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General	comments.		

The	work	presented	herein,	presents	a	new	approach	to	model	evaluation	that	attempts	to	shade	light	into	the	
processes	that	influence	model	errors,	rather	than	traditionally	compare	modeled	ozone	concentrations	to	in-
situ	measured	values.	The	methodology	is	scientifically	solid	and	sound	and	will	help	the	AQ	community	move	
toward	new	ways	of	error	diagnostics	and	thus,	model	improvement.	The	title	of	the	manuscript	reflects	the	
contents	of	the	paper	and	is	considered	sufficient.	The	main	comments	from	the	review	process	are	related	to	
obscure	 parts	 in	 the	 discussion	 of	 the	 figures	 and	 results.	 The	 specific	 comments	 that	 follow	 are	meant	 to	
strengthen	 the	 communication	of	 the	 results	 to	 readers	 that	may	not	be	as	 familiar	with	 the	history	of	 the	
AQMEII	 initiative	or	 the	details	 of	 the	 spectral	 decomposition	methodology.	 I	 am	 in	 favor	of	 publishing	 this	
paper	with	Atmospheric	Chemistry	and	Physics,	after	addressing	the	minor	specific	comments	that	follow.		

Specific	comments/suggestions		

1.	 Section	 2.1:	 In	 the	 beginning	 of	 the	 error	 decomposition	 section,	 please	 add	 references	 to	 the	 original	
published	work	(i.e.	Wilmott,	Murphy	and	others).	The	part	that	was	uniquely	developed	for	this	work	should	
also	be	clearly	identified	in	this	section.		

Response.	 The	 content	 of	 section	 2.1	 actually	 reflects	 the	 origin	 of	 the	methodology	we	 propose,	which	 is	
derived	 from	 many	 fields	 and	 never	 applied	 to	 air	 quality	 (or	 geophysical	 time	 series,	 to	 our	 knowledge)	
before.	This	is	the	first	work	that	put	together	the	Theil	decomposition	and	the	minimisation	of	the	error	for	
spectrally	decomposed	time	series.	We	have	moved	the	reference	to	Murphy	(1988)	at	the	beginning	of	the	
section,	but	rather	keep	the	rest	unchanged.			

2.	Page	5:	 in	 the	minimization	of	MSE,	 the	authors	want	 to	achieve	 independency	of	MSE	 from	the	model’s	
statistical	metrics,	since	the	observed	ones	are	not	controllable.	Can	you	please	add	a	brief	explanation	in	the	
text	as	to	why	you	chose	to	differentiate	over	the	mean	model	value	and	model	standard	deviation?		

Response.	Explanation	added	to	the	text	

3.	Page	6,	spectral	decomposition:	In	Rao	et	al.	(1997)	and	Hogrefe	et	al.	(2000)	the	ozone	time	series	are	log-
transformed	before	 the	analysis	 to	 stabilize	 the	variances.	Did	 the	authors	use	 the	 log-transform	 in	 their	KZ	
application?	If	not,	please	explain	the	rationale	behind	using	the	original	ozone	data.		

Response.	We	used	 the	 original	 time	 series	 of	 ozone	data.	 Prior	 to	 the	 analysis,	 tests	 have	 shown	 that	 the	
results	of	the	MSE	breakdown	were	independent	from	the	log	transform	of	the	initial	data.	We	have	used	an	
approach	consistent	with	Galmarini	et	al.	(2013),	where	the	raw	data	were	also	used.	

4.	Page	6,	lines	188-190:	what	is	the	meaning	of	the	bias	in	the	discussion	of	the	decomposition	components?	
Equation	10	is	applied	to	modeled	and	observed	values	separately.		

Response.	 The	 bias	 should	 intended	 as	 presented	 in	 section	 2.1,	 as	 from	 from	 Johnson	 et	 al	 (2008):	 ‘the	
closeness	of	agreement	between	the	average	value	obtained	from	a	large	series	of	measurements	and	the	true	
value’,	where	the	keyword	is	‘average’.	The	bias	is	the	off-set	of	the	averaged	model	results	from	the	averaged	
measured	values.	 In	this	sense,	the	band-pass	components	 ID,	DU,	SY	have	zero	mean	by	definition,	and	are	
therefore	unbiased.	



5.	Table	2:	please	denote	in	the	title	which	table	corresponds	to	which	AQMEII	phase.		

Response.	Done	

6.	 Page	 8,	 section	 4.1,	 line	 249:	 the	 phrase	 “spatially	 averaged	 over	 the	 two	 continental	 areas”	 must	 be	
rephrased	 to	 “spatially	 averaged	over	 each	 continental	 area”.	 I	 am	assuming	 that	 the	MSE	 is	 calculated	 for	
each	spectral	component	and	each	station	and	then	averaged	over	each	continent	(there	is	one	value	of	MSE	
for	each	component	and	each	station	for	the	period	of	May-Sep).	Please	clarify	in	the	text	accordingly.		

Response.	Done,	it	has	been	clarified	in	the	text	

7.	In	Figure	1,	the	cross	components	are	denoted	by	subscript	cc	in	the	name	of	the	variable.	I	suggest	using	
the	same	name	convention	in	the	appendix,	where	the	description	of	the	cross	components	is	 included.	This	
will	avoid	confusion	to	readers	that	are	not	familiar	with	the	prior	literature.		

Response.	Done	

8.	 Page	 9,	 lines	 281-283:	 Is	 this	 statement	 based	 on	 results	 from	 the	 current	 or	 previous	 published	work?	
Please	add	a	reference	to	this	statement	accordingly.		

Response.	 The	 statement	 is	 not	 derived	 from	 previous	 studies	 but	 based	 on	 the	 experience	 of	 the	 current	
work.	

9.	Page	9:	in	the	1st	paragraph	of	section	4.2	the	bias	is	described	as	influenced	by	both	internal	and	external	
model	errors	(which	is	true).	In	the	2nd	paragraph	(line	292),	the	authors	suggest	that	the	bias	of	LT	shows	the	
externally	induced	errors.	Can	you	clarify	this	inconsistency?		

Response.	 The	 inconsistency	 is	 driven	by	 the	word	 ‘error’	 rather	 than	 ‘bias’.	 It	 has	been	 corrected	now.	All	
biases	 (internal	 and	 external)	 are	 driven	by	 the	 LT	 component,	 thus	 it	 is	 correct	 to	 say	 that	 the	bias	 of	 the	
external	drivers	is	incorporated	in	the	bias	of	the	LT	component.		

10.	The	units	in	Figure	2	are	ppb	square	(ppb2)	or	ppb?	If	the	former	is	true,	then	the	MSE	breakdown	must	be	
bias2,	variance	and	mMSE	from	equation	9?	Please	revise	the	label	accordingly.		

Response.	We	have	added	labels	to	figure	2	and	modified	the	caption	accordingly	

11.	Section	4.3,	figures	3-6:	even	though	I	embrace	the	idea	of	including	a	lot	of	information	in	one	plot,	it	has	
been	 very	 challenging	 to	 read	 and	 understand	 the	 figures.	 I	 don’t	 understand	 where	 the	 under-	 or	 over-
estimation	is	indicated.	I	suggest	the	inclusion	of	one	example	(maybe	in	the	figure	caption	or	in	the	text)	that	
will	 describe	 the	 results	 from	 one	 specific	 station	 (highlighted	with	 a	 square	 of	 circle).	 That	way,	 it	 will	 be	
easier	 for	 the	 reader	 to	 connect	 the	 color	 coded	 scale	 with	 the	 different	 components.	 The	 plots	 provide	
valuable	information	which	must	be	communicated	in	the	most	efficient	manner.		

Response.	Thanks	for	the	valuable	suggestion.	We	have	improved	the	readability	of	the	figure	and	added,	as	
an	example,	a	scheme	on	how	the	figure	has	to	be	interpreted	(see	last	panel	of	figure	3).	

12.	Page	12,	figure	7:	the	components	of	figure	7	must	be	explained	in	more	detail.	What	are	the	units?	x	and	y	
axes?	What	 is	 shown	 in	 the	upper	plot?	The	paragraph	describing	 figure	7	and	 the	method	behind	 it	needs	
further	improvement	to	communicate	a	clear	message.	

Response.	The	figures	7	and	8	have	been	revised	and	improved.	We	have	also	slightly	revised	the	contents	of	
Section	5,	which	has	already	a	detailed	and	independent	introduction,	with	examples	and	review	of	the	results.	
We	acknowledge	the	topic	might	be	not	straightforward	to	understand	and	therefore	have	made	extra	effort	
in	trying	to	simplify	it.				



	

Anonymous	Referee	#1		

This	is	an	interesting	and	well	written	paper	that	makes	a	meaningful	contribution	to	model	evaluation.	A	few	
comments	and	editorial	suggestions	are	provided	below.		

1.	Wavelet	filters	can	provide	better	separation	of	components	(i.e.,	reduced	covariances	among	components).		

Response.	Eskridge	et	al.	(1997)	compared	the	kz	filter	against	several	other	methods,	including	wavelet	filters,	
showing	that	kz	has	the	same	level	of	accuracy	and	(often)	higher	level	of	confidence.	The	kz	filter	has	also	the	
advantage	of	1.	being	insensitive	to	missing	values,	2.	being	supported	by	extensive	literature	when	applied	to	
ozone,	3.	depending	on	two	parameters	only,	which	are	quite	robust	for	ozone.	 It	 is	true,	however,	that	the	
main	 shortcoming	 of	 method	 we	 have	 developed	 is	 the	 overlapping	 between	 the	 cross	 components	 and	
especially	the	fact	that	the	error	of	cross	components	can	be	quantified	but	cannot	be	apportioned	according	
to	the	methodology	outlined	in	the	current	work.	Nonetheless,	we	have	preferred	to	rely	on	this	methodology	
and	possibly	exploring	wavelet	in	the	future.	

2.	The	spatial	support	of	the	model	(model	grid	average)	is	greater	than	that	of	the	observations	(point	scale),	
and	 should	 therefore	 have	 a	 smaller	 variance,	 as	 should	 all	 the	 temporal	 components.	 The	 term	 σm	 will	
typically	be	less	than	rσo	for	this	reason.		

Response.	We	have	included	some	comments	in	the	text	(see	line	306	onwards)	

3.	The	model/observation	agreement	in	the	DU	component	is	driven	largely	by	diurnal	forcing	(similarly,	the	LT	
component	has	a	significant	amount	of	annual	energy).	Model	performance	metrics	for	the	DU	component	is	
misleadingly	 optimistic	 because	 it	 mostly	 reflects	 the	 24	 hour	 and	 annual	 forcings	 embedded	 in	 both	 the	
observations	and	model	values.	For	periodic	processes,	metrics	derived	from	the	amplitude	and	phase	can	be	
more	informative.		

Response.	We	have	added	the	comment	to	the	text	(see	line	332).	We	reserve	to	expand	to	those	metrics	in	
future	analysis.		

4.	The	variance	of	the	ID	term	is	very	small.	Therefore,	although	the	paper	shows	both	the	fraction	of	variance	
due	 to	 each	 component	 and	 the	 error	 terms,	 it	 should	 be	 pointed	 out	 that	 the	 small	 errors	 in	 the	 ID	
component	are	quite	large	relative	to	the	total	amount	of	ID	variability.		

