
1 
 

One-Year Simulation of Ozone and Particulate Matter in China  1 

Using WRF/CMAQ Modeling System 2 

 3 
Jianlin Hu1, Jianjun Chen2,1, Qi Ying3,1,*, Hongliang Zhang4,1,* 4 

 5 
1Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiang-6 

su Engineering Technology Research Center of Environmental Cleaning Materials, Collaborative 7 

Innovation Center of Atmospheric Environment and Equipment Technology, School of Envi-8 

ronmental Science and Engineering, Nanjing University of Information Science & Technology, 9 

219 Ningliu Road, Nanjing 210044, China 10 
2Air Quality Planning and Science Division, California Air Resources Board, 1001 I Street, Sac-11 

ramento, CA 95814, USA 12 
3Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, 13 

USA 14 
4Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge 15 

LA 70803, USA 16 

 17 
*Corresponding authors: 18 

Qi Ying, Email: qying@civil.tamu.edu. Phone: +1-979-845-9709. 19 

Hongliang Zhang, Email: hlzhang@lsu.edu. Phone: +1-225-578-0140.  20 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-148, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 13 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 
 

Abstract 21 

China has been experiencing severe air pollution in recent decades. Although ambient air quality 22 

monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in 23 

China, the temporal and spatial characteristics of some important pollutants, such as particulate 24 

matter (PM) components, remain unknown, limiting further studies investigating potential air 25 

pollution control strategies to improve air quality and associating human health outcomes with 26 

air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather 27 

Research & Forecasting model (WRF) and the Community Multi-scale Air Quality model 28 

(CMAQ) was conducted to provide detailed temporal and spatial information of ozone (O3), 29 

PM2.5 total and chemical components. Multi-resolution Emission Inventory for China (MEIC) 30 

was used for anthropogenic emissions and observation data obtained from the national air quality 31 

monitoring network were collected to validate model performance. The model successfully re-32 

produces the O3 and PM2.5 concentrations at most cities for most months, with model perfor-33 

mance statistics meeting the performance criteria. However, over-prediction of O3 generally oc-34 

curs at low concentration range while under-prediction of PM2.5 happens at low concentration 35 

range in summer. Spatially, the model has better performance in Southern China than in North-36 

ern, Central and Sichuan basin. Strong seasonal variations of PM2.5 exist and wind speed and di-37 

rection play important roles in high PM2.5 events. Secondary components have more boarder dis-38 

tribution than primary components. Sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), and pri-39 

mary organic aerosol (POA) are the most important PM2.5 components. All components have the 40 

highest concentrations in winter except secondary organic aerosol (SOA). This study proves the 41 

ability of CMAQ model in reproducing severe air pollution in China, identifies the directions 42 

where improvements are needed, and provides information for human exposure to multiple pol-43 

lutants for assessing health effects. 44 
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1. Introduction 47 

Atmospheric pollutants have adverse effects on human health and ecosystems and are associated 48 

with climate change (Menon et al., 2008; Poschl, 2005; Pui et al., 2014). Developing countries 49 

usually experience severely high concentrations of air pollutants due to fast growth of population, 50 

industrialization, transportation and urbanization without prompt emission controls. As one of 51 

such countries, China started to publish real time concentration data of six criteria pollutants 52 

from the ambient air quality monitoring networks after multiple severe pollution events across 53 

the country(Sun et al., 2014; Tao et al., 2014b; Wang et al., 2014a; Zheng et al., 2015).  54 

More than 1000 observation sites have been set up in more than 100 major cities in the country 55 

to routinely monitor hourly concentrations of six criteria pollutants, i.e., O3, CO, NO2, SO2, 56 

PM2.5 (PM—particulate matter), and PM10, and to inform the public on air quality status using 57 

the air quality index (AQI). Analysis of the observation provided a general understanding of the 58 

spatial and temporal variation of the levels of air pollution (Hu et al., 2014a; Wang et al., 2014c), 59 

the roles of meteorology in air pollution (Zhang et al., 2015b), and the construction of AQI based 60 

on multiple pollutants to better inform the public about the severity of air pollution (Hu et al., 61 

2015b). However, the monitoring system only considers criteria pollutants and the key species 62 

such as the volatile organic compounds (VOCs) and the chemical composition of PM that are 63 

needed to understand the causes of air pollution and form cost-effective emissions controls are 64 

not measured routinely. Monitoring networks focusing on the chemical composition of gaseous 65 

and particulate air pollutants, such as the Photochemical Assessment Monitoring Stations 66 

(PAMS) and the Chemical Speciation Network (CNS) in the United States, have not been estab-67 

lished in China. Lacking of detailed chemical composition information limits our capability to 68 

understand the formation mechanisms of O3 and PM, quantify the contributions of different 69 

sources, and design effective control strategies. In addition, the observation sites are mostly in 70 

highly developed urban areas but are very sparse in other suburban and rural regions which also 71 

have large population and experience high concentrations of certain pollutants, such as O3. Insuf-72 

ficient spatial coverage in the monitoring system limits the completeness of public air pollution 73 

risk assessment for the entire country.  74 

Chemical transport models (CTMs) are often used to reproduce past pollution events, test newly 75 

discovered atmospheric mechanisms, predict future air quality, and provide high temporal and 76 

spatial resolution data for epidemiological studies. Several modeling studies have been reported 77 

to analyze the severe air pollution events in January 2013. For example, the Community Mul-78 

tiscale Air Quality (CMAQ) model was updated with heterogeneous chemistry to study the for-79 

mation of secondary inorganic aerosol in North China (Zheng et al., 2015). The CMAQ model 80 

was also applied to identify the contributions of both source regions and sectors to PM2.5 in 81 

Southern Hebei during the 2013 severe haze episode with a brute force method (Wang et al., 82 

2014b). It was found that industrial and domestic activities were the most significant local sec-83 

tors while Northern Hebei province, Beijing-Tianjin city cluster, and Henan province were the 84 

major regional contributors. Using the two-way coupled Weather Research and Forecasting 85 

(WRF)/CMAQ system, Wang et al. (2014b) simulated the impacts of aerosol–meteorology inter-86 

actions on the PM pollution during January 2013. They argued that enhanced planetary boundary 87 

layer (PBL) stability suppressed the dispersion of air pollutants, and resulted in higher PM2.5 88 
concentrations. Similar results were also reported by Zhang et al. (2015a) with the Weather Re-89 

search and Forecasting/Chemistry (WRF/Chem) model. Using the Comprehensive Air Quality 90 
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Model with extensions (CAMx) and the Particulate Source Apportionment Technology (PSAT), 91 

Li et al. (2015b) determined the contributions of 7 emission categories and 11 source regions to 92 

regional air pollution in China and suggested a strong need for regional joint emission control 93 

efforts in Beijing. More recently, Hu et al. (2015a) used a tracer based technique in a source-94 

oriented CMAQ to determine source sector/region contributions to primary PM in different sea-95 

sons in 2012-2013. It was found that residential and industrial emissions from local area and the 96 

neighboring Hebei province contribute to high primary PM events in Beijing.  97 

All above modeling studies except Hu et al. (2015a) were focused on the formation and source 98 

apportionment of airborne PM during the severe pollution episode of January 2013 in northern 99 

China. Although additional PM formation pathways and/or emission adjustments were imple-100 

mented and tuned to better predict this extreme episode, model predictions were only evaluated 101 

against a small number of measurements in and near Beijing for a relatively short period of time. 102 

