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Abstract 21 

China has been experiencing severe air pollution in recent decades. Although ambient air quality 22 
monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in 23 
China, the temporal and spatial characteristics of some important pollutants, such as particulate 24 

matter (PM) components, remain unknown, limiting further studies investigating potential air 25 
pollution control strategies to improve air quality and associating human health outcomes with 26 
air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather 27 
Research & Forecasting model (WRF) and the Community Multi-scale Air Quality model 28 
(CMAQ) was conducted to provide detailed temporal and spatial information of ozone (O3), 29 

PM2.5 total and chemical components. Multi-resolution Emission Inventory for China (MEIC) 30 
was used for anthropogenic emissions and observation data obtained from the national air quality 31 

monitoring network were collected to validate model performance. The model successfully re-32 
produces the O3 and PM2.5 concentrations at most cities for most months, with model perfor-33 
mance statistics meeting the performance criteria. However, over-prediction of O3 generally oc-34 
curs at low concentration range while under-prediction of PM2.5 happens at low concentration 35 

range in summer. Spatially, the model has better performance in Southern China than in North-36 
ern, Central and Sichuan basin. Strong seasonal variations of PM2.5 exist and wind speed and di-37 

rection play important roles in high PM2.5 events. Secondary components have more boarder dis-38 
tribution than primary components. Sulfate (SO4

2-), nitrate (NO3
-), ammonium (NH4

+), and pri-39 
mary organic aerosol (POA) are the most important PM2.5 components. All components have the 40 

highest concentrations in winter except secondary organic aerosol (SOA). This study proves the 41 
ability of CMAQ model in reproducing severe air pollution in China, identifies the directions 42 

where improvements are needed, and provides information for human exposure to multiple pol-43 
lutants for assessing health effects. 44 

Keywords: Ozone, Particulate matter, WRF, CMAQ, MEIC, China 45 

  46 



3 
 

1. Introduction 47 

Atmospheric pollutants have adverse effects on human health and ecosystems and are associated 48 

with climate change (Menon et al., 2008; Poschl, 2005; Pui et al., 2014). Developing countries 49 
usually experience severely high concentrations of air pollutants due to fast growth of population, 50 
industrialization, transportation and urbanization without prompt emission controls. As one of 51 
such countries, China started to publish real time concentration data of six criteria pollutants 52 
from the ambient air quality monitoring networks after multiple severe pollution events across 53 

the country(Sun et al., 2014; Tao et al., 2014b; Wang et al., 2014a; Zheng et al., 2015).  54 

More than 1000 observation sites have been set up in more than 100 major cities in the country 55 
to routinely monitor hourly concentrations of six criteria pollutants, i.e., O3, CO, NO2, SO2, 56 

PM2.5 (PM—particulate matter), and PM10, and to inform the public on air quality status using 57 
the air quality index (AQI). Analysis of the observation provided a general understanding of the 58 
spatial and temporal variation of the levels of air pollution (Hu et al., 2014a; Wang et al., 2014c), 59 

the roles of meteorology in air pollution (Zhang et al., 2015b), and the construction of AQI based 60 
on multiple pollutants to better inform the public about the severity of air pollution (Hu et al., 61 

2015b). However, the monitoring system only considers criteria pollutants and the key species 62 
such as the volatile organic compounds (VOCs) and the chemical composition of PM that are 63 
needed to understand the causes of air pollution and form cost-effective emissions controls are 64 

not measured routinely. Monitoring networks focusing on the chemical composition of gaseous 65 
and particulate air pollutants, such as the Photochemical Assessment Monitoring Stations 66 

(PAMS) and the Chemical Speciation Network (CNS) in the United States, have not been estab-67 
lished in China. Lacking of detailed chemical composition information limits our capability to 68 
understand the formation mechanisms of O3 and PM, quantify the contributions of different 69 

sources, and design effective control strategies. In addition, the observation sites are mostly in 70 
highly developed urban areas but are very sparse in other suburban and rural regions which also 71 

have large population and experience high concentrations of certain pollutants, such as O3. Insuf-72 
ficient spatial coverage in the monitoring system limits the completeness of public air pollution 73 

risk assessment for the entire country.  74 

Chemical transport models (CTMs) are often used to reproduce past pollution events, test newly 75 
discovered atmospheric mechanisms, predict future air quality, and provide high temporal and 76 

spatial resolution data for epidemiological studies. Several modeling studies have been reported 77 
to analyze the severe air pollution events in January 2013. For example, the Community Mul-78 
tiscale Air Quality (CMAQ) model was updated with heterogeneous chemistry to study the for-79 
mation of secondary inorganic aerosol in North China (Zheng et al., 2015). The CMAQ model 80 

was also applied to identify the contributions of both source regions and sectors to PM2.5 in 81 
Southern Hebei during the 2013 severe haze episode with a brute force method (Wang et al., 82 
2014b). It was found that industrial and domestic activities were the most significant local sec-83 
tors while Northern Hebei province, Beijing-Tianjin city cluster, and Henan province were the 84 
major regional contributors. Using the two-way coupled Weather Research and Forecasting 85 

(WRF)/CMAQ system, Wang et al. (2014b) simulated the impacts of aerosol–meteorology inter-86 
actions on the PM pollution during January 2013. They argued that enhanced planetary boundary 87 
layer (PBL) stability suppressed the dispersion of air pollutants, and resulted in higher PM2.5 88 
concentrations. Similar results were also reported by Zhang et al. (2015a) with the Weather Re-89 
search and Forecasting/Chemistry (WRF/Chem) model. Using the Comprehensive Air Quality 90 
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Model with extensions (CAMx) and the Particulate Source Apportionment Technology (PSAT), 91 
Li et al. (2015b) determined the contributions of 7 emission categories and 11 source regions to 92 
regional air pollution in China and suggested a strong need for regional joint emission control 93 
efforts in Beijing. More recently, Hu et al. (2015a) used a tracer based technique in a source-94 

oriented CMAQ to determine source sector/region contributions to primary PM in different sea-95 
sons in 2012-2013. It was found that residential and industrial emissions from local area and the 96 
neighboring Hebei province contribute to high primary PM events in Beijing.  97 

All above modeling studies except Hu et al. (2015a) were focused on the formation and source 98 
apportionment of airborne PM during the severe pollution episode of January 2013 in northern 99 

China. Although additional PM formation pathways and/or emission adjustments were imple-100 
mented and tuned to better predict this extreme episode, model predictions were only evaluated 101 

against a small number of measurements in and near Beijing for a relatively short period of time. 102 
A few studies have been conducted to evaluate the model performance in China for longer time 103 
periods, such as a full year or several representative months in different seasons (Gao et al., 2014; 104 
Liu et al., 2010; Liu et al., 2016; Wang et al., 2011; Zhang et al., 2016; Zhao et al., 2013b). 105 

However, due to limited ambient observation data, model performance on temporal and spatial 106 
variations of air pollutants were mostly evaluated against available surface observation at a lim-107 

ited number of sites. In addition, the surface observations were mostly based on the MEP’s air 108 
pollution index (API) numbers, which could be used to calculate the concentrations of the major 109 
pollutants of SO2, NO2 or PM10. Extensive model performance evaluation of O3 and PM is ur-110 

gently needed to build the confidence in the emission inventory, the predicted meteorological 111 
fields as well as the capability of the model in predicting regional O3 and PM under a wide range 112 

of topographical, meteorological and emission conditions so that further modeling studies of pol-113 
lutant formation mechanisms, emission control strategies, and human exposure and health risk 114 

assessment are based on a solid foundation.  115 

In this study, a yearlong (2013) air quality simulation using a WRF/CMAQ system was conduct-116 

ed to provide detailed temporal and spatial distribution of O3 and PM concentrations as well as 117 
PM2.5 chemical composition in China. The publicly available observation data obtained from a 118 
total of 422 air monitoring sites in 60 major cities in China were used to provide a thorough 119 

evaluation of the model performance in the entire year. The modeled spatial and temporal con-120 
centrations of O3 and PM2.5 from this study will be used in subsequent studies to investigate the 121 

interaction between O3 and PM pollution during high pollution events, the formation mechanism 122 
of secondary inorganic and organic aerosols and the population exposure and health risk. 123 

