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Response to Comments from RC1  

We appreciate the time and efforts by the editors and referees in reviewing this manuscript. We 

have addressed each of the concerns indicated in the review reports. Please see the one-to-one 

response (in blue) following the comments from the reviewer RC1. We believed that the revised 

version meets the journal publication requirements.  

 

General Comments  

‘The paper of Feng et al. entitled ‘LA Megacity: a high-resolution land-atmosphere modelling 

system for urban CO2 emissions’ compares different model resolutions and emission maps to 

identify optimal configurations for simulating CO2 fields over a megacity. Although this concept 

of comparing different models or model configurations is not new, urban air quality poses some 

additional challenges that the authors try to address in this paper. Additionally, they pay attention 

to monitoring requirements and their new network design methodology can certainly prove 

useful, also to estimate footprints. However, I believe the authors could stress more the 

importance and novelty of their study in the context of recent studies, as the summary of current 

literature lacks an overview of knowledge gaps/remaining challenges and how their study fits 

into this (except for the paragraph about studies that focused on LA). Other than that I thank the 

authors for their very nice work.  

 

Specific comments  

Why have the authors decided to use one-way nesting? What would be the advantage compared to 

two-way nesting and what are the consequences?  

One-way nesting allows the parent and the nest to exchange information strictly downscale. In this 

way, the nest solution does not feed back to the parent solution. Two-way nesting allows the 

information exchange bi-directionally. The nesting feedback impacts the parent domain’s 

solution.  This study evaluates the impact of the model physics and grid spacing on the model 

performance. In this case, one-way nesting is preferable to two-way nesting by which the 4-km 

model results will just be the smoothed 1.3-km model results.  
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The authors have chosen to simulate a two-month period per day, rather than doing the whole 

period in one simulation. This requires reinitialisation of the concentration fields for each day. 

How do the authors ensure conservation of mass between the simulations? Could you show that 

this reinitialisation has no impact on the simulated mass fractions?  

Reinitialisation is commonly used in weather forecasts and regional modelling methods to prevent 

simulation drifting too much away from the truth. Running simulations for one-month long 

without reinitialisation is not proper. However, one should notice that the re-initialisation was 

only applied to modelled meteorology. The CO2 fields were carried over from cycle to cycle 

without any re-initialization. The CO2 mass therefore was conserved for the entire simulation.  

 

Could the authors clearly specify whether the temporal variations for both emission product are 

equal? If not, how do they differ and what would be the consequence for the comparison of the 

products?  

Both emission products were developed using “bottom-up” methods. Vulcan quantifies FFCO2 

emissions for the entire contiguous United States (CONUS) hourly at approximately 10-km 

spatial resolution for the year of 2002. The temporal variations are driven by a combination of 

modeled activity (building energy modeling) and monitoring (power plant emissions). Hestia-LA 

is a fossil fuel CO2 emissions data product specific in space and time to individual buildings, 

road segments, and point sources covering the Los Angeles megacity domain for the years of 

2011 and 2012. Hestia-LA uses much of the same information for the temporal variations except 

for the onroad emissions, for which local traffic data is employed as opposed to regional traffic 

data. Given the similarities, it is unlikely that the small difference in temporal variation could 

account for the spatial differences, through covariation with atmospheric transport, found here. 

Given the limited in-situ GHG measurements that were available for CalNex, we mainly focused on 

the CO2 concentration spatial differences over the LA basin caused by the different emission 

products used. One of the main conclusions of this study is that, driven by the high-resolution 

emission data product, i.e. Hestia, the model can reproduce the plumes from the point sources. 

On the other hand, the Vulcan run shows a more smeared-out CO2 distribution over the LA 

basin (Figure 9b vs. Figure 9c).  



	 3	

 

The authors state that for the MYNN_UCM configuration the PBL height is better represented for 

d03 than for d02 and that this is also reflected by other configurations. However, it appears from 

figure 4 that for some configurations d02 is actually better during the afternoon. This requires 

some reflection in the text.  

Thanks for the suggestions. The text has been modified for reflecting this concern (Page 13 Line 30).  

 

Are the biases shown in Figure 6 for the whole period, including night time?  

Figure 6 shows the statics over daytime only. The clarification has been added in the figure caption 

in the revised paper. Thanks for the comments.  

If so, how do the authors reach the conclusion that the dryness in the model causes a lower PBL 

height (Figure 4) in the afternoon, while the PBL height is actually higher a bit earlier during the 

day? I would like to see a clear explanation for this, as generally I would think that dryness 

would cause a higher PBL height.  

Yes, dryness usually leads to the higher PBL height. Thanks for pointing out this error.  The model 

overall dry the LA basin but with some exceptions, such as Pasadena area where the ceilometer 

was deployed, where the model actually moisteners the air. The moistness is consistent with the 

lower PBL the model simulated in Pasadena.  

 

Page 15, ln. 23-24: ’However, during daytime, with well-mixed conditions, the discrepancy 

between the WRF-Hestia and WRF-Vulcan runs becomes smaller.’; and similarly: Page 16, ln. 

15-17: ’For the same reason, we show that FFCO2 emissions do not play a dominant role around 

1400 PST unless there are strong local signals...’. This is an interesting note. Usually, well-mixed 

daytime concentrations are sampled for inverse modelling, as these conditions are usually better 

represented by models. That leads to the question how well we could estimate posterior fluxes if 

a 40% increase in FFCO2 emissions only leads to an increase of less than 1% in the total CO2 

concentration (which is a rough estimate from your Figure 8 at 1400 PST using both 1.3 km 

simulations). Could the authors digress a bit on the consequences of this note for inverse 

modelling?  
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True. Well-mixed daytime concentrations are sampled for inverse modelling, as these conditions are 

usually better represented by models. However, it should be borne in mind that removing the 

upwind background value is required in atmospheric inversion (Lauvaux et al., 2012); only 

ΔCO2 is used in atmospheric inversion, not total CO2 concentration (CO2tot). How to derive 

ΔCO2, or, say, determine the background CO2 (CO2bkg), from the interested location remains 

challenges (e.g., Turnbull et al., 2015; Schuh et al., 2010). One of the common ways is 

subtracting the upwind CO2 from the downwind location. Figure 8 shows the diurnal variation of 

CO2tot. Roughly, if we consider CO2 concentration at the PV site as CO2bkg (396 ppm for 1.3-

km WRF-Hestia and 397 pm for 1.3-km WRF-Vulcan), with 408 ppm and 405 ppm of CO2tot at 

Pasadena, ΔCO2 for Pasadena is 12 ppm and 8 ppm for 1.3-km WRF-Hestia and 1.3-km WRF-

Vulcan, respectively. In this case, the increase of FFCO2 (mixing ratio) for 1.3-km WRF-Hestia 

vs. 1. .3-km WRF-Vulcan is about 50%, which is close to your estimation.  

 

Section 5 introduces a new network design method. Although mentioned before that this would be 

discussed, I would like to see a few sentences discussing the need for such new method and the 

limitations of other methods. Currently, this is only briefly mentioned in the discussion. Could 

the authors also make a recommendation on which method would be most suitable for future use?  

Thank you for your suggestions. We have added more sentences discussing the need and limitation 

of the correlation method in section 6. See Page 25 Line 8-18.   

The new method assesses the correlation of “observed CO2” with the neighbouring CO2 

concentration based on the forward model simulation. First of all, this method is computationally 

economical relative to the footprint method. Secondly, the method doesn’t require adjoint models, 

which can avoid the complexity. Most importantly, it brings extreme flexibility without 

complexity for various platforms (i.e., in-situ, satellite, etc.) and especially outpaces the analysis 

for the dense sampling techniques, such as remote sensing dataset. Applying the footprint 

methods to satellite data at the regional scale modelling is extremely computationally time-

consuming and complex.  

However, as mentioned in the text, both transport and emissions play a role in the correlation 

method. The footprint method, in contrast, indicates the influence of the atmospheric transport to 
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the location of the observation only. Hence, the correlation method is subject to overestimation 

of the influence area versus the footprint method, due to the complicated nature of the 

atmospheric integrator.  

 

Technical corrections  

In Section 3.1 the authors list five criteria for profile selection. The difference between point 4 and 5 

should be made more clear.  

These two criteria have been merged. See Page 12 Line 18. Thanks! 

 

In Section 3.4, the third paragraph, the authors mention the temperature difference between Granada 

Hills and downtown LA in F. I would suggest to use Kelvin to make comparison with the other 

temperature results in Kelvin easier.  

Changed. See Page 16 Line 4. 

 

In Section 5, please mention clearly whether you used any data selection or that all data was 

included for the correlation maps.  

There are no data used in Section 5. See Page 21 Line 21 for clarification.  

 

The discussion now starts with new results based on flask samples of radiocarbon. Please move this 

to the results section. Also I would suggest to introduce the use of radiocarbon earlier, as this not 

mentioned previously in the paper.  

The comparison with the flask samples and the introduction of radiocarbon have been moved to 

section 3.6 following the comparison to in-situ measured total CO2.  Thanks! 

 

Reference: 

Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., 

Diaz, L. I., Martins, D., Shepson, P. B., and Davis, K. J.: Constraining the CO2 budget of the 
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corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system, Atmos. 

Chem. Phys., 12, 337-354, 10.5194/acp-12-337-2012, 2012. 

Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A. E., 

and Worthy, D. E. J.: A regional high-resolution carbon flux inversion of North America for 

2004, Biogeosciences, 7, 1625-1644, 10.5194/bg-7-1625-2010, 2010. 

Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., 

Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., 

Patarasuk, R., and Razlivanov, I.: Toward quantification and source sector identification of 

fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment, Journal 

of Geophysical Research: Atmospheres, 120, 2014JD022555, 10.1002/2014JD022555, 2015. 
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Response to Comments from RC2  

We appreciate the time and efforts by the editors and referees in reviewing this manuscript. We 

have addressed each of the concerns indicated in the review reports. Please see the one-to-one 

response (in blue) following the comments from the reviewer RC2. We believe that the revised 

version meets the journal publication requirements.  

 

Overview: The manuscript presents simulated carbon dioxide fields for 2 months centered over Los 

Angeles. The work demonstrates and tests the ability of a high-resolution meso-scale model to 

reproduce observed meteorological and carbon dioxide dynamics, with a focus on urban areas, 

LA in particular. The paper presents a valuable modelling approach in order to understand the 

temporal and spatial variability of weather variables and CO2 mixing ratio in urban and 

background sites. This work is appropriately placed in ACP, and contributes to the burgeoning 

area of studying carbon emissions from urban areas. I have some general and specific concerns 

delineated below, that need to be addressed before its publication.  

 

General Comments: Overall things look quite nice and interesting, but I have a couple of 

reservations that require more explanation and must be addressed. There needs to be better 

presentation of modelled vs observed fields in terms of table of scores and 1:1 plots. As currently 

presented, it is difficult to assess model performance. The second point is that discussions on the 

physical reasons why a parametrized scheme is better, or on the performance of the modelling, 

are missing. The last parts that study correlations of the simulated CO2 fields with GHG 

measurements is interesting, and well oriented to further inverse modelling studies. I do not have 

specific remarks on this part.  

 

1) CO2 initial and boundary condition. This is only briefly touched upon in section 2.1, and it is 

unclear. From what I understand the model is initialized and coupled with CO2 concentrations 

coming from observations. The simulations run for 36h. Do you use the predicted CO2 field 

from the end of the previous day to start the following day ? Or do you only use CO2 

observations at the beginning of each run ? In the 2nd case, what is the spin-up time ? Is there a 

significant horizontal and vertical variability in the CO2 observations ? What impact do varying 

boundary condition choices make on simulations? We know that in regional studies boundary 
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conditions play a tremendously important role (Lauvaux et al. TELLUS 2012). The authors 

must better described what they’ve done for boundary conditions, and make quantitative 

assessments of impacts of boundary condition choices on simulations. �  

 

We initialized CO2 fields from the NOAA curtain dataset at the beginning of the first cycle.  The 

simulation runs for 36 hour for each cycle with 12-hour setback for spin-up. For each cycle, only 

the meteorology is re-initialized; CO2 fields are carried over from the last cycle.  For instance, 

the first simulation cycle is 00 UTC 15 May to 12 UTC 16 May 2010, and the second cycle is 00 

UTC 16 May to 12 UTC 17 May 2010. The initial conditions for 00 UTC 15 May include NARR, 

NCEP SST and NOAA curtain (CO2). The initial conditions for 00 UTC 16 May include NARR, 

NCEP SST and WRF-modelled CO2 on 00 UTC 16 May from the previous cycle. Briefly, we did 

not re-initialize CO2 for each cycle to assure mass conservation over the model domain. The 

clarification for CO2 IC and BC has been added in the revised paper (see Page 11 Line 27-29). 

