands Organization for Applied Scientific Research, Monitoring Atmospheric 699 
Composition and Climate - Interim Implementation) framework for Europe and by the US EPA (Environmental Protection Agency) and 700 
Environment Canada for North America. The 2008 National Emissions Inventory (http://www.epa.gov/ttn/chief/net/2008inventory.html) 701 
and the 2008 Emissions Modeling Platform (http://www.epa.gov/ttn/chief/ emch/index.html#2008) with year-specific updates for 2006 702 
and 2010 were used for the US portion of the modelling domain. Canadian emissions were derived from the Canadian National Pollutant 703 
Release Inventory (http://www.ec.gc.ca/inrp-npri/) and Air Pollutant Emissions Inventory (http://www.ec.gc.ca/inrp-npri/ donnees-704 
data/ap/index.cfm?lang¼En) values for the year 2006. Refer to Im et al. (2015a-b) for details. 705 
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ERROR APPORTIONMENT FOR ATMOSPHERIC CHEMISTRY-TRANSPORT MODELS. A NEW APPROACH TO 

MODEL EVALUATION, BY E. SOLAZZO, S. GALMARINI 

FIGURES 
AQMEII1 

 

 
AQMEII2 
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Figure 1. Share (in %) of the total MSE in the main spectral components and the cross components (see 
Appendix for detail) for a) AQMEII1 and b) AQMEII2. Top panel: EU; lower panel: NA. 
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Figure 2. MSE (ppb2) breakdown in bias, variance and mMSE of the spectral components ID, DU, SY, LT, based 
on Eq 9.  The sign within the share of bias and variance indicates model overestimation (+) or underestimation 
(-) of mean concentration (bias) and variance. a) AQMEII1 and b) AQMEII2. Top panel: EU; lower panel: NA. 
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AQMEII1 

 
a) 

 
b) 

 
c) 

 
d) 
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i) 

 
j) 

 
k) 

 
l) 

Figure 3. Spatial distribution of the MSE in the spectral components for the EU models of AQMEII1. The 
segments are centred at the rural receptors’ position (clockwise from north: MSE of ID, DU, SY, and LT). Their 
length is proportional to the MSE magnitude, coded according to the colour scale. For each model, the colour 
scale extends from zero up to the 75th percentile, and the last value of the scale is the maximum MSE. The 
colour of the MSE values above the 75th percentile represents the maximum value. The tick-dashed LT 
segment indicates model underestimation (low model bias). 
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a) 

b) 

c) 
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d) 

e) 

f) 
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g) 

h) 

i) 
Figure 4. As in Figure 3 but for the NA models of AQMEII1 
 

 

 

 

 

32

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-15, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 26 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



AQMEII2 

 
a) 

 
b) 

 
c) 

 
d) 
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e) 

 
f) 

 
g) 

 
h) 

Figure 5. As in Figure 3 but for the EU models of AQMEII2 
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c) 
Figure 6. As in Figure 3 but for the NA models of AQMEII2 
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FIGURE 7 Example of the model complexity as time-resolved scale of the transport and dispersion processes: the minimum 
complexity (far right) is a poor time-resolving time series obtained as kz(250,5). The complexity increases towards the left, 
with the scale of resolved processes becoming finer up to the maximum complexity (far left), which represents the full time 
series. 
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FIGURE 8 Evolution of error components (red: bias; Blue: variance; Black: covariance) as a function of model complexity. 
Complexity increases from left (min.) to right (max.) and is calculated as the temporal scale of the resolved process using 
the kz filter on the modelled signal: kz(i,5), i=2,…,250. 
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