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1. Abstract 37 

The paper presents the first modelling experiment of the European-scale olive pollen dispersion, 38 

analyses the quality of the predictions and outlines the research needs. A 6-models strong ensemble 39 
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of Copernicus Atmospheric Monitoring Service (CAMS) was run through the season of 2014 40 

computing the olive pollen distribution. The simulations have been compared with observations in 8 41 

countries, members of the European Aeroallergen Network (EAN). Analysis was performed for 42 

individual models, the ensemble mean and median, and for a dynamically optimized combination of 43 

the ensemble members obtained via fusion of the model predictions with observations. The models, 44 

generally reproducing the olive season of 2014, showed noticeable deviations from both 45 

observations and each other. In particular, the season start was reported too early, by 8 days, but for 46 

some models the error mounted to almost two weeks. For the season end, the disagreement between 47 

the models and the observations varied from a nearly perfect match up to two weeks too late. A 48 

series of sensitivity studies performed to understand the origin of the disagreements revealed crucial 49 

role of ambient temperature and consistency of its representation by the meteorological models and 50 

by the heat-sum-based phenological model. In particular, a simple correction to the heat sum 51 

threshold eliminated the season-start shift but its validity in other years remains to be checked. The 52 

short-term features of the concentration time series were reproduced better suggesting that the 53 

precipitation events and cold/warm spells, as well as the large-scale transport were represented 54 

rather well. Ensemble averaging led to more robust results. The best skill scores were obtained with 55 

data fusion, which used the previous-days observations to identify the optimal weighting 56 

coefficients of the individual model forecasts. Such combinations were tested for the forecasting 57 

period up to 4 days and shown to remain nearly optimal throughout the whole period. 58 

 59 
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 62 

2. Introduction 63 

Biogenic aerosols, such as pollen and spores, constitute a substantial fraction of particulate matter 64 

mass in the air during the vegetation flowering season and can have strong health effects causing 65 

allergenic rhinitis and asthma (G D’Amato et al., 2007). One of important allergenic trees is olive. 66 

Olive is one of the most extensive crops and its oil is one of the major economic resources in 67 

Southern Europe. The bulk of olive habitation (95% of the total area worldwide) is concentrated in 68 

the Mediterranean basin (Barranco et al., 2008). Andalusia has by far the world’s largest area given 69 

over to olive plantations, 62% of the total olive land of Spain and 15% of the world’s plantations 70 

(Gómez et al., 2014). 71 

Olive pollen is also one of the most important causes of respiratory allergies in the Mediterranean 72 

basin (G. D’Amato et al., 2007) and in Andalusia it is considered as the main cause of allergy. In 73 
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Cordoba City (S Spain), 71-73% of pollen-allergy sufferers are sensitive to olive pollen (Sánchez-74 

Mesa et al., 2005), (Cebrino et al., 2017). High rates of sensitization to olive pollen have been 75 

documented in Mediterranean countries: 44% in Spain and 20% in Portugal (Pereira et al., 2006), 76 

31.8% in Greece (Gioulekas et al., 2004), 27.5% in Portugal (Loureiro et al., 2005), 24% in Italy 77 

(Negrini et al., 1992), 21.6% in Turkey (Kalyoncu et al., 1995), and 15% in France (Spieksma, 78 

1990). At the same time, relations between allergy and pollen concentrations is person- and case-79 

specific: allergen content of the pollen grains varies from year to year and day to day, as well as the 80 

individual sensitivity of allergy sufferers (de Weger et al., 2013; Galan et al., 2013) 81 

Olive is an entomophilous species that presents a secondary anemophily, favored by the agricultural 82 

management during the last centuries. This tree is very well adapted to the Mediterranean climate 83 

and tolerates the high summer and the low winter temperatures, as well as the summer drought, 84 

characteristic for this climate. 85 

Olive floral phenology is characterized by bud formation during summer, dormancy during autumn, 86 

budburst in late winter, and flowering in late spring (Fernandez-Escobar et al., 1992; Galán et al., 87 