Extensive model performance evaluation of O3 and PM is urgently needed to build the confi-103 

dence in the emission inventory, the predicted meteorological fields as well as the capability of 104 

the model in predicting regional O3 and PM under a wide range of topographical, meteorological 105 

and emission conditions so that further modeling studies of pollutant formation mechanisms, 106 

emission control strategies, and human exposure and health risk assessment are based on a solid 107 

foundation.  108 

In this study, a yearlong (2013) air quality simulation using a WRF/CMAQ system was conduct-109 

ed to provide detailed temporal and spatial distribution of O3 and PM concentrations as well as 110 

PM2.5 chemical composition in China. The publicly available observation data obtained from a 111 

total of 422 air monitoring sites in 60 major cities in China were used to provide a thorough 112 

evaluation of the model performance in the entire year. The modeled spatial and temporal con-113 

centrations of O3 and PM2.5 from this study will be used in subsequent studies to investigate the 114 

interaction between O3 and PM pollution during high pollution events, the formation mechanism 115 

of secondary inorganic and organic aerosols and the population exposure and health risk. 116 

2. Method 117 

2.1 Model description 118 

The CMAQ model applied in this study is based on CMAQ v5.0.1. Changes were made to the 119 

original CMAQ to improve the capability of the model in predicting secondary inorganic and 120 

organic aerosol, including 1) a modified SARPC-11 gas phase photochemical mechanism to pro-121 

vide more detailed treatment of isoprene oxidation chemistry (Ying et al., 2015) , 2) pathways of 122 

secondary organic aerosol (SOA) formation from surface controlled reactive uptake of dicarbon-123 

yls, isoprene epoxydiol (IEPOX) and methacrylic acid epoxide (MAE) (Li et al., 2015a; Ying et 124 

al., 2015), 3) vapor wall-loss corrected SOA yields (Zhang et al., 2014), and 4) heterogeneous 125 

reactions of NO2 and SO2 on particle surface to form secondary nitrate and sulfate (Ying et al., 126 

2014a). More details of these changes can be found in the cited references and the references 127 

therein, thus only a short summary of the changes are provided below. 128 

The isoprene mechanism in the original SAPRC-11 with standard lumping (Carter and Heo, 129 
2012) was replaced by the detailed isoprene oxidation chemistry as used by Lin et al. (2013) to 130 

predict the formation of IEPOX and MAE in the gas phase. A precursor tracking scheme was 131 
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implemented in the modified SAPRC-11 to track the glyoxal (GLY) and methylglyoxal (MGLY) 132 

formation from multiple biogenic and anthropogenic precursors. The surface controlled reactive 133 

uptake of SOA precursors is considered non-reversible, with constant uptake coefficients for 134 

GLY and MGLY as used by Fu et al. (2008) and an acidity dependent uptake coefficient for IE-135 

POX and MAE as described by Li et al. (2015a). The original SOA yields for toluene and xylene 136 

under high NOx concentrations based on Ng et al. (2007) were replaced with the higher toluene 137 

yield reported by Hildebrandt et al. (2009). This update has been applied by Ying et al. (2014a) 138 

to study SOA formation in Mexico City. All SOA yields were then corrected by the average bias 139 

due to wall loss as reported in Table 1 of Zhang et al. (2014). A modeling study of SOA for-140 

mation in Eastern US reported by Ying et al. (2015) shows that negative bias in predicted organ-141 

ic carbon (OC) concentrations reported in previous studies have been significantly reduced.  142 

Formation of sulfate and nitrate due to heterogeneous reactions on particle surface is also mod-143 

eled as a reactive uptake process. The reactive surface uptake coefficients of SO2 and NO2 on 144 

particle surface were taken from Ying et al. (2014a) and Zheng et al. (2015), respectively. 145 

2.2 Model application 146 

The updated CMAQ model was applied to simulate O3 and particulate air pollution using a 36-147 

km horizontal resolution domain that covers China and surrounding countries in East Asia (Fig-148 

ure 1). The meteorological inputs were generated using WRF v3.6.1 with initial and boundary 149 

conditions from the NCEP FNL Operational Model Global Tropospheric Analyses dataset. De-150 

tailed WRF model configurations have been described by Zhang et al. (2012).  151 

Multi-resolution Emission Inventory for China (MEIC) (0.25×0.25o) developed by Tsinghua 152 

University (http://www.meicmodel.org) was used for the monthly anthropogenic emissions from 153 

China. MEIC (V1.0) is the new version of emission inventory in China including improvements 154 

such as a unit-based emission inventory for power plants (Wang et al., 2012) and cement plants 155 

(Lei et al., 2011), a high-resolution county-level vehicle emission inventory (Zheng et al., 2014), 156 

and a non-methane VOC mapping approach for different chemical mechanisms (Li et al., 2014b). 157 

MEIC provides speciated VOC emissions for the SAPRC-07 mechanism with standard lumping 158 

(Carter, 2010). As the definitions of explicit and lumped primary VOCs have not changed from 159 

SAPRC-07 to SAPRC-11, these VOC emissions were directly used to drive SAPRC-11. Total 160 

PM2.5 mass emissions and emissions of primary organic carbon (POC) and elemental carbon (EC) 161 

were also provided by MEIC directly. Emissions of trace metals needed by the version 6 of the 162 

aerosol module in CMAQ (AERO6) were generated using averaged speciation profiles adapted 163 

from the U.S. Environmental Protection Agency (EPA) SPECIATE database for each MEIC 164 

source category. Emissions from other countries and regions rather than China in the domain 165 

were filled with data generated from the gridded 0.25º×0.25º resolution Regional Emission in-166 

ventory in ASia version 2 (REAS2) (Kurokawa et al., 2013). Details of the REAS2 emission 167 

processing are described by Qiao et al. (2015). Detailed information about spatial and temporal 168 

allocation can also be found in the papers cited above. 169 

Biogenic emissions were generated using the Model for Emissions of Gases and Aerosols from 170 

Nature (MEGAN) v2.1. The leaf area index (LAI) was based on the 8-day Moderate Resolution 171 

Imaging Spectroradiometer (MODIS) LAI product (MOD15A2) and the plant function types 172 
(PFTs) were based on the PFT files used in the Global Community Land Model (CLM 3.0). For 173 

more details of the biogenic emission processing, the readers are referred to Qiao et al. (2015). 174 
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Open biomass burning emissions were generated from the Fire INventory from NCAR (FINN), 175 

which is based on satellite observations (Wiedinmyer et al., 2011). Dust and sea salt emissions 176 

were generated in line during the CMAQ simulations. In this updated CMAQ model, dust emis-177 

sion module was updated to be compatible with the 20-category MODIS land use data (Hu et al., 178 

2015a). Initial and boundary conditions were based on the default vertical distributions of con-179 

centrations that represent clean continental conditions as provided by the CMAQ model. The im-180 

pact of initial conditions was minimal as the results of the first five days of the simulation were 181 

excluded in the analyses. 182 

3. Results 183 

3.1 Meteorology validation 184 

Meteorological factors are closely related to transport, transformation, and deposition of air pol-185 

lutants (Hu et al., 2014b; Jacob and Winner, 2009; Tao et al., 2014a; Zhang et al., 2015b). Alt-186 

hough the WRF model has been widely used to provide meteorological inputs for CTMs, the per-187 

formance varies when applying to different domains, episodes, and with different model settings. 188 

Thus, the validation of model performance on meteorological conditions is important in assuring 189 

the accuracy of air quality predictions. Observation data from the National Climate Data Center 190 

(NCDC) was used to validate the model predictions of temperature (T2) and relative humidity 191 

(RH) at 2m above surface, and wind speed (WS) and wind direction (WD) at 10m above surface. 192 