2. Method 124 

2.1 Model description 125 

The CMAQ model applied in this study is based on CMAQ v5.0.1. Changes were made to the 126 

original CMAQ to improve the capability of the model in predicting secondary inorganic and 127 
organic aerosol, including 1) a modified SARPC-11 gas phase photochemical mechanism to pro-128 
vide more detailed treatment of isoprene oxidation chemistry (Ying et al., 2015) , 2) pathways of 129 
secondary organic aerosol (SOA) formation from surface controlled reactive uptake of dicarbon-130 
yls, isoprene epoxydiol (IEPOX) and methacrylic acid epoxide (MAE) (Li et al., 2015a; Ying et 131 
al., 2015), 3) vapor wall-loss corrected SOA yields (Zhang et al., 2014c), and 4) heterogeneous 132 
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reactions of NO2 and SO2 on particle surface to form secondary nitrate and sulfate (Ying et al., 133 
2014a). More details of these changes can be found in the cited references and the references 134 
therein, thus only a short summary of the changes are provided below. 135 

The isoprene mechanism in the original SAPRC-11 with standard lumping (Carter and Heo, 136 

2012) was replaced by the detailed isoprene oxidation chemistry as used by Lin et al. (2013) to 137 
predict the formation of IEPOX and MAE in the gas phase. A precursor tracking scheme was 138 
implemented in the modified SAPRC-11 to track the glyoxal (GLY) and methylglyoxal (MGLY) 139 
formation from multiple biogenic and anthropogenic precursors. The surface controlled reactive 140 
uptake of SOA precursors is considered non-reversible, with constant uptake coefficients for 141 

GLY and MGLY as used by Fu et al. (2008) and an acidity dependent uptake coefficient for IE-142 
POX and MAE as described by Li et al. (2015a). The original SOA yields for toluene and xylene 143 

under high NOx concentrations based on Ng et al. (2007) were replaced with the higher toluene 144 
yield reported by Hildebrandt et al. (2009). This update has been applied by Ying et al. (2014a) 145 
to study SOA formation in Mexico City. All SOA yields were then corrected by the average bias 146 
due to wall loss as reported in Table 1 of Zhang et al. (2014). A modeling study of SOA for-147 

mation in Eastern US reported by Ying et al. (2015) shows that negative bias in predicted organ-148 
ic carbon (OC) concentrations reported in previous studies have been significantly reduced.  149 

Formation of sulfate and nitrate due to heterogeneous reactions on particle surface is also mod-150 
eled as a reactive uptake process. The reactive surface uptake coefficients of SO2 and NO2 on 151 
particle surface were taken from Ying et al. (2014a) and Zheng et al. (2015), respectively. 152 

2.2 Model application 153 

The updated CMAQ model was applied to simulate O3 and particulate air pollution using a 36-154 

km horizontal resolution domain that covers China and surrounding countries in East Asia (Fig-155 
ure 1). The meteorological inputs were generated using WRF v3.6.1 with initial and boundary 156 
conditions from the NCEP FNL Operational Model Global Tropospheric Analyses dataset. De-157 

tailed WRF model configurations have been described by Zhang et al. (2012).  158 

Multi-resolution Emission Inventory for China (MEIC) (0.25×0.25o) developed by Tsinghua 159 

University (http://www.meicmodel.org) was used for the monthly anthropogenic emissions from 160 
China. MEIC (V1.0) is the new version of emission inventory in China including improvements 161 
such as a unit-based emission inventory for power plants (Wang et al., 2012) and cement plants 162 

(Lei et al., 2011), a high-resolution county-level vehicle emission inventory (Zheng et al., 2014), 163 
and a non-methane VOC mapping approach for different chemical mechanisms (Li et al., 2014b). 164 
MEIC provides speciated VOC emissions for the SAPRC-07 mechanism with standard lumping 165 

(Carter, 2010). As the definitions of explicit and lumped primary VOCs have not changed from 166 

SAPRC-07 to SAPRC-11, these VOC emissions were directly used to drive SAPRC-11. Total 167 
PM2.5 mass emissions and emissions of primary organic carbon (POC) and elemental carbon (EC) 168 
were also provided by MEIC directly. Emissions of trace metals needed by the version 6 of the 169 
aerosol module in CMAQ (AERO6) were generated using averaged speciation profiles adapted 170 
from the U.S. Environmental Protection Agency (EPA) SPECIATE database for each MEIC 171 

source category. Emissions from other countries and regions rather than China in the domain 172 
were filled with data generated from the gridded 0.25º×0.25º resolution Regional Emission in-173 
ventory in ASia version 2 (REAS2) (Kurokawa et al., 2013). Details of the REAS2 emission 174 

http://www.meicmodel.org/
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processing are described by Qiao et al. (2015). Detailed information about spatial and temporal 175 
allocation can also be found in the papers cited above. 176 

Biogenic emissions were generated using the Model for Emissions of Gases and Aerosols from 177 
Nature (MEGAN) v2.1. The leaf area index (LAI) was based on the 8-day Moderate Resolution 178 

Imaging Spectroradiometer (MODIS) LAI product (MOD15A2) and the plant function types 179 
(PFTs) were based on the PFT files used in the Global Community Land Model (CLM 3.0). For 180 
more details of the biogenic emission processing, the readers are referred to Qiao et al. (2015). 181 
Open biomass burning emissions were generated from the Fire INventory from NCAR (FINN), 182 
which is based on satellite observations (Wiedinmyer et al., 2011). Dust and sea salt emissions 183 

were generated in line during the CMAQ simulations. In this updated CMAQ model, dust emis-184 
sion module was updated to be compatible with the 20-category MODIS land use data (Hu et al., 185 

2015a). Initial and boundary conditions were based on the default vertical distributions of con-186 
centrations that represent clean continental conditions as provided by the CMAQ model. The im-187 
pact of initial conditions was minimal as the results of the first five days of the simulation were 188 
excluded in the analyses. 189 

3. Results 190 

3.1 Meteorology validation 191 

Meteorological factors are closely related to transport, transformation, and deposition of air pol-192 
lutants (Hu et al., 2014b; Jacob and Winner, 2009; Tao et al., 2014a; Zhang et al., 2015b). Alt-193 

hough the WRF model has been widely used to provide meteorological inputs for CTMs, the per-194 
formance varies when applying to different domains, episodes, and with different model settings. 195 

Thus, the validation of model performance on meteorological conditions is important in assuring 196 
the accuracy of air quality predictions. Observation data from the National Climate Data Center 197 

(NCDC) was used to validate the model predictions of temperature (T2) and relative humidity 198 
(RH) at 2m above surface, and wind speed (WS) and wind direction (WD) at 10m above surface. 199 

Within the domain, there are ~1200 stations shown as purple dots in Figure 1. Model perfor-200 
mance statistics of mean observation (OBS), mean prediction (PRE), mean bias (MB), gross er-201 
ror (GE) and root mean square error (RMSE) based on the observations and WRF predictions at 202 
the grid cells where the stations are located are shown in Table 1. The table also shows the 203 

benchmarks suggested by Emery et al. (2001) for the MM5 model in the East US with 4-12km 204 
grid resolution. 205 