2005; García-mozo et al., 2006). Similar to some other trees, olive flowering intensity shows 88 

alternated years with high and low or even no pollen production. The characteristic quasi-biannual 89 

cycles are well visible in observations (Ben Dhiab et al., 2016; Garcia-Mozo et al., 2014). This 90 

cycle, similar to other trees, e.g., birch, is not strict and is frequently interrupted showing several 91 

years with similar flowering intensity (Garcia-Mozo et al., 2014). Such cyclic behavior is related to 92 

the reproductive development, which is completed in two consecutive years. In the first year, the 93 

bud vegetative or reproductive character is determined by the current harvest level, since this is the 94 

main factor responsible for the inter-annual variation of flowering. In the second year, after the 95 

winter rest, the potentially reproductive buds that have fulfilled their chilling requirements develop 96 

into inflorescences (Barranco et al., 2008).  97 

After the bud break, certain bio-thermic units are required for the development of the 98 

inflorescences. Both the onset of the heat accumulation period and the temperature threshold for the 99 

amount of positive heat units might vary according to the climate of a determined geographical 100 

area. The threshold level was also reported to decrease towards the north (Aguilera et al., 2013). 101 

Altitude is the topographical factor most influencing olive local phenology and the major weather 102 

factors are temperature, rainfall, and solar radiation that control the plant evapotranspiration (Oteros 103 

et al., 2013; Oteros et al., 2014). 104 

Several studies used airborne pollen as a predictor variable for determining the potential sources of 105 

olive pollen emission, e.g. Concentric Ring Method (J. Oteros et al., 2015; Rojo et al., 2016), 106 
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geostatistical techniques (Rojo and Pérez-Badia, 2015) and the spatio-temporal airborne pollen 107 

maps (Aguilera et al., 2015). 108 

There is a substantial variability of olive biological characteristics and its responses to 109 

environmental stresses. In particular, the allergen content was shown to be strongly different in 110 

pollen coming from different parts of the Iberian Peninsula (Galan et al., 2013).  111 

Forecasting efforts of the olive pollen season were mainly concentrated on statistical models 112 

predicting the season start and peak using various meteorological predictors. The bulk of studies is 113 

based on information from one or a few stations within a limited region (e.g., Orlandi et al., (2006), 114 

Moriondo et al., (2001), Alba and Diaz De La Guardia, (1998), Frenguelli et al., (1989), Galán et 115 

al., (2005), Fornaciari et al., (1998), etc.). Several wider-area studies were also performed aiming at 116 

more general statistical characteristics of the season, e.g. (Aguilera et al., 2014, 2013; Galan et al., 117 

2016).  118 

Numerical modelling of olive pollen transport is very limited. In fact, the only regional-scale 119 

computations regularly performed since 2008 were made by the SILAM model (http://silam.fmi.fi) 120 

but the methodology was only scarcely outlined in (Galan et al., 2013).  121 

Copernicus Atmospheric Monitoring Service CAMS (http://atmosphere.copernicus.eu) is one of the 122 

services of the EU Copernicus program, addressing various global and regional aspects of 123 

atmospheric state and composition. CAMS European air quality ensemble (Marécal et al., 2015) 124 

provides high-resolution forecasts and reanalysis of the atmospheric composition over Europe. 125 

Olive pollen is one of the components, which are being introduced in the CAMS European 126 

ensemble in co-operation with European Aeroallergen Network EAN 127 

(https://www.polleninfo.org/country-choose.html).  128 

One of possible ways of improving the quality of model predictions without direct application of 129 

data assimilation is to combine them with observations via ensemble-based data fusion methods 130 

(Potempski and Galmarini, 2009). Their efficiency has been demonstrated for air quality problems 131 

(Johansson et al., 2015 and references therein) and climatological models (Genikhovich et al., 2010) 132 

but the technology has never been applied to pollen. 133 

The aim of the current publication is to present the first Europe-wide ensemble-based evaluation of 134 

the olive pollen dispersion during the season of 2014. The study followed the approach of the multi-135 

model simulations for birch (Sofiev et al., 2015) with several amendments reflecting the peculiarity 136 

of olive pollen distribution in Europe. We also made further steps towards fusion of model 137 

predictions and observations and demonstrate its value in the forecasting regime. 138 

http://silam.fmi.fi/
http://atmosphere.copernicus.eu/
https://www.polleninfo.org/country-choose.html
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The next section will present the participating models and setup of the simulations, the observation 139 

data used for evaluation of the model predictions, approach for constructing an optimised multi-140 

model ensemble, and a list of sensitivity computations. The Results section will present the 141 

outcome of the simulations and the quality scores of the individual models and the ensemble. The 142 