Response.	We	have	included	some	comments	in	the	text	(see	line	344)	

5.	Model/observation	correlation	as	a	stand-alone	metric	can	be	 informative	as	 it	shows	whether	the	model	
can	reproduce	patterns	seen	in	the	observations.	For	example,	the	ID	component,	as	noted,	has	small	errors,	
but	 for	 individual	monitoring	sites	 (not	spatially	averaged),	correlation	between	modeled	and	observed	 ID	 is	
often	quite	 low	and	 insignificant	 (there	often	appears	to	be	no	relationship	between	the	two).	On	the	other	
hand,	correlation	tends	to	improve	as	time	and	space	scales	increase,	often	leaving	the	LT	component	with	the	
best	agreement	in	terms	of	correlation.	

Response.	We	have	included	the	values	of	the	correlation	coefficient	directly	into	the	error	breakdown	plots,	
therefore	allowing	for	a	compact	view	of	the	error	magnitude	and	associativity	value.	

Editorial	comments		

There	 is	 some	 confusion	 in	 the	 text	when	discussing	bias.	 Figure	2	 actually	 shows	 squared	bias,	 though	 the	
discussion	seems	to	be	referring	to	both	bias	and	squared	bias.		



Response.	We	have	clarified	the	figure	2	by	adding	‘bias2’	in	the	legend	and	clarified	the	discussion	in	the	main	
text	

Line	263:	should	read	“has	little	impact”	or	“has	negligible	impact”		

Response.	Done	

Line	283:	The	statement	ending	on	this	line	could	use	a	reference.		

Response.	It	is	derived	based	on	the	analysis	of	the	current	study.	

Line	305:	What	is	meant	by	“sparseness	of	the	modeled	values”?		

Response.	The	sentence	has	been	removed	from	the	text.	

Line	452:	should	have	a	period	at	the	end		

Line	457:	should	have	a	period	at	the	end	

Response.	Done	

Figure	1.	Panels	do	not	have	‘a)’	and	‘b)’	labels.		

Response.	Done	

Also,	if	it’s	not	too	much	trouble,	invert	the	legends	so	that	the	colors	appear	in	the	same	order	as	they	do	in	
the	bars.		

Response.	Done	

Figures	3	and	4	are	very	difficult	to	look	at.	When	error	terms	are	small	it	is	hard	to	tell	where	the	intersection	
is.	Zooming	in	would	help	with	better	image	resolution.		

Response.	We	have	 improved	 the	 resolution	of	 the	 figures	 and	added	an	 zoomed	example	 for	 clarification.	
Rather	than	the	individual	station’s	error,	we	wish	to	convey	the	message	contained	in	the	method.	

Figure	8:	Caption	should	read	’from	right	to	left’.	

Response.	Done	

Editor’s	comments	left	open	from	to	quick	report	

Figure 3 – 6: please use larger font to show the title of each panel (“MSE of spectral components 
…”). It may be sufficient to simply show the model name, AQMEII phase, and continent as title in 
each panel. 
Response.	Done 
 
Figure 4, 6: please make sure that the color scale on the right does not overlap the geographical 
features in the Northeast corner of the map. 
Response.	Done 
 
Figure 8: Please add a title and units to the y-axis 
Response.	Done 
 
Figures S4 – S7: Please add a title and units to the y-axis 
Response.	We	 have	 removed	 the	 figures	 for	 the	 supplementary	material,	 as	 they	 did	 not	 add	much	 to	 the	
discussion	with	respect	to	the	ones	already	presented	in	the	paper 



 
Is Table 2 accidentally split in two sections? (pages 20 and 21) 
Response.	 The	 table	 is	 split	 in	 two	 parts,	 each	 one	 describing	 the	 models	 participating	 to	 AQMEII	 1	 and	
AQMEII2,	respectively.	We	have	specified	it	in	the	tables. 
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Abstract.	In	this	study,	methods	are	proposed	to	diagnose	the	causes	of	errors	in	air	quality	9	
(AQ)	modelling	systems.	We	investigate	the	deviation	between	modelled	and	observed	time	10	
series	of	surface	ozone	through	a	revised	formulation	for	breaking	down	the	mean	square	11	
error	 (MSE)	 into	 bias,	 variance,	 and	 the	 minimum	 achievable	 MSE	 (mMSE).	 The	 bias	12	
measures	 the	 accuracy	 and	 implies	 the	 existence	 of	 systematic	 errors	 and	 poor	13	
representation	 of	 data	 complexity,	 the	 variance	 measures	 the	 precision	 and	 provides	 an	14	
estimate	of	the	variability	of	the	modelling	results	in	relation	to	the	observed	data,	and	the	15	
mMSE	reflects	unsystematic	errors	and	provides	a	measure	of	the	associativity	between	the	16	
modelled	 and	 the	 observed	 fields	 through	 the	 correlation	 coefficient.	 Each	 of	 the	 error	17	
components	 is	analysed	 independently	and	apportioned	to	resolved	process	based	on	the	18	
corresponding	 timescale	 (long	 scale,	 synoptic,	 diurnal,	 and	 intra-day)	 and	as	 a	 function	of	19	
model	complexity.	20	

The	 apportionment	 of	 the	 error	 is	 applied	 to	 the	 AQMEII	 (Air	 Quality	 Model	 Evaluation	21	
International	 Initiative)	 group	 of	 models,	 which	 embrace	 the	 majority	 of	 regional	 AQ	22	
modelling	systems	currently	used	in	Europe	and	North	America.		23	

The	proposed	technique	has	proven	to	be	a	compact	estimator	of	the	operational	metrics	24	
commonly	used	 for	model	evaluation	 (bias,	 variance,	and	correlation	coefficient),	and	has	25	
the	further	benefit	of	apportioning	the	error	to	the	originating	timescale,	thus	allowing	for	a	26	
clearer	diagnosis	of	the	process	that	caused	the	error.		27	

Keywords:	Model	evaluation;	Time	series	analysis;	Bias-variance	decomposition;	AQMEII		28	

1.	INTRODUCTION	29	

Due	 to	 their	 use	 for	 regulatory	 applications	 and	 to	 support	 legislation,	 air	 quality	 (AQ)	30	
models	must	model	 correctly	 and	be	 correctly	 applied,	 justifying	 the	need	 for	 a	 thorough	31	
evaluation.	A	framework	for	the	operational	and	scientific	evaluation	of	geophysical	models	32	
was	already	envisaged	in	the	early	‘80s	(Fox,	1981;	Wilmott	et	al.,	1985),	the	former	being	‘a	33	
comparison	 with	 data	 exclusively	 within	 a	 particular	 application	 context’,	 and	 the	 latter	34	
defined	as	‘some	understanding	of	cause-and-effect	relationship	that	relies	on	testing	model	35	
components	and	extensively	detailed	data	collection’	 (Fox,	1981).	Thirty	years	 later,	as	AQ	36	
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models	became	more	and	more	complex	and	their	range	of	applicability	widened,	Dennis	et	37	
al.	 (2010)	 further	 elaborated	 the	 concept	 of	 model	 evaluation	 by	 proposing	 a	 four-level	38	
evaluation,	 according	 to	which	different	 complementary	 aspects	 of	 the	models	 should	be	39	
tested,	namely:		40	

a.	Operational:	the	level	of	agreement	of	model	results	with	observations;	41	

b.	 Dynamic:	 ability	 of	 the	 modelling	 system	 to	 respond	 to	 changes	 (in	 emissions,	 or	 in	42	
meteorological	events);		43	

c.	Diagnostic:	identify	and	attribute	the	source	of	the	error	to	the	relevant	process;	44	

d.	Probabilistic:	confidence	and	uncertainty	levels	of	the	modelled	results.	45	

In	 the	 framework	 originally	 designed	 by	 Dennis	 et	 al.	 (2010),	 the	 diagnostic	 component	46	
plays	 a	 central	 role.	 It	 i)	 answers	 the	 fundamental	 issue	 left	 open	 by	 the	 operational	47	
screening,	in	other	words	whether	the	model	provides	the	right	answer	for	the	right	reason,	48	
ii)	 provides	 feedback	 to	 developers	 to	 help	 make	model	 improvements,	 and	 iii)	 sets	 the	49	
basis	for	the	probabilistic	evaluation	(Figure	1	of		Dennis	et	al.,	2010).		50	

Over	 the	 years,	 and	 despite	 the	 increasing	 relevance	 of	 modelling	 systems	 for	 AQ	51	
applications,	 model	 evaluation	 continues	 to	 rely	 almost	 exclusively	 on	 operational	52	
evaluation,	 which	 basically	 involves	 gauging	 the	 model’s	 performance	 using	 distance,	53	
variability,	and	associativity	metrics.	This	common	practice	has	little	or	no	impact	on	model	54	
improvement,	 as	 it	 does	 not	 target	 the	 source	 of	 the	 modelling	 error	 and	 does	 not	55	
discriminate	between	the	reasons	for	appropriate	or	inappropriate	performance.		56	

Such	a	requirement	is	even	more	pressing	these	days,	with	current	state-of-the-science	AQ	57	
modelling	systems	accounting	for	an	 increasing	number	of	coupled	physical	processes	and	58	
being	 described	 using	 hundreds	 of	modules,	 which	 are	 the	 result	 of	 decades	 of	 targeted	59	
and,	 generally,	 independent	 investigations.	 Furthermore,	 AQ	 modelling	 systems	 typically	60	
depend	on	external	sources	for	the	inputs	of	meteorology	and	emissions	data,	as	well	as	for	61	
boundary	conditions.	These	fields	are	generally	produced	by	other	models	(which,	 in	turn,	62	
depend	 on	 external	 sources	 for	 initial	 and/or	 boundary	 conditions)	 and,	 after	 substantial	63	
processing,	 are	 used	 by	 the	 AQ	modelling	 systems	 with	 no	 guarantee	 of	 being	 unbiased	64	
and/or	accurate.	The	bias	introduced	by	these	inputs,	along	with	the	uncertainty	associated	65	
with	 model	 error,	 the	 linearisation	 of	 non-linear	 processes,	 and	 omitted	 and	 unresolved	66	
variables	and	processes,	all	contribute	to	the	model	error.	The	extensive	use	of	AQ	models	67	
for	AQ	assessment	and	planning	is	equally	important,	and	requires	a	good	knowledge	of	the	68	
model	 capabilities	 and	 deficiencies	 that	 would	 allow	 for	 a	 more	 educated	 use	 of	 the	69	
modelling	systems	and	their	results.	70	

Recently,	the	AQMEII	(Air	Quality	Model	Evaluation	International	Initiative)	activity	(Rao	et	71	
al.,	 2011)	 applied	 the	 approach	 proposed	 by	 Dennis	 et	 al.	 (2010),	 by	 organising	 model	72	
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evaluation	activities	(AQMEII	1,	2	and	3)	using	operational	(Solazzo	et	al.,	2012a,b;	Solazzo	74	
et	 al.,	 2013a;	 Im	 et	 al.,	 2015a,b),	 probabilistic	 (Solazzo	 et	 al.,	 2013b;	 Kioutsioukis	 et	 al.,	75	
2014),	and	diagnostic	(Hogrefe	et	al.,	2014;	Makar	et	al.,	2015)	evaluation	frameworks.	76	

