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1. Abstract 35 

A 6-models strong European ensemble of Copernicus Atmospheric Monitoring Service (CAMS) 36 

was run through the season of 2014 computing the olive pollen dispersion in Europe. The 37 

simulations have been compared with observations in 6 countries, members of the European 38 

Aeroallergen Network. Analysis was performed for individual models, the ensemble mean and 39 

2 distribution in Europe in 2014. 
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median, and for a dynamically optimized combination of the ensemble members obtained via fusion 40 

of the model predictions with observations. The models, generally reproducing the olive season of 41 

2014, showed noticeable deviations from both observations and each other. In particular, the season 42 

start was reported too early, by 8 days but for some models the error mounted to almost two weeks. 43 

For the season end, the disagreement between the models and the observations varied from a nearly 44 

perfect match up to two weeks too late. A series of sensitivity studies performed to understand the 45 

origin of the disagreements revealed crucial role of ambient temperature, especially systematic 46 

biases in its representation by meteorological models. A simple correction to the heat sum threshold 47 

eliminated the season shift but its validity in other years remains to be checked. The short-term 48 

features of the concentration time series were reproduced better suggesting that the precipitation 49 

events and cold/warm spells, as well as the large-scale transport were represented rather well. 50 

Ensemble averaging led to more robust results. The best skill scores were obtained with data fusion, 51 

which used the previous-days observations to identify the optimal weighting coefficients of the 52 

individual model forecasts. Such combinations were tested for the forecasting period up to 4 days 53 

and shown to remain nearly optimal throughout the whole period. 54 

 55 

Keywords: olive pollen, airborne pollen modelling, pollen forecasting, multi-model ensemble, data 56 

fusion, aerobiology 57 

 58 

2. Introduction 59 

Biogenic aerosols, such as pollen and spores, constitute a substantial fraction of particulate matter 60 

mass in the air during the vegetation flowering season and can have strong health effects causing 61 

allergenic rhinitis and asthma (G D’Amato et al., 2007). One of important allergenic trees is olive. 62 

Olive is one of the most extensive crops and its oil being one of the major economic resources in 63 

Southern Europe. The bulk of olive habitation (95% of the total area worldwide) is concentrated in 64 

the Mediterranean basin (Barranco et al., 2008). Andalusia has by far the world’s largest area given 65 

over to olive plantations, 62% of the total olive land of Spain and 15% of the world’s plantations 66 

(Gómez et al., 2014). 67 

Olive pollen is also one of the most important causes of respiratory allergies in the Mediterranean 68 

basin (G. D’Amato et al., 2007) and in Andalusia it is considered as the main cause of allergy. In 69 

Cordoba City (S Spain), 73% of pollen-allergy sufferers are sensitive to olive pollen (Sánchez-Mesa 70 

et al., 2005). High rates of sensitization to olive pollen have been documented in many other 71 

Mediterranean countries: 31.8% in Greece (Gioulekas et al., 2004), 27.5% in Portugal (Loureiro et 72 
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al., 2005), 24% in Italy (Negrini et al., 1992), 21.6% in Turkey (Kalyoncu et al., 1995), and 15% in 73 

France (Spieksma, 1990). 74 

Olive is an entomophilous species that presents a secondary anemophily, favored by the agricultural 75 

management during the last centuries. This tree is very well adapted to the Mediterranean climate 76 

and tolerates the high summer and the low winter temperatures, as well as the summer drought, 77 

characteristic for this climate. 78 

Olive floral phenology is characterized by bud formation during summer, dormancy during autumn, 79 

budburst in late winter, and flowering in late spring (Fernandez-Escobar et al., 1992; Galán et al., 80 

2005; García-mozo et al., 2006). Similar to some other trees, olive flowering intensity shows 81 

alternated years with high and low or even no pollen production. The characteristic quasi-biannual 82 

cycles are well visible in observations (Ben Dhiab et al., 2016; Garcia-Mozo et al., 2014). This 83 

cycle, similar to other trees, e.g., birch, is not strict and is frequently interrupted showing several 84 

years with similar flowering intensity (Garcia-Mozo et al., 2014). Such cyclic behavior is related to 85 

the reproductive development, which is completed in two consecutive years. In the first year, the 86 

bud vegetative or reproductive character is determined by the current harvest level, since this is the 87 

main factor responsible for the inter-annual variation of flowering. In the second year, after the 88 

winter rest, the potentially reproductive buds that have fulfilled their chilling requirements develop 89 

into inflorescences (Barranco et al., 2008).  90 

After the bud break, certain bio-thermic units are required for the development of the 91 

inflorescences. Both the onset of the heat accumulation period and the temperature threshold for the 92 

amount of positive heat units might vary according to the climate of a determined geographical 93 

area. The threshold level was also reported to decrease towards the north (Aguilera et al., 2013). 94 

Altitude is the topographical factor most influencing olive local phenology and the major weather 95 

factors are temperature, rainfall, and solar radiation that control the plant evapotranspiration (Oteros 96 

et al., 2013; Oteros et al., 2014). 97 

Several studies used airborne pollen as a predictor variable for determining the potential sources of 98 

olive pollen emission, e.g. Concentric Ring Method (Oteros et al., 2015), geostatistical techniques 99 