The WRF model predicts slightly higher T2 in winter and lower T2 in other seasons than the ob-206 

servations. The MB values for June, July, and September to December are within the benchmark, 207 
but the GE values of T2 are generally larger than the benchmark. The GE values of WS meet the 208 
benchmark in all months, but WS is over-predicted, as indicated by the positive MB values. The 209 
MB values meet the benchmark in January, June and August, and RMSE values are within the 210 

benchmark in June, July, and August. MB values of WD are within the benchmark of ±10 degree 211 
for four months. February, November, and December are the months with largest MB values. All 212 
GE values of WD are about 50% larger than the benchmark. RH is generally under-predicted ex-213 
cept for July and August. The performance in this study is comparable to other studies using 214 
WRF in China (Hu et al., 2015a; Wang et al., 2010; Wang et al., 2014b; Ying et al., 2014b; 215 
Zhang et al., 2012), despite the differences in model, resolution, and study region in different 216 
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studies. Generally, the WRF model has acceptable performance on meteorological parameters. It 217 
should be noted that there is a study showing better WRF performance (Zhao et al., 2013a). 218 
However, it is difficult to compare since different model settings, simulation episodes, number of 219 
observation stations were used.  220 

3.2 Model performance of O3 and PM2.5  221 

Hourly observations of air pollutants from March to December 2013 were obtained from the 222 
publishing website of China National Environmental Monitoring Center 223 

(http://113.108.142.147:20035/emcpublish/). A total of 422 stations in 60 cities (see Figure 1 for 224 
the location of the cities) including the capital cities of all 31 provinces were obtained. Concen-225 
trations of pollutants in difference regions of China exhibit large variations due to diverse cli-226 

mates, topography, and emission sources. Aiming to identify the model strength and weakness in 227 
difference regions of China, model performance was evaluated separately for different regions. 228 
The regions and names of these cities are listed in Table 2. Automated quality control measures 229 

were taken to remove data points with observed O3 concentrations greater than 250 ppb, PM2.5 230 
concentrations greater than 1500 µg m-3, and points with standard deviation less than 5 ppb or 5 231 

µg m-3 in 24 hours.  232 

3.2.1 O3 model performance 233 

Table 3 shows the model performance statistics of gaseous pollutants (1h peak O3 (O3-1h), 8h 234 
peak O3 (O3-8h), and hourly CO, NO2, and SO2), PM2.5, and PM10. Mean observations, mean 235 

predictions, mean fractional bias (MFB), mean fractional error (MFE), mean normalized bias 236 
(MNB) and mean normalized error (MNE) of hourly concentrations are calculated for each 237 

month from March to December 2013. Only O3-1h or O3-8h concentrations greater than 30 ppb 238 
were included in the analysis. A cutoff concentration of 40 or 60 ppb is suggested by the U.S. 239 

EPA (EPA, 2005). A lower cutoff of 30 ppb is chosen in this study considering the monitoring 240 
sites are all located in urban areas and higher O3 concentrations generally occurs in downwind of 241 

urban areas. The overall model performance on O3-1h and O3-8h meets the model performance 242 
criteria suggested by U.S. EPA (2005) in all months, except in March and April for O3-1h and 243 
June for O3-8h. MNE of O3-1h in June and July slightly exceeds the criteria, although MNB 244 
meets the criteria. MNB of O3-8h in May exceeds the criteria, but MNE meets the criteria. The 245 

relatively small MNB/MNE and MFB/MFE in most of months indicate that O3-1h and O3-8h are 246 
well captured. 247 

Model performance of O3-1h and O3-8h in different regions is illustrated in Table 4. Model per-248 

formance meets the criteria in four regions, i.e., North China Plain (NCP), Yangtze River Delta 249 
(YRD), Pearl River Delta (PRD), and Northeast (NE). Relatively poor performance is identified 250 
in the Sichuan Basin (SCB), Central (CEN), and Northwest (NW) regions. O3-1h and O3-8h con-251 
centrations are slightly under-predicted in YRD and PRD, but over-predicted in all other regions. 252 

Model performance in regions other than NCP and YRD should be interpreted with care due to 253 
limited number of cities to sufficiently represent the entire region.  254 

Figure 2 compares the predicted monthly averaged diurnal variations of O3 concentrations with 255 
observations for all the 60 cities. For a city with multiple stations, observations and predictions 256 
are matched at individual station level and the averaged observations and predictions are used to 257 

http://113.108.142.147:20035/emcpublish/
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represent the concentrations for the city. Some cities, such as Beijing, exhibit substantial diurnal 258 
variations, especially in summer; and others, such as Lasa, exhibit small diurnal variations. 259 
Overall, the model successfully reproduces the monthly average diurnal variation in most cities, 260 
even though model performance among cities in the same region can be quite different. For ex-261 

ample, in NE, the monthly averaged predictions agree well with observations in Shenyang and 262 
Changchun but are higher in Dalian, a coastal city, in summer months. In NCP, the model well 263 
predicts O3 concentrations with slight over-prediction at a few cities, especially in the summer 264 
months, which agrees with the better hourly O3 model performance shown in Tables 3 and 4. In 265 
YRD, the monthly diurnal variations of O3 are also well predicted. Obvious under-prediction of 266 

summer peak O3 at Zhoushan and Wenzhou are likely caused by underestimation of emissions in 267 
these port cities, although uncertainty in meteorology might also play a role. At PRD, O3 is 268 
slightly underestimated in Guangzhou and Shenzhen for summer and fall months but well esti-269 

mated in Zhuhai. In all three cities in the PRD region, O3 concentrations are higher in the spring 270 
and fall months, and the model correctly captures this trend. In SCB, the model correctly predicts 271 
the higher spring O3 concentrations in Chengdu but over-predicts spring O3 concentrations in 272 

Chongqing. Summer O3 concentrations are well predicted at both cities. For CEN, O3 predictions 273 
are higher than observations in Zhengzhou and Hefei, but agree well with observations in other 274 

cities. In NW, the observed O3 concentrations are much lower and are generally over-predicted 275 
all year except for Xi’an and Wulumuqi with good performance in summer. 276 

Figure 3 shows the comparison of predicted and observed monthly averaged O3-1h and O3-8h 277 

concentrations at typical cities of major regions in China: Beijing for NCP, Shanghai for YRD, 278 
Guangzhou for PRD, Xi’an for NW, Shenyang for NE, and Chongqing for SCB. In Beijing, the 279 

monthly variations of both O3-1h and O3-8h, low in winter months and high in summer months, 280 
are well captured by model. The model slightly over-predicts O3 concentrations from June to 281 

December except for August. In Shanghai, both O3-1h and O3-8h are underestimated by 5-10 ppb, 282 

but all observations are within the range of concentrations in the 3×3 grid cells surrounding the 283 

city center of Shanghai. In Guangzhou, O3 concentrations vary slightly over months. O3-1h is 284 
under-predicted especially in summer and fall months. O3-8h predictions are closer to the obser-285 

vations. In Xi’an, the model well predicts the O3-1h and O3-8h concentrations in July, August, 286 
and September while over-predicts all other months by up to 20 ppb. In Shenyang, the trend of 287 
O3-1h and O3-8h are well reproduced with less than 5ppb differences for all the months. In 288 
Chongqing, over-prediction occurs in spring, fall, and winter while under-prediction occurs in 289 

summer. 290 

3.2.2 PM2.5 model performance 291 

PM2.5 model performance in different months and regions are also illustrated in Table 3 and Ta-292 
ble 4, respectively. The model performance statistics of MFB and MFE of hourly PM2.5 concen-293 
trations meet the US EPA criteria in all months. Negative MFB is found in all months, indicating 294 
the model under-predicts the PM2.5 concentrations. Model performance is better in March, Sep-295 

tember, November and December, with MFB less than 0.3. The bias is relatively larger in April, 296 
May, June, July and October, with MFB over 0.4. PM10 is largely underestimated and is very 297 
likely to due to underestimation of dust emissions from both natural sources as well as human 298 
activities. 299 
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Model performance of PM2.5 in different regions is also different. The model significantly under-300 
predicts PM2.5 in the NW and the Other (mostly Southwest cities) regions. Especially in the NW 301 
region, MFB value is -0.75 and MFE value is 0.88. PM2.5 in all the other regions meets the per-302 
formance criteria. Although most regions meet the model performance criteria in this study, un-303 

der-prediction of PM2.5 concentrations are found in all regions (except SCB), as indicated by the 304 
large negative MFB values. PM10 has similar performance in various regions. 305 

