

Reply to the review of Anonymous Referee #2

We thank Reviewer #2 for his/her positive appreciation of this work and especially his/her detailed comments regarding the model description and the discussion of the co-condensation process and parameterisation.

Replies to his/her remarks and suggestions are given below. For the sake of clarity, the reviewer's comments are in blue italics and our response is in black font.

Overall, I find the paper very interesting and support its publication in ACP once the following problems are addressed. My biggest complaint to the current state of the manuscript is the insufficient detail of the BC3 model provided in the model description section and of its behavior in terms of water vapor condensation in the discussion section, as I mention below in the specific comments. I am also puzzled by the formulation of the BC2 model as currently described, which I wish the authors to clarify. The quality of English should be improved to catch up with the quality of science presented in the paper. To some extent, this problem may be addressed by an English copy-editor assigned by the editorial office at the final production of the manuscript. But, according to my own experience with publication process for ACP, the authors themselves should put some efforts beforehand because the copy-editor can often misinterpret loosely written sentences.

We asked native English speakers to proofread the manuscript. We think that the quality of English now match the requirements for a publication in ACP.

[Major comments]

1. I am puzzled by the formulation of the BC2 model as currently described. Section 3.3.2 states that equation (11) is used to diagnose the concentration of HNO_3 (X_{HNO_3}) according to its thermodynamic equilibrium solubility into ice and enhanced uptake due to co-condensation with water vapor. Does this equation apply to the concentration of HNO_3 in the entire volume of the snow grain? If this is the case, the model assumes that the entire volume of the snow grain instantly feels the impact of the near-surface domain of the grain where the concentrations of HNO_3 are controlled by the co-condensation, which seems inappropriate. Judging from the initial “spin-up” behavior of the BC1 model (section 5.1 and figure 4), I presume that the relevant timescale of solid-state diffusion within the bulk ice volume is on the order of a week to a month. Please clarify.

The second configuration of the model describes the snow grain as a layered sphere. Solid state diffusion is the only exchange process occurring between adjacent layers. Lying at the interface, the outermost layer undergoes both air – snow exchange processes and solid state diffusion with the inner layer. We developed three parameterisations to describe the air – snow partitioning and prescribe the nitrate concentration in the outermost layer. It is the boundary condition (BC) of the diffusion scheme, and this is why we choose to label the different parameterisations BC1 to BC3. This was stated in the introduction of section 3.3 (L289-294).

The entire volume of the snow grain is thus never constrained, it only “feels the impact” of the outermost layer concentration through solid state diffusion.

To clarify the description of these parameterisations, we changed the text as follows:

- we split section 3.3.1 (“Diffusion scheme and equilibrium boundary condition (BC1)”) into 2 sections (“3.3.1 Diffusion scheme”; “3.3.2 Equilibrium boundary condition (BC1)”), and we stressed that the diffusion scheme applies to any of the chosen boundary conditions.
- we slightly rephrased the description of BC2 to emphasise that the developed parameterisation only changes the outermost layer concentration, as compared to BC1:

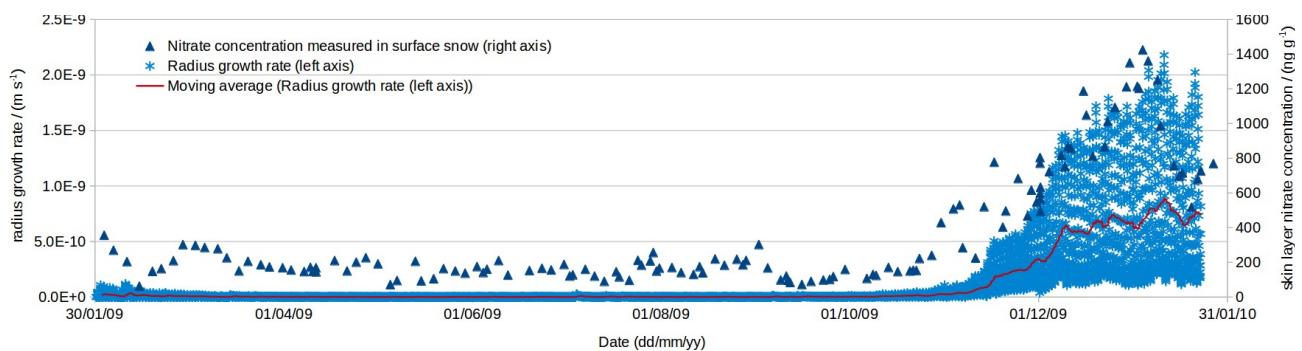
[old text] Thus, in order to test these hypotheses, a first simple diagnostic parameterisation of cocondensation process was implemented by adding an adjustable term in the boundary condition definition of the concentration:

→

[new text] Thus, in order to test these hypotheses, a first simple diagnostic parameterisation of co-condensation process was implemented by adding an adjustable term to prescribe the outermost layer concentration (BC2):

(...)