(Rojo and Pérez-Badia, 2015) and the spatio-temporal airborne pollen maps (Aguilera et al., 2015). 100 

There is a substantial variability of olive biological characteristics and its responses to 101 

environmental stresses. In particular, the allergen content was shown to be strongly different in 102 

pollen coming from different parts of the Iberian Peninsula (Galan et al., 2013).  103 
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Numerical modelling of olive pollen transport is very limited. In fact, the only regional-scale 104 

computations regularly performed since 2008 were made by the SILAM model (http://silam.fmi.fi) 105 

but the methodology was only scarcely outlined in (Galan et al., 2013).  106 

Copernicus Atmospheric Monitoring Service CAMS (http://atmosphere.copernicus.eu) is one of the 107 

services of the EU Copernicus program, addressing various global and regional aspects of 108 

atmospheric state and composition. CAMS European air quality ensemble (Marécal et al., 2015) 109 

provides high-resolution forecasts and reanalysis of the atmospheric composition over Europe. 110 

Olive pollen is one of the components, which are being introduced in the CAMS European 111 

ensemble in co-operation with European Aeroallergen Network EAN 112 

(https://www.polleninfo.org/country-choose.html).  113 

One of possible ways of improving the quality of model predictions without direct application of 114 

data assimilation is to combine them with observations via ensemble-based data fusion methods 115 

(Potempski and Galmarini, 2009). Their efficiency has been demonstrated for air quality problems 116 

(Johansson et al., 2015 and references therein) and climatological models (Genikhovich et al., 2010) 117 

but the technology has never been applied to pollen. 118 

The aim of the current publication is to present the first Europe-wide ensemble-based evaluation of 119 

the olive pollen dispersion during the season of 2014. The study followed the approach of the multi-120 

model simulations for birch (Sofiev et al., 2015) with several amendments reflecting the peculiarity 121 

of olive pollen distribution in Europe. We also made further steps towards fusion of model 122 

predictions and observations and demonstrate its value in the forecasting regime. 123 

The next section will present the participating models and setup of the simulations, the observation 124 

data used for evaluation of the model predictions, approach for constructing an optimised multi-125 

model ensemble, and a list of sensitivity computations. The Results section will present the 126 

outcome of the simulations and the quality scores of the individual models and the ensemble. The 127 

Discussion section will be dedicated to analysis of the results, considerations of the efficiency of the 128 

multi-model ensemble for olive pollen, and identification of the development needs.  129 

3. Materials and methods 130 

This section presents the regional models used in the study, outlines the olive pollen source term 131 

implemented in all of them, and pollen observations used for evaluation of the model predictions. 132 
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3.1. Dispersion models 133 

The dispersion models used in the study comprise the CAMS European ensemble, which is 134 

described in details by Marécal et al., (2015) and (Sofiev et al., 2015). Below, only the model 135 

features relevant for the olive pollen atmospheric transport calculations are described. 136 

The ensemble consisted of six models. 137 

EMEP model of EMEP/MSC-West (European Monitoring and Evaluation Programme / 138 

Meteorological Synthesizing Centre - West) is a chemical transport model developed at the 139 

Norwegian Meteorological Institute and described in Simpson et al., (2012). It is flexible with 140 

respect to the choice of projection and grid resolution. Dry deposition is handled in the lowest 141 

model layer. A resistance analogy formulation is used to describe dry deposition of gases, whereas 142 

for aerosols the mass-conservative equation is adopted from Venkatram, (1978) with the dry 143 

deposition velocities dependent on the land use type. Wet scavenging is dependent on precipitation 144 

intensity and is treated differently within and below cloud. The below-cloud scavenging rates for 145 

particles are based on Scott, (1979). The rates are size-dependent, growing for larger particles. 146 

EURAD-IM (http://www.eurad.uni-koeln.de) is an Eulerian meso-scale chemistry transport model 147 

involving advection, diffusion, chemical transformation, wet and dry deposition and sedimentation 148 

of tropospheric trace gases and aerosols (Hass et al., 1995; Memmesheimer et al., 2004). It includes 149 

3D-VAR and 4D-VAR chemical data assimilation (Elbern et al., 2007) and is able to run in nesting 150 

mode. The positive definite advection scheme of Bott (1989) is used to solve the advective transport 151 

and the aerosol sedimentation. An eddy diffusion approach is applied to parameterize the vertical 152 

sub-grid-scale turbulent transport (Holtslag and Nieuwstadt, 1986). Dry deposition of aerosol 153 

species is treated size-dependent using the resistance model of Petroff and Zhang (2010). Wet 154 

deposition of pollen is parameterized according to Baklanov and Sorensen (2001). 155 

LOTOS-EUROS (http://www.lotos-euros.nl/) is an Eulerian chemical transport model (Schaap et 156 

al., 2008). The advection scheme follows Walcek and Aleksic (1998). The dry deposition scheme of 157 

Zhang et al. (2001) is used to describe the surface uptake of aerosols. Below-cloud scavenging is 158 

described using simple scavenging coefficients for particles (Simpson et al., 2003). 159 