We agree that the boundary conditions (BCs) are critical for the CO2 simulations. In this study, we 

found there is no significant horizontal and vertical variability in the NOAA curtain dataset; 

semi-constant BC was used.  We have also applied CO2 modelled by GEOS-Chem BC for our 

region of interest, which introduced ~+10 ppm model-data mismatch in the WRF model results. 

This is similar to the findings by (Lauvaux et al., 2012), who found the model-data mismatch 

was more than 20 ppm in summer over the corn belt area. It also reflects the challenges in 

determining CO2 background values for regional scale simulations. We therefore end up with 

using semi-constant values (“NOAA Curtain”) as the model BC in the paper. The NOAA 

Curtain dataset mainly represents oceanic clean air. In May – June, west to southwest clean 

marine flow prevails over the Los Angeles Megacity. Using a semi-constant dataset is fairly 

close to the reality, introducing lower errors to the regional, modelled CO2 relative to global 

models, such as GEOS-Chem.  However, during October to March, Santa Ana wind events occur 

frequently, during which easterly to north-easterly winds predominate over the LA basin, and the 

oceanic air is polluted. In this case, using constant values is no longer feasible.  

 

2) As a large part of the simulated domains is on the sea, and as LA is largely influenced by 

maritime air masses, is it not a problem to ignore ocean fluxes ? Classically, oceanic CO2 

fluxes are parameterised following Takahashi et al. (1997). A sensitivity test with ocean 
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parametrized fluxes would be appreciated. �  

The LA megacity is one of the top three fossil fuel emitters in the U.S. Roughly estimated from 

Hestia at the Pasadena site, the order of fossil fuel emission is about 10-20 umol/m2/s. The 

typical oceanic CO2 flux -0.15 umol/m2/s (Torres et al., 2011), 0.2 umol/m2/s (Mu et al., 2014), 

represents only 1-2% of FFCO2 fluxes and even less compared to CO2tot. Because of that, we 

have ignored the oceanic CO2 signal for simplicity in this study. Yet we do agree that a 

sensitivity test with oceanic flux would be interesting and should be included in future work. 

This explanation has been added to the revised paper. See Page 11 Line 18-23. 

 

3) One objective of the paper is to assess the PBL schemes, but they are not physically described 

and the differences between the schemes are not presented . Therefore the conclusions are only 

limited to WRF technical configuration and physical aspects are not addressed. The 3 PBL 

schemes have to be described properly (closure, mixing lengths ...) to highlight the differences. 

Then strengths and weaknesses of each scheme need to be highlighted relating to their 

characteristics. �  

In this study, we have selected three most commonly used TKE-driven PBL schemes for 

comparison, including MYJ, MYNN, and BouLac. MYJ (Janjić, 1994) determines the PBL from 

the TKE where the PBL top is defined as the height where the TKE profile decreases to the 

threshold of 0.2 m2s-2. MYNN2 (Nakanishi and Niino, 2006) is tuned to a database of large eddy 

simulations (LES) in order to overcome the typical biases associated with other MY-type 

schemes, such as insufficient growth of convective boundary layer and under-estimated TKE. 

Additionally, MYNN also considers sub-grid TKE terms, and it determines the PBL top as the 

height at which the TKE falls below 1.0 × 10− 6 m2 s− 2. BouLac (Bougeault and Lacarrere, 1989) 

has an option designed for use with BEP multi-layer and UCM.  It determines PBL top at which 

TKE reaches 0.005 m2 s− 2. They all are 1.5 order local closure schemes that only consider 

immediately adjacent vertical levels in the model, which may not fully account for deeper 

vertical mixing associated with larger eddies and associated countergradient flux correction 

terms and, thus, tends to prevent the PBL from mixing as deeply to produce cooler and moister 

conditions. On the contrary, the non-local closure schemes considering a deeper layer account 

for countergradient fluxes and, thus, generally represent deep PBL circulation better than local 

schemes. The PBL schemes were reviewed by Cohen et al. (2015).  
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The main reason that we focus on the TKE-driven PBL schemes only is that the explicitly estimated 

turbulence fluxes can be used to drive Lagrangian particle dispersion models to computer 

influence footprints for subsequent atmospheric inversions. Through the model evaluation, we 

aimed to determine an optimal model configuration for modelling urban CO2 over the LA 

megacity, and eventually to use the same system for synthesis analysis in future. In this study, 

we concluded that MYNN in combination with UCM is optimal for the LA modelling 

framework, which is consistent with the findings of Coniglio et al. (2013) who showed MYNN 

supports deep convection springtime.  

The strengths and weaknesses of each scheme with their characteristics have been added to the 

revised paper. See Page 9 Line 3-15. Thanks! 

 

4) In the same way, 2 urban surface schemes are tested without having presented their physical 

differences. The scientific interest is therefore limited. We need to know the scientific reasons 

why UCM seems better. �  

 

UCM is a single-layer urban canopy model, representing urban geometry and 3-D urban surfaces 

such as walls, roofs and roads. Furthermore, the sensible heat fluxes from the surface are 

calculated with Monin-Obukhov similarity theory and Jurges formula. The important factor of 

anthropogenic heat (AH) and its diurnal profiles are included and added to the sensible heat flux 

from the street canyon (Chen et al., 2011). BEP allows a direct interaction between the buildings 

and the PBL. BEP considers the 3-D urban surface and the vertical distribute source of buildings 

and momentum sinks throughout the whole canopy layer. The effects of vertical and horizontal 

surfaces on momentum, TKE and potential temperature are included. However, BEP requires 

very high vertical resolution within the PBL and is only compatible with MYJ and BouLac PBL 

schemes. Given that BEP is computationally expensive, we only test it with BouLac in this study. 

The scientific reasons to explain the urban schemes’ characteristics have been added to the revised 

paper. See Page 14 Line 9-12. Thanks! 

 

5) In the comparison to aircraft PBL height, the method to determine PBL height is based on the 

vertical virtual potential temperature gradient. Among the existing methods to determine this 

parameter (Ri number, parcel method ...), none is perfect. What is the impact of the choice of the 
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method on the results ?  

We have used the vertical virtual potential temperature gradient and Ri number methods to determine 

PBL top (see Figures R1 and R2 below).  Compared to the vertical virtual potential temperature 

gradient method, the Ri method shows larger bias in the modelled PBL top, deeper for daytime, 

shallower for nighttime, but the overall conclusion remains the same in terms of model inter-

comparison, namely MYNN_UCM shows better agreement with ceilometer measured PBL height. 

We therefore show only the vertical virtual potential temperature gradient determined PBL in the 

text.   

 

 

 
 

Figure R1. Absolute difference between the aircraft-determined and modelled PBL height for 

each profile (flt_yyyymmdd, blue bars) using virtual potential temperature gradient (top) and 

Richardson number (bottom). The pink bars in the last column represent the averaged bias over 

all of the profiles for each configuration. Note that the shorter the bar is, the better agreement the 

model has with the observations.  
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Figure R2. Average diurnal variation of the ceilometer-measured (obs) and modelled PBL 

heights at California Institute of Technology (Caltech) in Pasadena, CA during 15 May through 

15 June 2010. Error bars indicate one standard deviations. Upper: the vertical virtual potential 

temperature (!v) gradient determined PBL. Lower: the Ri number determined PBL. Note that the 

ceilometer-measured PBL top (black solid line) is the same in these two panels.  

 

For the 3 PBL schemes, biases on PBL heights are significant : errors of 160m in PBL height are 

not small by any measure. You can see for instance Riette and Lac (2016) for evaluation of PBL 

height over 1 year with an operation NWP model, with more satisfying values. Qualitative 

statements should be toned down. What is the error standard deviation? Figure 3 is not appropriate 

as only biases are represented without standard deviation, and without length scale. How do you 

also explain that biases are smaller at 4km than at 1.3km, and that the results are different than the 

comparison to ceilometer?  
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Please note that Figure 3 (in the manuscript) and Figure R1 (in the response) show the absolute 

difference between the observation and model for each aircraft profile we selected, so the error of 

160 m in PBL height is the mean over seven aircraft profiles only (small sample). We did not intend 

to make any specific conclusion based on seven profiles. The take-home message of Figure 3 is that 

the differences between the modelled and aircraft-determined PBL height differ case by case, and 

none of the model physics options is systematically better than the others. To further define the 

optimal physics for the PBL height simulation, we presented the all-hours statistics with the 

ceilometer data in section 3.2 and Figure 4.  

Given the relative large number of the ceilometer measurements, similar model evaluation (Table R1) 

to that of Riette and Lac (2016) has been done and been added to the revised paper (Table 3). 

Compared to the values evaluated by Riette and Lac (2016), -9.17 m for bias and 115 m for RMSE 

(PMMC09), the scores of MYNN_UCM fall in a comparable range.  

 

Table R1. Comparison Statistics of model performance relative to the  ceilometer data over 

1100 – 1700 PST (unit: m AGL) 

 Mean Bias Standard deviation  RMSE 

OBS 835.7 - 223.8 - 

MYNN_UCM_d03  828.8 -6.9 82.7 89.7 

MYNN_UCM_d02  820.4 -15.3 66.1 94.5 

MYNN_d03 1055.6 219.9 205.8 278.2 

MYNN_d02 1029.4 193.7 200.0 254.3 

MYJ_UCM_d03 961.4 125.8 154.9 168.8 

MYJ_UCM_d02 971.4 135.7 109.3 157.7 

MYJ_d03 1115.3 279.7 174.4 308.7 

MYJ_d02 1105.1 269.5 150.9 291.6 

BouLac_UCM_d03 936.1 100.5 147.3 149.9 

BouLac_UCM_d02 958.7 123.1 104.8 148.7 

BouLac_BEP_d03 1233.9 398.3 239.0 442.2 

BouLac_BEP_d02 1244.3 408.6 219.5 446.0 
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6)  Dynamics : why do you use one-way nested domains and not 2-way ?  

One-way nesting allows the parent and the nest to exchange information strictly downscale. In this 

way, the nest solution does not feed back to the parent solution. Two-way nesting allows the 

information exchange bi-directionally. The nesting feedback impacts the parent domain’s 

solution.  This study evaluates the impact of the model physics and grid spacing on the model 

performance. In our experiment, one-way nesting is preferable to two-way nesting for which the 

4-km model results will just be smoothed 1.3-km model results.  

 

Advection and temporal schemes should be specified in Table 1, with the time steps for the different 

resolutions. Page 7 line 16 : what is the height of the 1st level ? �  

5th and 3rd order differencing for horizontal and vertical advection respectively are used. 3rd order 

Runge-Kutta is used for time integration with 45, 24, and 5 s for outermost, middle, innermost 

domains, respectively. These specifications have been added to Table 1 in the revised paper. The 

first level of the model setup is about 8 m above ground level (see Page 8 Line 21). 

 

7) Comparison to radar wind profiler : what is the period of evaluation ? Is it 2 months ? Tables 

of scores for wind speed and duration would be useful and easier to read than scores included in 

the text.  

The evaluation was done over daytime for the entire one-month simulation. Our intent in this paper 

is to present the model errors varying with height. For this pupose a figure is preferable.  

 

Also, in Fig.5, if it is related to a 2 months period, it would be better to normalize the vertical 

coordinate by the PBL height. �  

 We appreciate your suggestion and will take it into account in future work.  

 

8) Comparison to NWS surface stations : all the stations are not represented on Fig.S1 and the 

domain is not the same. As a complement to Fig.6, a table with scores for MYNN_UCM is 

necessary, not only with biases but also with rmse. As a complement to Fig.6, it would be useful 

to provide two figures with the orography and the urban fraction for 1.3km resolution, and to 

discuss if the scores are related to orography, urban area... At 1.3km, what is the resolution of 

the orography database ? �  
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Figure S1 is a map  showing the location of all of the GHG measurement over the LA basin, which 

matches the triangles in Figure 1b, 6, 9a, 9b, and 12. Figure 1b shows the orography for the 1.3 

km domain. Figure S1 shows the orography as well, although the domain is not exactly the same 

as other figures. Usually to the locations of NWS station relative to the location of the GHG 

measurements (triangles), we estimated the relevant orography. We choose to keep the figures as 

in the original manuscript to avoid redundancy.  

We tried to explain the model bias with orography at the beginning, but could find no clear 

correlation. The RMSE maps below have been added to the revised paper (Figure 7).  