Solid state diffusion within the layered snow grain then proceeds as previously described (Sect. 3.3.1).


2. The authors should also provide further details of how they formulate the BC3 model and how it behaves in terms of the condensation of water vapor and its impact on the radius growth (Δr) of the snow grain. Without these pieces of information, one cannot really make sense of why this model is so successful in reproducing the summertime peak of nitrate concentrations at Dome C and are unable to discuss their potential future studies in light of the present model results. So I would like the authors to clarify the following aspects in the formulation of the model and its behavior:

a) what is the magnitude of $\Delta r/\Delta t$ prescribed in the model? The authors should provide this information in a time series over the entire annual cycle in the supplement. Does $\Delta r/\Delta t$ also vary diurnally to a significant degree?;

Following the request of Anonymous Reviewer #2, we added a new figure (reproduced below) showing the time series of the radius growth rate. We decided to include it in the main text since it clearly shows that this time series feature similar yearly pattern that the skin layer nitrate concentration. This is another evidence that the skin layer concentration is driven by temperature gradient metamorphism, and co-condensation. We also added the following paragraphs in the discussion about BC3 results (Sect. 5.3).

(L630-642)

The radius growth rate $\Delta r/\Delta t$ as derived from Eq. (14) is presented in Fig. 5. It spans roughly three orders of magnitude over the year, from about $10^{-12} \text{ m s}^{-1}$ in winter to $\sim 8 \cdot 10^{-10} \text{ m s}^{-1}$ in summer. The explanation of this behaviour is twofold. First, the diurnal temperature cycle has a larger amplitude in summer, which enhances the temperature gradient close to the surface. Second, the vapour pressure over ice increases exponentially with temperature. As a consequence, with a given temperature gradient, the gradient of water vapour concentration used in Eq. (12) is larger if temperatures are higher. This also explains the diurnal variation of the grain radius growth. The most striking feature of the radius growth rate is that it peaks during the same period of the year that the peak of nitrate concentration in the skin layer. The yearly pattern of the radius growth rate predicted by our model is also consistent with independent studies focused on snow physical properties (Picard et al, 2012, Libois et al 2015). This comes as another evidence that snow metamorphism, and co-condensation, have a major influence over the snow chemical concentration.

(L645-650)

A diurnal variation of the modelled concentration is observed, as a consequence of the diurnal variation of the radius growth rate. However, the diurnal variation of the concentration is much smoother because solid state diffusion in the whole snow grain softens the large diurnal

variations in the outermost layer of the snow grain. The modelled diurnal variation of the concentration is smaller than 20 %, which is similar to the measurements uncertainty due to spatial heterogeneity.

b) From the description in section 3.3.3, it seems that equation (15) is applied to prescribe the concentration of nitrate only within the outermost layer of the depth of Δr in the snow grain. If this is the case, the model seems to be assuming that the high concentration of nitrate due to the co-condensation is locked into that layer after the model proceeds to the next time step ($t+\Delta t$). How is the solid-state diffusion in the deeper layers of the snow grain handled in this model? This aspect of the model formulation should be properly described, perhaps with additional equations in section 3.3.3;

In model configuration 2 (handling solid state diffusion), the outermost layer concentration is first prescribed according to one of the three different boundary conditions (BCs) developed in this study. Then solid state diffusion proceeds as described in the relevant section (Sect. 3.3.1). Whatever the BC, the concentration is thus never “locked into” the outermost layer.

We expect that the improved description of the model configuration 2 (see our answer to Major comment 1) also addresses this comment regarding the clarity of the description for BC3.