MATCH (http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-160 

chemistry-model-1.6831)  is an Eulerian multi-scale chemical transport model with mass-161 

conservative transport and diffusion based on a Bott-type advection scheme (Langner et al., 1998; 162 

Robertson and Langner, 1999). For olive pollen, dry deposition is mainly treated by sedimentation 163 
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and a simplified wet scavenging scheme is applied. The temperature sum, which drives pollen 164 

emission, is computed off-line starting from January onwards and is fed into the emission module. 165 

MOCAGE (http://www.cnrm.meteo.fr/gmgec-old/site_engl/mocage/mocage_en.html) is a multi-166 

scale dispersion model with grid-nesting capability (Josse et al., 2004; Martet et al., 2009). The 167 

semi-Lagrangian advection scheme of Williamson and Rasch (1989) is used for the grid-scale 168 

transport. The convective transport is based on the parameterization proposed by Bechtold et al. 169 

(2001) whereas the turbulent diffusion follows the parameterization of Louis (1979). Dry deposition 170 

including the sedimentation scheme follows Seinfeld and Pandis (1998). The wet deposition by the 171 

convective and stratiform precipitations is based on Giorgi and Chameides (1986). 172 

SILAM (http://silam.fmi.fi) is a meso-to-global scale dispersion model (Sofiev et al., 2015), also 173 

described in the review of Kukkonen et al. (2012). Its dry deposition scheme (Kouznetsov and 174 

Sofiev, 2012) is applicable for a wide range of particle sizes including coarse aerosols, which are 175 

primarily removed by sedimentation. The wet deposition parameterization distinguishes between 176 

sub- and in-cloud scavenging by both rain and snow (Sofiev et al., 2006). For coarse particles, 177 

impaction scavenging parameterised following (Kouznetsov and Sofiev, 2012) is dominant below 178 

the cloud. The model includes emission modules for six pollen types: birch, olive, grass, ragweed, 179 

mugwort, and alder, albeit only birch, ragweed, and grass sources are so-far described in the 180 

literature (Prank et al., 2013; Sofiev, 2016; Sofiev et al., 2012). 181 

Three ENSEMBLE models were generated by (i) arithmetic average, (ii) median and (iii) optimal 182 

combination of the 6 model fields. Averaging and median were taken on hourly basis, whereas 183 

optimization was applied at daily level following the temporal resolution of the observational data. 184 

For the current work, we used simple linear combination copt of the models cm, m=1..M minimising 185 

the regularised RMSE J of the optimal field: 186 
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 188 

Here, i,j,k,t are indices along the x,y,z, and time axes, M is the number of models in the ensemble, O 189 

is the number of observation stations,  ={d-k:d0} is the time period of k+1 days covered by the 190 

analysis window, starting from d-k until d0 , -1 is the previous-day analysis period  -1={d-k-1:d-1}, 191 
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cm is concentration of pollen predicted by the model m, am is time-dependent weight coefficient of 192 

the model m in the ensemble. In the Eq. (2), the first term represents the RMSE of the assimilated 193 

period , the second term limits the departure of the coefficients from the homogeneous weight 194 

distribution, the third one limits the speed of evolution of the am coefficients in time. The scaling 195 

values  and  decide on the strength of regularization imposed by these two terms. 196 

The ensemble was constructed mimicking the forecasting mode. Firstly, the analysis is made using 197 

data from the analysis period  . The obtained weighting coefficients ai are used over several days 198 

forwards from day d0: from d1 until dnf, which constitute the forecasting steps. The performance of 199 

the ensemble is evaluated for each length of the forecast, from 1 to nf days. 200 

3.2. Olive pollen source term 201 

All models of this study are equipped with the same olive pollen source term, which has not been 202 

described in the scientific literature yet. However, it follows the same concept as the birch source 203 

(Sofiev et al., 2012) that was used for the birch ensemble simulations (Sofiev et al., 2015). The 204 

formulations and input data are open at http://silam.fmi.fi/MACC. The main input dataset is the 205 

annual olive pollen production map based on ECOCLIMAP dataset (Champeaux et al., 2005; 206 

Masson et al., 2003), Figure 1.  207 

ECOCLIMAP incorporates the CORINE land-cover data for most of western-European countries 208 

with explicit olive-plantations land-use type (CEC, 1993). For Africa and countries missing from 209 

CORINE, the empty areas were filled manually assuming that 10% of all tree-like land-use types 210 

are olives. This way, Tunisian, Egyptian, and Algerian olive plantations were recovered and 211 

included in the inventory. In some areas, such as France (Figure 1), the olive habitat looks 212 

unrealistically low, probably because the large olive plantations are rare but the trees are planted in 213 

private gardens, city park areas, streets, etc. Since these distributed sources are not reflected in the 214 

existing land-use inventories, they are not included in the current pollen production map. 215 

Similar to birch, the flowering description follows the concept of Thermal Time phenological 216 

models and, in particular, the double-threshold air temperature sum approach of Linkosalo et al. 217 

(2010) modified by Sofiev et al. (2012). Within that approach, the heat accumulation starts on a 218 

prescribed day in spring (1 January in the current setup – after  Spano et al. (1999), Moriondo et al. 219 