Discussion section will be dedicated to analysis of the results, considerations of the efficiency of the 143 

multi-model ensemble for olive pollen, and identification of the development needs.  144 

3. Materials and methods 145 

This section presents the regional models used in the study, outlines the olive pollen source term 146 

implemented in all of them, and pollen observations used for evaluation of the model predictions. 147 

3.1. Dispersion models 148 

The dispersion models used in the study comprise the CAMS European ensemble, which is 149 

described in details by Marécal et al., (2015) and (Sofiev et al., 2015). Below, only the model 150 

features relevant for the olive pollen atmospheric transport calculations are described. 151 

The ensemble consisted of six models. 152 

EMEP model of EMEP/MSC-West (European Monitoring and Evaluation Programme / 153 

Meteorological Synthesizing Centre - West) is a chemical transport model developed at the 154 

Norwegian Meteorological Institute and described in Simpson et al., (2012). It is flexible with 155 

respect to the choice of projection and grid resolution. Dry deposition is handled in the lowest 156 

model layer. A resistance analogy formulation is used to describe dry deposition of gases, whereas 157 

for aerosols the mass-conservative equation is adopted from Venkatram, (1978) with the dry 158 

deposition velocities dependent on the land use type. Wet scavenging is dependent on precipitation 159 

intensity and is treated differently within and below cloud. The below-cloud scavenging rates for 160 

particles are based on Scott, (1979). The rates are size-dependent, growing for larger particles. 161 

EURAD-IM (http://www.eurad.uni-koeln.de) is an Eulerian meso-scale chemistry transport model 162 

involving advection, diffusion, chemical transformation, wet and dry deposition and sedimentation 163 

of tropospheric trace gases and aerosols (Hass et al., 1995; Memmesheimer et al., 2004). It includes 164 

3D-VAR and 4D-VAR chemical data assimilation (Elbern et al., 2007) and is able to run in nesting 165 

mode. The positive definite advection scheme of Bott (1989) is used to solve the advective transport 166 

and the aerosol sedimentation. An eddy diffusion approach is applied to parameterize the vertical 167 
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sub-grid-scale turbulent transport (Holtslag and Nieuwstadt, 1986). Dry deposition of aerosol 168 

species is treated size-dependent using the resistance model of Petroff and Zhang (2010). Wet 169 

deposition of pollen is parameterized according to Baklanov and Sorensen (2001). 170 

LOTOS-EUROS (http://www.lotos-euros.nl/) is an Eulerian chemical transport model (Schaap et 171 

al., 2008). The advection scheme follows Walcek and Aleksic (1998). The dry deposition scheme of 172 

Zhang et al. (2001) is used to describe the surface uptake of aerosols. Below-cloud scavenging is 173 

described using simple scavenging coefficients for particles (Simpson et al., 2003). 174 

MATCH (http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-175 

chemistry-model-1.6831)  is an Eulerian multi-scale chemical transport model with mass-176 

conservative transport and diffusion based on a Bott-type advection scheme (Langner et al., 1998; 177 

Robertson and Langner, 1999). For olive pollen, dry deposition is mainly treated by sedimentation 178 

and a simplified wet scavenging scheme is applied. The temperature sum, which drives pollen 179 

emission, is computed off-line starting from January onwards and is fed into the emission module. 180 

MOCAGE (http://www.cnrm.meteo.fr/gmgec-old/site_engl/mocage/mocage_en.html) is a multi-181 

scale dispersion model with grid-nesting capability (Josse et al., 2004; Martet et al., 2009). The 182 

semi-Lagrangian advection scheme of Williamson and Rasch (1989) is used for the grid-scale 183 

transport. The convective transport is based on the parameterization proposed by Bechtold et al. 184 

(2001) whereas the turbulent diffusion follows the parameterization of Louis (1979). Dry deposition 185 

including the sedimentation scheme follows Seinfeld and Pandis (1998). The wet deposition by the 186 

convective and stratiform precipitations is based on Giorgi and Chameides (1986). 187 

SILAM (http://silam.fmi.fi) is a meso-to-global scale dispersion model (Sofiev et al., 2015), also 188 

described in the review of Kukkonen et al. (2012). Its dry deposition scheme (Kouznetsov and 189 