The	study	we	present	here	follows	and	complements	the	previous	investigations	based	on	77	
the	AQMEII	models	collected	in	the	first	and	second	phases	of	the	activity	(AQMEII1	in	2006	78	
and	 AQMEII2	 in	 2010).	 The	 main	 aim	 is	 to	 introduce	 a	 novel	 method	 that	 combines	79	
operational	and	diagnostic	evaluations.	This	method	helps	apportion	the	model	error	to	its	80	
components,	thereby	identifying	the	space/timescale	at	which	it	is	most	relevant	and,	when	81	
possible,	to	infer	which	process/es	could	have	generated	it.	This	work	is	designed	to	support	82	
the	 analysis	 of	 the	 currently	 ongoing	 third	 phase	 of	 the	AQMEII	 activity	 (Galmarini	 et	 al.,	83	
2015).	84	

2.	MEAN	SQUARE	ERROR	AS	A	COMPREHENSIVE	METRIC	85	

For	the	model	evaluation	strategy	proposed,	we	start	by	breaking	down	the	Mean	Square	86	
Error	 (MSE)	 (used	here	as	unique	metric	 to	evaluate	model	performance)	 into	 the	sum	of	87	
the	variance	(and	covariance)	and	the	squared	bias.	The	error	and	its	components	are	then	88	
calculated	 on	 the	 spectrally	 decomposed	 time	 series	 of	 modelled	 and	 observed	 hourly	89	
ozone	mixing	ratios.	The	advantage	of	this	evaluation	strategy	is	twofold:	90	

• With	respect	to	a	conventional	operational	evaluation,	the	new	method	allows	for	a	91	
more	detailed	assessment	of	the	distance	between	model	results	and	observations	92	
given	 the	 breakdown	 of	 the	 error	 into	 bias,	 variance	 and	 covariance	 and	 their	93	
associated	interpretations.	94	

• Decomposing	 the	MSE	 into	 spectral	 signals	 allows	 for	 the	 precise	 identification	 of	95	
where	 each	 portion	 of	 the	model	 error	 predominantly	 occurs.	 Given	 that	 specific	96	
processes	 are	 associated	 with	 specific	 scales,	 the	 apportionment	 of	 the	 error	97	
components	to	their	relevant	scales	helps	to	more	precisely	identify	which	processes	98	
described	 in	 the	model	 could	 be	 responsible	 for	 the	 error.	 Information	 about	 the	99	
nature	 of	 the	 error	 and	 the	 class	 of	 process	 can	 significantly	 help	 modellers	 and	100	
developers	to	improve	model	performance.		101	

The	 data	 used	 are	 produced	 by	 the	modelling	 communities	 participating	 in	 AQMEII1	 and	102	
AQMEII2	over	 the	 European	 (EU)	 and	North	American	 (NA)	 continental	 scale	 domains	 for	103	
the	years	2006	(AQMEII1)	and	2010	(AQMEII2).		104	

2.	1.	ERROR	DECOMPOSITION	105	
The	MSE	is	the	squared	difference	of	the	modelled	(mod)	and	observed	(obs)	values:	106	

𝑀𝑆𝐸 = 𝐸(𝑚𝑜𝑑 − 𝑜𝑏𝑠)! =
𝑚𝑜𝑑! − 𝑜𝑏𝑠! !!"

!!!

𝑛!
	

EQ	1	

	

where	E(⋅)	denotes	expectation	and	nt	is	the	length	of	the	time	series.	The	bias	is:	107	



	

4	
	

𝑏𝑖𝑎𝑠 = 𝐸 𝑚𝑜𝑑 − 𝑜𝑏𝑠 	 EQ	2	

	
i.e.	𝑏𝑖𝑎𝑠 = 𝑚𝑜𝑑 − 𝑜𝑏𝑠	.	Thus,	the	following	relationship	holds:		108	

𝑀𝑆𝐸 = 𝑣𝑎𝑟 𝑚𝑜𝑑 − 𝑜𝑏𝑠 + 𝑏𝑖𝑎𝑠!	 EQ	3	

	109	

which	 is	a	well-known	property	of	 the	MSE,	 (var(⋅)	 is	 the	variance	operator).	By	using	 the	110	
property	of	the	variance	for	correlated	fields:	111	

𝑣𝑎𝑟 𝑚𝑜𝑑 − 𝑜𝑏𝑠 = 𝑣𝑎𝑟 𝑚𝑜𝑑 + 𝑣𝑎𝑟 𝑜𝑏𝑠 − 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠)	 EQ	4	

	112	

the	final	formulation	for	the	MSE	components	reads:	113	

𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠! + 𝑣𝑎𝑟 𝑚𝑜𝑑 + 𝑣𝑎𝑟(𝑜𝑏𝑠)− 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠),	 EQ	5	

	114	

where	 the	 covariance	 term	 (last	 term	 on	 the	 right-hand	 side	 of	 Eq	 5)	 accounts	 for	 the	115	
degree	of	correlation	between	the	modelled	and	observed	time	series.	When	the	covariance	116	
term	is	zero,	var(obs)	 is	 referred	to	as	the	 incompressible	part	of	 the	error	and	represents	117	
the	 lowest	 limit	 that	 the	 MSE	 of	 the	 model	 can	 achieve.	 When	 dealing	 with	 model	118	
evaluation,	 the	 modelled	 and	 observed	 time	 series	 are	 typically	 highly	 correlated	 and	119	
therefore,	within	the	limits	of	the	perfect	match	(correlation	coefficient	of	unity),	cov(mod,	120	
obs)	=	cov(obs,obs)	=	cov(mod,mod)	=	var(mod)	=	var(obs)	and	the	MSE	can	be	reduced	to	121	
only	 the	 bias	 term.	 That	 implies	 that	 the	 development	 of	 a	 high-quality	model	 needs	 to	122	
ensure:	123	

a.	the	highest	possible	precision	in	order	to	maximise	the	cov(mod,	obs)	term,	and				124	

b.	the	highest	possible	accuracy,	in	order	to	minimise	the	bias.	125	

Elaborating	on	Eq	5,	Theil	(1961)	derived	the	following:		126	

𝑀𝑆𝐸 = (𝑚𝑜𝑑 − 𝑜𝑏𝑠)! + 𝜎!"# −  𝜎!"# ! +  2(1− 𝑟)�!"#�!"#	
EQ	6	

	127	

In	Eq	6,	the	variance	term	is	expressed	as	the	difference	between	the	standard	deviation	of	128	
the	model	 and	 that	of	 the	observations,	 and	 the	 covariance	 term	 (last	 term	on	 the	 right)	129	
includes	 r,	 the	 coefficient	of	 correlation	between	 the	observed	and	modelled	 time	 series.	130	
The	ratios	of	the	three	terms	on	the	right-hand	side	of	Eq	6	to	the	overall	MSE	are	known	as	131	
Theil’s	coefficients	 (Pindick	and	Rubinfeld,	1998).	Murphy	(1988)	provided	examples	of	the	132	
scores	that	can	be	developed	using	the	components	of	the	MSE.	133	

The	 bias	 measures	 the	 departure	 of	 the	 modelled	 from	 the	 observed	 results,	 and	 is	 a	134	
measure	of	 systematic	error,	 since	 it	measures	 the	extent	 to	which	 the	average	modelled	135	
values	deviate	from	the	observed	ones.	The	bias	is	commonly	used	to	express	the	degree	of	136	
‘trueness’,	 i.e.	 “the	 closeness	 of	 agreement	 between	 the	 average	 value	 obtained	 from	 a	137	
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large	 series	 of	 measurements	 and	 the	 true	 value”	 (Johnson,	 2008).	 The	 variance	 shows	139	
whether	 the	modelled	variability	 is	 compatible	with	 that	observed.	Finally,	 the	covariance	140	
term	represents	the	unexplained	proportion	of	the	MSE	due	to	the	remaining	unsystematic	141	
errors,	 i.e.	 it	 represents	 the	 remaining	 error	 after	 deviations	 from	 the	mean	 values	 have	142	
been	accounted	 for.	 This	 latter	 term	 is	 a	measure	of	 the	 lack	of	 correlation	of	 the	model	143	
with	comparable	observations,	and	is	considered	the	least	‘worrisome’	portion	of	the	error	144	
(Pindick	and	Rubinfeld,	1998).			145	

Aiming	at	minimising	the	MSE,	the	only	controlled	variables	in	Eq	6	are	𝑚𝑜𝑑	and	𝜎!"#,	and	146	
differentiating	with	respect	to	them	yields	the	conditions	that	minimise	the	MSE::			147	

𝜕𝑀𝑆𝐸
𝜕𝑚𝑜𝑑

= 2 𝑚𝑜𝑑 − 𝑜𝑏𝑠 = 0

𝜕𝑀𝑆𝐸
𝜕𝜎!"#

= 2 𝜎! − 𝜎!"# + 2 1− 𝑟 𝜎!"# = 0
	

i.e.	the	best	agreement	between	modelled	and	observed	values	is	achieved	by:			148	
	149	

𝑚𝑜𝑑 = 𝑜𝑏𝑠
𝜎! = 𝑟𝜎!"#

	 EQ	7	

	150	

which	analytically	corresponds	to	the	aforementioned	items	a	and	b.	By	inserting	Eq	7	into	151	
Eq	6,	the	minimum	achievable	MSE	(mMSE)	is	152	

𝑚𝑀𝑆𝐸 = 𝜎!"#! (1− 𝑟!)	 EQ	8	

	153	

which	is	the	unexplained	portion	of	the	error,	as	 it	reflects	the	share	of	observed	variance	154	
that	is	not	explained	by	the	model	(r2	 is	the	coefficient	of	determination).	The	presence	of	155	
an	unexplained	part	of	the	error	suggests	a	modification	of	the	MSE	decomposition	in	Eq	6	156	
in	such	a	way	as	to	explicitly	include	mMSE:	157	

𝑀𝑆𝐸 = 𝑚𝑜𝑑 − 𝑜𝑏𝑠 ! + (𝜎!"# − 𝑟𝜎!"#)! +𝑚𝑀𝑆𝐸	
EQ	9	

	158	

The	 decompositions	 in	 Eq	 5,	 Eq	 6,	 and	 Eq	 9	 contain	 all	 the	 relevant	 operational	 metrics	159	
usually	 applied	 to	 score	 modelling	 systems	 (bias,	 variance,	 correlation	 coefficient),	 and	160	
therefore	 prove	 to	 be	 a	 compact	 estimator	 of	 accuracy	 (bias),	 precision	 (variance)	 and	161	
associativity	 (unexplained	 portion	 through	 the	 correlation	 coefficient).	 Eq	 9	 has	 been	162	
explicitly	derived	in	this	study	to	help	evaluate	AQ	models.	163	

Ideally,	the	entire	error	should	be	attributable	to	unsystematic	fluctuations.	From	a	model	164	
development	perspective,	the	variance	and	covariance	are	possibly	more	revealing	of	model	165	
deficiencies	 than	 is	 the	bias	 term,	as	 they	are	produced	by	 the	AQ	model	 itself,	while	 the	166	
bias	 is	 also	 due	 to	 external	 sources	 (e.g.	 emissions,	 boundary	 conditions).	 From	 the	167	
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application	viewpoint,	however,	it	is	the	overall	error	that	counts,	which	is	mostly	made	up	175	
of	the	bias.	176	