(2001), Orlandi et al. (2005a, 2005b) and continues throughout spring. The cut-off daily 220 

temperature below which no summation occurs is 0C, as compares to 3.5C for birch, was 221 

obtained from the multi-annual fitting of the season start. Flowering starts when the accumulated 222 
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heat reaches the starting threshold (Figure 2) and continues until the heat reaches the ending 223 

threshold (in the current setup, equal to the start-season threshold + 275 degree day). The rate of 224 

heat accumulation is the main controlling parameter for pollen emission: the model assumes direct 225 

proportionality between the flowering stage and fraction of the heat sum accumulated to-date. 226 

 227 

 228 

Figure 1. Olive pollen habitat map, percentage of the area occupied by the trees, [%]. Productivity of an area with 229 

100% olive coverage is assumed to be 1010 pollen grain m-2 season-1. 230 

 231 

Similar to birch parameterization of Sofiev et al. (2012), the model distinguishes between the pollen 232 

maturation, which is solely controlled by the heat accumulation described above, and pollen release, 233 

which depends on other parameters. Higher relative humidity (RH) and rain reduce the release, 234 

completely stopping it for RH > 80% and/or rain > 0.1 mm hr-1. Strong wind promotes it by up to 235 

50%. Atmospheric turbulence is taken into account via the turbulent velocity scale and thus 236 

becomes important only in cases close to free convection. In stable or neutral stratification and calm 237 

conditions the release is suppressed by 50%. The interplay between the pollen maturation and 238 

release is controlled by an intermediate ready-pollen buffer, which is filled-in by the maturation and 239 

emptied by the release flows.  240 
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Local-scale variability of flowering requires probabilistic description of its propagation (Siljamo et 241 

al., 2008). In the simplest form, the probability of an individual tree entering the flowering stage can 242 

be considered via the uncertainty of the temperature sum threshold determining the start of 243 

flowering for the grid cell – 10% in the current simulations. The end of the season is described via 244 

the open-pocket principle: the flowering continues until the initially available amount of pollen is 245 

completely released. The uncertainty of this number is taken to be 10% as well.  246 

 247 

Figure 2. Heat sum threshold for the start of the season. Unit = [degree day] 248 

 249 

3.3. Pollen observations 250 

The observations for the model evaluation in 2014 have been provided by the following 6 national 251 

networks, members of the European Aeroallergen Network (EAN): Croatia, Greece, France, Italy, 252 

Spain, Turkey. The data were screened for completeness and existence of non-negligible olive 253 

season: (i) time series should have at least 30 valid observations, (ii) at least 10 daily values during 254 

the season should exceed 3 pollen m-3, and (iii) the seasonal pollen index should be at least 25 255 

pollen day m-3. After this screening, information of 60 sites was used in the intercomparison.  256 
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Pollen monitoring was performed with Burkard 7-day and Lanzoni 2000 pollen traps based on the 257 

Hirst design (Hirst, 1952). The pollen grains were collected at an airflow rate of 10 l min-1. The 258 

observations covered the period from March until September, with some variations between the 259 

countries. Daily pollen concentrations were used. Following the EAS-EAN requirements (Galán et 260 

al., 2014; Jäger et al., 1995), most samplers were located at heights of between 10m and 30m on the 261 

roofs of suitable buildings. The places were frequently downtown of the cities, i.e. largely represent 262 

the urban-background conditions (not always though). With regard to microscopic analysis, the 263 

EAS-EAN requirements is to count at least 10% of the sample using horizontal or vertical strips 264 

(Galán et al., 2014). The actual procedures vary between the countries but generally comply. The 265 

counting in 2014 was mainly performed along four horizontal traverses as suggested by Mandrioli 266 

et al., (1998). In all cases, the data were expressed as mean daily concentrations (pollen m-3). 267 

3.4. Setup of the simulations 268 

Simulations followed the standards of CAMS European ensemble (Marécal et al., 2015). The 269 

domain spanned from 25°W to 45°E and from 30°N to 70°N. Each of the 6 models was run with its 270 

own horizontal and vertical resolutions, which varied from 0.1 to 0.25 of the horizontal grid cell 271 

size, and had from 3 up to 52 vertical layers within the troposphere (Table 1). This range of 272 

resolutions is not designed to reproduce local aspects of pollen distribution, instead covering the 273 

whole continent and describing the large-scale transport events. The 10km grid cells reach the sub-274 

city scale but still insufficient to resolve the valleys and individual mountain ridges. The limited 275 

number of vertical dispersion layers used by some models is a compromise allowing for high 276 

horizontal resolution. Thick layers are not a major limitation as long as the full vertical resolution of 277 

the input meteorological data is used for evaluation of dispersion parameters (Sofiev, 2002). 278 

The simulations were made retrospectively for the season of 2014 starting from 1 January (the 279 

beginning of the heat sum accumulation) until 30 June when the pollen season was over. All models 280 

produced hourly output maps with concentrations at 8 vertical levels (near surface, 50, 250, 500, 281 

1000, 2000, 3000 and 5000 metres above the surface), as well as dry and wet deposition maps. 282 

All models considered pollen as an inert water-insoluble particle 28 m in diameter and with a 283 

density of 800 kg m-3.  284 

 285 

 286 
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 287 

Table 1. Setup of the simulations for the participating models 288 

Model Horizontal 

dispersion grid 

Dispersion 

vertical 

Meteo input Meteo 

grid 

Meteo vertical 

EMEP 0.25  0.125 20 levels up to 

100 hPa 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.25  

0.125 

IFS lvs 39 – 91 

up to 100 hPa 

EURAD-

IM 

15 km, Lambert 

conformal proj. 