Figure 4 illustrates the comparison of predicted and observed monthly averaged PM2.5 concentra-306 

tions for all the 60 cities. In NE, the predictions agree well with observations in summer months. 307 
Concentrations in fall and winter months are under-predicted, except for Dalian, where the all 308 
values are well reproduced. In NCP, the annual trends at most cities are well captured. The mod-309 
el trends to under-predict spring and summer concentrations and over predict December concen-310 

trations. The coastal city, Qingdao, is unique with under-prediction in summer and good estima-311 
tion in other months. In YRD, the model well produces PM2.5 for all the months at most sites ex-312 
cept in coastal cities (Zhoushan and Wenzhou) and mountainous cities (Quzhou and Lishui). In 313 

SCB, the model underestimates concentrations in the winter months in Chongqing but well esti-314 
mates the concentrations in Chengdu except for March and April. In CEN, the seasonal trend is 315 

well captured at all cities but most cities show over-predicted concentrations in December. In NE, 316 
PM2.5 is uniformly under-predicted. For Other regions, predictions agree with observations at the 317 
coastal cities (Fuzhou and Haikou) but concentrations in Lasa are largely under-predicted. The 318 

values closest to the observations in the 3×3 surrounding grid cells are similar to the predictions 319 

at city centers for most months with clear differences in October, November, and December at 320 
several cities. It indicates the higher contributions of primary PM, which has steeper concentra-321 
tion gradients than secondary PM, in winter months than in summer months. 322 

Generally, the WRF/CMAQ modeling system with MEIC inventory well reproduces the O3 and 323 
PM2.5 concentrations in most regions for most months. Over-prediction of O3 occurs at low con-324 

centrations in winter while under-prediction of PM2.5 happens at low concentration range in 325 
summer and in cities in the NW region. The model performance on CO, NO2, and SO2 are also 326 

calculated and listed in Tables 3 and 4. There are no performance criteria for these pollutants, but 327 
the model performance are in the same ranges as compared to other studies in other coun-328 
tries/regions (Tao et al., 2014a). The model performance at different regions differs due to the 329 

differences in emission, topography, and meteorological conditions. The performance on these 330 
species can be used as indicator for emission uncertainties. The possible uncertainties are dis-331 
cussed in the Discussion section.  332 

3.3 Seasonal variations and regional distribution of O3 and PM2.5 333 

Figure 5 shows the predicted regional distribution of seasonal averaged O3-1h and O3-8h. In 334 
spring, highest O3-1h concentration (~100 ppb) occurs in South Asia due to higher temperature, 335 

solar radiation and significant amount of emissions from open biomass burning activities (Kondo 336 
et al., 2004). Southern China has higher concentrations (~70 ppb) than Northern China (~50 ppb). 337 
However, in summer, NCP has the highest concentration of 80ppb while Southern China (and 338 
other regions) has lower concentrations of 50-60 ppb.  In fall, most of the regions in China have 339 
O3-1h concentrations of 50-60 ppb. In winter, NE China and NCP have O3-1h concentrations 340 
lower than 30ppb while Southern China has the concentrations of 40-50 ppb. In addition to NCP 341 
in the summer, SCB is also another hot spot for ozone with high summer and wintertime O3-1h 342 
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of ~100 ppb and 60-70 ppb, respectively. O3-8h has similar spatial distribution patterns as O3-1h 343 
for all seasons with lower concentrations (by 5~10 ppb). 344 

Figure 6 shows the spatial distribution of seasonal averaged PM2.5 concentrations together with 345 
the averaged wind vectors as the regional distribution of PM2.5 is significantly influenced by 346 

wind patterns. In spring, the PM2.5 concentrations in China reach approximately 50-70 μg m-3 in 347 
Northern, Eastern, and Southern China except coastal provinces of Zhejiang, Fujian, and Guang-348 
dong. It is evident that the high concentrations are related to low wind speed. In summer, the are-349 
as with high PM2.5 concentrations of ~50 μg m-3 are limited to NCP and SCB while all other re-350 
gions have concentrations of < 30 μg m-3. Emissions brought to the NCP by the southerly wind, 351 

blockage of dispersion due to mountain ranges to the north and west, and secondary organic aer-352 
osol formed due to strong solar radiation are contributing factors for higher summer PM2.5 in 353 

NCP. In fall, the high concentration regions are similar to those in spring but with higher concen-354 
trations of up to 100 μg m-3 in NCP, YRD, CEN and SCB. In winter, high PM2.5 concentrations 355 
are located in the NE, NCP, YRD, CEN and SCB regions. Seasonal average concentrations of 356 
more than 200 μg m-3 occur in large portions of NCP, CEN, and SCB due to low wind speed and 357 

mixing height. Strong gradient exists between the high concentration regions and surrounding 358 
areas where wind is more lenient to pollutant dispersion. 359 

Figure 7 shows the spatial distribution of seasonal averaged PM2.5 components. All components 360 
show clear seasonal variations. For secondary inorganic components and anthropogenic primary 361 
components (EC and POA), concentrations are usually highest in winter and lowest in summer. 362 

Spring and fall concentrations are similar with slightly higher concentrations in fall. For EC and 363 
POA, this seasonal variation is largely driven by large increase in the emissions from residential 364 

sources in winter, as well as reduced ventilation that is often associated with winter stagnant 365 

conditions. For secondary inorganic components, gas phase formation rate of HNO3 and H2SO4 366 

decreases as temperature and solar radiation intensity decreases in fall and winter, leading to de-367 
crease in their formation from the homogeneous pathways. However, the amount of secondary 368 

NO3
- and SO4

2- from surface heterogeneous reactions of SO2 and NO2 increases as their emis-369 
sions increases, and more particle surface area becomes available due to increase in primary PM 370 
concentrations. In addition, ammonium nitrate is preferentially partitioned into the particle phase 371 

under colder temperatures (Aw and Kleeman, 2003). In most regions with high concentrations, 372 
wintertime NO3

- concentrations are 150-200% higher than annual average concentrations, while 373 

SO4
2- and NH4

+ concentrations are approximately 100-150% higher (see Figure 8). POA concen-374 
trations in winter are also approximately 100-150% higher in winter than the annual average, es-375 

pecially in northern part of China where residential heating is a significant source of PM2.5 emis-376 
sions. In provinces in southern China with warm temperature, winter POA is not significantly 377 

deviated from the annual mean (see Figure 8). Maximum concentrations of NO3
- and SO4

2- in-378 
crease to beyond 50 μg m-3 and NH4

+ as high as 40 μg m-3 in portions of NCP, CEN, YRD and 379 
SCB. This suggests that in large areas, secondary inorganic PM is the most significant contribu-380 
tor to elevated wintertime PM2.5 concentrations. EC has limited spatial distribution since it is on-381 
ly directly emitted. Highest EC concentrations are in NCP, CEN and SCB. The EC concentra-382 

tions are 10-15 μg m-3 in winter but lower than 5 μg m-3 in other seasons. POA concentrations 383 
are highly season dependent with the highest concentrations of ~30 μg m-3 in NCP, CEN, SCB 384 
and NE occurring in winter.  385 
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SOA shows different seasonal variations from the secondary inorganic aerosol and anthropogen-386 
ic primary PM components. In CEN and Eastern China, higher seasonal average SOA concentra-387 
tions of 10-15 μg m-3 occur in summer and winter, while in southern China similar levels of SOA 388 
occur in spring. The spring and summer high SOA concentrations are dominantly formed from 389 

biogenic isoprene emissions but winter SOA is mainly formed from semi-volatile oxidation 390 
products of anthropogenic aromatic compounds. Details of SOA formation and composition will 391 
be discussed in a separate paper. “Other” components are primary PM2.5 including most part of 392 
dust. The concentrations are high in spring, fall and winter. In summary, secondary components 393 
have more boarder distribution than primary components. SO4