 

 
 

Figure R3. RMSE maps of the MYNN_UCM runs versus National Weather Stations (NWS) over 

the LA megacity (Model – NWS): (a1-a4) 4-km run; (b1 – b4) 1.3-km run.  Black triangles 

indicate the locations of the GHG measurement sites. 
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9) Comparison to in-situ CO2 : once again, a table of scores (bias and rmse) with the 4 

simulations, as a complement to Fig.7, is missing. �  

Thanks for the suggestion. We have added the two tables (Table 4 and 5) below as complements to 

Figure 7 in the revised paper.  

 

Table R2. Statistics of modelled CO2 (unit: ppm) with different configurations 

relative to in-situ CO2 between 1300 – 1700 PST 

 

Pasadena Palos Verdes 

 

bias RMSE bias RMSE 

1.3 km WRF-Hestia  8.91 18.43 2.57 17.00 

4 km WRF-Hestia 7.03 14.50 8.09 19.64 

1.3 km WRF-

Vulcan 1.20 11.10 5.03 10.62 

4 km WRF-Vulcan -1.38 9.13 4.20 9.40 

 

 

 

Table R3. Statistics of daily afternoon averaged modelled CO2 (unit: ppm) with 

different configurations relative to in-situ CO2
*  

 

Pasadena Palos Verdes 

 

bias RMSE bias RMSE 

1.3 km WRF-Hestia  -1.39 6.21 -0.75 4.71 

4 km WRF-Hestia 0.58 4.38 -1.77 4.59 

1.3 km WRF-

Vulcan -3.43 5.51 1.37 5.21 

4 km WRF-Vulcan -4.41 6.12 0.58 4.38 

*Averaged over 1300 – 1700 PST 

 

10) This study focuses only on two months of modelling and observations (May-June 2010). 

Conclusions thus must be quite limited, as one cannot extrapolate to generalized model 

performance from such a limited duration comparison, which could be particularly favourable or 
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unfavourable. The limited duration of model/observations must be presented, and its impact on 

conclusions should be discussed.  

The Los Angeles basin is surrounded to the north and east by mountain ranges with summits of 2-3 

km, with the ocean to the west and the desert to the north. From April to September, LA is in a 

warm, dry, and stable air mass. Alongshore steady wind flow predominates this area. In contrast, 

from October to March, moist onshore flows bring precipitation to LA.  

Details about LA climate can be found in the study of Conil and Hall (2006).  

The focus of this study is from the middle of May to the middle of June, which is representative of 

the dry season. We agree that the study based on a one-month simulation has its limitations. The 

model has to be evaluated and verified as the time period and spatial region of interest change.  

The limitation of this study has been added to the revised paper (see Page 26 Line 16-25).  

One element of this is discussing time/computation to simulate one-month, and whether the current 

model construct could be expected to run for years to compare w/ the observational record being 

recorded in LA & USA. 

This one-month high-resolution simulation with 288x288x50 grids and 5-s time steps has taken 

11520 CPU hours (45 hours x 256 processors) on NAS High performance supercomputer 

Pleiades.  See Page 26 Line 22-25. Using the same number of processors on Pleiades, a one-year 

simulation will take about 23 days to complete, which is still reasonable. It is, however, not 

practical for the large scale, i.e., the contiguous United States.  

 

Specific comments :  

P8 line 5 : It can be added that the coupling between mesoscale meteorological model and 

lagrangian particle model can be used in an operational framework to deal with accidental 

release (Lac et al., 2008).  

Added. See Page 9 Line 18-20. 

 

Table 1 : There could be probably a mistake for shortwave radiation scheme : does RRTMG deal 

with SW radiation ?  

The RRTMG shortwave scheme has been included in version 3.1 and above.  

 

Abstract : The acronym FFCO2 is used before being presented.  
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Thanks for catching this. The full name has been added in the revised paper.  
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Abstract 1 

Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The 2 

spatial extents of these large urban systems cover areas of 10,000 km2 or more with 3 

complex topography and changing landscapes. We present a high-resolution land-4 

atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) 5 

megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled 6 

to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric 7 

CO2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We 8 

evaluated multiple WRF configurations, selecting one that minimized errors in wind 9 

speed, wind direction, and boundary layer height as evaluated by its performance against 10 

meteorological data collected during the CalNex-LA campaign (May-June 2010). Our 11 

results show no significant difference between moderate- (4-km) and high- (1.3-km) 12 

resolution simulations when evaluated against surface meteorological data, but the high-13 

resolution configurations better resolved PBL heights and vertical gradients in the 14 

horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km 15 

resolution) and Hestia-LA (1.3-km resolution) fossil fuel CO2 emission products to 16 

evaluate the impact of the spatial resolution of the CO2 emission products and the 17 

meteorological transport model on the representation of spatiotemporal variability in 18 

simulated atmospheric CO2 concentrations. We find that high spatial resolution in the 19 

fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 20 

concentration variability across the LA megacity. Finally, we present a novel approach 21 

that employs simultaneous correlations of the simulated atmospheric CO2 fields to 22 

qualitatively evaluate the greenhouse gas measurement network over the LA megacity. 23 

Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual 24 

measurement sites when a statistically significant number of sites observe emissions from 25 

a specific source or location. We conclude that elevated atmospheric CO2 concentrations 26 

over the LA megacity are composed of multiple fine-scale plumes rather than a single 27 

homogenous urban dome. Furthermore, we conclude that FFCO2 emissions monitoring in 28 

the LA megacity requires FFCO2 emissions modelling with ~1 km resolution because  29 

coarser resolution emissions modelling tends to overestimate the observational 30 

constraints on the emissions estimates.  31 
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1 Introduction 1 

Carbon dioxide (CO2) is a major anthropogenic contributor to climate change. It has 2 

increased from its preindustrial (1750) level of 278 ± 2 ppm (Etheridge et al., 1996) to 3 

over 400 ppm in recent years, as reported by the National Oceanic and Atmospheric 4 

Administration (NOAA) and Scripps Institution of Oceanography [http://co2now.org/]. 5 

Clear evidence has shown that the continued increase of the atmospheric CO2 6 

concentration is dominated by global fossil fuel consumption during the same period 7 

(IPCC, 2013) and land use change (Houghton, 1999). 8 

Urban areas are significant sources of fossil fuel CO2 (FFCO2), representing more than 9 

50% of the world’s population and more than 70% of FFCO2 (UN, 2006). In particular, 10 

megacities (cities with urban populations greater than 10 million people) are major 11 

sources of anthropogenic emissions, with the world’s 35 megacities emitting more than 12 

20% of the global anthropogenic FFCO2, even though they only represent about 3% of 13 

the Earth’s land surface (IPCC, 2013). The proportion of emissions from megacities 14 

increases monotonically with the world population and urbanization (UN, 2006, 2010). 15 

Developed and developing megacities around the world are working together to pursue 16 

strategies to limit CO2 and other greenhouse gas (GHG) emissions (C40, 2012).  17 

Carbon fluxes can be estimated using “bottom-up” and “top-down” methods.  Typically, 18 

FFCO2 emissions are determined using “bottom-up” methods, by which fossil fuel usage 19 

from each source sector is convolved with the estimated carbon content of each fuel type 20 

to obtain FFCO2 emission estimates. Space-time resolved FFCO2 data sets using “bottom-21 

up” methods clearly reveal the fingerprint of human activity with the most intense 22 

emissions being clustered around urban centres and associated power plants (e.g., Gurney 23 

et al., 2009; Gurney et al., 2012). At the global and annual scale, FFCO2 emission 24 

estimates remain uncertain at ±5%, varying widely by country and reporting method (Le 25 

Quéré et al., 2014). At the urban scale, the uncertainties of FFCO2 emission estimates are 26 

often 50-200 % (Turnbull et al., 2011; Asefi-Najafabady et al., 2014). On the other hand, 27 

“top-down” methods could potentially estimate biases in bottom-up emissions, and could 28 

also detect trends that cities can use for decision-making, due to changing economic 29 

activity or implementation of new emission regulations. 30 
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“Top-down” methods involve atmospheric measurements and usually include an 1 

atmospheric inversion of CO2 concentrations, using atmospheric transport models to 2 

estimate carbon fluxes (i.e., posterior fluxes) by adjusting the fluxes (i.e., prior fluxes) to 3 

be consistent with observed CO2 concentrations (e.g., Lauvaux et al., 2012; Lauvaux et 4 

al., 2015; Tarantola, 2005; Enting et al., 1994; Gurney et al., 2002; Baker et al., 2006; 5 

Law et al., 2003). In general, a prior flux is required for estimating the fluxes using an 6 

atmospheric inversion.  The uncertainties in “top-down” methods can be attributed to 7 

errors in the observations (e.g., Tarantola, 2005), emission aggregation errors from the 8 

prior fluxes (e.g., Gurney et al., 2012; Engelen et al., 2002), and physical representation 9 

errors in the atmospheric transport model (e.g., Díaz Isaac et al., 2014; Gerbig et al., 10 

2008; Kretschmer et al., 2012; Lauvaux et al., 2009; Sarrat et al., 2007).  Previous studies 11 

showed that regional high-resolution models can capture the measured CO2 signal much 12 

better than the lower resolution global models and simulate the diurnal variability of the 13 

atmospheric CO2 field caused by recirculation of nighttime respired CO2 well (Ahmadov 14 

et al., 2009). Previous studies (Ahmadov et al., 2009; Pillai et al., 2011; Pillai et al., 2010; 15 

Rödenbeck et al., 2009) have discussed the advantages of high resolution CO2 modelling 16 

on different domains and applications. Recent efforts to study FFCO2 emissions on urban 17 

scales have benefited from strategies that apply in-situ observations concentrated within 18 

cities and mesoscale transport models (e.g., Wu et al., 2011; Lauvaux et al., 2015; Strong 19 

et al., 2011; Lac et al., 2013; Bréon et al., 2015).  20 

The Los Angeles (LA) megacity is one of the top three FFCO2 emitters in the U.S. The 21 

atmospheric CO2 concentrations show complex spatial and temporal variability resulting 22 

from a combination of large FFCO2 emissions, complex topography, and challenging 23 

meteorological variability (e.g., Brioude et al., 2013; Wong et al., 2015; Angevine et al., 24 

2012; Conil and Hall, 2006; Ulrickson and Mass, 1990; Lu and Turco, 1995; Baker et al., 25 

2013; Chen et al., 2013; Newman et al., 2013). Past studies exploring CO2 concentrations 26 

over the LA megacity used measurement methods ranging from ground-based to 27 

airborne, from in-situ to column. Those studies consistently reported robust 28 

enhancements (e.g., 30-100 ppm in-situ and 2-8 ppm column) and significant variability 29 

of the CO2 concentrations for the LA megacity (Newman et al., 2013; Wunch et al., 2009; 30 

Wong et al., 2015; Kort et al., 2012; Wennberg et al., 2012; Newman et al, 2016). There 31 
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have been limited radiocarbon (14C) isotopic tracer studies (Newman et al., 2013;; 1 

Djuricin et al., 2010; Riley et al., 2008; Newman et al, 2016). Newman et al. (2013) 2 

showed that FFCO2 constituted 10 - 25 ppm of the CO2 excess observed in the LA basin 3 

by averaging the flask samples at 1400 PST during 15 May – 15 June, 2010. Djuricin et 4 

al. (2010) demonstrated that fossil fuel combustion contributed approximately 50~70 % 5 

of CO2 sources in LA. Recently, using CO2 mole fractions and �14C and �13C values of 6 

CO2 in the LA megacity observed in inland Pasadena (2006–2013) and coastal Palos 7 

Verdes peninsula (autumn 2009–2013), Newman et al. (2016) demonstrated that fossil 8 

fuel combustion is the dominant source of CO2 for inland Pasadena. Airborne campaigns 9 

over LA (typically days to weeks in duration) included ARCTAS-CA (Jacob et al., 2010) 10 

and CalNex-LA (Brioude et al., 2013). All of these earlier studies were limited in their 11 

ability to investigate the spatial and temporal characteristics of LA carbon fluxes given 12 

relatively sparse observations. To better understand and quantify the total emissions, 13 

trends, and detailed spatial, temporal, and source sector patterns of emissions over the LA 14 

megacity requires both a denser measurement network and a land-atmosphere modelling 15 

system appropriate for such a complex urban environment. In this paper, we couple the 16 