Sofiev, 2012) is applicable for a wide range of particle sizes including coarse aerosols, which are 190 

primarily removed by sedimentation. The wet deposition parameterization distinguishes between 191 

sub- and in-cloud scavenging by both rain and snow (Sofiev et al., 2006). For coarse particles, 192 

impaction scavenging parameterised following (Kouznetsov and Sofiev, 2012) is dominant below 193 

the cloud. The model includes emission modules for six pollen types: birch, olive, grass, ragweed, 194 

mugwort, and alder, albeit only birch, ragweed, and grass sources are so-far described in the 195 

literature (Prank et al., 2013; Sofiev, 2016; Sofiev et al., 2012). 196 

Three ENSEMBLE models were generated by (i) arithmetic average, (ii) median and (iii) optimal 197 

combination of the 6 model fields. Averaging and median were taken on hourly basis, whereas 198 

optimization was applied at daily level following the temporal resolution of the observational data. 199 

http://www.lotos-euros.nl/
http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-chemistry-model-1.6831
http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-chemistry-model-1.6831
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For the current work, we used simple linear combination copt of the models cm, m=1..M minimising 200 

the regularised RMSE J of the optimal field: 201 
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Here, i,j,k,t are indices along the x,y,z, and time axes, M is the number of models in the ensemble, O 204 

is the number of observation stations,  ={d-k:d0} is the time period of k+1 days covered by the 205 

analysis window, starting from d-k until d0 , -1 is the previous-day analysis period  -1={d-k-1:d-1}, 206 

cm is concentration of pollen predicted by the model m, co is observed pollen concentration, am is 207 

time-dependent weight coefficient of the model m in the ensemble, a0 is time-dependent bias 208 

correction. In the Eq. (2), the first term represents the RMSE of the assimilated period , the second 209 

term limits the departure of the coefficients from the homogeneous weight distribution, the third 210 

one limits the speed of evolution of the am coefficients in time. The scaling values  and  decide 211 

on the strength of regularization imposed by these two terms. 212 

The ensemble was constructed mimicking the forecasting mode. Firstly, the analysis is made using 213 

data from the analysis period  . The obtained weighting coefficients ai are used over several days 214 

forwards from day d0: from d1 until dnf, which constitute the forecasting steps. The performance of 215 

the ensemble is evaluated for each length of the forecast, from 1 to nf days. 216 

3.2. Olive pollen source term 217 

All models of this study are equipped with the same olive pollen source term, which has not been 218 

described in the scientific literature yet. However, it follows the same concept as the birch source 219 

(Sofiev et al., 2012) that was used for the birch ensemble simulations (Sofiev et al., 2015). The 220 

formulations and input data are open at http://silam.fmi.fi/MACC. The main input dataset is the 221 

annual olive pollen production map based on ECOCLIMAP dataset (Champeaux et al., 2005; 222 

Masson et al., 2003), Figure 1.  223 

ECOCLIMAP incorporates the CORINE land-cover data for most of western-European countries 224 

with explicit olive-plantations land-use type (CEC, 1993). For Africa and countries missing from 225 

http://silam.fmi.fi/MACC
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CORINE, the empty areas were filled manually assuming that 10% of all tree-like land-use types 226 

are olives. This way, Tunisian, Egyptian, and Algerian olive plantations were recovered and 227 

included in the inventory. In some areas, such as France (Figure 1), the olive habitat looks 228 

unrealistically low, probably because the large olive plantations are rare but the trees are planted in 229 

private gardens, city park areas, streets, etc. Since these distributed sources are not reflected in the 230 

existing land-use inventories, they are not included in the current pollen production map. 231 

 232 

 233 

Figure 1. Olive pollen habitat map, percentage of the area occupied by the trees, [%]. Productivity of an area with 234 

100% olive coverage is assumed to be 1010 pollen grain m-2 season-1. 235 

 236 

Similar to birch, the flowering description follows the concept of Thermal Time phenological 237 

models and, in particular, the double-threshold air temperature sum approach of Linkosalo et al. 238 

(2010) modified by Sofiev et al. (2012). Within that approach, the heat accumulation starts on a 239 

prescribed day in spring (1 January in the current setup – after  Spano et al. (1999), Moriondo et al. 240 