23 layers up to 

100 hPa 

WRF based on ECMWF IFS Same as 

CTM 

Same as CTM 

LOTOS-

EUROS 
0.25  0.125 3 dyn. lyrs up to 

3.5km, sfc 25m 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.5  

0.25 

IFS lvs 69-91 up 

to 3.5km 

MATCH 0.2  0.2 52 layers up to 7 

km 

ECMWF IFS 00 from MARS, 

internal preprocessor  
0.2  

0.2 

IFS vertical: 91 

lvs 

MOCAGE 0.2° x 0.2° 47 layers up to 

5hPa (7 in ABL) 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.125  

0.125 

IFS vertical 91 

lvs 

SILAM 0.1  0.1 9 layers up to 

7.5 km 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.125  

0.125 

IFS lvs 62-137 

up to ~110hPa 

 289 

4. Results for the pollen season of 2014 290 

4.1. Observed peculiarities of the season 291 

At French Mediterranean stations (Aix-en-Provence, Avignon, Montpellier, Nice, Nîmes and 292 

Toulon), the mean value of 2014 Seasonal Pollen Index (SPI) for olive tree was quite similar to that 293 

of 2012 but lower than in 2013. The start of the pollen season was earlier than in the previous five 294 

years. The duration of the season has been the longest one on Aix-en-Provence, Nice and Nîmes 295 

since 2010. On Ajaccio (Corsica) station, the SPI was higher in 2014 than at other stations, similar 296 

to the situation in 2012. 297 

In Andalusia, 2014 was the second warmest year during the last decades but more humid than usual, 298 

5% above the typical relative humidity level (https://www.ncdc.noaa.gov/sotc/global/201413).  299 

However, after an intense olive flowering in 2013, in 2014 the flowering intensity was lower and 300 

similar to 2012, in agreement with the bi-annual alterations of the season severity. 301 

In Northern Italy, the 2014 olive pollen season was less intense than the average of the previous ten 302 

years (2004-2013). Instead, in Southern Italy, the 2014 season was more intense in the first part and 303 

less intense in the second part (after the beginning of June) than during previous seasons. No 304 

differences were noted respect the start and the end of the season in both cases. 305 

 306 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1189, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Published: 2 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



1
2

 

 

 
3

0
7

 

Fi
gu

re
 3

. O
b

se
rv

ed
 (

d
o

ts
) 

an
d

 m
o

d
e

lle
d

 (
sh

ad
es

) 
Se

as
o

n
al

 P
o

lle
n

 In
d

ex
 (

SP
I,

 s
u

m
 o

f 
d

ai
ly

 c
o

n
ce

n
tr

at
io

n
s)

, 2
01

4,
 [

p
o

lle
n

 d
ay

 m
-3

].
 

3
0

8
 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1189, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Published: 2 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



13 

 

4.2. Model results 309 

The total seasonal olive pollen load (Figure 3) expectedly correlates with the map of olive 310 

plantations (Figure 1), which is also confirmed by the observations (Figure 3). The highest load is 311 

predicted over Spain and Portugal, whereas the level in the Eastern Mediterranean is not so high 312 

reflecting smaller size of the areas covered by the olive trees. The model predictions differ up to a 313 

factor of a few times, reflecting the diversity of modelling approaches, especially the deposition and 314 

vertical diffusion parameterizations (see Table 1 and section 3.1). 315 

Since the olive plantations are located within a comparatively narrow climatic range, flowering 316 

propagates through the whole region within a few weeks starting from the coastal bands and 317 

progressing inland (not shown). 318 

 319 

 320 

Figure 4. Example of hourly olive pollen concentrations, 12 UTC 08.06.2014, [pollen m-3]. 321 
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 322 

Hot weather during the flowering season leads to strong vertical mixing and deep atmospheric 323 

boundary layer (ABL), which in turn promotes the pollen dispersion. As seen from Figure 4, the 324 

pollen plumes can reach out over the whole Mediterranean and episodically affect Central Europe. 325 

Both Figure 3 and Figure 4 illustrate the differences between the models, e.g. substantially higher 326 

concentrations reported by EURAD-IM and MOCAGE as compared to other models. What regard 327 

to pollen transport, the shortest transport with the fastest deposition is manifested by LOTOS-328 

EUROS (also, showed the lowest concentrations), while the longest one is suggested by MOCAGE. 329 

The most-important general parameters describing the season timing are its start and end (Figure 5). 330 

Following Andersen (1991), these dates are computed as dates when 5% and 95% of the SPI are 331 

reached. 332 

Computations of the model-measurement comparison statistics faces the problem of non-333 

stationarity and non-normal distribution of the daily pollen concentrations (Ritenberga et al., 2016). 334 