Weather Research and Forecasting (WRF) – Chem model to a high-resolution FFCO2 17 

emission product, Hestia-LA, to study the spatiotemporal variability of urban CO2 18 

concentrations over the LA megacity.   19 

The mesoscale circulation over the LA megacity is challenging for atmospheric transport 20 

models due to a variety of phenomena, such as “Catalina” eddies off the coast of southern 21 

California and the coupling between the land-sea breeze and winds induced by the 22 

topography (Angevine et al., 2012; Conil and Hall, 2006; Ulrickson and Mass, 1990; 23 

Kusaka and Kimura, 2004b; Kusaka et al., 2001). In this paper we present a set of 24 

simulations exploring WRF model physics configurations for the LA megacity, 25 

evaluating the model performance against meteorological data from the CalNex-LA 26 

campaign period, 15 May – 15 June 2010. Angevine et al. (2012) investigated how WRF 27 

model performance varied with spatial resolution and PBL scheme, etc., for the CalNex-28 

LA campaign period; however, they focused the model meteorological evaluation on the 29 

spatial resolutions of 12- and 4-km. In the present study we focus on three critical aspects 30 

of the WRF model configuration – the planetary boundary layer (PBL) scheme, the urban 31 
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surface scheme, and the model spatial resolution – as well as the effects of the FFCO2 1 

emissions product spatial resolution. Through these four aspects, the impacts of physical 2 

representation errors and emission aggregation errors on the modelled CO2 concentrations 3 

across the LA megacity are investigated.  4 

Moreover, a novel approach is proposed to evaluate the design of the greenhouse gas 5 

(GHG) measurement network for the LA megacity. The LA measurement network 6 

consists of 14 observation sites designed to provide continuous atmospheric CO2 7 

concentrations to assess the anthropogenic carbon emissions distribution and trends. The 8 

goal of the network design exploration is to optimize the atmospheric observational 9 

constraints on the surface fluxes. Kort et al. (2013) found that a minimum of eight 10 

optimally located, in-city surface CO2 observation sites were required for accurate 11 

assessment of CO2 emissions in LA using the “footprint” method (backward mode) and 12 

based on a national FFCO2 emission product Vulcan (Gurney et al, 2009; Gurney et al, 13 

2012). Here we assess the influence of each observation site using spatial correlations in 14 

terms of the simulated CO2 (forward mode) at high-resolution. This method brings 15 

flexibility to allow us to evaluate the existing measurement network or to design a 16 

measurement network for various observation platforms, i.e., in-situ, aircraft, satellite, 17 

etc. In this paper, we will investigate the application to in-situ measurement network 18 

design.  19 

The remainder of the paper is organized as follows. Section 2 describes the modelling 20 

framework, including initial conditions and boundary conditions for WRF-Chem.  In 21 

section 3, we assess the quality of the model results, focusing on accurate representation 22 

of the PBL height, wind speed and wind direction, and CO2 concentration.  Section 4 23 

presents the spatial and temporal patterns of simulated CO2 concentration fields over the 24 

LA megacity using various FFCO2 emissions products.  Section 5 describes the forward 25 

mode approach for evaluating the spatial sensitivity of the 2015-era surface GHG 26 

measurement sites within the LA megacity. Discussion of model errors, model sampling 27 

strategy, and the density of the LA GHG measurement network from the forward model 28 

perspective is given in section 6. A summary is given in section 7. Section 8 lists the 29 

author contributions.  30 
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 1 

2 Modelling Framework 2 

Sensitivity experiments were conducted using WRF-Chem version 3.6.1 with various 3 

PBL schemes, urban surface schemes, and model resolutions to define an optimized 4 

configuration for simulating atmospheric CO2 concentration fields over the LA megacity. 5 

The impact of the resolution of FFCO2 emission products is investigated in section 4.    6 

2.1 WRF model setup 7 

All of the model runs used one-way triple-nested domains with resolutions of 12-, 4-, and 8 

1.3-km. The coarse domain (d01) covers most of the western US; the intermediate 9 

domain (d02) covers California and part of Mexico (Figure 1a); the innermost domain 10 

(d03) covers the majority of the South Coast Air Basin, a portion of the southern San 11 

Joaquin Valley and extends into the Pacific Ocean to include Santa Catalina and San 12 

Clemente Islands (Figure 1b). The Los Angeles basin, a subset of South Coast Air Basin, 13 

is surrounded to the north and east by mountain ranges with summits of 2-3 km, with the 14 

ocean to the west and the desert to the north. The basin consists of the West Coast Basin, 15 

Central Basin, and Orange County Coastal Plain. The boundaries of these three regions 16 

are the Newport Inglewood Fault and the boundary between Los Angeles County and 17 

Orange County. In this study, our analysis is limited to the innermost domain (d03), 18 

referred to hereafter as the LA megacity. All three of the model domains use 51 terrain 19 

following vertical levels from surface to 100 hPa, of which 29 layers are below 2 km 20 

above ground level (AGL) and the first level is about 8 m AGL.  21 

The meteorological fields and surface parameters, such as soil moisture, were initialized 22 

by the three-hourly North American Regional Reanalysis (NARR) data set with a 23 

horizontal resolution of 32 km (Mesinger et al., 2006) and the six-hourly NCEP sea 24 

surface temperature data set with a horizontal resolution of 12 km  25 

(ftp://polar.ncep.noaa.gov/pub/history/sst/ophi). A summary of WRF configurations 26 

common to all sensitivity runs is shown in Table 1. The impact of varying the PBL 27 

parameterization, urban surface, and model resolution was investigated by conducting 28 

sensitivity runs summarized in Table 2.  29 
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PBL schemes are used to parameterize the unresolved turbulent vertical fluxes of heat, 1 

momentum, and constituents within the PBL. There are tens of mesoscale PBL schemes 2 

available in the WRF package. The details of PBL schemes can be found in the review 3 

paper by Cohen et al. (2015). Briefly, the PBL schemes represent turbulent mixing on the 4 

local or non-local basis. The local schemes only consider immediately adjacent vertical 5 

levels in the model. This tends to prevent vertical mixing and to produce relatively 6 

shallow PBL.  Non-local schemes allow for a deeper mixing layer. We selected the three  7 

commonly used turbulent kinetic energy (TKE)-driven local PBL schemes (1.5 order) for 8 

the sensitivity runs: the Mellor-Yamada-Janjie technique (MYJ), Mellor-Yamada 9 

Nakanishi and Niino Level 2.5 (MYNN), and Bougeault-Lacarrère (BouLac). MYJ 10 

(Janjić, 1994) defines the PBL top where the TKE profiles decrease to a threshold of 0.2 11 

m2s-2; MYNN (Nakanishi and Niino, 2006) is tuned to a database of large eddy 12 

simulations (LES) and sets the PBL top where the TKE falls below 1.0 × 10− 6 m2 s− 2; 13 

BouLac (Bougeault and Lacarrere, 1989) defines the PBL top where TKE reaches 0.005 14 

m2 s− 2.  15 

The TKE-driven PBL schemes explicitly estimate the turbulent fluxes from mean 16 

atmospheric states and/or their gradients and can be used to drive a Lagrangian particle 17 

dispersion model in subsequent atmospheric inversions (e.g., Lauvaux et al., 2008). The 18 

coupling between the mesoscale meteorological and Lagrangian particle models can be 19 

used in an operational framework to deal with accidental release (Lac et al., 2008) . 20 

For an accurate representation of the LA CO2 distribution, the necessity of incorporating 21 

a urban surface scheme was tested by alternatively including a single-layer urban canopy 22 

model (UCM, Kusaka and Kimura, 2004a), a multiple-layer building environment 23 

parameterization (BEP, Martilli et al., 2009), and no urban surface scheme. Note that 24 

BEP requires very high vertical resolution within the PBL and is only compatible with 25 

MYJ and BouLac PBL schemes. Given that BEP is computationally expensive, we only 26 

test it with BouLac in this study. A detailed description of urban parameterization 27 

schemes available in WRF is provided by Chen et al. (2011).  28 

We chose to test and evaluate our WRF-Chem configuration during the middle of May – 29 

middle of June 2010 time period of the CalNex-LA campaign (Ryerson et al., 2013) to 30 
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take advantage of the extra meteorological measurements recorded during the campaign. 1 

Hourly simulations were conducted for 36-h periods starting with a 12-h meteorological 2 

spin-up at 12:00 UTC of the previous day. Hence, when concatenating the model output, 3 

each new run is introduced at 0000 UTC. All of the analyses in the following sections are 4 

limited to the region of the LA megacity.  5 

2.2 Configuration for the CO2 simulation 6 

This paper analyses the impact of both physical representation errors and emission 7 

aggregation errors on the modelled CO2 concentrations across the LA megacity. WRF-8 

Chem version 3.6.1 allows for online CO2 tracer transport coupled with the Vegetation 9 

Photosynthesis and Respiration Model (VPRM) (Ahmadov et al., 2007; Xiao et al., 10 

2004). VPRM calculates hourly net ecosystem exchange based on MOIDS satellite 11 

estimates of the land surface water index and enhanced vegetation index (EVI), short 12 

wave radiance and surface temperature. A detailed description of VPRM can be found in 13 

Mahadevan et al. (2008).  In this study, the defaults of the VPRM parameters were used 14 

given limited number of observation available for optimization.  15 

Anthropogenic FFCO2 fluxes were alternatively prescribed from the Vulcan 2.2 and 16 

Hestia-LA 1.0 FFCO2 emission products developed at Arizona State University (Gurney 17 

et al., 2009; Gurney et al., 2012; Gurney et al., 2015; Rao et al., 2015). Both emission 18 

products were developed using “bottom-up” methods. Vulcan quantifies FFCO2 19 

emissions for the entire contiguous United States (CONUS) hourly at approximately 10-20 

km spatial resolution for the year of 2002, The temporal variations are driven by a 21 

combination of modelled activity (building energy modelling) and monitoring (power 22 

plant emissions) (Gurney et al., 2009). Hestia-LA, by contrast, is a fossil fuel CO2 23 

emissions data product specific in space and time to the individual building, road 24 

segments, and point sources covering the the Los Angeles megacity domain for the years 25 

of 2011 and 2012 (Rao et al., 2015; Gurney et al., 2015; Gurney et al., 2012; Zhou and 26 

Gurney, 2010). It quantifies hourly FFCO2 emissions for the counties of Los Angeles, 27 

Orange, San Bernardino, Ventura, and Riverside, at approximately 1.3 km x 1.3 km. 28 

Hestia-LA uses much of the same information for the temporal variations of Vulcan 29 

except for the onroad emissions, for which local traffic data is employed as opposed to 30 
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regional traffic data. Given the similarities, it is unlikely that the small difference in 1 

temporal variation between Hestia-LA and Vulcan could account for the spatial 2 

differences, through covariation with atmospheric transport, found in this study. For more 3 

details about Hestia-LA, see Rao et al. (2015).  4 

Atmospheric CO2 concentrations in WRF-Chem were alternatively driven by the Vulcan 5 

and Hestia-LA emissions at the resolutions of 4 km and 1.3 km. Hence, four different 6 

emission datasets were generated – Vulcan 10 km emissions transported at 4-km or 1.3-7 

km resolution, and Hestia-LA 1.3 km emissions transported at 4-km or 1.3-km resolution. 8 

The Hestia-LA emissions were aggregated from the native building-level resolution to 9 

the 1.3 and 4 km resolutions via direct summation in the specified model grids. Hestia-10 

LA 2011 is temporally shifted for creating the weekday-weekend cycle for the year of 11 

2010. The Vulcan FFCO2 emissions were interpolated by using a bilinear operator and by 12 

preserving the value of the integral of data between the source (10-km) and destination 13 

(4- and 1.3-km) grid. Additionally, the ratio of the total carbon emissions over the state 14 

between the years of 2002 and 2015 from California Air Resource Board 15 

(http://www.arb.ca.gov/) was uniformly applied to the Vulcan emissions to temporally 16 

scale Vulcan from the 2002 base year to 2010.  17 

No CO2 ocean fluxes were prescribed in this study. The order of magnitude of oceanic 18 

CO2 fluxes is minus one in the unit of µmol/m2/s: -0.15 µmol/m2/s along the coast of 19 

Chile calculated by Torres et al. (2011), +0.2 µmol/m2/s for Southern Ocean by Mu et al. 20 

(2014), while fossil fuel emissions are about 20 µmol/m2/s (roughly estimated from 21 

Hestia-LA at the Pasadena site). At regional scales, anthropogenic and biogenic fluxes 22 

are much larger than ocean fluxes, so we assume the ocean fluxes are negligible.  23 