2.2.	SPECTRAL	DECOMPOSITION	OF	MODELLED	AND	OBSERVED	TIME	SERIES		177	
Hourly	 time	 series	 of	 (modelled	 and	 observed)	 ozone	 concentrations	 have	 been	178	
decomposed	 using	 an	 iterative	 moving	 average	 approach	 known	 as	 the	 Kolmogorov-179	
Zurbenko	 (kz)	 low-pass	 filter	 (Zurbenko,	 1986),	 whose	 applications	 to	 ozone	 are	 vastly	180	
documented	in	the	literature	(Rao	et	al.,	1997;	Wise	and	Comrie,	2005;	Hogrefe	et	al.,	2000	181	
and	 2014;	Galmarini	 et	 al.,	 2013;	 Kang	 et	 al.,	 2013;	 Solazzo	 and	Galmarini,	 2015).	 The	 kz	182	
filter	 depends	 on	 two	 parameters:	 the	 length	 of	 the	moving	 average	window	m	 and	 the	183	
number	 of	 iterations	 k	 (kzm,k).	 Since	 the	 kz	 is	 a	 low-pass	 filter,	 the	 filtered	 time	 series	184	
consists	 of	 the	 low-frequency	 fluctuating	 component,	 while	 the	 difference	 between	 two	185	
filtered	time	series	provides	a	band-pass	filter.	This	latter	property	is	used	to	decompose	the	186	
ozone	concentration	time	series	as:			187	

O	3	=	LT(O	3)	+	SY(O	3)	+	DU(O	3)	+ID(O	3)	 EQ	10	

	188	

where	 LT	 is	 the	 long-term	 component	 (periods	 longer	 than	 21	 days);	 SY	 is	 the	 synoptic	189	
component	 (weather	 processes	 that	 last	 between	 2.5	 and	 21	 days);	 DU	 is	 the	 diurnal	190	
component	(day/night	alternation	period	between	0.5	and	2.5	days);	and	ID	is	the	intra-day	191	
component	 accounting	 for	 fast-acting	 processes	 (less	 than	 12	 hours).	 The	 decomposition	192	
presented	 in	 Eq	 10	 is	 such	 that	 the	 original	 time	 series	 is	 perfectly	 returned	 by	 the	193	
summation	of	the	components	(see	Appendix	for	details).	Dealing	with	one	year	of	data,	any	194	
filter	 longer	 than	 the	 LT	 component	 would	 not	 be	 meaningful.	 The	 periods	 of	 the	195	
components	 correspond	 to	 well-defined	 peaks	 in	 the	 power	 spectrum	 of	 ozone,	 e.g.	 as	196	
detailed	in	Rao	et	al.	(1997)	and	Hogrefe	et	al.	(2000).	197	

The	LT	component	is	the	baseline	and	incorporates	the	bias	of	the	original	(undecomposed)	198	
time	series.	The	other	components	(SY,	DU,	and	ID)	are	zero-mean	fluctuations	around	the	199	
LT	 time	 series	 and	 are	 therefore	 unbiased.	 The	 band-pass	 nature	 of	 the	 SY,	 DU,	 and	 ID	200	
components	is	such	that	they	only	account	for	the	processes	occurring	in	the	time	window	201	
the	 filter	 allows	 the	 signal	 to	 ‘pass’.	 For	 instance,	 the	 DU	 component	 is	 insensitive	 to	202	
processes	outside	the	range	of	0.5	to	2.5	days.		203	

Further	 properties	 of	 the	 spectrally	 decomposed	 ozone	 time	 series	 of	 AQMEII	 derived	 by	204	
Galmarini	 et	 al.	 (2013),	 Hogrefe	 et	 al.	 (2014),	 and	 Solazzo	 and	 Galmarini	 (2015)	 are	 as	205	
follows:	206	

- The	DU	component	accounts	 for	more	 than	half	of	 the	 total	 variance,	 followed	by	207	
the	LT	and	SY	components;	208	

- The	 ID	 component	 has	 the	 smallest	 influence	 due	 to	 the	 small	 amplitude	 of	 its	209	
fluctuations;	210	
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- The	 variance	 of	 the	 spectral	 component	 is	 neither	 strongly	 nor	 systematically	211	
associated	with	the	area-type	of	the	monitoring	stations	(i.e.	rural,	urban,	suburban);	212	

- Due	to	the	bias,	most	of	the	error	is	accounted	for	by	the	LT	component,	followed	by	213	
the	DU	component.	The	ID	contributes	very	little	to	the	overall	MSE.	214	

Further	 important	 technicalities	 of	 the	 spectral	 decomposition,	 including	 a	 method	 to	215	
estimate	the	contribution	of	the	spectral	cross-components	(the	overlapping	regions	of	the	216	
power	spectrum)	to	the	total	error,	are	reported	in	the	Appendix.		217	

The	 signal	 decomposition	 of	 Eq	 10	 is	 applied	 to	 the	 full-year	 time	 series.	 However,	 to	218	
evaluate	 the	 model	 performance	 with	 regard	 to	 ozone,	 the	 analysis	 is	 restricted	 to	 the	219	
months	of	May	to	September,	i.e.	when	the	production	of	ozone	due	to	photochemistry	is	220	
most	relevant.			221	

3.	DATA	AND	MODELS	USED	222	

The	observational	 dataset	 derived	 from	 the	 surface	AQ	monitoring	networks	operating	 in	223	
the	EU	and	NA	constitutes	the	same	dataset	used	in	the	first	and	second	phases	of	AQMEII	224	
to	 support	 model	 evaluation.	 Only	 stations	 with	 over	 75%	 valid	 records	 for	 the	 whole	225	
periods	and	located	at	altitudes	below	1	000	m	have	been	used	for	this	analysis.	Details	of	226	
the	modelled	regions	and	number	of	receptor	stations	are	reported	in	Table	1.	227	

Since	 the	main	 scope	 of	 this	 study	 is	 to	 introduce	 the	 error	 apportionment	methodology	228	
(rather	than	to	strictly	evaluate	the	models),	the	analysis	is	presented	for	continental	areas	229	
for	 convenience	and	easier	display	of	 the	 results.	However,	given	 the	 size	of	 the	domains	230	
and	the	heterogeneity	of	climatic	and	emission	conditions,	dedicated	analyses	for	three	sub-231	
regions	in	both	continents	are	proposed	in	the	Supplementary	material	(Figure	S1	to	Figure	S3).			232	

There	 are	 profound	 differences	 between	 the	 modelling	 systems	 that	 participated	 in	233	
AQMEII1	and	AQMEII2.	The	two	sets	of	models	have	been	applied	to	different	years	(2006	234	
for	phase	1	and	2010	for	phase	2)	and	are	therefore	dissimilar	with	respect	to	the	input	data	235	
of	emissions	and	boundary	 conditions	 for	 chemistry.	 The	AQ	models	of	 the	 second	phase	236	
are	coupled	(online	chemistry	feedbacks	on	meteorology),	while	those	of	the	first	phase	are	237	
not.	 The	 effect	 of	 using	 online	 models	 for	 simulating	 ozone	 accounts	 for	 the	 impact	 of	238	
aerosols	on	 radiation	and	 therefore	on	 temperature	and	photolysis	 rates	 (Baklanov	et	al.,	239	
2014).		240	

The	model	 settings	 and	 input	 data	 for	 phase	 I	 are	 described	 in	 Solazzo	 et	 al.	 (2012a,	 b;	241	
2013a),	 Schere	 et	 al.	 (2012),	 and	 Pouliot	 et	 al.	 (2012);	 for	 phase	 II,	 similar	 information	 is	242	
presented	in	Im	et	al.	(2015a,	b),	Brunner	et	al.	(2015),	and	Pouliot	et	al.	(2015).			243	

Table	2	summarises	the	features	of	the	modelling	systems	analysed	in	this	study	with	regard	244	
to	ozone	concentrations	in	the	EU	or	NA.	The	modelling	contribution	to	the	two	phases	of	245	
AQMEII	consists	of	12	and	9	models	and	of	8	and	3	models	for	EU	and	NA,	respectively.		246	
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Detailed	 analysis	 of	 the	 main	 differences	 in	 emissions,	 boundary	 conditions,	 and	251	
meteorology	 between	 the	 modelled	 years	 of	 2006	 (AQMEII1)	 and	 2010	 (AQMEII2)	 is	252	
presented	in	Stoeckenius	et	al.	(2015).	A	summary	of	the	performance	of	the	two	suites	of	253	
model	runs	is	provided	in	Makar	et	al.	(2015),	showing	that	the	AQMEII1	models	generally	254	
performed	 better	 than	 the	 AQMEII2	 models,	 based	 on	 standard	 operational	 metrics.	255	
However,	 the	 use	 of	 standard	 evaluation	methods	 does	 not	 allow	 for	 the	 assessment	 of	256	
whether	the	feedback	processes	have	an	effect	on	the	deterioration	of	model	performance,	257	
or	 rather	 the	 different	 sets	 of	 emissions	 and	 boundary	 conditions.	We	 try	 to	 assess	 the	258	
problem	using	the	error	apportionment	methods	outlined	above.				259	

4.	RESULTS	FOR	THE	SPATIALLY	AVERAGED	TIME	SERIES	260	

4.1	MSE	OF	SPECTRAL	COMPONENTS			261	

Figure	 1	 reports	 the	MSE	share	of	 the	 spectral	 components	and	cross	 components	 for	each	262	
model,	 for	both	phases	of	AQMEII,	 derived	 from	 the	ozone	 time	 series	 spatially	 averaged	263	
over	each	continental	area.		264	

The	LT	share	of	the	total	MSE	is	the	largest	in	absolute	value	for	both	continents	and	both	265	
simulated	 years.	 The	 LT	 share	 ranges	 between	 9.9%	 (GEM-AQ,	 AQMEII1,	 NA)	 and	 86.7%	266	
(WRF/Chem,	AQMEII1,	NA),	and	averages	at	∼34%	and	∼46.5%	for	the	EU	and	∼50.6%	and	267	
∼47%	for	NA	(AQMEII1	and	AQMEII2,	respectively).		268	

The	second	largest	share	of	the	total	MSE	is	of	the	DU	component,	accounting	for	∼20%	(all	269	
cases),	 followed	 by	 the	 SY	 component.	 Depending	 on	 the	 model,	 the	 MSE	 share	 of	 the	270	
remaining	 spectral	 components	 and	 cross-components	 varies	 significantly.	 Being	 the	271	
intermediate	 time	 scales,	 the	 overlap	 of	 the	 DU	 and	 SY	 components	 is	 likely	 to	 be	more	272	
significant	than	the	overlap	of	the	LT	and	ID	scales.	The	contribution	of	DUcc	and	SYcc	to	the	273	
total	error	can	be	as	high	as	17%	(DUcc	for	GEM-AQ,	AQMEII1,	NA)	and	16%	(SYcc	for	MM5-274	
CAMx,	AQMEII1,	EU).	Overall,	 the	DUcc	 terms	 (interaction	of	DU	with	 the	neighbouring	SY	275	
and	 ID	 scales)	 are	 significant	 in	 both	 continents	 (∼10%),	 while	 the	 share	 of	 the	 SY	276	
component	and	cross-components	is	more	significant	in	the	EU.		277	

The	 ID	 component	 has	 a	 little	 impact	 on	 the	 total	 MSE	 (negligible	 in	 some	 instances),	278	
exceeding	the	3%	share	only	for	the	two	EU	instances	of	the	L.-Euros	model	279	