Within the domain, there are ~1200 stations shown as purple dots in Figure 1. Model perfor-193 

mance statistics of mean observation (OBS), mean prediction (PRE), mean bias (MB), gross er-194 

ror (GE) and root mean square error (RMSE) based on the observations and WRF predictions at 195 

the grid cells where the stations are located are shown in Table 1. The table also shows the 196 

benchmarks suggested by Emery et al. (2012) for the MM5 model in the East US with 4-12km 197 

grid resolution. 198 

The WRF model predicts slightly higher T2 in winter and lower T2 in other seasons than the ob-199 

servations. The MB values for June, July, and September to December are within the benchmark, 200 

but the GE values of T2 are generally larger than the benchmark. The GE values of WS meet the 201 

benchmark in all months, but WS is over-predicted, as indicated by the positive MB values. The 202 

MB values meet the benchmark in January, June and August, and RMSE values are within the 203 

benchmark in June, July, and August. MB values of WD are within the benchmark of ±10 degree 204 

for four months. February, November, and December are the months with largest MB values. All 205 

GE values of WD are about 50% larger than the benchmark. RH is generally under-predicted ex-206 

cept for July and August. The performance in this study is comparable to other studies using 207 

WRF in China (Hu et al., 2015a; Wang et al., 2010; Wang et al., 2014b; Ying et al., 2014b; 208 

Zhang et al., 2012), despite the differences in model, resolution, and study region in different 209 

studies. Generally, the WRF model has acceptable performance on meteorological parameters. It 210 

should be noted that there is a study showing better WRF performance (Zhao et al., 2013a). 211 

However, it is difficult to compare since different model settings, simulation episodes, number of 212 

observation stations were used.  213 
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3.2 Model performance of O3 and PM2.5  214 

Hourly observations of air pollutants from March to December 2013 were obtained from the 215 

publishing website of China National Environmental Monitoring Center 216 

(http://113.108.142.147:20035/emcpublish/). A total of 422 stations in 60 cities (see Figure 1 for 217 

the location of the cities) including the capital cities of all 31 provinces were obtained. Pollutants 218 

concentrations in difference regions of China exhibit large variations due to diverse climates, to-219 

pography, and emission sources. Aiming to identify the model strength and weakness in differ-220 

ence regions of China, model performance was evaluated separately for different regions. The 221 

regions and names of these cities are listed in Table 2. Automated quality control measures were 222 

taken to remove data points with observed O3 concentrations greater than 250 ppb, PM2.5 con-223 

centrations greater than 1500 µg m-3, and points with standard deviation less than 5 ppb or 5 µg 224 

m-3 in 24 hours.  225 

3.2.1 O3 model performance 226 

Table 3 shows the model performance statistics of gaseous pollutants (1h peak O3 (O3-1h), 8h 227 

peak O3 (O3-8h), and hourly CO, NO2, and SO2) PM2.5, and PM10. Mean observations, mean pre-228 

dictions, mean fractional bias (MFB), mean fractional error (MFE), mean normalized bias (MNB) 229 

and mean normalized error (MNE) of hourly concentrations are calculated for each month from 230 

March to December 2013. Only O3-1h or O3-8h concentrations greater than 30 ppb were includ-231 

ed in the analysis. A cutoff concentration of 40 or 60 ppb is suggested by the U.S. EPA (EPA, 232 

2005). A lower cutoff of 30 ppb is chosen in this study considering the monitoring sites are all 233 

located in urban areas and higher O3 concentrations generally occurs in downwind of urban areas. 234 

The overall model performance on O3-1h and O3-8h meets the model performance criteria sug-235 

gested by U.S. EPA (2005) in all months, except in March and April for O3-1h and June for O3-236 

8h. MNE of O3-1h in June and July slightly exceeds the criteria, although MNB meets the crite-237 

ria. MNB of O3-8h in May exceeds the criteria, but MNE meets the criteria. The relatively small 238 

MNB/MNE and MFB/MFE in most of months indicate that O3-1h and O3-8h are well captured. 239 

Model performance of O3-1h and O3-8h in different regions is illustrated in Table 4. Model per-240 

formance meets the criteria in four regions, i.e., North China Plain (NCP), Yangtze River Delta 241 

(YRD), Pearl River Delta (PRD), and Northeast (NE). Relatively poor performance is identified 242 

in the Sichuan Basin (SCB), Central (CEN), and Northwest (NW) regions. O3-1h and O3-8h con-243 

centrations are slightly under-predicted in YRD and PRD, but over-predicted in all other regions. 244 

Model performance in regions other than NCP and YRD should be interpreted with care due to 245 

limited number of cities to sufficiently represent the entire region.  246 

Figure 2 compares the predicted monthly averaged diurnal variations of O3 concentrations with 247 

observations for all the 60 cities. For a city with multiple stations, observations and predictions 248 

are matched at individual station level and the averaged observations and predictions are used to 249 

represent the concentrations for the city. Some cities, such as Beijing, exhibit substantial diurnal 250 

variations, especially in summer; and others, such as Lasa, exhibit small diurnal variations. 251 

Overall, the model successfully reproduces the monthly average diurnal variation in most cities, 252 

even though model performance among cities in the same region can be quite different. For ex-253 
ample, in NE, the monthly averaged predictions agree well with observations in Shenyang and 254 

Changchun but are higher in Dalian, a coastal city, in summer months. In NCP, the model well 255 
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predicts O3 concentrations with slight over-prediction at a few cities, especially in the summer 256 

months, which agrees with the better hourly O3 model performance shown in Tables 3 and 4. In 257 

YRD, the monthly diurnal variations of O3 are also well predicted. Obvious under-prediction of 258 

summer peak O3 at Zhoushan and Wenzhou are likely caused by underestimation of emissions in 259 

these port cities, although uncertainty in meteorology might also play a role. At PRD, O3 is 260 

slightly underestimated in Guangzhou and Shenzhen for summer and fall months but well esti-261 

mated in Zhuhai. In all three cities in the PRD region, O3 concentrations are higher in the spring 262 

and fall months, and the model correctly captures this trend. In SCB, the model correctly predicts 263 

the higher spring O3 concentrations in Chengdu but over-predicts spring O3 concentrations in 264 

Chongqing. Summer O3 concentrations are well predicted at both cities. For CEN, O3 predictions 265 

are higher than observations in Zhengzhou and Hefei, but agree well with observations in other 266 

cities. In NW, the observed O3 concentrations are much lower and are generally over-predicted 267 

all year except for Xi’an and Wulumuqi with good performance in summer. 268 

Figure 3 shows the comparison of predicted and observed monthly averaged O3-1h and O3-8h 269 

concentrations at typical cities of major regions in China: Beijing for NCP, Shanghai for YRD, 270 

Guangzhou for PRD, Xi’an for NW, Shenyang for NE, and Chongqing for SCB. In Beijing, the 271 

monthly variations of both O3-1h and O3-8h, low in winter months and high in summer months, 272 

are well captured by model. The model slightly over-predicts O3 concentrations from June to 273 

December except for August. In Shanghai, both O3-1h and O3-8h are underestimated by 5-10 ppb, 274 

but all observations are within the range of concentrations in the 3×3 grid cells surrounding the 275 

city center of Shanghai. In Guangzhou, O3 concentrations vary slightly over months. O3-1h is 276 
under-predicted especially in summer and fall months. O3-8h predictions are closer to the obser-277 

vations. In Xi’an, the model well predicts the O3-1h and O3-8h concentrations in July, August, 278 

and September while over-predicts all other months by up to 20 ppb. In Shenyang, the trend of 279 

O3-1h and O3-8h are well reproduced with less than 5ppb differences for all the months. In 280 

Chongqing, over-prediction occurs in spring, fall, and winter while under-prediction occurs in 281 

summer. 282 

3.2.2 PM2.5 model performance 283 

PM2.5 model performance in different months and regions are also illustrated in Table 3 and Ta-284 

ble 4, respectively. The model performance statistics of MFB and MFE of hourly PM2.5 concen-285 

trations meet the US EPA criteria in all months. Negative MFB is found in all months, indicating 286 

the model under-predicts the PM2.5 concentrations. Model performance is better in March, Sep-287 

tember, November and December, with MFB less than 0.3. The bias is relatively larger in April, 288 