 Lateral boundary conditions and initial conditions for CO2 concentration fields were 24 

taken from the three-dimensional CO2 background (often called the “NOAA curtain” for 25 

background) estimated from measurements in the Pacific (Jeong et al., 2013). Unlike 26 

meteorology, CO2 fields were initialized only at the start time of the entire simulation and 27 

were carried over simulation cycle to cycle (without any re-initialization) until the end of 28 

the entire simulation to conserve CO2 air mass over the model domains.  29 

 30 
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3 Model – data comparison 1 

Meteorological observations obtained during the CalNex-LA campaign 2 

(http://www.esrl.noaa.gov/csd/projects/calnex/) include PBL height sampled by NOAA 3 

P-3 flights and aerosol backscatter ceilometer (Haman et al., 2012; Scarino et al., 2013), a 4 

radar wind profiler operated by the South Coast Air Quality Management District near 5 

Los Angeles International Airport (LAX), and CO2 in situ measurements (Newman et al., 6 

2013). Additionally, the NWS (National Weather Service, www.weather.gov) surface 7 

observations are used.  8 

3.1 Comparison to aircraft PBL height  9 

During CalNex-LA, 17 P-3 research flights sampled the daytime and nighttime PBL, 10 

marine surface layer, and the overlying free troposphere throughout California (Ryerson 11 

et al., 2013).  We imposed four criteria for selecting aircraft profiles of potential 12 

temperature for PBL height comparisons: 13 

1) Aircraft profiles sample within the innermost model domain (d03, Figure 1b); 14 

2) Profiles sample during daytime (1100 PST – 1700 PST) when the CO2 concentrations 15 

in PBL is well mixed; 16 

3) Profiles acquired within ±30 min of the model output;  17 

4) Ability to determine the PBL height from the vertical gradient of potential 18 

temperature.   19 

Based on these four criteria, we selected seven aircraft profiles collected between 16 May 20 

and 19 May 2010. Figure 2 shows a profile acquired on 19 May 2010 when the aircraft 21 

was sampling over Pasadena, California.                    22 

The model diagnostic PBL height calculated by each PBL scheme can differ due to the 23 

Richardson bulk number (Ri) used (e.g., Kretschmer et al., 2014; Hong et al., 2006; Yver 24 

et al., 2013). To avoid this difference, we determined modelled PBL height based on the 25 

vertical virtual potential temperature gradient. The case in Figure 2 shows that the 26 

modelled PBL height agrees within 50 meters of the aircraft-determined and ceilometer-27 

measured PBL height  28 
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Figure 3 shows the absolute difference between the modelled and aircraft-determined 1 

PBL height for each selected aircraft profile. The differences between the modelled and 2 

aircraft-determined PBL height differ case by case, and none of the model physics is 3 

systematically better than others. However, BouLac_BEP and MYNN have larger biases 4 

than others. The averaged bias of BouLac_BEP is 289 m for d02, 295 m for d03; MYNN 5 

bias is 179 m for d02 and 216 m for d03. For other configurations, the averaged biases 6 

are smaller than 160 m. The modelled PBL bias appears somewhat smaller in the 4-km 7 

runs than the 1.3-km runs. This, however, is based on seven selected aircraft profiles 8 

only. To further define the optimal physics for the PBL height simulation, we will present 9 

the all-hours statistics with the ceilometer data in section 3.2.  10 

3.2 Comparison to ceilometer PBL height 11 

Accurate simulation of the time evolution of the PBL depth is crucial to properly simulate 12 

the vertical mixing and ventilation of CO2 emitted at the surface. The ceilometer 13 

measurements during CalNex-LA (Haman et al., 2012) allow us to evaluate the time 14 

evolution of the modelled PBL depth. Compared with the ceilometer-measured PBL 15 

height, the maximum discrepancies between model and observations occur from around 16 

1100 PST – 1200 PST when the nocturnal PBL is fully collapsed and 1700 PST when it 17 

starts to form again (Figure 4). Among all of the model physics, MYNN_UCM shows the 18 

best agreement with the observations, while BouLac_BEP differs from ceilometer the 19 

most.  The absolute bias of the MYNN_UCM modelled PBL height ranges from 5 to 198 20 

m and 0 to 184 m with mean biases of -15.3 m (d02) and -6.9 m (d03) and root-mean-21 

square error (RMSE) of 89.7 m and 94.5 m for 4- and 1.3-km resolution, respectively, 22 

which is similar to the range in the study of Riette and Lac (2016). They evaluated the 23 

model performance with different model sizes for an operational weather forecast system 24 

(AROME, application of Research to Operations at Mesosclae) against the observed PBL 25 

height at five observation sites, showing mean bias of -9.17 m and RMSE of 115 m for 26 

200 × 200 grids, 6.17 m and 95.5 m for 108 × 108 grids. In our experiences, the statistics 27 

of MYNN_UCM_1.3km and MYNN_UCM_4km suggest the 1.3-km model resolution 28 

improves the model performance of the PBL simulation as compared with the ceilometer. 29 

The improvement in the high-resolution model runs can be seen in the statistics for 30 
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MYJ_UCM, BouLac_UCM, and BouLac_BEP, but not MYNN or MYJ (Table 3). Note 1 

that the ceilometer measurements were all at Caltech and thus reflect basin interior 2 

conditions. These are expected to be very different from coastal conditions in terms of the 3 

temporal evolution and eventual height of the mid-day PBL as well as the timing of the 4 

nocturnal PBL collapse. The domain is much larger and more varied than captured by a 5 

single location. 6 

We also notice that UCM-coupled simulations agree with the ceilometer better than other 7 

combinations (Table 3, MYNN_UCM vs. MYNN, MYJ_UCM vs. MYJ, BouLac_UCM 8 

vs. BouLac_BEP). The inclusion of UCM yields model simulations with comparably 9 

higher relative humidity over the LA megacity (not shown). This corresponds to lower 10 

PBL height, which largely reduces the discrepancy of the modelled PBL from the 11 

observations (see UCM runs with their counterparts in Figure 4).  12 

3.3 Comparison to radar wind profiler 13 

Atmospheric dynamics has a direct influence on the CO2 transport. Realistically 14 

reproducing the vertical gradient of wind fields is crucial. In Figure 5, we show the 15 

average difference in the wind profiles between the models and the radar wind profiler at 16 

LAX (Angevine et al., 2012).  Most of the simulations show relatively larger wind speed 17 

bias near the surface: BouLac_BEP, MYJ, and MYNN with bias of 2.4 ± 2.2 m/s, 18 

BouLac_UCM and MYJ_UCM with bias of 2.0 ± 2.3 m/s. In contrast, it is encouraging 19 

to see that MYNN_UCM agrees with the radar measurement with mean bias of 1.4 ± 2.0 20 

m/s, a lower mean bias than for the other configurations. As we found in the PBL 21 

evaluation, UCM-coupled simulations tend to reduce the wind speed bias at this location.  22 

For wind direction, likewise, MYNN_UCM agrees with the observations slightly better 23 

below 800 m (~1.1 m/s for the averaged error), although the model bias is much less 24 

pronounced across the configurations. However, we notice that MYNN_UCM shows 25 

larger wind direction bias between 800 – 1400 m than others due to relatively lower PBL 26 

height simulated (not shown).  27 
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Improvement provided by the 1.3-km model resolution is visible near the PBL height 1 

(800 – 1400 m). A finer model resolution tends to resolve the vertical gradients of the 2 

atmospheric state better.  3 

Angevine et al. (2012) evaluated a set of model configurations with the highest model 4 

resolution at 4 km for CalNex-LA using the same radar wind profiler data. The optimal 5 

configuration (the total energy–mass flux boundary layer scheme and ECMWF 6 

reanalysis) they found showed 1.1 ± 2.7 m/s bias in wind speed and -2.6 ± 67° in wind 7 

direction near the surface. Here MYNN_UCM displays similar performance to their 8 

optimal configuration.  At the 4-km model resolution, the biases of MYNN_UCM are 1.4 9 

± 2.0 m/s in wind speed and -1.3 ± 20.0° in wind direction.  10 

In summary, the MYNN_UCM configuration showed the best agreement with 11 

meteorological observations among the configurations we evaluated at given locations. In 12 

section 3.4, we examine the performance of MYNN_UCM across the LA megacity. 13 

3.4 Comparison to NWS surface stations 14 

We introduce the observations from the NWS surface network to demonstrate the model 15 

performance across the LA megacity. The objective analysis program OBSGRID is used 16 

to remove erroneous data and observations that are not useful (Deng et al., 2009; Rogers 17 

et al., 2013). 18 

Figure 6 shows the model bias of temperature, relative humidity, wind speed, and wind 19 

direction compared to the NWS surface data across the LA megacity. The locations of the 20 

GHG measurement sites are marked (see details in Table 6 and Figure S1). Overall, there 21 

is little difference in the simulated surface atmospheric state variables between the 4-km 22 

and 1.3-km runs; i.e., the 1.3-km run does not show any significant improvement 23 

compared to the 4-km run at the surface (even though it resolves the vertical gradient of 24 

atmospheric states and PBL better, Figure 4 and 5).  25 

For temperature (Figure 6a1 and 6b1), the model is colder than the observations by 0.5 - 26 

1.0 K.  Larger temperature biases occur in the desert. For relative humidity (Figure 6a2 27 

and 6b2), the model is dryer (teal blue) than the observations but with two exceptions: 28 

Santa Monica coastal area and Pasadena to Mt. Wilson area (light green).  See Figure S1 29 
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for the location. The model dryness is consistent with the findings of Nehrkorn et al. 1 

(2012). The model is 5% dryer over the basin with a somewhat larger bias of 5% - 10% 2 

near Granada Hills and Ontario. These two locations have the highest temperature in the 3 

summer – typically 7 K or more warmer than downtown LA in May-June (77 °F for 4 

downtown LA and 84 °F for Ontario. See 5 

http://www.intellicast.com/Local/History.aspx). For the Pasadena area, the model is 6 

moister than the observations. The moistness tends to cause lower PBL heights, which 7 

can be seen in the comparison to the ceilometer-determined PBL height at Caltech in 8 

Pasadena, California (Figure 4): MYNN_UCM has a shallower PBL in comparison to the 9 

ceilometer during the 1400 PST – 1800 PST time period.  10 

The model overestimates wind speed by ~1.0 m/s (Figure 6a3 and 6b3). The tendency of 11 

the model to overestimate wind speed is fully documented in previous studies (e.g., 12 

Angevine et al., 2012; Brioude et al., 2013; Nehrkorn et al., 2012; Yver et al., 2013). For 13 

surface wind direction, model bias is within ±10° for most of the LA megacity. The 14 

larger biases appear near the foothills of Santa Monica Mountains, San Gabriel 15 

Mountains, and University of Southern California (USC) due to the topography.  16 

Compared with other model physics (not shown), we notice that USC, located just south 17 

of downtown LA, is a challenging location for mesoscale modelling, in particular for 18 

wind simulations. All of the model physics consistently show a relatively large wind bias 19 

at USC except BouLac_BEP that is not seen in the remainder of the domain. We also 20 

noticed that adding UCM to MYNN decreases the modelled temperature, while all of the 21 

other models’ physics have a warm bias compared to observations.  22 

All of the analyses above focused on the meteorology over the LA megacity. The results 23 

indicate little difference horizontally between 4- and 1.3-km runs across the basin. 24 

Similarly, there are only small differences in the RMSE maps as well (Figure 7).  This 25 

consistent with the assumption in Angevine et al. (2012) that a finer grid may not give 26 

better results. However, the 1.3-km run tends to resolve the vertical gradients of 27 

atmospheric state variables and PBL better, which likely improves the vertical mixing 28 

and ventilation of modelled atmospheric CO2 concentrations. In the following sections, 29 
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we will use the MYNN_UCM configuration with the resolution of 4 km and 1.3 km for 1 

the simulations of atmospheric CO2 concentration fields over the LA megacity. 2 

3.5 Comparisons to in-situ CO2  3 

We coupled Hestia and Vulcan FFCO2 emission products individually with the 4 

MYNN_UCM to generate four sets of simulated CO2 concentrations: WRF-Hestia 1.3-5 

km, WRF-Hestia 4-km, WRF-Vulcan 1.3-km, and WRF-Vulcan 4-km. The runs with the 6 

same model resolution have the same meteorology but differ in emissions, and vice versa.  7 

During CalNex-LA, in-situ observation sites at Pasadena and Palos Verdes continuously 8 

measured surface CO2 concentrations. Measurements were recorded using a Picarro 9 