The	 results	of	 Figure	 1	help	 identify	 the	 time-scales	and	associated	processes	 for	which	 the	280	
largest	improvement	in	model	accuracy	can	be	achieved.	The	LT	component	has	the	largest	281	
share	of	 the	error	due	 to	 the	bias	 (error	breakdown	 is	discussed	 in	 the	next	 section),	but	282	
‘internal’	chemical	processes,	transport,	and	deposition	also	occur	at	this	timescale.		Diurnal	283	
processes	 are	 the	 second	 largest	 source	 of	 error,	 including,	 among	 others,	 chemistry,	284	
boundary	 layer	dynamics,	radiation	forcing,	and	their	 interactions.	The	processes	 in	the	SY	285	
band	 bridge	meteorological	 and	 chemical	 processes,	 and	 discern	 between	 the	 fast-acting	286	
diurnal	processes	and	the	baseline.	As	such,	although	the	SY	signal	is	not	as	strong	as	that	of	287	
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the	DU	components	(variance	of	SY	is	comparable	to	the	variance	of	ID,	see	Hogrefe	et	al.,	292	
2014),	it	accounts	for	a	significant	portion	of	the	total	error,	as	discussed	next.	293	

4.2	THE	QUALITY	OF	THE	ERROR:	ERROR	APPORTIONMENT	294	
The	 error	 breakdown	 (Eq	 9)	 of	 each	 spectral	 component	 complements	 the	 analysis	295	
presented	 in	 the	 previous	 section,	 and	 is	 reported	 in	 Figure	 2	 (please	 note	 that	 results	 in	296	
Figure	 2	 are	 reported	 in	 ppb2	 for	 reason	 of	 clarity).	 The	 bias	 (only	 included	 in	 the	 LT	297	
component)	 is	 the	 average	 amount	 by	 which	 the	 modelled	 time	 series	 is	 displaced	 with	298	
respect	to	the	observed	time	series,	and	is	the	main	source	of	error.	The	bias	can	be	either	299	
due	to	 ‘internal’	model	errors,	or	 inherited	from	external	drivers	 (emissions,	meteorology,	300	
boundary	conditions).	Based	on	the	experience	matured	within	AQMEII,	while	the	 internal	301	
model	 errors	 are	 of	 interest	 for	 model	 development	 because	 they	 are	 generated	 by	302	
systematic	modelling	errors,	 the	bias	 introduced	by	external	drivers	 is	 responsible	 for	 the	303	
largest	share	of	modelling	errors.				304	

From	the	continental	average	error	breakdown	of	Figure	2	we	can	conclude	that	the	majority	305	
of	EU	models	(in	both	AQMEII	phases)	have	small	bias	(continental-wide	average),	with	the	306	
important	 exceptions	 of	 CCLM-CMAQ	 and	 Muscat	 models	 in	 AQMEII1,	 and	 CMAQ	 in	307	
AQMEII2,	 which	 introduced	 large	 positive	 biases.	 The	 bias	 for	 the	 NA	 continent	 is	 more	308	
uniformly	 distributed	 across	 the	 models	 (model	 over-prediction	 in	 both	 AQMEII	 phases),	309	
possibly	 indicating	 a	 common	 source	 of	 (external)	 bias	 in	 the	 NA	 models.	 The	 bias	310	
introduced	by	external	fields	is	reflected	by	the	bias	of	the	baseline	component	(LT).	For	the	311	
period	 between	May	 and	 September,	 the	 error	 in	 modelled	 ozone	 due	 to	 the	 boundary	312	
condition	 is	 typically	 small	 (Solazzo	 et	 al.,	 2012;	 Im	 et	 al.,	 2015;	 Giordano	 et	 al.,	 2015;	313	
Hogrefe	et	al.,	2014),	while	 the	emissions	of	ozone	precursors	and	VOCs	are	problematic,	314	
especially	 in	 the	EU	 (Makar	et	al.,	2015;	Brunner	et	al.,	2015).	We	 further	notice	 that	 the	315	
absence	of	bias	in	some	models	may	be	caused	by	the	presence	of	compensating	bias,	 i.e.	316	
spatially	distributed	biases	of	opposite	signs.	The	spatial	distribution	of	the	MSE	is	discussed	317	
in	the	next	section.	 In	all	cases,	the	MSEbest	model	 is,	by	definition,	the	model	with	 lowest	318	
MSE	and	thus	the	one	with	the	smallest	LT	bias.		319	

The	 variance	 share	 of	 LT	 error	 is	 generally	 small	 (∼1	 -	 2.5	 ppb).	 This	 is	 not	 entirely	320	
unexpected,	 as	 the	 LT	 component	 has	 a	 high	 signal-to-noise	 ratio	 with	 a	 well-structured	321	
seasonal	 cycle,	peaking	 in	 summer.	While	 such	a	 cycle	 is	 typically	well	 reproduced	by	 the	322	
models,	 its	phase	and/or	the	amplitude	are	not	always	well	captured	(Solazzo	et	al.,	2012;	323	
Im	et	al.,	2015),	 leading	 to	 the	variance	error.	The	variance	error	also	originates	 from	the	324	
different	 spatial	 support	 (incommensurability)	 of	 point	 measurements	 vs.	 gridded	 model	325	
outputs.	The	 latter	have	typically	 larger	spatial	support,	while	receptors	are	more	 likely	to	326	
detect	local	scale	effects	that	enhance	the	observed	variance.						327	

The	mMSE	error	of	the	LT	component	outweighs	the	variance	error	 in	most	cases	(in	both	328	
the	EU	and	NA),	and	is	due	to	the	unexplained	portion	of	observed	variance..	The	processes	329	
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responsible	 for	 the	 mMSE	 error	 of	 the	 LT	 component	 (such	 as	 deposition,	 transport,	339	
stratospheric	mixing	and	photochemistry)	act	at	timescales	of	more	than	21	days.			340	

The	 DU	 error	 (on	 average	 3-4	 ppb	 for	 AQMEII1	 and	 2-3	 ppb	 for	 AQMEII2)	makes	 up	 the	341	
second	 highest	 contribution	 to	 the	 total	 error.	 The	 portioning	 between	 variance	 and	 the	342	
mMSE	error	varies	greatly	from	model	to	model.	However,	a	comparison	of	the	two	AQMEII	343	
phases	 shows	 that	 the	 mMSE	 is	 predominant	 for	 AQMEII2,	 while	 the	 variance	 error	344	
(typically	 due	 to	 model	 under-prediction	 of	 the	 observed	 variability)	 is	 most	 relevant	 in	345	
several	 cases	 of	 AQMEII1.	 Therefore,	 at	 the	 DU	 scale,	 the	 ‘quality’	 of	 the	 error	 of	 the	346	
AQMEII2	phase	is	higher	than	that	of	its	AQMEII1	counterpart.	One	possible	explanation	is	347	
the	 fact	 that	coupled	models	were	used	 in	AQMEII2,	while	AQMEII1	exclusively	used	non-348	
coupled	models.	As	 already	mentioned	 (end	of	 section	3),	Makar	 et	 al.	 (2015)	 found	 that	349	
AQMEII1	models	performed	better	overall	with	 respect	 to	AQMEII2.	An	analysis	of	 the	 LT	350	
component	showed	that	the	bias	in	the	AQMEII2	models	is	higher,	possibly	due	to	the	2010	351	
emission	 inventory,	while	an	analysis	of	 the	DU	error	 found	that	 the	variance	error	 in	 the	352	
AQMEII2	models	is	significantly	reduced	with	respect	to	the	AQMEII1	models,	and	is	almost	353	
null.	We	postulate	that	the	inclusion	of	feedback	effects	may	have	been	beneficial,	and	that	354	
the	 reduced	 performance	 of	 AQMEII2	 models	 is	 likely	 due	 to	 external	 bias.	 The	 residual	355	
mMSE	error	of	the	DU	component	(∼1-2	ppb	on	average	for	both	continents)	is	mostly	likely	356	
generated	 by	 a	 number	 of	 processes,	 including	 chemistry,	 cloudiness,	 boundary	 layer	357	
transition	and	vertical	mixing.	From	Figure	2,	the	values	of	the	correlation	coefficient	for	the	358	
DU	 component	 are	 very	 high	 (exceeding	 0.8	 in	 the	 majority	 of	 the	 cases).	 Such	 a	 high	359	
performance	can	be	misleadingly	optimistic	though,	because	it	mostly	reflects	the	24-hour	360	
and	annual	forcing	embedded	in	both	the	observations	and	model	values.	Further	analysis	361	
on	the	amplitude	and	phase	of	the	error	can	reveal	more	informative.	362	

The	 SY	 error	 (almost	 entirely	 due	 to	mMSE	 in	 AQMEII2)	 is	 comparable	 across	 all	models	363	
applied	 to	 the	 same	 continental	 domain	 (except	 for	 GEM-AQ	 and	 WRF/Chem,	 NA),	364	
indicating	that	a	possible	common	source	of	error	may	be	due	to	missing	processes	 in	the	365	
models	related	to	the	interaction	between	chemistry	and	transport.		366	

Finally,	the	error	of	the	ID	component	is	less	than	1	ppb	(on	average	∼0.2	ppb	for	AQMEII2)	367	
and	is	generated	by	both	variance	(most	commonly	model	over-prediction)	and	mMSE.	The	368	
fast-acting	photochemical	processes	are,	 therefore,	modelled	with	 satisfactory	precision,	 ,	369	
although	 the	 small	 errors	 in	 the	 ID	 component	 can	 be	 quite	 large	 relative	 to	 the	 total	370	
amount	of	ID	variability.		371	

4.3.	SPATIAL	DISTRIBUTION	OF	THE	SPECTRAL	ERROR	COMPONENTS	372	

Maps	of	MSE	by	spectral	components	are	reported	in	Figure	3	to	Figure	6.	As	anticipated	by	the	373	
error	analysis,	the	LT	is	the	most	problematic	source	of	error	for	both	continents,	although	374	
the	variety	in	the	models’	behaviour	does	not	allow	for	generalisation.		375	
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Some	of	the	cases	presented	in	Figure	2,	where	the	bias	was	null	(MM5-CAMx,	MM5-DEHM	378	
for	AQMEII1	and	CosmoArt	for	AQMEII2,	both	in	EU),	show	bias	compensation,	typically	due	379	
to	 model	 underestimation	 in	 the	 central	 part	 of	 the	 EU	 (Germany,	 eastern	 France)	 and	380	
model	overestimation	in	the	rest	of	the	continent.	The	case	of	the	CosmoArt	model	(Figure	5c)	381	
clearly	shows	the	effect	of	the	spatial	averaging	in	masking	the	error	that	is	only	cancelled	382	
when	a	continental	average	 is	calculated.	The	model	 is	 in	 fact	affected	by	severe	bias	and	383	
component	errors.			384	

The	 Po	 valley	 in	 Italy	 and	 the	 southern	 part	 of	 the	 EU	 are	 the	 most	 problematic	 areas,	385	
affected	by	severe	LT	errors	(Figure	3	and	Figure	5).	The	central	and	northern	parts	of	the	EU	are	386	
less	 problematic,	 especially	 for	 AQMEII2.	 The	 other	 components	 of	 the	 error	 are	387	
significantly	 smaller	 than	 the	 LT	 error,	 with	 some	 exceptions	 (especially	 for	 the	 DU	388	
component).	The	 length	of	 the	segment	 is	 in	 fact	normalised	 to	 the	 largest	error	 for	each	389	
model,	to	facilitate	the	interpretation	and	the	relative	weight	of	each	error	component.	390	