For such processes, usual non-parametric statistics have to be taken with high care since their basic 335 

assumptions are violated. Nevertheless, they can be formally calculated for both individual models 336 

and the ensemble (Figure 6, Figure 7). The main characteristic of the ensemble, the discrete rank 337 

histogram and the distribution of the modelled values for the below-detection-limit observations 338 

(Figure 8) show that the spread of the obtained ensemble is somewhat too narrow in comparison 339 

with the dynamic range of the observations. The same limitation was noticed for the birch 340 

ensemble. 341 

The patterns in Figure 5 and Figure 6 reveal a systematic early bias of the predicted season start and 342 

end, which is well seen from normalised cumulative concentration time series (Figure 9). This bias 343 

is nearly identical for all models, except for EURAD-IM, which also shows higher correlation 344 

coefficient than other models. The reasons for the problem and for the diversity of the model 345 

response are discussed in the next section. 346 

 347 
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Season start day, 5%, observed 

 

Season start day, 5%, ensemble median 

 

Season end day, 95%, observed 

 

Season end day, 95%, ensemble median 

 348 

Figure 5. The start (date of 5% of the cumulative seasonal concentrations) and the end (95% of the cumulative 349 

seasonal concentrations) of the olive season in 2014 as day of the year, predicted by the median of the ensemble and 350 

observed by the stations with sufficient amount of observations. 351 

 352 

 353 
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Correlation coefficient, dot size refers to p-value 

 

Absolute bias, mean April-June, [pollen m-3]  

 

RMSE, [pollen m-3] 

 

Error in the season start, days 

 354 

Figure 6. Results of model-measurement comparison for the ensemble mean: correlation coefficient for daily time 355 

series, mean bias April-June (pollen m-3), RMSE (pollen m-3), error in the season start (days). 356 

 357 
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Correlation coefficient and fraction of p<0.01 

 

Absolute bias, mean April-June [pollen m-3] 

 

RMSE, [pollen m-3] 

 

Error in the season start, days 

 358 

Figure 7. Scores of the individual models, mean over all stations. The same parameters as in Figure 6. The sensitivity 359 

run SILAMos150 is explained in the discussion section 360 

 361 

 362 
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 363 
Figure 8. Ensemble characteristics. Left: discrete rank histogram for the constructed ensemble (daily concentration 364 

statistics); right: histogram of model predictions when observations were below the detection limit 0.5 pollen m-3, 365 

 366 

  
 367 
Figure 9. Cumulative time series of olive concentrations at Tarragona (Spain) and Parma (Italy). Upper row: normalized 368 

to the seasonal SPI [relative unit], lower: absolute cumulative concentrations [pollen day m-3]. 369 
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5. Discussion 370 

In this section, we consider the key season parameters and the ability of the presented ensemble to 371 

reproduce those (section 5.1), main uncertainties that limit the model scores (section 5.3), and the 372 

added value of the multi-model ensembles, including the optimized ensemble (section 5.2). 373 

5.1. Forecast quality: model predictions for the key season parameters 374 

The key date of the pollen season is its start: this very date refers to adaptation measures that need 375 

to be taken by allergy sufferers. Predicting this date for olives is a significantly higher challenge 376 

than, e.g., for birches: the heat sum has to be accumulated starting from 1 January with the season 377 

onset being in mid-April, whereas for birches it is 1 March and mid-March, respectively. As a 378 

result, prediction of olive season start strongly depends on the temperature predictions by the 379 

weather prediction model. Bias, even if small, over the winter and spring period of almost 4 months 380 

can easily lead to a week of an error. As one can see from Figure 7 and Figure 6, there is a 381 

systematic bias of all models by about 8 days (too early season). Exception is the SILAMos150 382 

sensitivity run, which used the heat sum threshold 150 degree-days (~10%) higher than the standard 383 

level (Figure 2). No other sensitivity runs, including the simulations driven by ERA-Interim fields, 384 

showed any significant improvement of this parameter. Importantly, EURAD-IM, which is driven 385 

by WRF meteo fields, also showed a similar bias. This calls for an analysis of long-term time series, 386 

aiming at refinement of the heat sum formulations and threshold values. 387 

The end of the season showed an intriguing picture: EURAD-IM, despite starting the season as 388 

early as all other models, ends it 2 days too late instead of 5 days too early as all other models (see 389 

examples for two stations in Figure 9). This indicates that WRF, in late spring, predicts lower 390 

temperature than IFS, which leads to longer-than-observed season in the EURAD-IM predictions. A 391 

certain daytime cold bias of WRF in late spring and summer has already been noticed at German 392 

measurement sites, which corroborates well with this finding. Other models showed correct season 393 

length and, due to initial early bias, end it a few days too early. The de-biased run SILAMos150 run 394 

shows almost perfect shape and hits both start and end with 1 day accuracy, which supports 250 395 

degree day as a season length parameter. 396 

The most-diverged model predictions are shown for the absolute concentrations (Figure 7). With the 397 

mean observed April-June concentration of 35 pollen m-3 the range of predictions spans over a 398 

factor of four: EURAD-IM and MOCAGE being twice higher and EMEP and LOTOS-EUROS 399 

twice lower. Shifting the season by 5 days in the SILAMos150 run also changes the model bias, 400 
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reflecting differences in the transport patterns and the impact of stronger vertical mixing in later 401 