(Santa Clara, CA) Isotopic CO2 Analyser (cavity ring-down spectrometer), model G1101-10 

i, for Pasadena and an infrared gas analyser from PP Systems (Haverford, MA), model 11 

CIRAS-SC for Palos Verdes. In addition, periodic flask samples were collected for 12 

analysis of 14CO2 for extracting fossil fuel and biogenic signals. See Newman et al. 13 

(2016) for details about the sites and sampling information. Figure 8 shows the 14 

comparison of the time series of hourly (Figure 8a,b) and daily afternoon (Figure 8c,d) 15 

averaged CO2 concentrations (1300 PST – 1700 PST) between model and observations. 16 

Tables 4 and 5 is the comparison statistics of the four CO2 runs against the in-situ 17 

measurements as a complement to Figure 8a,b and Figure 8c,d, respectively. Overall, the 18 

model captures the temporal variability of CO2 but overestimates CO2 during nighttime. 19 

During afternoons, the model agrees with the observations fairly well (Figure 8c and 8d) 20 

except for a few events: all simulations underestimate CO2 concentrations by about 10 21 

ppm around 28 May and 4-6 June for Pasadena and 21 May for Palos Verdes. These 22 

events lasting two – three days are likely related to synoptic scale processes. Using the 23 

averaged Pacific Ocean CO2 signal as background may explain the failure to capture 24 

these events. Further investigation of the background air would provide insights related to 25 

synoptic variability but is beyond the scope of this work.  26 

Inter-comparison of the diurnal patterns among these four runs (Figure 9a) shows WRF-27 

Hestia runs tend to overestimate the CO2 concentration around noon and underestimate 28 

CO2 in the late afternoon at the Pasadena site, while WRF-Vulcan runs tend to 29 
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underestimate the CO2 concentration for the entire period. Hence, WRF-Hestia runs show 1 

larger model bias based on the statistics for the daytime afternoon hour but smaller errors 2 

based on the daytime afternoon average (Table 4 and 5).  Next we focus on this diurnal 3 

variability.  4 

Clear diurnal variations of the surface CO2 concentrations were observed for both sites 5 

(Figure 9). The observed CO2 concentrations increase at night and remain high until 6 

sunrise, and they quickly drops as the boundary layer grows after sunrise (Figure 9a and 7 

9b). The amplitude of this diurnal cycle is greater in Pasadena than in Palos Verdes. 8 

For the Pasadena site, during nighttime, when the PBL is shallow, CO2 is trapped locally: 9 

the more fossil fuel is emitted, the higher CO2 concentration is simulated. Consequently, 10 

the WRF-Vulcan runs show considerably lower CO2 concentration than the WRF-Hestia 11 

runs due to the lower emissions in Vulcan at the Pasadena site (Figure 9c). However, 12 

during daytime, with well-mixed conditions, the discrepancy between the WRF-Hestia 13 

and WRF-Vulcan runs becomes smaller at this site. Among these runs, the 1.3-km WRF-14 

Hestia run successfully captures the diurnal variation of the surface CO2 concentration, 15 

although a noontime peak is in the model not present in the observations. By contrast, the 16 

4-km WRF-Hestia run underestimates the CO2 concentration during 0200 PST – 0700 17 

PST even though emissions were comparable between Hestia 4-km and Hestia 1.3-km 18 

(Figure 9c). The underestimation of the simulated CO2 concentration likely results from 19 

the representation errors in the atmospheric transport due to the coarser model resolution.  20 

For Palos Verdes, however, none of the model results match the observations. All of the 21 

runs show a peak in the simulated CO2 concentration around 0800 PST, which very likely 22 

corresponds to the failure to simulate the eastward marine flow as a part of the Catalina 23 

eddy (e.g., Bosart, 1983; Davis et al., 2000). This CO2 concentration peak is incorrectly 24 

reproduced by the model advecting the FFCO2 emitted from the strong point sources in 25 

Long Beach, California (Figure 1d) and in turn contaminating the air of Palos Verdes. 26 

3.6 Comparisons to flask-sampled CO2  27 

The isotopic tracer radiocarbon (14C) can be used for distinguishing between fossil fuel 28 

and biogenic sources of CO2 (Djuricin et al., 2010; Newman et al., 2013; Newman et al., 29 
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2016; Pataki et al., 2006; Pataki et al., 2007; Levin et al., 2003; Miller et al., 2012; 1 

Turnbull et al., 2006; Turnbull et al., 2009). During CalNex-LA, flask samples collected 2 

on alternate afternoons at 1400 PST were combined to produce two CO2 samples samples 3 

per month in Pasadena (weekly samples were combined to produce one radiocarbon 4 

sample per month in Palos Verdes) for extracting anthropogenic and biogenic signals 5 

from the total CO2 concentration. Note that the two samples for Palos Verdes were 6 

sampled from 1 May to 31 May and from 1 June to 30 June, not exactly overlapping the 7 

CalNex-LA period; the two for Pasadena were sampled from 15 May to 31 May and from 8 

1 June to 15 June, overlapping the CalNex-LA period. See Newman et al. (2016) for 9 

details about the sites and sampling information. Figure 10 presents the comparisons of 10 

the modelled and flask-sampled anthropogenic fossil fuel and biogenic CO2. From both 11 

the flask samples and model simulations, the CO2 signal from the biosphere is much 12 

weaker than FFCO2 in the LA megacity. The two-week flask sampled biogenic CO2 is 13 

about 2 ppm on average. We note that the 1.3-km WRF-Vulcan run overestimates the 14 

FFCO2  concentrations by 20 ppm over the second half of the month (Figure 10d), 15 

implying that low-resolution CO2 emissions can be very critical for a coastal site 16 

(complex terrain) with strong point sources nearby. 17 

Strong temporal variability of the simulated biogenic and FFCO2 can be seen for both 18 

sites (Figure 10a,10c,10e,10g). For the Pasadena site, the 1.3-km run shows nearly flat 19 

biogenic CO2 concentrations during 15 May to 30 May when the 4-km run has more 20 

variability (Figure 10e). A large botanical garden covering 207 acres (The Huntington 21 

Library, Art Collections, and Botanical Gardens) is about 1.6 km away from the Pasadena 22 

site, which may suggest that higher model resolution (1.3 km vs. 4 km) could resolve the 23 

land cover better. However, there is still up to about 3-ppm discrepancy in the modelled 24 

biogenic CO2 from the flask samples (Figure 10f). Similar discrepancy can be seen for 25 

Palos Verdes as well (Figure 10h). Reasonably determining CO2 from biogenic sources 26 

remains challenging. Additional measurements are needed to constrain biogenic fluxes.  27 

 28 
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4 Spatial pattern of the surface CO2  1 

The spatial pattern of surface CO2 concentration exhibits diurnal variability over the LA 2 

megacity due to the complexity of the topography and the variability of circulation 3 

patterns, PBL heights, and FFCO2 emissions. Each plays an important role in sequence or 4 

at the same time. Here, we only focus on the pattern at 1400 PST when the atmospheric 5 

CO2 concentration is well mixed in the PBL. At 1400 PST, there is a close relationship 6 

between CO2 concentration and atmospheric transport; the error due to the PBL height 7 

determination is at a minimum. For the same reason, we assume that FFCO2 emissions do 8 

not play a dominant role around 1400 PST unless there are strong local signals from point 9 

sources, such as power plants, refineries, airports etc.  10 

In this section, we define the 1.3-km WRF-Hestia run as the reference simulation.  For 11 

simplicity, all of the relevant CO2 spatial patterns we present are selected from the second 12 

model layer (about 24 m AGL).  Figure 11a and 11b display the topography and the 13 

average CO2 concentration at 1400 PST overlaid with the first empirical orthogonal 14 

function (EOF1) of the surface wind pattern, respectively. The locations of the 13 GHG 15 

measurement sites in the LA megacity domain are marked in the figures (see Table 6 and 16 

Figure S1 for details about the observation sites).  Note that the 2015-era surface GHG 17 

measurement network includes 14 sites in total, while 13 sites are embedded in the 18 

innermost model domain. According to the geography mentioned in section 2.1, the 19 

Granada Hills (GH), Compton, and USC sites are located in the West Coast Basin, the 20 

Pasadena and Mt. Wilson (MWO) sites are in the Central Basin, and California State 21 

University Fullerton (CSUF), Ontario, and San Bernardino (SB) sites are in the Orange 22 

County Coastal Plan. Additionally, the Dryden and Victorville (VV) sites are located in 23 

deserts; the Palos Verdes (PV), University of California Irvine (UCI), and San Clemente 24 

Island (SCI) are on the coast. Although the Dryden site is actually a TCCON (Total 25 

Carbon Column Observing Network, Wunch et al., 2011) site, in the analysis, we assume 26 

it provides near-surface point measurements like the other sites, for simplicity. 27 

Blocked by the mountains, the emitted CO2 is trapped in the basin; the desert is usually as 28 

clean as the upwind ocean. Specifically, Dryden (not shown on the figure), VV, SCI (not 29 

shown on the figure), Palos Verdes and UCI are much cleaner than other sites (Figure 30 
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11b). At 1400 PST, sea breeze prevails over the LA megacity. Affected by the geometry 1 

of Palos Verdes Peninsula, the sea breeze is divided into west and southwest onshore 2 

flows that then converge in the Central Basin. Strong CO2 signals emitted from electricity 3 

production and industry (with annual emission of 86.9 million kgC, Figure 1d) are 4 

trapped in a limited area. We notice that the south-western flow, which appears stronger 5 

than the western flow, prevents the high CO2 concentration in the West Coast Basin from 6 

propagating further east and dilutes into the Central Basin. Controlled by the orography, 7 

strong southerly flows occur between the Santa Monica and San Gabriel Mountains, 8 

keeping the contaminated air from propagating to the west. Driven by the same 9 

meteorology, the 1.3-km WRF-Vulcan run shows a more smeared out CO2 distribution 10 

over the LA basin (Figure 11c) due to the coarser resolution of the original Vulcan 11 

emissions. High CO2 plumes seen in the 1.3-km WRF-Hestia run from point sources are 12 

replaced by broad areas of elevated CO2 concentration in the 1.3-km WRF-Vulcan. The 13 

large differences in the simulated surface CO2 fields between the 1.3-km WRF-Hestia and 14 

WRF-Vulcan runs are found around LAX and north of the Palos Verdes Peninsula where 15 

strong point sources are located (dipole-like pattern in Figure 11d). 16 
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5 Sampling density of the 2015-era GHG measurement network  18 

In this section, we present a forward network design framework, using the modelled CO2 19 

concentrations and their relationship with neighbouring grid cells. Note no actual 20 

observation data but only pseudo data are used in this section. Compared to previous 21 

studies using tower footprints (i.e. linearized adjoint models) as in Kort et al. (2013), we 22 

propose here a forward model assessment of the network using the high-resolution model 23 

results. We assume that each observation site can be associated with a specific CO2 air 24 

mass at any given time. To define this CO2 air mass, we estimate the spatial coherence in 25 

the modelled CO2 concentration fields. We constrain the coverage of each LA GHG 26 

measurement site by calculating the simultaneous correlation of the site to the rest of the 27 

domain using the simulated CO2 concentration time series. Figure 12 shows the 28 

correlation map (R) of each site for the 1.3-km WRF-Hestia run. Only areas meeting a 29 

significance level of 0.01 in the t-test (|R| � 0.46) are coloured. Based on the spatial 30 
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patterns of the correlation maps, all of the observation sites can be grouped into (i) 1 

coastal/island sites, i.e., UCI, SCI, and Palos Verdes (right three panels in bottom row of 2 

Figure 12), (ii) western basin sites, i.e., GH, Pasadena, MWO, USC, and Compton (top 3 

row in Figure 12), (iii) eastern basin sites, (i.e., CSUF, Ontario, SB; middle row in Figure 4 

12), and (iv) desert sites, i.e., Dryden and VV (left two panels in bottom row of Figure 5 

12).  6 

Not surprisingly, the coastal/island sites are mainly correlated with CO2 concentration in 7 

upwind areas offshore where there is limited FFCO2 contamination. The white channel 8 

from Catalina Island to the Huntington Beach area demonstrates the influence of terrain-9 

induced flows and mountain blocking. The western basin sites are mainly correlated with 10 