We also added a sentence at the end of the section describing BC3 to clarify the role of the radius increase calculation:

(L429-432)

We emphasise that the radius of the modelled snow grain is kept unchanged along the whole simulation. The calculation of the radius increase due to the condensation of water vapour is only used to compute the concentration (Eq. 15) at the surface of the modelled snow grain (BC).

c) as currently formulated in the model, it appears that the evaporation of water from the snow grain does nothing to nitrate in it. But I wonder if it is appropriate to assume that such an evaporation of water may expose the layer of ice once buried with supersaturated HNO₃, leading to the volatilization of HNO₃ to ambient air. Is it not feasible at all to consider this possibility in the present model framework?

We agree with Reviewer #2 that sublimation of water is an important process regarding the mass balance of a snow grain. Despite many efforts to integrate this process in our model, we have not found a satisfactory way to implement it. However, we stress that in the current hypothesis, the snow grain has a constant radius. The mass growth calculated with Eq. (12) in order to estimate the thickness Δr of a virtually condensed layer (Eq. 14) is only used to calculate the theoretical concentration in the condensed layer according to Eq. (15). We have stated this feature more clearly, as presented previously (answer to major comment 2b).

A model able to describe both the condensation and the sublimation, with a varying radius of the snow grain, would obviously be a better way to proceed. To the best of our knowledge, only 2-D or 3-D studies, using either modelling or microtomography, are currently able to provide a satisfactory description of these processes inside the snowpack. This requires knowing the temperature field within both the snow grains and the interstitial air, in order to calculate both condensation and sublimation (see for instance Fig. 5 in Calonne et al 2015, or the studies by Calonne et al 2014 and Ebner et al 2016). Such accurate modelling is even more difficult when considering the skin layer, since the processes governing the water vapour exchange with the lower troposphere are different than those occurring only in the porous snowpack. We are not aware of any study extending the domain to the interface with the atmosphere.

We also agree with Anonymous Reviewer #2 that not taking into account the sublimation might lead to important errors if supersaturated layers buried inside the ice matrix become exposed to the interstitial air and sublime. This would indeed lead to an important loss regarding the overall snow concentration. However, this does not happen in our model, since the radius is kept unchanged. In other words, the supersaturated condensed layer is virtually condensed at the beginning of each timestep, and virtually removed at the end of each timestep. During the timestep, the surface of the snow grain sees the concentration as calculated with Eq. (15), and exchanges with the core of the snow grain through solid state diffusion.

The comparison of BC1 and BC3 (Fig. 4 and 5) also reveals that winter concentration is mostly unchanged between these two parameterisations. In wintertime, the radius increase calculated with Eq. (14) is so small compared to the typical diffusion length that the argument of the erfc function in Eq. (15) tends towards 0, thus the prescribed concentration tends towards X_{eq} . We believe that the consistent behaviour of the model throughout the year of simulation also demonstrates that there is no undue accumulation when using BC3, which would necessarily lead to a long term drift if this was not the case.

[Minor comments]

1. After introducing equation (8), it may be useful state the relevant timescale of solid-state diffusion with the spherical snow gain with the radius of 85 micrometers. This information can then be restated in section 5.1, where the authors refer the initial drop of nitrate concentrations in the BC1 model from 500 ng g⁻¹.

We added the following statement after Eq. 8 (numbered 7 in the revised manuscript):

(L302-309)