May, June, July and October, with MFB over 0.4. PM10 is largely underestimated and is very 289 

likely to due to underestimation of dust emissions from both natural sources as well as human 290 

activities. 291 

Model performance of PM2.5 in different regions is also different. The model significantly under-292 

predicts PM2.5 in the NW and the Other (mostly Southwest cities) regions. Especially in the NW 293 

region, MFB value is -0.75 and MFE value is 0.88. PM2.5 in all the other regions meets the per-294 

formance criteria. Although most regions meet the model performance criteria in this study, un-295 

der-prediction of PM2.5 concentrations are found in all regions (except SCB), as indicated by the 296 
large negative MFB values. PM10 has similar performance in various regions. 297 
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Figure 4 illustrates the comparison of predicted and observed monthly averaged PM2.5 concentra-298 

tions for all the 60 cities. In NE, the predictions agree well with observations in summer months. 299 

Concentrations in fall and winter months are under-predicted, except for Dalian, where the all 300 

values are well reproduced. In NCP, the annual trends at most cities are well captured. The mod-301 

el trends to under-predict spring and summer concentrations and over predict December concen-302 

trations. The coastal city, Qingdao, is unique with under-prediction in summer and good estima-303 

tion in other months. In YRD, the model well produces PM2.5 for all the months at most sites ex-304 

cept in coastal cities (Zhoushan and Wenzhou) and mountainous cities (Quzhou and Lishui). In 305 

SCB, the model underestimates concentrations in the winter months in Chongqing but well esti-306 

mates the concentrations in Chengdu except for March and April. In CEN, the seasonal trend is 307 

well captured at all cities but most cities show over-predicted concentrations in December. In NE, 308 

PM2.5 is uniformly under-predicted. For Other regions, predictions agree with observations at the 309 

coastal cities (Fuzhou and Haikou) but concentrations in Lasa are largely under-predicted. The 310 

values closest to the observations in the 3×3 surrounding grid cells are similar to the predictions 311 

at city centers for most months with clear differences in October, November, and December at 312 

several cities. It indicates the higher contributions of primary PM, which has steeper concentra-313 

tion gradients than secondary PM, in winter months than in summer months. 314 

Generally, the WRF/CMAQ modeling system with MEIC inventory well reproduces the O3 and 315 

PM2.5 concentrations in most regions for most months. Over-prediction of O3 occurs at low con-316 
centrations in winter while under-prediction of PM2.5 happens at low concentration range in 317 

summer and in cities in the NW region. The model performance on CO, NO2, and SO2 are also 318 

calculated and listed in Tables 3 and 4. There are no performance criteria for these pollutants, but 319 

the model performance are in the same ranges as compared to other studies in other coun-320 

tries/regions (Tao et al., 2014a). The model performance at different regions differs due to the 321 

differences in emission, topography, and meteorological conditions. The performance on these 322 

species can be used as indicator for emission uncertainties. The possible uncertainties are dis-323 

cussed in the Discussion section.  324 

3.3 Seasonal variations and regional distribution of O3 and PM2.5 325 

Figure 5 shows the predicted regional distribution of seasonal averaged O3-1h and O3-8h. In 326 

spring, highest O3-1h concentration (~100 ppb) occurs in South Asia due to higher temperature, 327 

solar radiation and significant amount of emissions from open biomass burning activities (Kondo 328 

et al., 2004). Southern China has higher concentrations (~70 ppb) than Northern China (~50 ppb). 329 

However, in summer, NCP has the highest concentration of 80ppb while Southern China (and 330 

other regions) has lower concentrations of 50-60 ppb.  In fall, most of the regions in China have 331 

O3-1h concentrations of 50-60 ppb. In winter, NE China and NCP have O3-1h concentrations 332 

lower than 30ppb while Southern China has the concentrations of 40-50 ppb. In addition to NCP 333 

in the summer, SCB is also another hot spot for ozone with high summer and wintertime O3-1h 334 

of ~100 ppb and 60-70 ppb, respectively. O3-8h has similar spatial distribution patterns as O3-1h 335 

for all seasons with lower concentrations (by 5~10 ppb). 336 

Figure 6 shows the spatial distribution of seasonal averaged PM2.5 concentrations together with 337 

the averaged wind vectors as the regional distribution of PM2.5 is significantly influenced by 338 
wind patterns. In spring, the PM2.5 concentrations in China reach approximately 50-70 μg m-3 in 339 

Northern, Eastern, and Southern China except coastal provinces of Zhejiang, Fujian, and Guang-340 
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dong. It is evident that the high concentrations are related to low wind speed. In summer, the are-341 

as with high PM2.5 concentrations of ~50 μg m-3 are limited to NCP and SCB while all other re-342 

gions have concentrations of < 30 μg m-3. Emissions brought to the NCP by the southerly wind, 343 

blockage of dispersion due to mountain ranges to the north and west, and secondary organic aer-344 

osol formed due to strong solar radiation are contributing factors for higher summer PM2.5 in 345 

NCP. In fall, the high concentration regions are similar to those in spring but with higher concen-346 

trations of up to 100 μg m-3 in NCP, YRD, CEN and SCB. In winter, high PM2.5 concentrations 347 

are located in the NE, NCP, YRD, CEN and SCB regions. Seasonal average concentrations of 348 

more than 200 μg m-3 occur in large portions of NCP, CEN, and SCB due to low wind speed and 349 

mixing height. Strong gradient exists between the high concentration regions and surrounding 350 

areas where wind is more lenient to pollutant dispersion. 351 

Figure 7 shows the spatial distribution of seasonal averaged PM2.5 components. All components 352 

show clear seasonal variations. For secondary inorganic components and anthropogenic primary 353 

components (EC and POA), concentrations are usually highest in winter and lowest in summer. 354 

Spring and fall concentrations are similar with slightly higher concentrations in fall. For EC and 355 

POA, this seasonal variation is largely driven by large increase in the emissions from residential 356 

sources in winter, as well as reduced ventilation that is often associated with winter stagnant 357 

conditions. For secondary inorganic components, gas phase formation rate of HNO3 and H2SO4 358 

decreases as temperature and solar radiation intensity decreases in fall and winter, leading to de-359 

crease in their formation from the homogeneous pathways. However, the amount of secondary 360 

NO3
- and SO4

2- from surface heterogeneous reactions of SO2 and NO2 increases as their emis-361 

sions increases, and more particle surface area becomes available due to increase in primary PM 362 

concentrations. In addition, ammonium nitrate is preferentially partitioned into the particle phase 363 

under colder temperatures (Aw and Kleeman, 2003). In most regions with high concentrations, 364 

wintertime NO3
- concentrations are 150-200% higher than annual average concentrations, while 365 

SO4
2- and NH4

+ concentrations are approximately 100-150% higher (see Figure 8). POA concen-366 

trations in winter are also approximately 100-150% higher in winter than the annual average, es-367 

pecially in northern part of China where residential heating is a significant source of PM2.5 emis-368 

sions. In provinces in southern China with warm temperature, winter POA is not significantly 369 

deviated from the annual mean (see Figure 8). Maximum concentrations of NO3
- and SO4

2- in-370 

crease to beyond 50 μg m-3 and NH4
+ as high as 40 μg m-3 in portions of NCP, CEN, YRD and 371 