spring. Spatially, the bias is quite homogeneous, except for southern Spain, where heterogeneous 402 

pattern is controlled by local conditions at each specific site (Figure 6). 403 

Temporal correlation is generally high in coastal areas (Figure 6) but at or below 0.5 in terrestrial 404 

stations of Iberian Peninsula (the main olive plantations). This is primarily caused by the shifted 405 

season: the simulations with more accurate season showed the highest correlation among all models 406 

with ~60% of sites with significant correlation (p<0.01, Figure 7).  407 

5.2. Ensemble added value 408 

Arguably the main uncertainty of the model predictions was caused by the shift of the season start 409 

and end – the parameters heavily controlled by temperature, i.e. least affected by transport features 410 

of the models. As a result, application of the “simple” ensemble technologies does not lead to a 411 

strong improvement. Some effect was still noticed but less significant than in case of birch or 412 

traditional AQ forecasting. Therefore, in this section we also consider a possibility of ensemble-413 

based fusion of the observational data with the model predictions. All ensembles were based on 414 

operational models, i.e. the SILAMos150 run was not included in either of them. 415 

5.2.1. Mean ensembles: arithmetic average and median 416 

Among the simple means, arithmetic average performed better than the median, largely owing to 417 

strong EURAD-IM impact. That model over-estimated the concentrations and introduced a 418 

powerful push towards extended season, thus offsetting the early bias of the other models. Since 419 

median largely ignored this push, its performance was closer to that of other models. Nevertheless, 420 

both mean and median demonstrated low RMSE, median being marginally better. 421 

5.2.2. Fusing the model predictions and observations into an optimized 422 

ensemble: gain in the analysis and predictive capacity 423 

Developing further the ensemble technology, we present here the first attempt of fusion of the 424 

observational data with the multi-model ensemble for olive pollen.  425 

In the Section 3.1, the Eq. (2) requires three parameters to prescribe: the regularization scaling 426 

parameters  and , and length of the assimilation window T. For the purposes of the current 427 

feasibility study, several values for each of the parameters were tested and the robust performance 428 
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of the ensemble was confirmed with very modest regularization strength and for all considered 429 

lengths of the analysis window – from 1 to 15 days. Finally, 0.1, 0.1, 5T days    were 430 

selected for the below example as a compromise between the smoothness of the coefficients, 431 

regularization strength and the optimization efficiency over the assimilation window. 432 

The optimized ensemble showed (Figure 10, left-hand panel) that each of the 6 models had 433 

substantial contribution over certain parts of the period. Over some times, e.g. during the first half 434 

of May, only one or two models were used, other coefficients being put to zero, whereas closer to 435 

the end of the month, all models were involved. Finally, prior to and after the main season, 436 

concentrations were very low and noisy, so the regularization terms of Eq. (2) took over and pushed 437 

the weights to a-priori value of 1/6. 438 

The bulk of the improvements came in the first half of the season (Figure 10, middle panel). After 439 

the third peak in the middle of May, the effect of assimilation becomes small and the optimization 440 

tends to use intercept to meet the mean value, whereas the model predictions become small and 441 

essentially uncorrelated with the observations. This corroborates with the observed 8-days shift of 442 

the season, which fades out faster in the models than in the observed time series (Figure 9). 443 

There was little reduction of the predictive capacity of the optimized ensemble when going out of 444 

assimilation window towards the forecasts. In-essence, only the first peak of concentrations (and 445 

RMSE) is better off with shorter forecasts. For the rest of the season (before and after the peak) the 446 

7-day assimilation window led to a robust combination of the models that stayed nearly-optimal 447 

over the next five days. 448 

Comparison with other forecasts expectedly shows that the optimized ensemble has significantly 449 

better skills than any of the individual models, but also up to 25-30% better than mean and median 450 

of the ensemble (Figure 10, middle panel). A stronger competitor was the “persistence forecast” 451 

when the next-day(s) concentrations are predicted to be equal the last observed daily value. The 452 

one-day persistence appeared to be the best-possible “forecast”, which shows at the beginning of 453 

May almost twice lower RMSE than the one-day forecast of the optimal ensemble (Figure 10, right-454 

hand panel). However, already two-days persistence forecast had about-same RMSE as the 455 

ensemble, and 3- and 4- days predictions were poor. 456 
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Strong performance of the one-day persistence forecast is not surprising and, with the current 462 

standards of the pollen observations, has no practical value: the data are always late by more than 463 

one day (counting can start only next morning and become available about mid-day). The second 464 

problem of the persistence forecast is that it needs actual data, i.e. the scarcity of pollen network 465 

then limits its coverage. Thirdly, persistence loses its skills very fast: already day+2 forecast has no 466 

superiority to the optimal ensemble, whereas day+3 and +4 persistence-based predictions are 467 

useless. Finally, at local scale, state-of-art statistical models can outperform it – see discussion in 468 

(Ritenberga et al., 2016).  469 

One should however point out that one-day predicting power of the persistence forecast (or more 470 

sophisticated statistical models based on it) can be a strong argument for the future real-time online 471 

pollen monitoring, which delay can be as short as one hour (Crouzy et al., 2016; Oteros et al., 472 