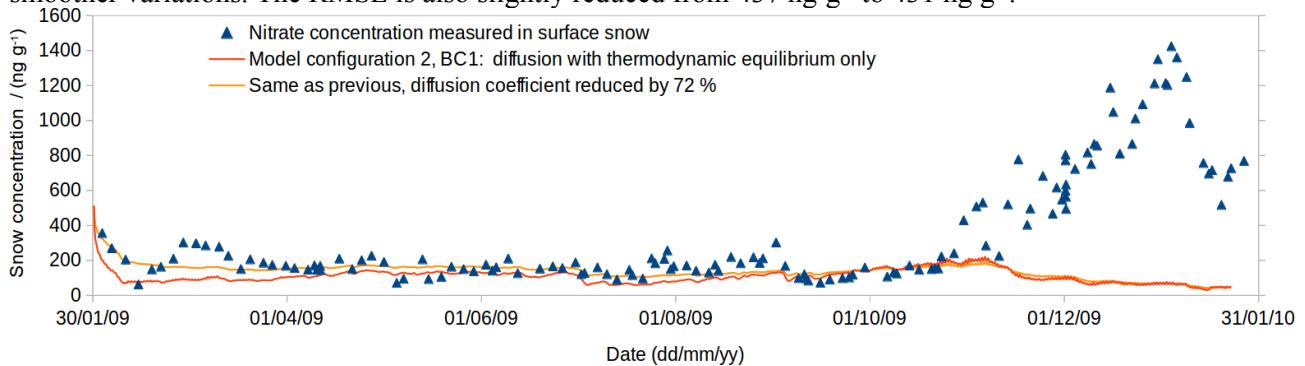
The modelled snow surface temperature ranges from 198 K to 253 K (average 222 K) during the studied period. The diffusion coefficient thus ranges from 8.9×10^{-18} m² s⁻¹ to 6.4×10^{-15} m² s⁻¹ (average 7.1×10^{-16} m² s⁻¹). A characteristic time for diffusion, τ , can be estimated as $\tau = l^2 / D$ where l is a characteristic diffusion length. Considering the assumed spherical geometry of the snow grain, when diffusion reaches $0.21 \times R$, 50 % of the volume is affected; and when diffusion reaches $0.37 \times R$, 75 % of the volume is affected. Using these values as characteristic diffusion length and the average diffusion coefficient, the characteristic times for diffusion are $\tau_{.50} \approx 5$ days and $\tau_{.75} \approx 16$ days.

We rephrased the end of the sentence in Sect. 5.1 to refer to this characteristic diffusion time:

(L578-580)

The time needed to re-equilibrate the snow grain concentration, roughly 2 weeks, compares well with the characteristic diffusion time (see Sect. 3.3.1).

2. L625-626: This statement on indication for the involvement of surface adsorption in the spring should be stressed more clearly in the abstract and conclusions.


The analysis provided in conclusion of Sect. 4.2 (L551-565 of the original manuscript) is intended to give a rough estimation of the error when ignoring the adsorption process, given the inability of the current parameterisation to fit the measurements. However, we stressed that assuming a constant overestimation factor is a strong hypothesis, and the conclusion of this analysis should be used with caution. We thus only mentioned it in the conclusion in the revised manuscript:

(L725-729)

Assuming that the adsorption parameterisation is flawed by a constant overestimation factor which would leave the yearly pattern unchanged, the maximum featured by the modelled adsorbed concentration in September and October suggests that adsorbed nitrate might account for roughly 30 % of snow nitrate during these 2 months. As for the rest of the year and based on the same hypothesis, adsorbed nitrate should account for less than 10 % of snow nitrate.

3. L645-651: What happens to the BC1 model if you decrease the solid-state diffusivity of HNO_3 by 72%?

When reducing the diffusion coefficient by 72 % in BC1 configuration, the modelled concentration features smoother variations. The RMSE is also slightly reduced from 437 ng g^{-1} to 431 ng g^{-1} .

4. Table 1: Is it useful to show mean model biases as well here?

The numerical values of the RMSE for the various runs are only shown in Table 1, and not mentioned in the main text. We believe that it can help the reader to appreciate the improvements in the reproduction of the measurements along with the various runs. We also think that it could be useful to compare with forthcoming studies based on similar datasets, and/or using similar modelling framework.

However, if the Anonymous Reviewer #2 and/or the Editor want this information to be removed from Table 1, we agree it is not essential.

[Editorial suggestions]

All editorial suggestions have been modified accordingly.

Cited Papers:

Calonne, N., Flin, F., Geindreau, C., Lesaffre, B. & Rolland du Roscoat, S. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy. *The Cryosphere* **8**, 2255–2274 (2014).

Calonne, N., Geindreau, C. & Flin, F. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection. *Journal of Geophysical Research: Earth Surface* **120**, 2476–2497 (2015).

Dominé, F. & Thibert, E. Mechanism of incorporation of trace gases in ice grown from the gas phase. *Geophys. Res. Lett.* **23**, 3627–3630 (1996).

Ebner, P. P., Schneebeli, M. & Steinfeld, A. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample. *The Cryosphere* **10**, 791–797 (2016).

Gallet, J.-C., Domine, F., Savarino, J., Dumont, M. & Brun, E. The growth of sublimation crystals and surface hoar on the Antarctic plateau. *The Cryosphere* **8**, 1205–1215 (2014).