CO2 concentration throughout the western portion of the basin, and the eastern basin sites 11 

are mainly correlated with CO2 concentrations throughout the eastern portion of the 12 

basin. The desert sites are anti-correlated with the basin. CSUF also shows anti-13 

correlation with the desert. Two reasons can explain this anti-correlation. Firstly, CO2 is 14 

trapped and accumulates in the basin due to the mountain barrier; the basin is 15 

contaminated, the desert is clean. Secondly, after CO2 accumulates in the basin over a 16 

certain amount of time, episodic strong sea breezes may push this basin CO2 over the 17 

mountains to the desert. As a result, the basin will be relatively clean while the desert is 18 

contaminated.  19 

Based on the correlation maps, we can also see how the coverage of each site varies with 20 

the FFCO2 emissions data products and with the model resolutions. Figure 13 shows the 21 

correlation maps across the runs for the Compton, Palos Verdes, and CSUF stations. All 22 

runs use the optimal physics we determined for the LA megacity, i.e., MYNN_UCM. The 23 

correlation maps for each site differ with the FFCO2 emissions data product used, model 24 

resolution, or their combination (Figure 13). Given that the 1.3-km WRF-Hestia is the 25 

reference run, the difference of this to the 1.3-km WRF-Vulcan run reflects the errors 26 

induced by emissions resolution. The discrepancy between the 1.3-km WRF-Hestia run 27 

and the 4-km WRF-Hestia run reflects the model representation errors. The 4-km WRF-28 

Vulcan run is subject to model representation errors and emission aggregation errors at 29 

the same time. For simplicity, we will not emphasize but only show the comparison of 30 

the 4-km WRF-Vulcan to the others. 31 
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Compton is isolated from the rest of the basin in the 1.3-km WRF-Hestia run but 1 

correlated with most of the basin in the 1.3-km WRF-Vulcan run. A similar discrepancy 2 

is seen for Palos Verdes.  Additionally, Palos Verdes appears to be a clean site in the 1.3-3 

km WRF-Hestia run but dramatically contaminated in the 1.3-km WRF-Vulcan run (even 4 

correlated with the LA downtown area). For CSUF, the anti-correlation between basin 5 

and desert noted above is not visible in the 1.3-km WRF-Vulcan run. Compared to the 6 

1.3-km WRF-Hestia run, the 4-km WRF-Hestia run overall shows a somewhat larger 7 

region with significant correlation for each site.  8 

To highlight the discrepancy in the spatial patterns caused by the model representation 9 

errors and emission aggregation errors in the view of the existing GHG measurement 10 

network, a composite map for each run is shown in Figure 14. These maps are 11 

constructed by determining the number of sites for which the absolute value of R is 12 

greater than 0.46 for each grid cell (i.e., colour-filled area in Figure 12 and 11). R=0.46 is 13 

the critical value for the t-test at the significance level of 0.01. In the 1.3-km WRF-Hestia 14 

run (reference), the West Coastal Basin and Orange County Coastal Plain are correlated 15 

with up to 6 measurement sites. A gap appears over the Central Basin correlated with up 16 

to 3 sites due to the wind pattern (Figure 11a and 11b). The San Gabriel Mountains and 17 

Peninsular Ranges are rarely correlated to any of the sites due to the elevated terrain. The 18 

4-km WRF-Hestia run shows a similar pattern but with more sites covered over the 19 

Peninsular Ranges and the coast because of the failure to resolve topography by the 4-km 20 

model resolution.  21 

In the 1.3-km WRF-Vulcan run, by contrast, a large area of the basin is correlated with 22 

most of the sites (nine out of 13). The Compton area is even correlated with 11 sites, 23 

which is only correlated with about two sites in the 1.3-km WRF-Hestia run. A similar 24 

contrast can be seen for the GH, USC, and Palos Verdes areas where the multiple strong 25 

point sources nearby in Hestia-LA have been aggregated into one 10 km by 10 km grid 26 

cell in Vulcan (Figure 1d vs.1c). Relatively coarser FFCO2 emissions artificially increase 27 

the coverage of each site, which highlights the importance of using a high-resolution 28 

emission product, i.e., Hestia, for the CO2 simulation for urban environment to represent 29 

the spatial variability in CO2 and design the optimal network of surface GHG 30 

measurement.   31 
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6 Discussion  2 

The results presented in this paper have shown that the choice of model resolution and 3 

emission products can strongly influence the interpretation of atmospheric CO2 signals. 4 

Hestia quantifies FFCO2 emissions down to individual buildings and roadways, such that 5 

strong point sources create large plumes that are extremely sensitive to atmospheric 6 

transport. Reproducing dynamics realistically by the atmospheric transport model is 7 

crucial around strong point sources, such as power plants, refineries, airports, etc. For 8 

instance, a considerable number of point sources are located in Long Beach harbour 9 

(Figure 1d), about 7 km away from the Palos Verdes site. In late spring and summer, 10 

Palos Verdes is a clean site, with little evidence of FFCO2 emissions from the LA 11 

megacity most of the time. However, we can clearly see that Palos Verdes is often 12 

simulated to be contaminated by FFCO2 in all of the runs, especially during early 13 

morning (Figure 9b) due to incorrectly simulated east marine flows advecting the strong 14 

FFCO2 emissions, which cannot be seen in the observations. Biases in wind speed and 15 

direction become critical for such a location. Palos Verdes may be challenging for the 16 

atmospheric inversion if used as a background site.  17 

Simulating CO2 at locations with strong CO2 fluxes gradients remains challenging. For a 18 

location like Compton with strong point sources nearby emitting CO2  at 86.9 million kgC 19 

per year (recorded in Hestia-LA version 1.0), a fine resolution emission product becomes 20 

very important due to the strong FFCO2 gradient. A relatively coarse emission product 21 

likely produces a spurious signal due to aggregating a strong point source into a large 22 

grid cell (Figure 11b and 9c). For instance, dipole-like CO2 gradients were created in the 23 

difference between the 1.3-km WRF-Vulcan and WRF-Hestia runs (Figure 11d).  24 

In this paper, we focus on the spatial distribution of the CO2 concentration over the LA 25 

megacity. The choice of model resolution also significantly impacts the vertical gradients 26 

of the CO2 concentration as a result of the terrain resolved.  In the 1.3-km model grids, 27 

the elevation of MWO is 1129 m, while in the 4 km grids it is 753 m; the actual elevation 28 

is 1670 m. The representation errors in the 4-km model resolution are relatively large. 29 

When there is finer topographic resolution, more CO2 is accumulated in the basin due to 30 
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blocking by the mountains.  Around noon, the model results show CO2 enhancement of 1 

10 ppm over MWO in both the 1.3-km WRF-Vulcan and WRF-Hestia runs but only up to 2 

3 ppm in the 4-km model runs. Sampling strategies should be investigated for mountain 3 

sites like MWO (e.g., Law et al., 2008) as well as coastal sites where the topography 4 

resolved varies by model resolution. Meteorological evaluation at surface sites is not 5 

sufficient to show differences in vertical mixing.  6 

Figure 12 presents the simultaneous correlation maps for each site in terms of the 7 

simulated CO2 concentration time series. The coverage of the correlation maps is 8 

determined by two factors at the same time: atmospheric transport and surface fluxes. 9 

This method differs from the footprint method (Kort et al., 2013). The footprint method 10 

maps the influence of atmospheric transport only at the location of the observation; no 11 

emission pattern is considered. Here both transport and emissions play a role in the area 12 

covered by the observation site. Therefore, the correlation maps are subject to 13 

overestimation of the influence area versus the footprint method, due to the complicated 14 

nature of the atmospheric integrator. As an example, in Figure 12, the coloured grids of 15 

the correlation map are not necessarily physically related to the observation site.  Those 16 

far from the site may lose the track of the initial sources. Conversely, there is definitely 17 

no physical influence from the uncorrelated areas to the observation site.  18 

However, this new network design method has a unique strengths compared to the 19 

footprint method. First of all, this method is computationally economical relative to the 20 

footprint method. Secondly, the method does not require adjoint models, avoiding 21 

another complexity. Most importantly, it brings extreme flexibility without any 22 

complexity for evaluating the existing measurement network or designing the 23 

measurement network with various observation platforms (i.e., in-situ, satellite, etc.) and, 24 

especially, outpaces the analysis for dense sampling techniques, such as use of remote 25 

sensing datasets. Applying the footprint method to satellite data for regional scale 26 

modelling is extremely computationally time-consuming and complex. 27 

Figure 15 shows the fraction of the total FFCO2 emissions detected over the LA megacity 28 

as function of the number of the observation sites for all of the runs.  Because the 29 

correlation maps have the possibility of overestimating the influence area, we focus on 30 
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the uncorrelated areas only. Assuming that the coverage of the GHG measurement 1 

network is not sufficient if an area is correlated to no more than two sites, then ~28.9 % 2 

of FFCO2 is potentially under-constrained by the current GHG measurement sites (Figure 3 

15a: WRF-Hestia 1.3-km). These areas include most of the mountains, Santa Monica Bay 4 

and the upwind coast, and the south part of the Central Basin (Figure 13), about 21.1 % 5 

of total area. However, this analysis is a qualitative assessment of the observational 6 

constraint. Consideration of errors in the CO2 emissions needs to be taken into account 7 

for a complete assessment of the network.  8 

Figure 15 also reflects the impact of the FFCO2 emissions used to simulate the CO2 fields. 9 

In the 1.3-km WRF-Hestia run, there are no areas covered by more than six sites, while 10 

the 1.3-km WRF-Vulcan run shows 39.8 % of FFCO2 emissions over the LA megacity to 11 

be covered by more than six sites. Additionally, the distribution appears nearly normal 12 

for the 1.3-km WRF-Vulcan run. A similar discrepancy is seen between the 4-km WRF-13 

Hestia and WRF-Vulcan runs.  These differences further highlight the importance of 14 

using the high-resolution FFCO2 emissions product for the urban CO2 simulation.  15 

The LA climate has two typical local regimes. From April to September, LA is warm, 16 

dry, and stable. Steady alongshore wind flow predominates. In contrast, from October to 17 

March, moist onshore flows bring precipitation to LA (Conil and Hall, 2006). The period 18 

of interest for this study is from the middle of May to the middle of June 2010. The 19 

results of this study represent the model performance for the dry seasons. Studying anther 20 

time of a year may yield different results. A longer-term model evaluation is also desired, 21 

which, however, is computationally and observationally time-consuming. This one-22 

month long high-resolution simulation took 11520 CPU hours (45 hours × 256 processors) 23 

on the petascale supercomputer Pleiades at the NASA Advanced Supercomputing (NAS) 24 

Division.  25 

 26 

7 Conclusion  27 

A set of WRF configurations varying by PBL scheme, urban surface scheme, and model 28 

resolution has been evaluated by comparing the PBL height determined by aircraft 29 

profiles and ceilometer, wind speed and wind direction measured by radar wind profiler, 30 
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and surface atmospheric states measured by NWS stations. The results suggest that there 1 

is no significant difference between the 4-km and 1.3-km resolution simulations in terms 2 

of atmospheric model performances at the surface, but the 1.3-km model runs resolve the 3 

vertical gradients of wind fields and PBL height somewhat better. The model inter-4 

comparisons show the model using the WRF configured MYNN_UCM PBL and urban 5 

surface schemes has overall better performance than others. Coupled to FFCO2 emissions 6 

products (Hestia-LA and Vulcan 2.2), a land-atmosphere modelling system was built 7 

with MYNN_UCM for studying the heterogeneity of urban CO2 emissions over the LA 8 

megacity.  9 

The Vulcan and Hestia-LA FFCO2 emission products were used to investigate the impact 10 

of the model representation errors and emission aggregation errors in the modelled CO2 11 

concentration. Compared to in-situ measurements during CalNex-LA, the 1.3-km 12 

modelled CO2 concentrations clearly outperform the results at 4-km resolution for 13 

capturing both the spatial distribution and the temporal variability of the urban CO2 14 

signals due to strong FFCO2 emission gradients across the LA megacity, even though no 15 

clear improvement in the meteorological evaluation was observed across the basin. The 16 

inter-comparison of the WRF-Hestia and WRF-Vulcan runs reinforces the importance of 17 

using high-resolution emission products to represent correct, large spatial gradients in 18 

atmospheric CO2 concentrations for urban environments. 19 

Based on the 1.3-km WRF-Hestia run, the coverage of the current GHG measurement 20 

site over the LA megacity was evaluated using the modelled spatial correlations. Kort et 21 

al. (2013) concluded a network of eight surface observation sites provided the minimum 22 

sampling required for accurate monitoring of FFCO2 emissions in LA using Vulcan at 4-23 

km model resolution. In this study, however, using Vulcan FFCO2 emissions tend to 24 

overestimate the observational constraint spatially, suggesting that the information lies in 25 

multiple fine-scale plumes rather than a single urban dome over the Los Angeles basin. 26 

Thanks to the much finer-resolution model and FFCO2 emission product Hestia-LA, the 27 

coverage of each observation site seems constrained to a more limited area. Using a high-28 

resolution emission data product and a high-resolution model configuration is necessary 29 

for accurately assessing the urban measurement network.  30 
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Table 1. Common elements of the WRF-Chem configuration used in all runs. 