SCB. This suggests that in large areas, secondary inorganic PM is the most significant contribu-372 

tor to elevated wintertime PM2.5 concentrations. EC has limited spatial distribution since it is on-373 

ly directly emitted. Highest EC concentrations are in NCP, CEN and SCB. The EC concentra-374 

tions are 10-15 μg m-3 in winter but lower than 5 μg m-3 in other seasons. POA concentrations 375 

are highly season dependent with the highest concentrations of ~30 μg m-3 in NCP, CEN, SCB 376 

and NE occurring in winter.  377 

SOA shows different seasonal variations from the secondary inorganic aerosol and anthropogen-378 

ic primary PM components. In CEN and Eastern China, higher seasonal average SOA concentra-379 

tions of 10-15 μg m-3 occur in summer and winter, while in southern China similar levels of SOA 380 

occur in spring. The spring and summer high SOA concentrations are dominantly formed from 381 

biogenic isoprene emissions but winter SOA is mainly formed from semi-volatile oxidation 382 

products of anthropogenic aromatic compounds. Details of SOA formation and composition will 383 
be discussed in a separate paper. “Other” components are primary PM2.5 including most part of 384 

dust. The concentrations are high in spring, fall and winter. In summary, secondary components 385 
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have more boarder distribution than primary components. SO4
2-, NO3

-, NH4
+ and POA are the 386 

most important aerosol components based on their absolute concentrations.  387 

3.4 Temporal variation of PM2.5 components in representative cities 388 

Temporal variations of PM2.5 components are also shown at typical cities in different regions as 389 

in Figure 9. The total PM2.5 concentrations in Beijing are high in winter and low in summer with 390 

the peak of ~150 μg m-3 in January. EC contributions are ~5-10% in winter but less than 5% in 391 

other seasons. POA has similar pattern as EC but contributions can be ~35% in winter and ~20% 392 

in summer. SOA contributions are high in summer with the peak of ~30% in August and very 393 

low in winter. SO4
2- and NO3

- are the top two largest contributors with comparable contributions 394 

all the time. NH4
+ can be as high as ~20% in January and only ~10% in summer. Other compo-395 

nents (“Other”, mostly oxides of crustal elements and other trace metals) contribute up to 15% in 396 

some months. In Shanghai, the monthly averaged concentrations are highest in winter and de-397 

crease gradually from spring to fall. Five out of the 12 months are over the Chinese Ambient Air 398 

Quality Standards (CAAQS) Grade II standard for 24-hour average PM2.5 (75 μg m-3, simply 399 

Grade II standard hereafter). EC and POA have similar pattern with a total contribution of 20% 400 

in most months. SO4
2-, NO3

-, and NH4
+ contribute to more than 70% from November to June and 401 

less than 50% in other months, while the contribution of SOA increases significantly to as much 402 

as 40% in the summer months. The relative contributions of the “Other” components are about 2 403 

times of those in Beijing (15% to 30%). In Guangzhou, the PM2.5 concentrations are lower than 404 

Beijing and Shanghai. Predicted PM2.5 concentrations are all within the Grade II standard in Chi-405 

na. Although the contribution of SOA is higher, SO4
2-, NO3

-, and NH4
+ are still the major com-406 

ponents with more than 60% contribution all over the year.  407 

In Xi’an, the largest city in NW, the differences in PM2.5 at winter and other months are signifi-408 

cant. In winter, the total PM2.5 concentrations are 150-180 μg m-3 with POA, SO4
2-, NO3

-, and 409 

NH4
+ as major components. In Shenyang, a NE city, the PM2.5 concentrations are ~250 μg m-3 in 410 

January followed by ~200 μg m-3 in February and ~150 μg m-3 in December. The extremely high 411 

concentrations are related to winter residential heating or uncontrolled open biomass (such as 412 

straw) burning as can be indicated by the elevated emissions from residential sources. For other 413 

seasons, contributions of other components are much lower but contribution of SOA increases to 414 

more than 20% (~10 μg m-3) in June, likely due to increased biogenic emissions in the densely 415 

forested regions in the NE.  In Chongqing, located in Sichuan basin, monthly average reaches as 416 

high as 230 μg m-3 in January due to increased atmospheric stability. Spring, summer and fall 417 

months have much lower PM2.5 concentrations especially for July, when the PM2.5 is lower than 418 

50 μg m-3.  419 

One of the questions that remain unclear is whether secondary PM formation is enhanced during 420 

the high pollution days or high pollution events are simply caused by enhanced emissions and 421 

reduced dilution due to stagnant conditions. As an attempt to address this question, Figure 10 422 

shows the comparison of relative contributions of PM2.5 components in episode days (>= the 423 

Grade II standard of 75 μg m-3) and non-episode days. In Guangzhou, there are no episode days 424 

predicted, thus only Beijing, Shanghai, Xi’an, Shenyang and Chongqing are included in Figure 425 

10. In all cities, the minimum episode-day averaged concentration occurs in summer while the 426 
maximum concentration occurs in winter. In most cities and in most seasons, episode days have 427 

larger contributions of secondary components (SOA, SO4
2-, NO3

-, and NH4
+, 69.8% on episode 428 
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days vs. 59.9% on non-episode days) and lower contributions of primary components (EC, POA 429 

and Other, 30.2% on episode days vs 40.1% on non-episode days). Some cities show much dras-430 

tic differences in secondary PM contributions between episode and non-episode days. For exam-431 

ple, contribution of secondary PM in Xi’an increases from 40% on non-episode days to more 432 

than 60% on episode days in winter. Other cities, such as Chongqing, show less difference in the 433 

relative contributions of secondary PM between episode and non-episode days. While most of 434 

the secondary PM increase is due to enhanced formation of secondary inorganic components, the 435 

contribution of SOA to total PM is significantly higher than that on non-episode days in summer 436 

Beijing. This suggests that enhanced SOA formation could also play a significant role in summer 437 

PM pollution events of urban areas. In conclusion, in most cities in most seasons, episode days 438 

have more rapid formation of secondary PM components than accumulation of primary pollu-439 

tants due to unfavorable weather conditions. This also suggests that controlling the emissions of 440 

secondary PM precursors needs to be considered in designing emission control strategies as in 441 

many conditions it can be more effective in reducing PM concentrations.  442 

4. Discussion 443 

Model predicted concentrations of O3 and PM2.5 are evaluated by comparing to ground-level ob-444 

servations at 422 stations in 60 cities in China for ten months in 2013. Predicted concentrations 445 

generally agree well with observations, with the model performance statistics meeting the criteria 446 

in most of the regions and months. Relatively large bias in model predicted concentrations is 447 

found in certain regions in certain months/episodes. Model bias is mainly attributed to uncertain-448 

ties associated with meteorological fields, emissions, model treatment and configurations. Fur-449 

ther studies are still needed to continue improving the model capability in accurately predicting 450 

air quality in China. 451 

The WRF model performance in this study is comparable to other studies (Hu et al., 2015a; 452 

Wang et al., 2010; Wang et al., 2014b; Ying et al., 2014b; Zhang et al., 2012), but a better WRF 453 

performance was reported in Zhao et al. (2013b). Mesoscale meteorological modeling studies are 454 

also needed to improve the WRF model capability in China. In this study, some meteorological 455 

parameters are biased, for example ground-level wind speed is consistently over-predicted and 456 

RH is more biased low in winter months (Table 1). A previous study has revealed that air pollu-457 

tion levels are associated with these parameters in highly polluted regions in China (Wang et al., 458 