2-, NO3
-, NH4

+ and POA are the 394 

most important aerosol components based on their absolute concentrations.  395 

It should be noted that the simulated spatiotemporal distribution of PM2.5 and its chemical com-396 

position is affected by the temporally and spatially variant biases of PM2.5. In summer PM2.5 is 397 
more under-predicted when the concentrations are lower, therefore the actual seasonal variation 398 
of PM2.5 is likely weaker the predictions. PM2.5 is more under-predicted in NW where the con-399 
centrations are lower, therefore the actual spatial difference between NW and eastern China re-400 

gion (i.e., NCP, YRD, etc.) is also likely weaker. The spatiotemporal distribution of PM2.5 chem-401 
ical composition is expected to be affected similarly but needed to be confirmed with detailed 402 

PM2.5 composition observations. The biases of O3 exhibit much less variation temporally and 403 
spatially, so the predicted spatiotemporal distribution of O3 is more accurate than PM2.5. 404 

 405 

3.4 Temporal variation of PM2.5 components in representative cities 406 

Temporal variations of PM2.5 components are also shown at typical cities in different regions as 407 

in Figure 9. The total PM2.5 concentrations in Beijing are high in winter and low in summer with 408 
the peak of ~150 μg m-3 in January. EC contributions are ~5-10% in winter but less than 5% in 409 
other seasons. POA has similar pattern as EC but contributions can be ~35% in winter and ~20% 410 

in summer. SOA contributions are high in summer with the peak of ~30% in August and very 411 
low in winter. SO4

2- and NO3
- are the top two largest contributors with comparable contributions 412 

all the time. NH4
+ can be as high as ~20% in January and only ~10% in summer. Other compo-413 

nents (“Other”, mostly oxides of crustal elements and other trace metals) contribute up to 15% in 414 
some months. In Shanghai, the monthly averaged concentrations are highest in winter and de-415 

crease gradually from spring to fall. Five out of the 12 months are over the Chinese Ambient Air 416 
Quality Standards (CAAQS) Grade II standard for 24-hour average PM2.5 (75 μg m-3, simply 417 
Grade II standard hereafter). EC and POA have similar pattern with a total contribution of 20% 418 

in most months. SO4
2-, NO3

-, and NH4
+ contribute to more than 70% from November to June and 419 

less than 50% in other months, while the contribution of SOA increases significantly to as much 420 
as 40% in the summer months. The relative contributions of the “Other” components are about 2 421 
times of those in Beijing (15% to 30%). In Guangzhou, the PM2.5 concentrations are lower than 422 
Beijing and Shanghai. Predicted PM2.5 concentrations are all within the Grade II standard in Chi-423 
na. Although the contribution of SOA is higher, SO4

2-, NO3
-, and NH4

+ are still the major com-424 

ponents with more than 60% contribution all over the year.  425 

In Xi’an, the largest city in NW, the differences in PM2.5 at winter and other months are signifi-426 

cant. In winter, the total PM2.5 concentrations are 150-180 μg m-3 with POA, SO4
2-, NO3

-, and 427 
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NH4
+ as major components. In Shenyang, a NE city, the PM2.5 concentrations are ~250 μg m-3 in 428 

January followed by ~200 μg m-3 in February and ~150 μg m-3 in December. The extremely high 429 
concentrations are related to winter residential heating or uncontrolled open biomass (such as 430 
straw) burning as can be indicated by the elevated emissions from residential sources. For other 431 

seasons, contributions of other components are much lower but contribution of SOA increases to 432 
more than 20% (~10 μg m-3) in June, likely due to increased biogenic emissions in the densely 433 
forested regions in the NE.  In Chongqing, located in Sichuan basin, monthly average reaches as 434 
high as 230 μg m-3 in January due to increased atmospheric stability. Spring, summer and fall 435 
months have much lower PM2.5 concentrations especially for July, when the PM2.5 is lower than 436 

50 μg m-3.  437 

One of the questions that remain unclear is whether secondary PM formation is enhanced during 438 

the high pollution days or high pollution events are simply caused by enhanced emissions and 439 
reduced dilution due to stagnant conditions. As an attempt to address this question, Figure 10 440 
shows the comparison of relative contributions of PM2.5 components in episode days (>= the 441 
Grade II standard of 75 μg m-3) and non-episode days. In Guangzhou, there are no episode days 442 

predicted, thus only Beijing, Shanghai, Xi’an, Shenyang and Chongqing are included in Figure 443 
10. In all cities, the minimum episode-day averaged concentration occurs in summer while the 444 

maximum concentration occurs in winter. In most cities and in most seasons, episode days have 445 
larger contributions of secondary components (SOA, SO4

2-, NO3
-, and NH4

+, 69.8% on episode 446 
days vs. 59.9% on non-episode days) and lower contributions of primary components (EC, POA 447 

and Other, 30.2% on episode days vs 40.1% on non-episode days). Some cities show much dras-448 
tic differences in secondary PM contributions between episode and non-episode days. For exam-449 

ple, contribution of secondary PM in Xi’an increases from 40% on non-episode days to more 450 
than 60% on episode days in winter. Other cities, such as Chongqing, show less difference in the 451 

relative contributions of secondary PM between episode and non-episode days. While most of 452 
the secondary PM increase is due to enhanced formation of secondary inorganic components, the 453 

contribution of SOA to total PM is significantly higher than that on non-episode days in summer 454 
Beijing. This suggests that enhanced SOA formation could also play a significant role in summer 455 
PM pollution events of urban areas. In conclusion, in most cities in most seasons, episode days 456 

have more rapid formation of secondary PM components than accumulation of primary pollu-457 
tants due to unfavorable weather conditions. This also suggests that controlling the emissions of 458 

secondary PM precursors needs to be considered in designing emission control strategies as in 459 
many conditions it can be more effective in reducing PM concentrations.  460 

4. Discussion 461 

Model predicted concentrations of O3 and PM2.5 are evaluated by comparing to ground-level ob-462 
servations at 422 stations in 60 cities in China for ten months in 2013. Predicted concentrations 463 
generally agree well with observations, with the model performance statistics meeting the criteria 464 
in most of the regions and months. Relatively large bias in model predicted concentrations is 465 
found in certain regions in certain months/episodes. Model bias is mainly attributed to uncertain-466 

ties associated with meteorological fields, emissions, model treatment and configurations. Fur-467 
ther studies are still needed to continue improving the model capability in accurately predicting 468 

air quality in China. 469 
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The WRF model performance in this study is comparable to other studies (Hu et al., 2015a; 470 
Wang et al., 2010; Wang et al., 2014b; Ying et al., 2014b; Zhang et al., 2012), but a better WRF 471 
performance was reported in Zhao et al. (2013a). Mesoscale meteorological modeling studies are 472 
also needed to improve the WRF model capability in China. In this study, some meteorological 473 

parameters are biased, for example ground-level wind speed is consistently over-predicted and 474 
RH is more biased low in winter months (Table 1). A previous study has revealed that air pollu-475 
tion levels are associated with these parameters in highly polluted regions in China (Wang et al., 476 
2014c). It is also demonstrated that bias in predicted meteorological parameters by WRF con-477 
tributes to bias in PM2.5 prediction (Hu et al., 2015c; Zhang et al., 2014a; Zhang et al., 2014b). A 478 

companion study is undergoing to evaluate the sensitivity of predictions to meteorological fields. 479 