Option Description  

Microphysics  WSM5 (Hong et al., 2004) 

Longwave radiation RRTMG (Iacono et al., 2008) 

Shortwave radiation RRTMG (Iacono et al., 2008) 

Land surface  Noah land surface model (Chen and Dudhia, 2001) 

Cumulus scheme Grell-3 (Grell and Dévényi, 2002) applied to 12-km domain 

(d01) only 

Advection  5th and 3rd order differencing for horizontal and vertical 

advection respectively  

Time step 3rd order Runge-Kutta; 45, 24, and 5 s for outermost, middle, 

innermost domains, respectively  

 1 

  2 
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Table 2. WRF configurations used for the sensitivity runs. 

Configuration PBL scheme Urban surface scheme Grid spacing (km) 

BouLac_BEP_d02 BouLac BEP 4 

BouLac_BEP_d03 BouLac BEP 1.3 

BouLac_UCM_d02 BouLac UCM 4 

BouLac_UCM_d03 BouLac UCM 1.3 

MYJ_d02 MYJ None 4 

MYN_d03 MYJ None 1.3 

MYJ_UCM_d02 MYJ UCM 4 

MYJ_UCM_d03 MYJ UCM 1.3 

MYNN_d02 MYNN None 4 

MYNN_d03 MYNN None 1.3 

MYNN_UCM_d02 MYNN UCM 4 

MYNN_UCM_d03 MYNN UCM 1.3 

 1 

  2 
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Table 3. Comparison Statistics of model performance on PBL height (unit: m AGL) 

relative to the ceilometer data over 1100 – 1700 PST at Caltech 

 Mean Bias Stdv*   RMSE 

OBS 835.7 - 223.8 - 

MYNN_UCM_d03  828.8 -6.9 82.7 89.7 

MYNN_UCM_d02  820.4 -15.3 66.1 94.5 

MYNN_d03 1055.6 219.9 205.8 278.2 

MYNN_d02 1029.4 193.7 200.0 254.3 

MYJ_UCM_d03 961.4 125.8 154.9 168.8 

MYJ_UCM_d02 971.4 135.7 109.3 157.7 

MYJ_d03 1115.3 279.7 174.4 308.7 

MYJ_d02 1105.1 269.5 150.9 291.6 

BouLac_UCM_d03 936.1 100.5 147.3 149.9 

BouLac_UCM_d02 958.7 123.1 104.8 148.7 

BouLac_BEP_d03 1233.9 398.3 239.0 442.2 

BouLac_BEP_d02 1244.3 408.6 219.5 446.0 

*Stdv = standard deviation  

     

  1 
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Table 4. Statistics of hourly modelled CO2 (unit: ppm) with different configurations 

relative to in-situ CO2 between 1300 – 1700 PST 

 

Pasadena Palos Verdes 

 

bias RMSE bias RMSE 

WRF-Hestia 1.3-km 8.91 18.43 2.57 17.00 

WRF-Hestia 4 km 7.03 14.50 8.09 19.64 

WRF-Vulcan 1.3 km 1.20 11.10 5.03 10.62 

WRF-Vulcan 4 km -1.38 9.13 4.20 9.40 

 1 

  2 
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Table 5. Statistics of daily afternoon averaged modelled CO2 (unit: ppm) with 

different configurations relative to in-situ CO2
*  

 

Pasadena Palos Verdes 

 

bias RMSE bias RMSE 

WRF-Hestia 1.3 km -1.39 6.21 -0.75 4.71 

WRF-Hestia 4 km 0.58 4.38 -1.77 4.59 

WRF-Vulcan 1.3 km -3.43 5.51 1.37 5.21 

WRF-Vulcan 4 km -4.41 6.12 0.58 4.38 

*Averaged over 1300 – 1700 PST 

  1 
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 1 

Table 6. Locations of the 2015-era GHG measurement sites in the model domain3 

Code* Name  Type Lat. (° N) Lon. (° E) 

GH Granada Hills Tower 34.28 -118.47 

Pasadena  Pasadena Building top 34.14 -118.13 

MWO Mt. Wilson Mountain top  34.22 -118.06 

USC University of South 

California  

Building top 34.02 -118.29 

Compton  Compton Tower 33.87 -118.28 

CSUF California State 

University, Fullerton 

Building top 33.88 -117.88 

Ontario Ontario Tower 34.06 -117.58 

SB San Bernardino Tower 34.09 -118.35 

Dryden✚ Dryden TCCON 34.95 -117.89 

VV Victorville Tower 34.61 -117.29 

UCI University of 

California, Irvine  

Building top 33.64 -117.84 

SCI San Clemente Island Tower 32.92 -118.49 

PV Palos Verdes  In-situ non-standard  33.74 -118.35 

vLa Jolla site is operating but not included in this paper 

*Codes used in this paper  

✚ In the analysis, we assume Dryden site is a near-surface point measurement like 

other sites rather than a column observation for simplicity. TCCON is the Total 

Carbon Column Observing Network (Wunch et al., 2011). 
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Figure 1. (a) Model domains. Contours are terrain height (unit: m).  (b) The 1.3-km 3 

model domain (d03) and terrain height (unit: m).  Triangles represent the locations of the 4 

GHG measurement sites. (c and d) Snapshots of the Vulcan and Hestia FFCO2 emissions 5 

(unit: kg/hr) over the LA megacity at 14:00 PST on 15 May 2010.   6 

 7 

(a) (b) 

(c) (d) 
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 3 

Figure 2. A case selected on 19 May 2010 at 12:25 (PST) (a) Location of the vertical 4 

profile flown by the CalNex aircraft and the neighbouring terrain heights (units: m). (b) 5 

In-situ potential temperature profile measured by the aircraft. The red dashed line at 6 

~1100 m is the PBL height calculated based on the vertical gradient of potential 7 

temperature Θ(K). (c) Modelled potential temperature profile from the 8 

MYNN_UCM_d02 configuration. The red dashed line is the aircraft-determined PBL 9 

height (Za in masl). The solid green line is the PBL height measured by the Caltech 10 

ceilometer (Zc in masl). The blue dashed line is the modelled PBL height (Zm in m), 11 

almost identical to the green line. 12 

 13 

(a) (b) 
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 3 

Figure 3. Absolute difference between the aircraft-determined and modelled PBL height 4 

for each profile: P01, P02, …, and P07 (blue bars). The pink bars in the last column 5 

represent the averaged bias over all of the profiles for each configuration. Note that the 6 

shorter the bar, the better agreement of the model with the observations.  7 

 8 

 9 

 10 
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Figure 4. Average diurnal variation of the ceilometer-measured and modelled PBL 3 

heights at California Institute of Technology (Caltech) in Pasadena, CA during 15 May 4 

through 15 June 2010. Error bars indicate standard deviations of the means of the 5 

ceilometer measurement.  6 

 7 
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Figure 5. Average differences of wind profiles between the simulations and observations 3 

(model – wind radar profiler) at the Los Angeles International Airport (LAX). (a) The 4 

difference for wind speed (unit: m/s); (b) for wind direction (unit: degree).  Note that 5 

these results are for daytime 1100 – 1700 PST only.  6 

 7 

 8 

(a) (b) 
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 3 
Figure 6. Bias maps of atmospheric state variables from the MYNN_UCM runs versus 4 

National Weather Stations (NWS) over the LA megacity (Model – NWS): (a1-a4) 4-km 5 

run; (b1 – b4) 1.3-km run.  Black triangles indicate the locations of the GHG 6 

measurement sites. Note daytime 1100 – 1700 PST only. 7 

 8 

 9 

  10 
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Figure 7. RMSE maps of atmospheric state variables from the MYNN_UCM runs versus 3 

National Weather Stations (NWS) over the LA megacity: (a1-a4) 4-km run; (b1 – b4) 4 

1.3-km run.  Black triangles indicate the locations of the GHG measurement sites. Note 5 

daytime 1100 – 1700 PST only. 6 

 7 

  8 
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Figure 8. Comparison of the observed and modelled CO2 concentrations at the (a and c) 3 

Pasadena and (b and d) Palos Verdes sites: (a and b) hourly time series, (c and d) daily 4 

afternoon averages for 1300 – 1700 PST.  5 

 6 
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Figure 9. Averaged diurnal variation of observed and modelled CO2 concentration and 3 

FFCO2 emissions for the (a and c) Pasadena and (b and d) Palos Verdes sites during 4 

CalNex-LA. Note that Vulcan 4-km overlaps with Vulcan 1.3-km in Figure 9d.  5 

  6 

(a) (b) 

(c) (d) 
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Figure 10. Comparisons of flask-sampled and modelled (a-d) anthropogenic fossil fuel 2 

and (e-h) biogenic CO2 concentration. Left column: hourly time series.  The horizontal 3 

error bars on the flask-sampled data points indicate the range of dates combined in each 4 

sample.  Note that much of the time period for the Δ14C samples at the Palos Verdes site 5 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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is before or after our modelling period.  Right column: Averages at 1400 PST during 1 

CalNex-LA. See Newman et al. (2016) for details about the sites and sampling 2 

information.3 
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Figure 11. (a and b) The first empirical orthogonal function (EOF 1) for the surface wind 3 

pattern (black arrows) simulated by MYNN_UCM_d03 at 1400 PST during CalNex-LA. 4 

EOF 1 accounts for 48.1 % of the variance in the average winds. Contours: (a) terrain 5 

height (unit: m); (b) the modelled surface CO2 concentration (unit: ppm) from the 1.3-km 6 

WRF-Hestia run. The red triangles indicate the locations of the GHG measurement sites. 7 

(c) The modelled CO2 concentrations from the 1.3-km WRF-Vulcan run (unit: ppm). (d) 8 

The difference in the modelled CO2 concentrations between the 1.3-km WRF-Vulcan and 9 

WRF-Hestia runs (unit: ppm).  10 

(a) (b) 

(c) (d) 
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Figure 12. The spatial correlation map (R) of the 1.3-km WRF-Hestia simulated CO2 1 

concentration between each site and the remainder of the domain at 1400 PST during the 2 

CalNex-LA campaign. The correlation map was constructed by calculating the 3 

simultaneous correlation of the site CO2 to the CO2 over rest of the LA megacity. Note 4 

that only those pixels that pass the t-test at the significance level of 0.01 (|R| � 0.46) are 5 

coloured. 6 
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Figure 13. Same as Figure 12 but for the Compton (top row), Palos Verdes (middle row), 3 

and CSUF (bottom row) sites only. Shown are the correlation maps of these three 4 

measurement sites for the 1.3-km WRF-Hestia (first column), 1.3-km WRF-Vulcan 5 

(second column), 4-km WRF-Hestia (third column), and 4-km WRF-Vulcan runs (fourth 6 

column). Note that only those pixels that pass the t-test at the significance level of 0.01  7 

(|R| �  0.46) are coloured. 8 
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Figure 14. Composite maps of spatial correlation (R in Figure 12 and 13) for the 1.3-km 3 

WRF-Hestia, 1.3-km WRF-Vulcan, 4-km WRF-Hestia, and 4-km WRF-Vulcan runs. 4 

Each composite map was constructed by determining the number of the observation sites 5 

for which |R| is greater than 0.46 at each grid cell. |R| = 0.46 is the critical value at the 6 

significance level of 0.01 of t-test. Specifically, white cells indicate that no sites are 7 

correlated well at the location; dark red cells indicate that over 13 sites have good 8 

correlation at the location. The SCI and Dryden sites are not shown on these maps. 9 
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 13 
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Figure 15. The fraction of the FFCO2 emission over the LA megacity as function of the 4 

number of the GHG measurement sites that covers the area (see Figure 14) for (a) 1.3-km 5 

WRF-Hestia, (b) 4-km WRF-Hestia, (c) 1.3-km WRF-Vulcan, and (d) 4-km WRF-6 

Vulcan runs during CalNex-LA. Colour scale is the same as in Figure 14. 7 
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Figure S1. Google Earth map showing the location of the 14 GHG measurement sites, only 13 of 3 

which are within the innermost model domain, the exception being the La Jolla site. 4 

 5 