Concerning	NA	(Figure	4	and	Figure	6),	the	DU	error	has	more	weight	and	competes	with	the	LT	391	
error	in	the	central	and	south-eastern	parts	of	the	continent.	For	AQMEII2,	the	SY	error	is	as	392	
significant	as	 the	LT	error	on	 the	East	Coast	 (Wrf/Chem,	 Figure	 6c).	The	greatest	 LT	error	 is	393	
observed	in	the	coastal	areas	(east	and	west)	and	across	the	north-eastern	border	between	394	
the	 US	 and	 Canada	 (due	 primarily	 to	model	 underestimation	 in	 the	 east	 and	 north,	 and	395	
model	overestimation	in	the	west).		396	

The	 analysis	 presented	 provides	 a	 detailed	 breakdown	 of	 the	 error	 in	 terms	 of	 error	397	
components,	spectral	decomposition	and	spatial	distribution,	thereby	avoiding	the	pitfalls	of	398	
extreme	averaging	and	providing	a	comprehensive	analysis	of	where	 the	error	occurs	and	399	
the	associated	 timescales	and	processes,	and	whether	 the	error	 is	 internally	generated	or	400	
stems	from	the	model’s	input	data.		401	

5.	MSE	DECOMPOSITION	AND	COMPLEXITY	402	
In	 regression	 analysis	 and	 statistical	 learning	 theories,	 the	 problem	 of	 under-	 and	 over-403	
fitting	complex	systems	is	at	the	root	of	the	MSE	decomposition	into	bias	and	variance.	The	404	
trade-off	between	bias	and	variance	 is	strictly	dependent	on	the	complexity	of	the	model.	405	
Over-fitting	occurs	when	too	many	parameters	and	modules	are	added	to	the	model:	each	406	
new	 module	 added	 to	 describe	 a	 process	 is	 a	 new	 source	 of	 variance	 due	 to	 internal	407	
parameterisation	 and	 linearisation.	 In	 other	 words,	 over-fitting	 is	 associated	 with	 the	408	
stochasticity	 inherent	 to	 the	data/model,	 and	 contributes	 to	 the	 increase	 in	 variance	 and	409	
consequent	 decrease	 in	 bias.	 Under-fitting	 occurs	 due	 to	 an	 oversimplification	 of	 the	410	
modelled	 processes,	 and	 is	 an	 important	 source	 of	 bias	 as	 it	 is	 associated	 with	 the	411	
deterministic	property	of	the	modelling	activity	(Hastie	et	al.,	2009).		412	

The	 problem	 of	 the	 bias-variance	 trade-off	 becomes	 markedly	 more	 complicated	 when	413	
dealing	with	complex	models	with	many	degrees	of	freedom,	such	as	AQ	modelling	systems.	414	
Adding	new	modules	to	cope	with	unexplained	physical	processes	can	lead	to	a	reduction	in	415	
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the	bias	due	to	that	specific	process,	but	also	feeds	new	variance	and	possibly	new	bias	into	418	
the	model	 due	 to	 the	 non-linear	 interaction	 of	 the	 new	module	with	 existing	 ones,	 since	419	
reducing	the	bias	while	preserving	the	variance	is	non-trivial.		420	

Rao	(2005),	in	the	context	of	dispersion	modelling,	provided	the	theoretical	variations	of	the	421	
total	 model	 uncertainty	 by	 exploiting	 the	 components	 of	 the	 difference	 between	 the	422	
modelled	and	observed	variance	(Figure	1	of	Rao	et	al.,	2005).	Rao	(2005)	used	the	number	423	
of	 meteorological	 parameters	 in	 the	 model	 as	 a	 measure	 of	 model	 complexity,	 and	424	
concluded	 that	 the	optimal	model	 complexity	 could	not	be	defined	a	priori,	but	 is	 a	 trial-425	
and-error	combination	of	the	model,	the	measurement	error	and	the	stochastic	uncertainty.	426	

In	 this	 study	we	attempt	 to	derive	 the	curves	of	 the	MSE	components	 (bias,	variance	and	427	
covariance)	as	a	function	of	model	complexity,	providing	a	first-time	attempt	to	analysis	the	428	
error	of	a	regional	AQ	model	as	function	of	its	complexity.	The	aim	is	to	find	the	time	scale	429	
dominated	by	 the	error	 (and	hat	 type	of	error)	and,	 if	exists,	 the	 time	window	where	 the	430	
error	 decreases.	 The	 information	 obtained	 is	 of	 immediate	 usefulness	 for	 model	431	
development,	 as	provides	 a	 clear	 temporal	 cut-off	 that	discriminates	 the	dynamics	of	 the	432	
error.			433	

Figure	 7	 shows	 an	 example	 of	 the	 approach	 used	 to	 break	 down	model	 complexity,	 which	434	
basically	 relies	 on	 the	 resolved	 timescale	 of	 the	 model.	 The	 complexity	 of	 the	 model	 is	435	
assumed	to	 increase	when	the	resolved	timescale	 is	shortened:	 the	shorter	 the	timescale,	436	
the	more	 complex	 the	model.	 The	 timescale	 of	 the	 resolved	 processes	 is	 thus	 used	 as	 a	437	
measure	of	the	complexity,	and	is	obtained	by	recursively	applying	the	kz	filter	to	the	ozone	438	
time	series.	The	minimum	complexity	is	assumed	to	be	represented	by	a	model	that	cannot	439	
resolve	 any	 temporal	 scale	 below	 ∼1	 month	 (far	 right	 of	 Figure	 7),	 while	 the	 maximum	440	
complexity	corresponds	to	the	hourly	time	series,	i.e.	the	standard	model’s	output	(far	left	441	
of	Figure	7).		442	

In	Figure	8,	we	report	the	spatially	averaged	curves	of	bias,	variance,	and	covariance	according	443	
to	 Eq	 6	 as	 a	 function	 of	model	 complexity.	 According	 to	 the	 regression	 analysis	 theories	444	
outlined	 above,	 we	 would	 expect	 the	 variance	 to	 increase	 according	 to	 the	 complexity	445	

( !!!!

!"#$%&'()*+
> 0),	 and	 the	 distance	 between	 the	 modelled	 and	 observed	 variance	 to	446	

decrease	 !(!!!!!)!

!"#$%&'()*+
< 0 ,	and	the	opposite	for	the	bias.	The	curves	of	variance	in	Figure	8	447	

indeed	turn	downwards	as	predicted	by	the	theory,	while	the	curves	of	bias	have	a	mixed	448	

behaviour	but	are,	basically,	constant	 !(!"#!!"#)!

!"#$%&'()*+
≈ 0 .		449	

More	specifically:	450	

- The	 (𝜎!!𝜎!)!	 term	 decreases	 steadily	 but	 slowly	 to	 a	 timescale	 of	 ∼1	 day,	 after	451	
which	 it	 drastically	 drops	 to	 significantly	 lower	 values.	 This	 indicates	 that	 i)	 the	452	
complexity	 of	 the	 AQ	 systems	 increases	 exponentially	 at	 the	 DU	 timescales	 (not	453	
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entirely	 surprising,	 given	 the	 day/night	 behavioural	 properties	 of	 ozone);	 ii)	 the	457	
efforts	 made	 to	 improve	 the	 model	 capabilities	 on	 the	 short-term	 processes	458	
governing	 the	ozone	dynamics	 improve	 the	model	precision;	 iii)	 there	 is	a	possible	459	
lack	of	parameterisation	and	modelling	of	 the	processes	of	 transport	and	chemical	460	
transformation	over	periods	longer	than	1-2	days.		461	

- The	 fact	 that	 the	 bias	 varies	 only	 by	 small	 amounts	 indicates	 that	 a	 fully	 evolved	462	
model,	 capable	 of	 reproducing	 processes	 at	 the	 shortest	 timescales	 (turbulent	463	
dispersion,	 fast	 chemical	 reactions,	 even	 day/night	 variability,	 etc.)	 is	 no	 more	464	
accurate	than	a	basic	model	that	only	accounts	for	long-term	processes.	This	might	465	
indicate	that	i)	the	bias	at	the	shorter	timescales	is	introduced	entirely	by	the	larger	466	
timescales,	 and/or	 ii)	 the	 bias	 is	 continuously	 fed	 into	 the	 model	 by	 an	 external	467	
source	acting	at	all	scales,	as	for	example	the	emissions	data	or	boundary	conditions.						468	

.	 Summarising,	 in	most	 cases	 (both	 continents,	 both	 AQMEII	 phases),	 the	 (𝜎!!𝜎!)! term	469	
decreases	 sharply	 after	 a	 timescale	 of	 resolved	 processes	 of	 ∼1	 day;	 the	 bias	 term	 is	470	
surprisingly	 independent	on	complexity;	 the	covariance	 is	complementary	to	the	variance.	471	
Thus,	 the	bias	 seems	 the	error	 term	more	urgently	needing	attention	and	current	 studies	472	
are	carried	out	to	diagnose	more	precisely	its	origin	within	AQ	modelling	systems.		473	

5.	CONCLUSIONS	474	

This	 study	presents	a	novel	approach	 to	model	evaluation,	and	aims	 to	combine	standard	475	
operational	statistics	with	the	time	allocation	of	the	component	error.	The	methodology	we	476	
propose	 tackles	 the	 issue	 of	 diagnostic	 evaluation	 from	 the	 angle	 of	 the	 spectral	477	
decomposition	and	error	breakdown	of	model/data	signals,	introducing	a	compact	operator	478	
for	the	quantification	of	bias,	variance,	and	the	correlation	coefficient.	479	

When	the	analytical	decomposition	of	the	error	into	bias,	variance	and	mMSE	is	applied	to	480	
the	 decomposition	 of	 the	 signals	 into	 long-term,	 synoptic,	 inter-diurnal	 and	 diurnal	481	
components,	 information	 can	 be	 gathered	 that	 helps	 reduce	 the	 spectrum	 of	 possible	482	
sources	of	errors	and	pinpoint	the	processes	that	are	most	active	at	a	particular	scale	which	483	
need	to	be	improved.	The	procedure	is	denoted	here	as	error	apportionment	and	provides	484	
an	improved	and	more	powerful	capacity	to	identify	the	nature	of	the	error	and	associate	it	485	
with	a	specific	part	of	 the	spectrum	of	the	model/measurement	signal.	The	AQMEII	set	of	486	
models	and	measurements	have	been	used	in	the	evaluation	procedure.	487	

After	 analysing	 the	 ozone	 concentrations	 gathered	 in	 the	 two	 phases	 of	 AQMEII,	 which	488	
cover	 a	 number	 of	modelling	 systems	 in	 two	 different	 years	 and	 geographical	 areas,	 we	489	
conclude	that:		490	

- The	bias	component	of	the	error	is	by	far	the	most	important	source	of	error,	and	is	491	
mainly	associated	with	long-term	processes	and/or	input	fields	(likely	emissions	data	492	
or	boundary	conditions).	With	regard	to	the	model	application,	any	effort	to	improve	493	
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the	 current	 capabilities	 of	 AQ	modelling	 systems	 are	 likely	 to	 have	 little	 practical	500	
impact	if	this	primary	issue	is	not	addressed	and	solved;	501	