2014c). It is also demonstrated that bias in predicted meteorological parameters by WRF con-459 

tributes to bias in PM2.5 prediction (Hu et al., 2015c). A companion study is undergoing to evalu-460 

ate the sensitivity of air quality predictions to meteorological fields. 461 

Uncertainties associated with emission inventory often are the major factor leading to bias in 462 

model predictions. The overall good model performance in most regions indicates general accu-463 

racy of the MEIC inventory. However, larger negative bias in CO, NO2, and SO2 in NW (Table 4) 464 

suggests that anthropogenic emissions, including primary PM2.5 are severely under-estimated in 465 

this region. Similarly, under-predictions of PM2.5 in Lasa are also likely due to under-predictions 466 

of anthropogenic emissions, mostly likely those from residential sources. Studies have suggested 467 

that dust contributes significantly to PM2.5 in NW (Li et al., 2014a; Shen et al., 2009). The cur-468 

rent estimation of dust from wind erosion of natural soil surfaces in the NW is approximately 20 469 

µg m-3 in spring and lower than 10 µg m-3 in other seasons. This relatively low estimation of 470 

PM2.5 in the NW of China generally agrees with the most recent global long term PM2.5 estima-471 
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tion based on satellite AOD measurements (Battelle Memorial Institute and Center for 472 

International Earth Science Information Network - CIESIN - Columbia University, 2013; de 473 

Sherbinin et al., 2014).  Emissions of dust from other sources in the urban/rural areas, such as 474 

paved and unpaved road and construction activities could be a more important factor that leads to 475 

under-predictions of mineral PM components in the NW cities. Both activity data and emission 476 

factors used to generate these area emissions should be examined carefully. Source apportion-477 

ment studies based on receptor-oriented techniques should be used to differentiate the contribu-478 

tions from these different dust sources to further constrain the uncertainties in dust emissions.  479 

Another important source of under-prediction of PM2.5 is SOA, especially in the summer when 480 

the biases in PM2.5 predictions are larger and more SOA is expected to form due to higher VOCs 481 

emissions and higher atmospheric reactivity. While significant progresses have been made to 482 

improve model predictions and the SOA module used in the current study has incorporated many 483 

of the newly found SOA formation pathways, the understanding of both gas phase and particle 484 

phase chemistry that lead to SOA formation is still very limited, and many experimental findings 485 

have yet been incorporated by the modeling community. To constrain the uncertainties in SOA 486 

predictions, speciated measurements of SOA tracers and gas phase VOC precursors are needed 487 

along with models with detailed chemical mechanisms to represent the species. While some 488 

VOC speciation data are available, more data in different regions and episodes are needed to im-489 

prove both estimation of VOC emissions and model predictions of SOA.  490 

Model grid resolution also contributes to the bias in predictions. The emissions are instantly 491 

mixed into 36 × 36 km2 grids after being released from sources. Some of the monitoring stations 492 

are located in urban areas near emission sources, such as traffic and industrial facilities, which 493 

could imply negative prediction biases when compared with modeled concentrations which rep-494 

resent average concentrations in a grid cell. Higher resolution modeling studies are believed to 495 

more accurately capture the concentrations and to reveal finer scale spatial distribution of pollu-496 

tants (Fountoukis et al., 2013; Gan et al., 2016; Stroud et al., 2011). The grid dilution effect theo-497 

retically has larger impact on CO and SO2 than on O3 and PM2.5, because O3 and secondary 498 

PM2.5 components are often formed regionally and consequently have a more uniform spatial 499 

distribution.  500 

5. Conclusion 501 

In this study, O3 and PM2.5 in China during the entire year of 2013 is simulated using an updated 502 

WRF/CMAQ model system and anthropogenic emissions from MEIC. The WRF model predicts 503 

reasonable meteorological inputs for the CMAQ model. The comparison of predicted and ob-504 

served hourly O3, peak hour O3, and daily and monthly averaged PM2.5 at 60 cities shows that the 505 

current model can successfully reproduces the O3 and PM2.5 concentrations at most cities for 506 

most months of the year. Over-prediction of O3 occurs at low concentration range in winter while 507 

under-prediction of PM2.5 happens at low concentration range in summer. Spatially, the model 508 

has better performance in NE, NCP, Central YRD and SCB but significant under-prediction bi-509 

ases exist for the cities in the NW region. Strong seasonal variations of PM2.5 exist and wind 510 

speed and direction play important roles in high PM2.5 events. Secondary components have more 511 

boarder distribution than primary components. Contributions of secondary PM components in-512 
crease during high PM events in a number of urban areas, suggesting that secondary PM for-513 

mation rates are enhanced more than the accumulation rate of primary pollutants. Overall, SO4
2-, 514 
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NO3
-, NH4

+ and POA are the most important PM2.5 components. All components have the high-515 

est concentrations in winter except SOA. NCP, CEN and SCB have more severe PM2.5 levels 516 

than YRD and PRD.  517 

This study reports the detailed model performance of O3 and PM2.5 in China for an entire year 518 

with the public available observations nationwide in China. Although much needs to be done to 519 

improve the model performance, this study shows the capability of the model with MEIC emis-520 

sion in reproducing severe air pollution. The concentrations of O3, PM2.5 total mass and its chem-521 

ical components from this study will be used in future studies to understand formation mecha-522 

nisms of severe air pollution episodes, investigate the effectiveness of emission control strategies, 523 

and estimate human exposure to multiple pollutants for assessing health burden of air pollution 524 

in China. 525 
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Table 1. Meteorology performance in all the months in 2013 (OBS, mean observation; PRE, 662 

mean prediction; MB, mean bias; GE, gross error; and RMSE, root mean square error). The 663 

benchmarks are suggested by Emery et al. (2001) for the MM5 model in the East US with 4-664 

12km grid resolution. The values that do not meet the criteria are shaded. 665 

  
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Bench-

mark 

T2  

(K) 

OBS 267.3 270.4 277.5 282.7 289.3 293.9 297.0 297.1 292.1 286.0 278.1 272.8  

PRE 266.1 268.9 276.2 281.8 288.7 293.6 296.5 296.5 291.9 286.0 278.4 273.1  

MB 1.2 -1.4 -1.3 -0.8 -0.7 -0.3 -0.5 -0.6 -0.2 0.0 0.3 0.3 ≤ ±0.5 

GE 3.7 3.3 3.0 2.7 2.7 2.7 2.6 2.5 2.4 2.5 2.7 2.8 ≤ 2.0 

RMSE 4.7 4.5 4.0 3.6 3.5 3.6 3.5 3.3 3.2 3.3 3.5 3.8  

WS  

(ms-1) 

OBS 3.0 3.5 3.7 3.8 3.6 3.3 3.4 3.2 3.3 3.4 3.5 3.5  

PRE 3.2 4.8 4.8 4.8 4.4 3.8 4.0 3.8 4.0 4.4 4.6 4.7  

MB 0.2 1.3 1.1 1.0 0.7 0.5 0.6 0.5 0.7 1.0 1.1 1.2 ≤ ±0.5 

GE 1.3 2.0 1.9 1.9 1.7 1.53 1.6 1.5 1.6 1.7 1.9 1..9 ≤ 2.0 

RMSE 2.6 2.6 2.5 2.4 2.2 2.0 2.0 1.9 2.1 2.3 2.4 2.5 ≤ 2.0 

WD 

(°) 

OBS 187.5 212.0 205.0 202.4 187.3 171.2 187.0 190.6 174.8 183.0 216.0 216.4  

PRE 209.9 229.1 220.4 216.8 198.5 175.8 200.8 203.4 171.4 182.1 236.5 234.0  

MB 10.5 17.1 15.4 14.4 11.2 4.6 13.8 12.9 -3.4 -0.9 20.5 17.7 ≤ ±10 

GE 46.3 47.7 46.7 44.8 46.2 49.4 46.6 47.4 47.5 45.6 44.8 46.6 ≤ ±30 

RMSE 66.3 65.1 64.1 62.1 63.4 66.4 63.5 64.4 65.0 62.9 61.8 63.8  

RH  

(%) 