2015). Such data have good potential as the next-day predictions for the vicinity of the monitor. 473 

5.3. Sensitivity of the simulations to model and source term parameters 474 

The above-presented results show that arguably the most-significant uncertainty was due to shifting 475 

the start and the end of the season. It originated from the long heat sum accumulation (since 1 476 

January), where even a small systematic difference between the meteorology driving the multi-477 

annual fitting simulations and that used for operational forecasts integrates to a significant season 478 

shift by late spring. In some areas, resolution of NWP model plays as well: complex terrain in the 479 

north of Spain and in Italy requires dense grids to resolve the valleys. Other possible sources of 480 

uncertainties might need attention.  481 

To understand the importance of some key parameters, a series of perturbed runs of SILAM was 482 

made: 483 

- os100 and os150 runs with the season starting threshold increased by 100 and 150 degree 484 

days (the os150 run is referred in the above discussion as SILAMos150) 485 

- era run with ERA-Interim meteorological fields, which were used for the source parameters 486 

fitting 487 

- series of 3 runs with reduced vertical mixing within the ABL and the free troposphere 488 

- smlpoll run with 20 m size of the pollen grain 489 

- smlpoll_coarse run with 20 m pollen size and coarse computational grid (0.2×0.2) 490 

 491 
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 492 

Figure 11. Sensitivity of optimized ensemble to the length of assimilation window. Upper row: optimal weights of the 493 

individual models and ensemble score over the 1- (left) and 15- (right) days-long assimilation windows; lower row: 494 

RMSE of the of individual models and the optimal ensemble forecasts against those of individual models. Obs. earlier 495 

first available date for 1-day-analysis window. 496 

 497 

The era simulations with ERA-Interim reduced the shift of the season start by 2 days but increased 498 

the shift of the end by 3 days, i.e. made the season shorter by 5 days. At the same time, the os150 499 

run showed that a simple increase of the heat sum threshold by ~10% (150 degree days) essentially 500 

eliminates the mean shift – for 2014 – but it remains unclear whether this adjustment is valid for 501 

other years. 502 

Variations of the mixing parameterization (perturbing the formula for the Kz eddy diffusivity) did 503 

not lead to significant changes: all scores stayed within 10% of the reference SILAM simulations. 504 
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Evaluation of the impact of deposition parameterizations was more difficult since they are model-505 

specific. Higher deposition intensity causes both reduction of the transport distance and absolute 506 

concentrations. This issue might be behind the low values reported by LOTOS-EUROS and, 507 

conversely, high concentrations of EURAD-IM and MOCAGE. Its importance was confirmed by 508 

the SILAM sensitivity simulations with smaller pollen size, smlpoll and smlpoll_coarse. Both runs 509 

resulted in more than doubling the mean concentrations but with marginal effect on temporal 510 

correlation. They also differed little from each other.  511 

Variations of the fusion parameters showed certain effect. For short averaging window (5 days or 512 

less), the variations of weighting coefficients increased and the time series became noisier (Figure 513 

11). On return, the correlation increased almost up to 0.8 – 0.9 for some analysis intervals, though 514 

stayed the same for other periods. Also, the one-day forecast RMSE decreased for some days but 515 

little difference was found for longer predictions.  516 

 517 

6. Summary 518 

An ensemble of 6 CAMS models was run through the olive flowering season of 2014 and compared 519 

with observational data of 6 countries of European Aeroallergen Network (EAN). 520 

The simulations showed decent level of reproduction of the short-term phenomena but also 521 

demonstrated a shift of the whole season by 8 days (~20% of the overall pollination period). An ad-522 

hoc adjustment of the season-start heat sum threshold by ~10% (150 degree days) resolves the issue 523 

and strongly improves the model skills but its validity for other years and meteorological drivers 524 

remain unclear. 525 

The ensemble members showed quite diverse pictures demonstrating the substantial variability, 526 

especially in areas remote from the main olive plantations. Nevertheless, the observation rank 527 

histogram still suggested certain under-statement of the ensemble variability in comparison with the 528 

observations. 529 

Simple ensemble treatments, such as arithmetic average and median, resulted in a more robust 530 

performance but they did not outrun the best models over significant parts of the season. Arithmetic 531 

average turned out to be better than median. 532 

A data-fusion approach, which creates the optimal-ensemble model using the observations over 533 

preceding days for optimal combination of the ensemble members, is suggested and evaluated. It 534 
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was based on an optimal linear combination of the individual ensemble members and showed strong 535 

skills, routinely outperforming all individual models and simple ensemble approaches. It also 536 

showed strong forecasting skills, which allowed application of the past-time model weighting 537 

coefficients over several days in the future. The only approach outperforming this fusion ensemble 538 

was the one-day persistence-based forecast, which has no practical value due to the manual pollen 539 

observations and limited network density. It can however be used in the future when reliable online 540 

pollen observation will become available. 541 

A series of sensitivity simulations highlighted the importance of meteorological driver, especially 542 

its temperature representation, and deposition mechanisms. The data fusion procedure was quite 543 

robust with regard to analysis interval, still requiring 5-7 days for eliminating the noise in the model 544 

weighting coefficients. 545 

 546 
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