- Most	relevant	to	model	development,	the	variance	error	(the	discrepancy	between	502	
modelled	 and	observed	 variance)	 is	mainly	 associated	with	 the	DU	 component.	At	503	
timescale	of	∼1-2	days,	the	complexity	of	modelling	systems	increases	substantially	504	
and	 many	 processes	 are	 involved;	 the	 fact	 that	 the	 variance	 error	 of	 the	 DU	505	
component	for	the	AQMEII2	runs	is	reduced	with	respect	to	the	AQMEII1	runs	might	506	
indicate	 the	benefits	of	 including	 feedback	 in	 the	models.	 Such	a	 conclusion	 could	507	
not	be	drawn	with	simpler	operational	evaluation	strategies;	508	

- The	 limited	 magnitude	 of	 the	 variability	 of	 the	 SY	 and	 LT	 signals	 produces	 little	509	
variance	errors	for	these	two	components,	and	only	becomes	comparable	to	the	LT	510	
or	DU	error	when	the	bias	is	negligible	or	the	total	MSE	is	small;	511	

- The	mMSE	 error	 is	 predominant	 in	 some	 instances	of	 the	 analysed	models,	 and	 is	512	
due	to	the	random	distribution	of	modelled	values.	There	are	many	causes	of	mMSE	513	
error,	 including	 all	 ‘internal’	 processes	 that	 produce	non-systematic	 errors	 such	 as	514	
noise,	 representativeness,	 the	 linearisation	 of	 non-linear	 process,	 and	 turbulence	515	
closure;			516	

- The	 analysis	 of	 the	 spatial	 distribution	 of	 the	 error	 highlights	 the	 diversity	 in	 the	517	
behaviour	of	each	modelling	system.	The	common	spatial	structures	of	the	LT	error	518	
(for	example	 in	 the	central	and	southern	EU)	may	reveal	common	sources	of	error	519	
(e.g.	emissions	data),	while	the	error	of	the	other	components	(especially	DU	and	SY)	520	
are	peculiar	to	each	model	and	need	to	be	assessed	individually.	521	
	522	

Analyses	of	the	modelling	results	for	the	third	phase	of	AQMEII	are	currently	building	on	the	523	
methodology	outlined	in	this	study,	with	specific	attention	being	given	to	the	diagnostic	of	524	
the	 error	 of	 the	 LT	 component	 in	 relation	 to	 external	 forcing	 (emissions	 and	 boundary	525	
conditions)	and	of	the	DU	component	with	respect	to	the	variance	error.		526	

	527	

	528	

	529	

APPENDIX	530	
As	 in	 Hogrefe	 et	 al.	 (2000)	 and	 Galmarini	 et	 al.	 (2013),	 the	 time	 windows	 (m)	 and	 the	531	
smoothing	parameter	(k)	have	been	selected	as	follows:	532	

ID(t)	=	x(t)	–	kz3,3(x(t))	
DU(t)	=	kz3,3(x(t))	–	kz13,5(x(t))	
SY(t)	=	kz13,5(x(t))	–	kz103,5(x(t))	

LT(t)	=	kz103,5(x(t))	
x(t)=ID(t)+DU(t)+SY(t)+LT(t)	

EQ.	S.1	
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where	x(t)	is	the	time	series	vector.	533	

A	clear-cut	separation	of	the	components	of	EQ.	S.1	cannot	be	achieved,	as	the	separation	is	534	
a	 non-linear	 function	 of	 the	 parameters	m	 and	 k	 (Rao	 et	 al.,	 1997).	 It	 follows	 that	 the	535	
components	of	EQ.	S.1	are	not	completely	orthogonal	and	 that	 some	 level	of	overlapping	536	
energy	exists	(Kang	et	al.,	2013).	Galmarini	et	al.	(2013)	found	that	the	explained	variance	by	537	
the	spectral	components	account	for	75	to	80%	of	the	total	variance,	the	remaining	portion	538	
being	explained	by	the	interactions	between	the	components.		539	

	540	
Assuming	a	spectral	decomposition	which	 is	valid	 for	 the	modelling	and	 the	observational	541	

time	series,	the	MSE	formulation	outlined	in	Galmarini	et	al.	(2013)	holds:	542	

𝑀𝑆𝐸 𝑂! = 𝑀𝑆𝐸 𝐿𝑇 + 𝑆𝑌 + 𝐷𝑈 + 𝐼𝐷 = 𝑀𝑆𝐸(𝑠𝑝𝑒𝑐 𝑐𝑜𝑚𝑝)+  𝑀𝑆𝐸 (𝑐𝑐)) 	 EQ.	S.2	

	543	

Where	 spec	 comp	 are	 the	 diagonal	 terms,	 and	 LT,	 SY,	 DU,	 ID	 and	 cc	 identifies	 the	 cross	544	

components,	 i.e.	 the	 off-diagonal	 terms	 deriving	 from	 the	 squared	 nature	 of	 the	 MSE:	545	

LToSYm,	SYoLTm,	SYoDUm,	DUoSYm,	DUoIDm,	IDoDUm,	LTmSYm,		LToSYo,	DUmSYm,	DUmIDm,	DUoSYo,	546	

DUoIDo	 (o	and	m	 represent	observed	and	modelled	 fields,	 respectively).	For	simplicity,	 the	547	

cross-components	 are	 assumed	 to	be	 symmetric,	 so	 the	o	 and	m	 subscripts	 are	dropped.	548	

This	simplification	has	little	impact	on	the	MSE	breakdown	since,	as	shown	by	Galmarini	et	549	

al.	(2013),	the	diagonal	terms	alone	account	for	over	80%	of	the	total	variance.	550	

To	 isolate	the	contribution	to	MSE	of	a	single	spectral	component,	we	proceed	as	follows.	551	

We	subtract	a	component	(e.g.	LT)	from	the	whole	time	series:	552	

MSE(O3-LT(O3))	=	

MSE(SY)+MSE(DU)+MSE(ID)+2MSE(IDDU)+2MSE(IDSY)+2MSE(DUSY)	
EQ.	S.3	

	553	

By	removing	EQ.	S.3	from	EQ.	S.2,	the	contribution	of	LT	and	its	cross-component	is	isolated:	554	

EQ.	S.2-	EQ.	S.3	=	MSE(LT)	+	MSE(LTID)	+MSE(LTSY)	+	MSE(LTDU)	 EQ.	S.4	

	555	

We	can	 further	elaborate	on	EQ.	S.4	 to	 isolate	 the	contribution	of	each	cross-component.	556	

For	instance,	the	case	of	SYLT:	557	
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	561	

MSE(SY-ID-DU)–MSE(SY)–MSE(LT)	=	[MSE(SY)+MSE(LT)+	2MSE(SYLT)]	–	MSE(SY)	–	

MSE(LT)	=	2MSE(SYLT)	
EQ.	S.5	

	562	

The	 procedure	 in	 EQ.	 S.5	 has	 been	 applied	 to	 derive	 the	 contribution	 of	 all	 cross-563	
components.	564	

	565	
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FIGURES	694	

Figure	 1.	 Share	 (in	%)	 of	 the	 total	MSE	 in	 the	main	 spectral	 components	 and	 the	 cross	 components	 (see	 Appendix	 for	695	
detail)	for	a)	AQMEII1	and	b)	AQMEII2.	Top	panel:	EU;	lower	panel:	NA.	696	

Figure	2.	MSE	(ppb2)	breakdown	in	bias	squared,	variance	and	mMSE	of	the	spectral	components	ID,	DU,	SY,	LT,	based	on	697	
Eq	 9.	 The	 bias	 is	 entirely	 accounted	 for	 by	 the	 LT	 component.	 The	 sign	within	 the	 share	 of	 bias	 and	 variance	 indicates	698	
model	overestimation	(+)	or	underestimation	(-)	of	mean	concentration	(bias)	and	variance.	The	colour	of	the	mMSE	share	699	
of	the	error	 is	coded	based	on	the	values	of	r,	the	correlation	coefficient,	according	to	the	colour	scale	at	the	bottom	of	700	
each	plot.		a)	AQMEII1	and	b)	AQMEII2.	Top	panel:	EU;	lower	panel:	NA.	701	

Figure	 3.	 Spatial	 distribution	 of	 the	MSE	 in	 the	 spectral	 components	 for	 the	 EU	models	 of	 AQMEII1.	 The	 segments	 are	702	
centred	at	the	rural	receptors’	position	(clockwise	from	north:	MSE	of	ID,	DU,	SY,	and	LT).	Their	 length	is	proportional	to	703	
the	MSE	magnitude,	coded	according	to	the	colour	scale.	For	each	model,	the	colour	scale	extends	from	zero	up	to	the	75th	704	
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percentile,	and	the	 last	value	of	 the	scale	 is	 the	maximum	MSE.	The	colour	of	 the	MSE	values	above	the	75th	percentile	705	
represents	the	maximum	value.	The	tick-dashed	LT	segment	indicates	model	underestimation	(low	model	bias),	while	thin	706	
continuous	 segment	 indicates	model	overestimation	 (high	model	bias).	 The	example	 in	 the	 last	panel	 indicates	how	 the	707	
maps	reports	the	error	of	 the	spectral	components	at	each	receptor	 (the	colours	are	arbitrary).	The	example	on	the	 left	708	
represents	the	error	at	a	receptor	where	the	LT	component	is	biased	high,	while	the	example	on	the	right	refers	to	a	case	709	
where	the	bias	is	negative.	The	other	components	do	not	change.	710	

Figure	4	As	in	Figure	3,	but	for	the	NA	models	of	AQMEII1.	711	

Figure	5.	As	in	Figure	3,	but	for	the	EU	models	of	AQMEII2.	712	

Figure	6	As	in	Figure	3,	but	for	the	NA	models	of	AQMEII2.	713	

Figure	7	Example	of	the	model	complexity	as	time-resolved	scale	of	the	transport	and	dispersion	processes:	the	minimum	714	
complexity	 (far	 right)	 is	 a	 poor	 time-resolving	 time	 series	 obtained	 as	 kz(250,5)	 (>	 1	month).	 The	 complexity	 increases	715	
towards	 the	 left,	 with	 the	 scale	 of	 resolved	 processes	 becoming	 finer	 up	 to	 the	maximum	 complexity	 (far	 left),	 which	716	
represents	the	full	time	series.	The	upper	panel	shows	an	example	of	how	the	curves	of	the	error	for	covariance,	variance	717	
and	bias	vary	according	to	complexity.	718	

Figure	8	 Evolution	of	error	 components	 (red:	bias;	Blue:	 variance;	Black:	 covariance)	as	a	 function	of	model	 complexity.	719	
Complexity	 increases	from	right	(min)	to	left	(MAX)	and	is	calculated	as	the	temporal	scale	of	the	resolved	process	using	720	
the	kz	filter	on	the	modelled	signal:	kz(i,5),	i=2,…,250.	721	

FIGURE	S1.	Sub-regions	of	the	two	continental	domains	a)	EU,	and	b)	NA.	Overlaid	are	the	ozone	monitoring	stations	for	722	
the	year	2010	classified	based	on	the	network.	723	

FIGURE	S2.	MSE	(ppb2)	breakdown	in	bias,	variance	and	mMSE	of	the	spectral	components	ID,	DU,	SY,	LT	(based	on	Eq	9)	724	
for	the	models	of	AQMEII1	and	the	three	sub-regions	of	Figure	S1.	The	sign	within	the	share	of	bias	and	variance	indicates	725	
model	overestimation	(+)	or	underestimation	(-)	of	mean	concentration	(bias)	and	variance.	Top	three	panels:	EU;	 lower	726	
three	panels:	NA.	727	