OBS 64.9 78.9 69.5 67.1 64.3 68.7 70.8 70.4 6938 71.7 72.2 75.3  

PRE 63.6 73.4 68.4 65.3 64.0 68.1 72.0 72.1 69.2 71.0 68.9 68.7  

MB -1.4 -5.6 -1.1 -1.8 -0.3 -0.5 1.2 1.7 -0.6 -0.7 -3.3 -6.5  

GE 19.2 14.1 15.4 14.9 14.5 13.4 13.5 13.0 12.6 13.5 14.1 14.8  

RMSE 21.2 18.3 19.4 18.9 18.6 17.4 17.3 16.6 16.3 17.4 18.4 19.8  
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Table 2. List of the cities in different regions with available observations. 667 

Region City list 

Northeast (4 cities) 1. Harbin, 2. Changchun, 3. Shenyang, 4. Dalian 

North China Plain 

(NCP) (14) 

5. Chengde, 6. Beijing, 7. Qinhuangdao, 8. Tangshan, 9. Langfang, 10. Tianjin, 

11. Baoding, 12. Cangzhou, 13. Shijiazhuang, 14. Hengshui, 15. Handan, 16. Ji-

nan, 17. Qingdao, 28. Huhehaote 

Yangtze River Delta 

(YRD) (20) 

21. Lianyungang, 22. Suqian, 23. Xuzhou, 24. Huai’an, 25. Taizhou, 26. Yang-

zhou, 27. Nanjing, 29. Nantong, 30. Suzhou, 31. Wuxi, 32. Shanghai, 33. Hu-

zhou, 34. Hangzhou, 35. Jiaxing, 36. Shaoxing, 37. Zhoushan, 38. Wenzhou, 39. 

Jinhua, 40. Quzhou, 41. Lishui 

Pearl River Delta 

(PRD) (3) 

46. Guangzhou, 47. Zhuhai, 60. Shenzhen 

Central China (6) 18. Taiyuan, 19. Zhengzhou, 20. Hefei, 43. Wuhan, 44. Nanchang, 45. Changsha 

Northwest (5) 54. Xi’an, 55. Yinchuan, 56. Lanzhou, 57. Xining, 58. Wulumuqi 

Sichuan basin (SCB) 

(2) 

52. Chongqing, 53. Chengdu 

Southwest+Other (6) 42. Fuzhou, 48. Haikou, 49. Nanning, 50. Kunming, 51. Guiyang, 59. Lasa 
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Table 3. Model performance on O3-1h, O3-8h, PM2.5, PM10, CO, NO2, and SO2 in March to De-669 

cember 2013 (OBS, mean observation; PRE, mean prediction; MFB, mean fractional bias; MFE, 670 

mean fractional error; MNB, mean normalized bias; MNE, mean normalized error). The perfor-671 

mance criteria for PM2.5 are suggested by EPA (2007), and the performance criteria for O3 are 672 

suggested by EPA (2005). The values that do not meet the criteria are shaded. 673 

  
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Criteria 

O3-1h 

(ppb) 

OBS 53.96 57.73 65.37 67.72 65.7 68.3 60.73 57.97 49.18 46.53 
 

PRE 58.09 61.76 66.91 67.82 63.23 66.47 59.5 54.92 45.66 42.09 
 

MFB 0.08 0.09 0.05 0.01 -0.01 -0.01 0.01 -0.03 -0.05 -0.09 
 

MFE 0.29 0.27 0.25 0.3 0.29 0.28 0.27 0.26 0.27 0.32 
 

MNB 0.16 0.17 0.11 0.1 0.06 0.06 0.07 0.03 0.01 -0.01 ≤ ±0.15 

MNE 0.34 0.32 0.28 0.33 0.31 0.3 0.29 0.26 0.26 0.28 ≤ 0.3 

O3-8h 

(ppb) 

OBS 50.4 47.44 52.59 54.36 51.79 54.03 48.63 48.03 40.31 38.92  

PRE 48.81 51.49 57.86 59.58 54.05 58.07 50.64 48.48 40.6 40.7  

MFB -0.05 0.07 0.1 0.08 0.03 0.06 0.04 0.01 -0.01 0.01  

MFE 0.29 0.24 0.24 0.28 0.26 0.26 0.25 0.24 0.25 0.27  

MNB 0.03 0.13 0.16 0.16 0.09 0.12 0.1 0.06 0.03 0.07 ≤ ±0.15 

MNE 0.29 0.28 0.28 0.32 0.28 0.29 0.27 0.25 0.24 0.27 ≤ 0.3 

PM2.5 

(µg m-3) 

OBS 81.68 62.07 60.12 60.83 45.52 47.1 56.08 85.69 88.93 123.73  

PRE 66.12 43.24 39.28 41.6 31.31 39.07 52.24 56.09 80.21 126.83  

MFB -0.24 -0.4 -0.47 -0.41 -0.48 -0.31 -0.21 -0.42 -0.17 -0.07 ≤ ±0.6 

MFE 0.59 0.63 0.68 0.69 0.72 0.65 0.62 0.64 0.6 0.59 ≤ 0.75 

MNB 0.04 -0.16 -0.19 -0.09 -0.17 -0.01 0.11 -0.16 0.17 0.3  

MNE 0.61 0.54 0.58 0.63 0.63 0.64 0.68 0.56 0.7 0.75  

PM10 

(µg m-3) 

OBS 151.39 121.56 111.90 96.95 79.90 85.04 98.27 136.02 150.27 178.78  

PRE 74.72 52.48 45.37 46.58 35.59 44.63 57.53 65.12 90.22 136.26  

MFB -0.59 -0.73 -0.79 -0.68 -0.78 -0.65 -0.54 -0.65 -0.48 -0.34  

MFE 0.74 0.83 0.89 0.82 0.88 0.79 0.73 0.77 0.72 0.63  

MNB -0.31 -0.43 -0.45 -0.35 -0.44 -0.35 -0.24 -0.36 -0.16 -0.04  

MNE 0.56 0.58 0.62 0.62 0.63 0.59 0.60 0.59 0.64 0.62  

CO 

(ppm) 

OBS 1.17 0.94 0.86 0.8 0.73 0.75 0.85 1.09 1.16 1.48 
 

PRE 0.37 0.26 0.25 0.26 0.23 0.25 0.29 0.31 0.41 0.59 
 

MFB -0.89 -0.97 -0.97 -0.91 -0.95 -0.92 -0.9 -0.98 -0.88 -0.8 
 

MFE 0.95 1.01 1 0.95 0.99 0.96 0.95 1.02 0.92 0.86 
 

MNB -0.54 -0.6 -0.6 -0.56 -0.58 -0.56 -0.56 -0.61 -0.54 -0.49 
 

MNE 0.63 0.65 0.65 0.63 0.64 0.63 0.63 0.66 0.62 0.59 
 

NO2 

(ppb) 

 

OBS 23.33 21.26 19.83 18.11 16.34 16.5 19.74 24.82 27.41 31.41 
 

PRE 10.11 8.87 8.51 8.74 8.12 8.77 10.45 11.85 13.45 13.87 
 

MFB -0.83 -0.88 -0.86 -0.79 -0.79 -0.73 -0.71 -0.76 -0.7 -0.77 
 

MFE 0.94 0.99 0.99 0.95 0.95 0.91 0.89 0.91 0.85 0.87 
 

MNB -0.45 -0.48 -0.46 -0.4 -0.4 -0.35 -0.35 -0.39 -0.37 -0.44 
 

MNE 0.65 0.67 0.68 0.68 0.68 0.67 0.66 0.65 0.62 0.61 
 

SO2 

(ppb) 