Uncertainties associated with emission inventory often are the major factor leading to bias in 480 

model predictions. The overall good model performance in most regions indicates general accu-481 
racy of the MEIC inventory. However, larger negative bias in CO, NO2, and SO2 in NW (Table 4) 482 
suggests that anthropogenic emissions, including primary PM2.5 are severely under-estimated in 483 
this region. Similarly, under-predictions of PM2.5 in Lasa are also likely due to under-predictions 484 

of anthropogenic emissions, mostly likely those from residential sources. Studies have suggested 485 
that dust contributes significantly to PM2.5 in NW (Li et al., 2014a; Shen et al., 2009). The cur-486 

rent estimation of dust from wind erosion of natural soil surfaces in the NW is approximately 20 487 

µg m-3 in spring and lower than 10 µg m-3 in other seasons. This relatively low estimation of 488 

PM2.5 in the NW of China generally agrees with the most recent global long term PM2.5 estima-489 
tion based on satellite AOD measurements (Battelle Memorial Institute and Center for 490 
International Earth Science Information Network - CIESIN - Columbia University, 2013; de 491 

Sherbinin et al., 2014).  Emissions of dust from other sources in the urban/rural areas, such as 492 
paved and unpaved road and construction activities could be a more important factor that leads to 493 

under-predictions of mineral PM components in the NW cities. Both activity data and emission 494 
factors used to generate these area emissions should be examined carefully. Source apportion-495 

ment studies based on receptor-oriented techniques should be used to differentiate the contribu-496 

tions from these different dust sources to further constrain the uncertainties in dust emissions.  497 

Another important source of under-prediction of PM2.5 is SOA, especially in the summer when 498 

the biases in PM2.5 predictions are larger and more SOA is expected to form due to higher VOCs 499 
emissions and higher atmospheric reactivity. While significant progresses have been made to 500 

improve model predictions and the SOA module used in the current study has incorporated many 501 
of the newly found SOA formation pathways, the understanding of both gas phase and particle 502 
phase chemistry that lead to SOA formation is still very limited, and many experimental findings 503 

have yet been incorporated by the modeling community. To constrain the uncertainties in SOA 504 

predictions, speciated measurements of SOA tracers and gas phase VOC precursors are needed 505 
along with models with detailed chemical mechanisms to represent the species. While some 506 
VOC speciation data are available, more data in different regions and episodes are needed to im-507 

prove both estimation of VOC emissions (Zhang and Ying, 2011) and model predictions of SOA.  508 

Model grid resolution also contributes to the bias in predictions. The emissions are instantly 509 
mixed into 36 × 36 km2 grids after being released from sources. Some of the monitoring stations 510 
are located in urban areas near emission sources, such as traffic and industrial facilities, which 511 
could imply negative prediction biases when compared with modeled concentrations which rep-512 
resent average concentrations in a grid cell. Higher resolution modeling studies are believed to 513 
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more accurately capture the concentrations and to reveal finer scale spatial distribution of pollu-514 
tants (Fountoukis et al., 2013; Gan et al., 2016; Joe et al., 2014; Stroud et al., 2011). The grid di-515 
lution effect theoretically has larger impact on CO and SO2 than on O3 and PM2.5, because O3 516 
and secondary PM2.5 components are often formed regionally and consequently have a more uni-517 

form spatial distribution.  518 

5. Conclusion 519 

In this study, O3 and PM2.5 in China during the entire year of 2013 is simulated using an updated 520 

WRF/CMAQ model system and anthropogenic emissions from MEIC. The WRF model predicts 521 
reasonable meteorological inputs for the CMAQ model. The comparison of predicted and ob-522 
served hourly O3, peak hour O3, and daily and monthly averaged PM2.5 at 60 cities shows that the 523 

current model can successfully reproduces the O3 and PM2.5 concentrations at most cities for 524 
most months of the year. Over-prediction of O3 occurs at low concentration range in winter while 525 
under-prediction of PM2.5 happens at low concentration range in summer. Spatially, the model 526 

has better performance in NE, NCP, Central YRD and SCB but significant under-prediction bi-527 
ases exist for the cities in the NW region. Strong seasonal variations of PM2.5 exist and wind 528 

speed and direction play important roles in high PM2.5 events. Secondary components have more 529 
boarder distribution than primary components. Contributions of secondary PM components in-530 
crease during high PM events in a number of urban areas, suggesting that secondary PM for-531 

mation rates are enhanced more than the accumulation rate of primary pollutants. Overall, SO4
2-, 532 

NO3
-, NH4

+ and POA are the most important PM2.5 components. All components have the high-533 

est concentrations in winter except SOA. NCP, CEN and SCB have more severe PM2.5 levels 534 
than YRD and PRD.  535 

This study reports the detailed model performance of O3 and PM2.5 in China for an entire year 536 
with the public available observations nationwide in China. Although much needs to be done to 537 
improve the model performance, this study shows the capability of the model with MEIC emis-538 

sion in reproducing severe air pollution. The concentrations of O3, PM2.5 total mass and its chem-539 
ical components from this study will be used in future studies to understand formation mecha-540 

nisms of severe air pollution episodes, investigate the effectiveness of emission control strategies, 541 
and estimate human exposure to multiple pollutants for assessing health burden of air pollution 542 
in China. 543 
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Table 1. Meteorology performance in all the months in 2013 (OBS, mean observation; PRE, 698 
mean prediction; MB, mean bias; GE, gross error; and RMSE, root mean square error). The 699 
benchmarks are suggested by Emery et al. (2001) for the MM5 model in the East US with 4-700 
12km grid resolution. The values that do not meet the criteria are shaded. 701 

  
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Bench-

mark 

T2  

(K) 

OBS 267.3 270.4 277.5 282.7 289.3 293.9 297.0 297.1 292.1 286.0 278.1 272.8  

PRE 266.1 268.9 276.2 281.8 288.7 293.6 296.5 296.5 291.9 286.0 278.4 273.1  

MB 1.2 -1.4 -1.3 -0.8 -0.7 -0.3 -0.5 -0.6 -0.2 0.0 0.3 0.3 ≤ ±0.5 

GE 3.7 3.3 3.0 2.7 2.7 2.7 2.6 2.5 2.4 2.5 2.7 2.8 ≤ 2.0 

RMSE 4.7 4.5 4.0 3.6 3.5 3.6 3.5 3.3 3.2 3.3 3.5 3.8  

WS  

(ms-1) 

OBS 3.0 3.5 3.7 3.8 3.6 3.3 3.4 3.2 3.3 3.4 3.5 3.5  

PRE 3.2 4.8 4.8 4.8 4.4 3.8 4.0 3.8 4.0 4.4 4.6 4.7  

MB 0.2 1.3 1.1 1.0 0.7 0.5 0.6 0.5 0.7 1.0 1.1 1.2 ≤ ±0.5 

GE 1.3 2.0 1.9 1.9 1.7 1.53 1.6 1.5 1.6 1.7 1.9 1..9 ≤ 2.0 

RMSE 2.6 2.6 2.5 2.4 2.2 2.0 2.0 1.9 2.1 2.3 2.4 2.5 ≤ 2.0 

WD 

(°) 

OBS 187.5 212.0 205.0 202.4 187.3 171.2 187.0 190.6 174.8 183.0 216.0 216.4  

PRE 209.9 229.1 220.4 216.8 198.5 175.8 200.8 203.4 171.4 182.1 236.5 234.0  

MB 10.5 17.1 15.4 14.4 11.2 4.6 13.8 12.9 -3.4 -0.9 20.5 17.7 ≤ ±10 

GE 46.3 47.7 46.7 44.8 46.2 49.4 46.6 47.4 47.5 45.6 44.8 46.6 ≤ ±30 

RMSE 66.3 65.1 64.1 62.1 63.4 66.4 63.5 64.4 65.0 62.9 61.8 63.8  

RH  

(%) 