FIGURE	S3.	As	in	Figure	S2	for	the	AQMEII2	models	728	

TABLES	729	

Table	1.	Features	of	the	modelled	domains	730	

	 Europe	 North	America	
phase	1	 phase	2	 phase	1	 phase	2	

Simulated	year	 2006	 2010	 2006	 2010	
Extension	 (-10,39)W;	(30,65)N	 (-125,-55)W;	(26,51)N	

Number	of	receptors	
(min	validity=75%;	max	altitude	=	1	000	m)	 1	339	 1	360	 672	 652	
	731	
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	750	

	751	

	752	

	753	

	754	

	755	

	756	

	757	

	758	

	759	

	760	

	761	

	762	

	763	

	764	

	765	

Table	2.	Modelling	systems	participating	in	the	first	(Table	a)	and	second	(Table	b)		phases	of	AQMEII	for	Europe	and	North	766	
America	767	

a)		768	
Model	 Grid(km)	 Emissions	 Chemical	BC	

Code	 Met	 AQ	
EUROPE	–	AQMEII	1	

DK1	 MM5	 DEHM	 50	 Global	emission	
databases,	EMEP	

Satellite	
measurements	

FR3	 MM5	 Polyphemus	 24	 Standard§	 Standard	

HR1	 PARLAM-
PS	 EMEP	 50	 EMEP	model	 From	ECMWF	and	

forecasts	
UK2	 WRF	 CMAQ	 18	 Standard§	 Standard	
US4	 WRF	 WRF/Chem	 22.5	 Standard§	 Standard	

FI1	 ECMWF	 SILAM	 24	
Standard	

anthropogenic;	
In-house	biogenic	

Standard	

FR4	 MM5	 Chimere	 25	 MEGAN,	Standard	 Standard	
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PL1	 GEM	 GEM-AQ	 25	

Standard	over	
AQMEII	region;		

Global	EDGAR/GEIA	
over	the	rest	of	the	

global	domain		

Global	variable	grid	
setup	(no	boundary	

conditions)	

NL1	 ECMWF	 Lotos-
EUROS	 25	 Standard§	 Standard	

DE1	 COSMO	 Muscat	 24	 Standard§	 Standard	
US3	 MM5	 CAMx	 15	 MEGAN,	Standard	 Standard	

DE3	 COSMO-
CLM	 CMAQ	 24	 Standard§	 Standard	

NORTH	AMERICA-	AQMEII	1	
CA1	 GEM	 AURAMS	 45	 Standard*	 Climatology	

PL1	 GEM	 GEM-AQ	 25	

Standard	over	
AQMEII	region;		

Global	EDGAR/GEIA	
over	the	rest	of	the	

global	domain		

Global	variable	grid	
setup	(no	boundary	

conditions)	

PT1	 MM5	 CAMx	 24	 Standard	 LMDZ-INCA	
US1	 WRF	 CAMQ	 12	 Standard	 Standard	
US3	 WRF	 CAMx	 12	 Standard	 Standard	
FR4b	 WRF	 CHIMERE	 	 	 	

DK1	 MM5	 DEHM	 50	 Global	emission	
databases,	EMEP	

Satellite	
measurements	

DE3	 COSMO-
CLM	 CMAQ	 24	 Standard§	 Standard	

ES3	 WRF	 WRF/Chem	 23	 Standard	 Standard	
§	 Standard	 anthropogenic	 emissions	 and	 biogenic	 emissions	 derived	 from	meteorology	 (temperature	 and	 solar	 radiation)	 and	 land	 use	769	
distribution	implemented	in	the	meteorological	driver.	770	
*Standard	 anthropogenic	 inventory	 but	 independent	 emission	 processing,	 exclusion	 of	 wildfires,	 and	 different	 versions	 of	 BEIS(v3.09)	771	
used.	772	
Refer	to	Solazzo	et	al.	(2012a-b)	and	references	therein	for	details.		773	
	774	
b)	775	

Model	
Grid		 Emissions	 Chemical	BC	Code	 Met	 AQ	

EUROPE	–	AQMEII	2	
AT1	 WRF	 WRF/Chem	 23	km	 Standard	 Standard	
CH1	 COSMO	 Cosmo-ART	 0.22°	 Standard	 Standard	
ES2a	 NMMB	 BSCCTM	 0.20°	 Standard	 Standard	
ES3	 WRF	 WRF/Chem	 23	km	 Standard	 Standard	
NL2	 RACMO	 LOTOS-EUROS	 0.5°	x	0.25°	 Standard	 Standard	
UK5	 WRF	 CMAQ	 18	km	 Standard	 Standard	
UK4	 MetUM	 UKCA	RAQ	 0.22°	 Standard	 Standard	
DE3	 COSMO	 Muscat	 0.25°	 Standard	 Standard	

NORTH	AMERICA	–	AQMEII	2	
ES1	 WRF	 WRF/CHem	 36	km	 Standard	 Standard	
US6	 WRF	 CMAQ	 12km	 Standard	 Standard	
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CA2f	 GEM	 MACH	 15	km	 Standard	 Standard	
Standard	 Boundary	 conditions:	 3-D	 daily	 chemical	 boundary	 conditions	 were	 provided	 by	 the	 ECMWF	 IFS-MOZART	 model	 run	 in	 the	776	
context	of	the	MACC-II	project	(Monitoring	Atmospheric	Composition	and	Climate	-	Interim	Implementation)	at	3-hourly	and	1.125	spatial	777	
resolution.	Refer	to	Im	et	al.	(2015a-b)	for	details.	778	

Standard	 Emissions:	 based	 on	 the	 TNO-MACC-II	 (Netherlands	 Organization	 for	 Applied	 Scientific	 Research,	 Monitoring	 Atmospheric	779	
Composition	 and	Climate	 -	 Interim	 Implementation)	 framework	 for	 Europe	 and	 by	 the	US	 EPA	 (Environmental	 Protection	Agency)	 and	780	
Environment	Canada	for	North	America.	The	2008	National	Emissions	Inventory	(http://www.epa.gov/ttn/chief/net/2008inventory.html)	781	
and	the	2008	Emissions	Modeling	Platform	(http://www.epa.gov/ttn/chief/	emch/index.html#2008)	with	year-specific	updates	 for	2006	782	
and	2010	were	used	for	the	US	portion	of	the	modelling	domain.	Canadian	emissions	were	derived	from	the	Canadian	National	Pollutant	783	
Release	 Inventory	 (http://www.ec.gc.ca/inrp-npri/)	 and	 Air	 Pollutant	 Emissions	 Inventory	 (http://www.ec.gc.ca/inrp-npri/	 donnees-784	
data/ap/index.cfm?lang¼En)	values	for	the	year	2006.	Refer	to	Im	et	al.	(2015a-b)	for	details.	785	

	786	

	787	

	788	

	789	

	790	

	791	

	792	

FIGURES	793	

	794	

AQMEII1	
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a)	
	

AQMEII2	
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b)	
Figure	 9.	 Share	 (in	 %)	 of	 the	 total	 MSE	 in	 the	 main	 spectral	 components	 and	 the	 cross	
components	(see	Appendix	for	detail)	for	a)	AQMEII1	and	b)	AQMEII2.	Top	panel:	EU;	lower	
panel:	NA.	
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AQMEII1	

	

	
a)	

AQMEII2	
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b)	
Figure	 10.	 MSE	 (ppb2)	 breakdown	 in	 bias	 squared,	 variance	 and	 mMSE	 of	 the	 spectral	
components	 ID,	 DU,	 SY,	 LT,	 based	 on	 Eq	 9.	 The	 bias	 is	 entirely	 accounted	 for	 by	 the	 LT	
component.	The	sign	within	the	share	of	bias	and	variance	indicates	model	overestimation	
(+)	 or	 underestimation	 (-)	 of	 mean	 concentration	 (bias)	 and	 variance.	 The	 colour	 of	 the	
mMSE	 share	 of	 the	 error	 is	 coded	 based	 on	 the	 values	 of	 r,	 the	 correlation	 coefficient,	
according	to	the	colour	scale	at	the	bottom	of	each	plot.	
	a)	AQMEII1	and	b)	AQMEII2.	Top	panel:	EU;	lower	panel:	NA.	
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i)	

	
	
j)	

	
k)	

	
l)	

	
Figure	11.	Spatial	distribution	of	the	MSE	in	the	spectral	components	for	the	EU	models	of	
AQMEII1.	The	segments	are	centred	at	the	rural	receptors’	position	(clockwise	from	north:	
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MSE	 of	 ID,	 DU,	 SY,	 and	 LT).	 Their	 length	 is	 proportional	 to	 the	 MSE	 magnitude,	 coded	
according	to	the	colour	scale.	For	each	model,	the	colour	scale	extends	from	zero	up	to	the	
75th	percentile,	and	the	last	value	of	the	scale	is	the	maximum	MSE.	The	colour	of	the	MSE	
values	 above	 the	 75th	 percentile	 represents	 the	 maximum	 value.	 The	 tick-dashed	 LT	
segment	indicates	model	underestimation	(low	model	bias),	while	thin	continuous	segment	
indicates	model	overestimation	 (high	model	bias).	The	example	 in	 the	 last	panel	 indicates	
how	the	maps	reports	 the	error	of	 the	spectral	components	at	each	receptor	 (the	colours	
are	 arbitrary).	 The	 example	 on	 the	 left	 represents	 the	 error	 at	 a	 receptor	 where	 the	 LT	
component	is	biased	high,	while	the	example	on	the	right	refers	to	a	case	where	the	bias	is	
negative.	The	other	components	do	not	change.		
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i)	
Figure	12.	As	in	Figure	11	but	for	the	NA	models	of	AQMEII1	
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AQMEII2	
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e)	

	
f)	

	
g)	

	
h)	

Figure	13.	As	in	Figure	11	but	for	the	EU	models	of	AQMEII2	
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a)	
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c)	
Figure	14.	As	in	Figure	11	but	for	the	NA	models	of	AQMEII2	
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823	
FIGURE	15	Example	of	the	model	complexity	as	time-resolved	scale	of	the	transport	and	dispersion	processes:	the	minimum	824	
complexity	 (far	 right)	 is	 a	 poor	 time-resolving	 time	 series	 obtained	 as	 kz(250,5)	 (>	 1	month).	 The	 complexity	 increases	825	
towards	 the	 left,	 with	 the	 scale	 of	 resolved	 processes	 becoming	 finer	 up	 to	 the	maximum	 complexity	 (far	 left),	 which	826	
represents	the	full	time	series.	The	upper	panel	shows	an	example	of	how	the	curves	of	the	error	for	covariance,	variance	827	
and	bias	vary	according	to	complexity.		828	

	829	



	

46	
	

	830	



	

47	
	

	831	

	832	

	833	

	834	



	

48	
	

835	

	836	

FIGURE	16	Evolution	of	error	components	(red:	bias;	Blue:	variance;	Black:	covariance)	as	a	function	of	model	complexity.	837	
Complexity	 increases	from	right	(min)	to	left	(MAX)	and	is	calculated	as	the	temporal	scale	of	the	resolved	process	using	838	
the	kz	filter	on	the	modelled	signal:	kz(i,5),	i=2,…,250.	839	
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