OBS 19.1 15.8 15.25 12.93 12.32 12.96 13.24 15.53 21.74 27.88 
 

PRE 11.64 8.87 8.31 8.61 7.09 8.88 11.94 14.25 17.91 23.32 
 

MFB -0.61 -0.66 -0.68 -0.59 -0.73 -0.56 -0.39 -0.29 -0.31 -0.32 
 

MFE 0.89 0.9 0.91 0.89 0.98 0.89 0.84 0.78 0.82 0.83 
 

MNB -0.14 -0.23 -0.23 -0.11 -0.22 -0.08 0.23 0.25 0.29 0.31 
 

MNE 0.79 0.74 0.76 0.8 0.81 0.82 1 0.95 1.01 1.03 
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Table 4. Model performance on O3-1h, O3-8h, PM2.5, PM10, CO, NO2, and SO2 in different re-675 

gions during March to December, 2013. The values that do not meet the criteria are shaded. 676 

  
NCP YRD PRD SCB NE CEN NW Other 

O3-1h 

(ppb) 

OBS 65.18 63.84 65.7 67.85 53.37 63.1 54.5 54.21 

PRE 65.84 59.02 56.6 71.36 57.9 62.79 60.5 55.37 

MFB 0.03 -0.07 -0.13 0.08 0.09 0.03 0.14 0.05 

MFE 0.27 0.27 0.3 0.31 0.24 0.31 0.28 0.28 

MNB 0.1 -0.01 -0.06 0.18 0.14 0.12 0.22 0.13 

MNE 0.3 0.26 0.29 0.36 0.27 0.34 0.33 0.3 

O3-8h 

(ppb) 

OBS 53.38 52.96 51.25 53.48 46.73 49.88 44.26 45 

PRE 57.51 51.72 46.13 59.04 52.18 54.33 52.67 49.94 

MFB 0.06 -0.03 -0.11 0.1 0.1 0.08 0.18 0.1 

MFE 0.26 0.26 0.26 0.26 0.23 0.26 0.28 0.24 

MNB 0.13 0.02 -0.06 0.17 0.15 0.15 0.25 0.16 

MNE 0.3 0.26 0.24 0.3 0.26 0.3 0.33 0.28 

PM2.5 

(µg m-3) 

OBS 90.85 65.55 49.28 65.61 60.93 77.74 70.13 42.7 

PRE 65.5 55.55 29.19 78.83 48.57 74.95 33.84 33.55 

MFB -0.33 -0.27 -0.56 0.05 -0.26 -0.16 -0.75 -0.53 

MFE 0.64 0.57 0.68 0.57 0.62 0.57 0.88 0.77 

MNB -0.01 -0.04 -0.33 0.47 0.03 0.15 -0.39 -0.2 

MNE 0.65 0.54 0.52 0.84 0.63 0.66 0.65 0.63 

PM10 

(µg m-3) 

OBS 164.80 104.94 69.85 104.79 99.08 122.64 143.95 68.67 

PRE 73.69 63.47 34.20 86.70 52.80 80.44 44.25 35.63 

MFB -0.71 -0.55 -0.69 -0.25 -0.62 -0.49 -0.98 -0.76 

MFE 0.84 0.70 0.77 0.62 0.78 0.70 1.05 0.87 

MNB -0.37 -0.30 -0.43 0.07 -0.32 -0.20 -0.56 -0.42 

MNE 0.63 0.54 0.55 0.68 0.60 0.60 0.69 0.62 

CO 

(ppm) 

OBS 1.22 0.8 0.81 0.82 0.79 1.11 1.13 0.75 

PRE 0.37 0.29 0.22 0.41 0.25 0.4 0.23 0.22 

MFB -0.89 -0.86 -1.11 -0.62 -0.93 -0.87 -1.21 -1.04 

MFE 0.95 0.9 1.12 0.71 0.96 0.93 1.22 1.07 

MNB -0.54 -0.55 -0.69 -0.39 -0.58 -0.52 -0.72 -0.63 

MNE 0.63 0.6 0.7 0.52 0.63 0.62 0.74 0.68 

NO2 

(ppb) 

OBS 24.28 21.42 23.12 21.2 21.09 21.01 22.23 16.2 

PRE 11.26 11.77 10.71 12.53 6.37 12.03 8.4 4.29 

MFB -0.72 -0.65 -0.7 -0.56 -1.09 -0.62 -0.95 -1.24 

MFE 0.85 0.83 0.83 0.78 1.15 0.83 1.05 1.28 

MNB -0.39 -0.31 -0.39 -0.24 -0.61 -0.27 -0.52 -0.7 

MNE 0.62 0.63 0.6 0.62 0.73 0.66 0.69 0.75 

SO2 

(ppb) 

OBS 22.31 14.07 10.41 12.83 21.06 17.26 16.66 11.81 

PRE 12.24 8.66 8.07 25.77 5.13 18.55 11.58 10.28 

MFB -0.57 -0.62 -0.45 0.34 -1.14 -0.24 -0.6 -0.63 

MFE 0.8 0.87 0.77 0.73 1.21 0.8 0.95 1 

MNB -0.21 -0.22 -0.1 1.5 -0.61 0.46 -0.07 -0.02 

MNE 0.66 0.71 0.69 1.78 0.76 1.13 0.86 0.94 
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 677 

 678 
 679 

Figure 1. Model domain. The axes are the number of grid cells. Blue filled circles show the loca-680 

tions of cities with air quality observations (see Table 2). The purple dots show the locations of 681 

meteorological stations. The figure also shows the regions discussed in the text for better under-682 

standing. NCP represents North China Plain, YRD represents Yangtze River Delta, and PRD 683 

represents Pearl River Delta.  684 
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 686 
Figure 2. Comparison of monthly averaged diurnal variations of O3 concentrations from March to De-687 

cember, 2013. Pred. are the values predicted at the grid cell each city center located while Best are the 688 

values predicted closest to the observations within 3 by 3 grid cell regions that surround the observation. 689 

Units are ppb.   690 
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 691 

Figure 2. Comparison of predicted and observed O3-1h and O3-8h concentrations at Beijing, Shanghai, 692 

Guangzhou, Xi’an, Shenyang, and Chongqing. Grey areas represent ranges in model predictions within 693 

3x3 grid cells surrounding the observation Units are ppb.  694 
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 695 
Figure 4. Comparison of predicted (in column) and observed (in circle) monthly averaged PM2.5 concen-696 

trations for March to December, 2013. The “Best” lines (in “+”) represent predictions closest to the hour-697 

ly observations within a 3×3 grid cell region with the grid cell where the monitoring sites are located at 698 

the center. Units are µg m-3.  699 
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 700 

 701 
Figure 5. Seasonal variations of predicted regional distribution of O3-1h and O3-8h. Units are ppb.  702 
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 703 
Figure 6. Seasonal variation of predicted PM2.5 and wind vectors: (a) spring, (b) summer, (c) fall, 704 
and (d) winter. Units are µg m-3.705 
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706 
Figure 7. Seasonal variations of predicted PM2.5 components. Units are µg m-3.  707 
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 708 
Figure 8 Deviation of winter nitrate (NO3

-), sulfate (SO4
2-), ammonium ion (NH4

+) and primary 709 

organic aerosol (POA) from annual average, as calculated by (W-A)/A, where W and A are win-710 

ter and annual concentrations, respectively.  711 
 712 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-148, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 13 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



30 
 

 713 
Figure 9. Contributions of different components to monthly averaged PM2.5 concentrations at 714 
selected cities in China. White circles are absolute concentrations according to right y-axis with 715 

unit of µg m-3. 716 
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 717 
Figure 10. Comparison of PM2.5 components at episode days (Ep, >=75 µg m-3) and non-episode 718 
days (non-EP, <75 µg m-3). White circles are absolute concentrations according to right y-axis 719 

with unit of µg m-3. Note Xi’an does not have episode days in summer. 720 
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