OBS 64.9 78.9 69.5 67.1 64.3 68.7 70.8 70.4 6938 71.7 72.2 75.3  

PRE 63.6 73.4 68.4 65.3 64.0 68.1 72.0 72.1 69.2 71.0 68.9 68.7  

MB -1.4 -5.6 -1.1 -1.8 -0.3 -0.5 1.2 1.7 -0.6 -0.7 -3.3 -6.5  

GE 19.2 14.1 15.4 14.9 14.5 13.4 13.5 13.0 12.6 13.5 14.1 14.8  

RMSE 21.2 18.3 19.4 18.9 18.6 17.4 17.3 16.6 16.3 17.4 18.4 19.8  
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Table 2. List of the cities in different regions with available observations. 703 

Region City list 

Northeast (4 cities) 1. Harbin, 2. Changchun, 3. Shenyang, 4. Dalian 

North China Plain 

(NCP) (14) 

5. Chengde, 6. Beijing, 7. Qinhuangdao, 8. Tangshan, 9. Langfang, 10. Tianjin, 

11. Baoding, 12. Cangzhou, 13. Shijiazhuang, 14. Hengshui, 15. Handan, 16. Ji-

nan, 17. Qingdao, 28. Huhehaote 

Yangtze River Delta 

(YRD) (20) 

21. Lianyungang, 22. Suqian, 23. Xuzhou, 24. Huai’an, 25. Taizhou, 26. Yang-

zhou, 27. Nanjing, 29. Nantong, 30. Suzhou, 31. Wuxi, 32. Shanghai, 33. Hu-

zhou, 34. Hangzhou, 35. Jiaxing, 36. Shaoxing, 37. Zhoushan, 38. Wenzhou, 39. 

Jinhua, 40. Quzhou, 41. Lishui 

Pearl River Delta 

(PRD) (3) 

46. Guangzhou, 47. Zhuhai, 60. Shenzhen 

Central China (6) 18. Taiyuan, 19. Zhengzhou, 20. Hefei, 43. Wuhan, 44. Nanchang, 45. Changsha 

Northwest (5) 54. Xi’an, 55. Yinchuan, 56. Lanzhou, 57. Xining, 58. Wulumuqi 

Sichuan basin (SCB) 

(2) 

52. Chongqing, 53. Chengdu 

Southwest+Other (6) 42. Fuzhou, 48. Haikou, 49. Nanning, 50. Kunming, 51. Guiyang, 59. Lasa 
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Table 3. Model performance on O3-1h, O3-8h, PM2.5, PM10, CO, NO2, and SO2 in March to De-705 

cember 2013 (OBS, mean observation; PRE, mean prediction; MFB, mean fractional bias; MFE, 706 

mean fractional error; MNB, mean normalized bias; MNE, mean normalized error). The perfor-707 

mance criteria for PM2.5 are suggested by EPA (2007), and the performance criteria for O3 are 708 

suggested by EPA (2005). The values that do not meet the criteria are shaded. 709 

  
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Criteria 

O3-1h 

(ppb) 

OBS 53.96 57.73 65.37 67.72 65.7 68.3 60.73 57.97 49.18 46.53 
 

PRE 58.09 61.76 66.91 67.82 63.23 66.47 59.5 54.92 45.66 42.09 
 

MFB 0.08 0.09 0.05 0.01 -0.01 -0.01 0.01 -0.03 -0.05 -0.09 
 

MFE 0.29 0.27 0.25 0.3 0.29 0.28 0.27 0.26 0.27 0.32 
 

MNB 0.16 0.17 0.11 0.1 0.06 0.06 0.07 0.03 0.01 -0.01 ≤ ±0.15 

MNE 0.34 0.32 0.28 0.33 0.31 0.3 0.29 0.26 0.26 0.28 ≤ 0.3 

O3-8h 

(ppb) 

OBS 50.4 47.44 52.59 54.36 51.79 54.03 48.63 48.03 40.31 38.92  

PRE 48.81 51.49 57.86 59.58 54.05 58.07 50.64 48.48 40.6 40.7  

MFB -0.05 0.07 0.1 0.08 0.03 0.06 0.04 0.01 -0.01 0.01  

MFE 0.29 0.24 0.24 0.28 0.26 0.26 0.25 0.24 0.25 0.27  

MNB 0.03 0.13 0.16 0.16 0.09 0.12 0.1 0.06 0.03 0.07 ≤ ±0.15 

MNE 0.29 0.28 0.28 0.32 0.28 0.29 0.27 0.25 0.24 0.27 ≤ 0.3 

PM2.5 

(µg m-3) 

OBS 81.68 62.07 60.12 60.83 45.52 47.1 56.08 85.69 88.93 123.73  

PRE 66.12 43.24 39.28 41.6 31.31 39.07 52.24 56.09 80.21 126.83  

MFB -0.24 -0.4 -0.47 -0.41 -0.48 -0.31 -0.21 -0.42 -0.17 -0.07 ≤ ±0.6 

MFE 0.59 0.63 0.68 0.69 0.72 0.65 0.62 0.64 0.6 0.59 ≤ 0.75 

MNB 0.04 -0.16 -0.19 -0.09 -0.17 -0.01 0.11 -0.16 0.17 0.3  

MNE 0.61 0.54 0.58 0.63 0.63 0.64 0.68 0.56 0.7 0.75  

PM10 

(µg m-3) 

OBS 151.39 121.56 111.90 96.95 79.90 85.04 98.27 136.02 150.27 178.78  

PRE 74.72 52.48 45.37 46.58 35.59 44.63 57.53 65.12 90.22 136.26  

MFB -0.59 -0.73 -0.79 -0.68 -0.78 -0.65 -0.54 -0.65 -0.48 -0.34  

MFE 0.74 0.83 0.89 0.82 0.88 0.79 0.73 0.77 0.72 0.63  

MNB -0.31 -0.43 -0.45 -0.35 -0.44 -0.35 -0.24 -0.36 -0.16 -0.04  

MNE 0.56 0.58 0.62 0.62 0.63 0.59 0.60 0.59 0.64 0.62  

CO 

(ppm) 

OBS 1.17 0.94 0.86 0.8 0.73 0.75 0.85 1.09 1.16 1.48 
 

PRE 0.37 0.26 0.25 0.26 0.23 0.25 0.29 0.31 0.41 0.59 
 

MFB -0.89 -0.97 -0.97 -0.91 -0.95 -0.92 -0.9 -0.98 -0.88 -0.8 
 

MFE 0.95 1.01 1 0.95 0.99 0.96 0.95 1.02 0.92 0.86 
 

MNB -0.54 -0.6 -0.6 -0.56 -0.58 -0.56 -0.56 -0.61 -0.54 -0.49 
 

MNE 0.63 0.65 0.65 0.63 0.64 0.63 0.63 0.66 0.62 0.59 
 

NO2 

(ppb) 

 

OBS 23.33 21.26 19.83 18.11 16.34 16.5 19.74 24.82 27.41 31.41 
 

PRE 10.11 8.87 8.51 8.74 8.12 8.77 10.45 11.85 13.45 13.87 
 

MFB -0.83 -0.88 -0.86 -0.79 -0.79 -0.73 -0.71 -0.76 -0.7 -0.77 
 

MFE 0.94 0.99 0.99 0.95 0.95 0.91 0.89 0.91 0.85 0.87 
 

MNB -0.45 -0.48 -0.46 -0.4 -0.4 -0.35 -0.35 -0.39 -0.37 -0.44 
 

MNE 0.65 0.67 0.68 0.68 0.68 0.67 0.66 0.65 0.62 0.61 
 

SO2 

(ppb) 

OBS 19.1 15.8 15.25 12.93 12.32 12.96 13.24 15.53 21.74 27.88 
 

PRE 11.64 8.87 8.31 8.61 7.09 8.88 11.94 14.25 17.91 23.32 
 

MFB -0.61 -0.66 -0.68 -0.59 -0.73 -0.56 -0.39 -0.29 -0.31 -0.32 
 

MFE 0.89 0.9 0.91 0.89 0.98 0.89 0.84 0.78 0.82 0.83 
 

MNB -0.14 -0.23 -0.23 -0.11 -0.22 -0.08 0.23 0.25 0.29 0.31 
 

MNE 0.79 0.74 0.76 0.8 0.81 0.82 1 0.95 1.01 1.03 
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Table 4. Model performance on O3-1h, O3-8h, PM2.5, PM10, CO, NO2, and SO2 in different re-711 

gions during March to December, 2013. The values that do not meet the criteria are shaded. 712 

  
NCP YRD PRD SCB NE CEN NW Other 

O3-1h 

(ppb) 

OBS 65.18 63.84 65.7 67.85 53.37 63.1 54.5 54.21 

PRE 65.84 59.02 56.6 71.36 57.9 62.79 60.5 55.37 

MFB 0.03 -0.07 -0.13 0.08 0.09 0.03 0.14 0.05 

MFE 0.27 0.27 0.3 0.31 0.24 0.31 0.28 0.28 

MNB 0.1 -0.01 -0.06 0.18 0.14 0.12 0.22 0.13 

MNE 0.3 0.26 0.29 0.36 0.27 0.34 0.33 0.3 

O3-8h 

(ppb) 

OBS 53.38 52.96 51.25 53.48 46.73 49.88 44.26 45 

PRE 57.51 51.72 46.13 59.04 52.18 54.33 52.67 49.94 

MFB 0.06 -0.03 -0.11 0.1 0.1 0.08 0.18 0.1 

MFE 0.26 0.26 0.26 0.26 0.23 0.26 0.28 0.24 

MNB 0.13 0.02 -0.06 0.17 0.15 0.15 0.25 0.16 

MNE 0.3 0.26 0.24 0.3 0.26 0.3 0.33 0.28 

PM2.5 

(µg m-3) 

OBS 90.85 65.55 49.28 65.61 60.93 77.74 70.13 42.7 

PRE 65.5 55.55 29.19 78.83 48.57 74.95 33.84 33.55 

MFB -0.33 -0.27 -0.56 0.05 -0.26 -0.16 -0.75 -0.53 

MFE 0.64 0.57 0.68 0.57 0.62 0.57 0.88 0.77 

MNB -0.01 -0.04 -0.33 0.47 0.03 0.15 -0.39 -0.2 

MNE 0.65 0.54 0.52 0.84 0.63 0.66 0.65 0.63 

PM10 

(µg m-3) 

OBS 164.80 104.94 69.85 104.79 99.08 122.64 143.95 68.67 

PRE 73.69 63.47 34.20 86.70 52.80 80.44 44.25 35.63 

MFB -0.71 -0.55 -0.69 -0.25 -0.62 -0.49 -0.98 -0.76 

MFE 0.84 0.70 0.77 0.62 0.78 0.70 1.05 0.87 

MNB -0.37 -0.30 -0.43 0.07 -0.32 -0.20 -0.56 -0.42 

MNE 0.63 0.54 0.55 0.68 0.60 0.60 0.69 0.62 

CO 

(ppm) 

OBS 1.22 0.8 0.81 0.82 0.79 1.11 1.13 0.75 

PRE 0.37 0.29 0.22 0.41 0.25 0.4 0.23 0.22 

MFB -0.89 -0.86 -1.11 -0.62 -0.93 -0.87 -1.21 -1.04 

MFE 0.95 0.9 1.12 0.71 0.96 0.93 1.22 1.07 

MNB -0.54 -0.55 -0.69 -0.39 -0.58 -0.52 -0.72 -0.63 

MNE 0.63 0.6 0.7 0.52 0.63 0.62 0.74 0.68 

NO2 

(ppb) 

OBS 24.28 21.42 23.12 21.2 21.09 21.01 22.23 16.2 

PRE 11.26 11.77 10.71 12.53 6.37 12.03 8.4 4.29 

MFB -0.72 -0.65 -0.7 -0.56 -1.09 -0.62 -0.95 -1.24 

MFE 0.85 0.83 0.83 0.78 1.15 0.83 1.05 1.28 

MNB -0.39 -0.31 -0.39 -0.24 -0.61 -0.27 -0.52 -0.7 

MNE 0.62 0.63 0.6 0.62 0.73 0.66 0.69 0.75 

SO2 

(ppb) 

OBS 22.31 14.07 10.41 12.83 21.06 17.26 16.66 11.81 

PRE 12.24 8.66 8.07 25.77 5.13 18.55 11.58 10.28 

MFB -0.57 -0.62 -0.45 0.34 -1.14 -0.24 -0.6 -0.63 

MFE 0.8 0.87 0.77 0.73 1.21 0.8 0.95 1 

MNB -0.21 -0.22 -0.1 1.5 -0.61 0.46 -0.07 -0.02 

MNE 0.66 0.71 0.69 1.78 0.76 1.13 0.86 0.94 
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 713 

 714 
 715 

Figure 1. Model domain. The axes are the number of grid cells. Blue filled circles show the loca-716 

tions of cities with air quality observations (see Table 2). The purple dots show the locations of 717 
meteorological stations. The figure also shows the regions discussed in the text for better under-718 

standing. NCP represents North China Plain, YRD represents Yangtze River Delta, and PRD 719 
represents Pearl River Delta.  720 
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 722 
Figure 2. Comparison of monthly averaged diurnal variations of O3 concentrations from March to De-723 

cember, 2013. Pred. are the values predicted at the grid cell each city center located while Best are the 724 

values predicted closest to the observations within 3 by 3 grid cell regions that surround the observation. 725 

Units are ppb.   726 
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 727 

Figure 2. Comparison of predicted and observed O3-1h and O3-8h concentrations at Beijing, Shanghai, 728 

Guangzhou, Xi’an, Shenyang, and Chongqing. Grey areas represent ranges in model predictions within 729 

3x3 grid cells surrounding the observation Units are ppb.  730 
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 731 
Figure 4. Comparison of predicted (in column) and observed (in circle) monthly averaged PM2.5 concen-732 

trations for March to December, 2013. The “Best” lines (in “+”) represent predictions closest to the hour-733 

ly observations within a 3×3 grid cell region with the grid cell where the monitoring sites are located at 734 

the center. Units are µg m-3.  735 
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 736 

 737 
Figure 5. Seasonal variations of predicted regional distribution of O3-1h and O3-8h. Units are ppb.  738 
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 739 
Figure 6. Seasonal variation of predicted PM2.5 and wind vectors: (a) spring, (b) summer, (c) fall, 740 
and (d) winter. Units are µg m-3.741 
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742 
Figure 7. Seasonal variations of predicted PM2.5 components. Units are µg m-3.  743 
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 744 
Figure 8 Deviation of winter nitrate (NO3

-), sulfate (SO4
2-), ammonium ion (NH4

+) and primary 745 
organic aerosol (POA) from annual average, as calculated by (W-A)/A, where W and A are win-746 

ter and annual concentrations, respectively.  747 
 748 
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 749 
Figure 9. Contributions of different components to monthly averaged PM2.5 concentrations at 750 
selected cities in China. White circles are absolute concentrations according to right y-axis with 751 

unit of µg m-3. 752 
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 753 
Figure 10. Comparison of PM2.5 components at episode days (Ep, >=75 µg m-3) and non-episode 754 
days (non-EP, <75 µg m-3). White circles are absolute concentrations according to right y-axis 755 

with unit of µg m-3. Note Xi’an does not have episode days in summer. 756 