(2001), Orlandi et al. (2005a, 2005b)) and continues throughout spring. The cut-off daily 241 

temperature below which no summation occurs is 0C, as compares to 3.5C for birch. It was 242 

obtained from the multi-annual fitting of the season start. Flowering starts when the accumulated 243 

heat reaches the starting threshold (Figure 2) and continues until the heat reaches the ending 244 
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threshold (in the current setup, equal to the start-season threshold + 275 degree day). The rate of 245 

heat accumulation is the main controlling parameter for pollen emission: the model assumes direct 246 

proportionality between the flowering stage and fraction of the heat sum accumulated to-date. 247 

 248 

Figure 2. Heat sum threshold for the start of the season. Unit = [degree day] 249 

 250 

Similar to birch parameterization of Sofiev et al. (2012), the model distinguishes between the pollen 251 

maturation, which is solely controlled by the heat accumulation described above, and pollen release, 252 

which depends on other parameters. Higher relative humidity (RH) and rain reduce the release, 253 

completely stopping it for RH > 80% and/or rain > 0.1 mm hr
-1

. Strong wind promotes it by up to 254 

50%. Atmospheric turbulence is taken into account via the turbulent velocity scale and thus 255 

becomes important only in cases close to free convection. In stable or neutral stratification and calm 256 

conditions the release is suppressed by 50%. The interplay between the pollen maturation and 257 

release is controlled by an intermediate ready-pollen buffer, which is filled-in by the maturation and 258 

emptied by the release flows.  259 

Local-scale variability of flowering requires probabilistic description of its propagation (Siljamo et 260 

al., 2008). In the simplest form, the probability of an individual tree entering the flowering stage can 261 

be considered via the uncertainty of the temperature sum threshold determining the start of 262 
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flowering for the grid cell – 10% in the current simulations. The end of the season is described via 263 

the open-pocket principle: the flowering continues until the initially available amount of pollen is 264 

completely released. The uncertainty of this number is taken to be 10% as well.  265 

 266 

3.3. Pollen observations 267 

The observations for the model evaluation in 2014 have been provided by the following 6 national 268 

networks, members of the European Aeroallergen Network (EAN): Croatia, Greece, France, 269 

Hungary, Israel, Italy, Spain, and Turkey. The data were screened for completeness and existence of 270 

non-negligible olive season: (i) time series should have at least 30 valid observations, (ii) at least 10 271 

daily values during the season should exceed 3 pollen m
-3

, and (iii) the seasonal pollen index (SPI, 272 

an integral of the concentrations over the whole season) should be at least 25 pollen day m
-3

. After 273 

this screening, information of 62 sites was used in the intercomparison. Data from Hungary referred 274 

to 2016 and required dedicated computations for evaluating the long-range transport events. 275 

Pollen monitoring was performed with Burkard 7-day and Lanzoni 2000 pollen traps based on the 276 

Hirst design (Hirst, 1952). The pollen grains were collected at an airflow rate of 10 l min
-1

. The 277 

observations covered the period from March until September, with some variations between the 278 

countries. Daily pollen concentrations were used. Following the EAS-EAN requirements (Galán et 279 

al., 2014; Jäger et al., 1995), most samplers were located at heights of between 10m and 30m on the 280 

roofs of suitable buildings. The places were frequently downtown of the cities, i.e. largely represent 281 

the urban-background conditions (not always though). With regard to microscopic analysis, the 282 

EAS-EAN requirement is to count at least 10% of the sample using horizontal or vertical strips 283 

(Galán et al., 2014). The actual procedures vary between the countries but generally comply. The 284 

counting in 2014 was mainly performed along four horizontal traverses as suggested by Mandrioli 285 

et al., (1998). In all cases, the data were expressed as mean daily concentrations (pollen m
-3

). 286 

3.4. Setup of the simulations 287 

Simulations followed the standards of CAMS European ensemble (Marécal et al., 2015). The 288 

domain spanned from 25°W to 45°E and from 30°N to 70°N. Each of the 6 models was run with its 289 

own horizontal and vertical resolutions, which varied from 0.1 to 0.25 of the horizontal grid cell 290 

size, and had from 3 up to 52 vertical layers within the troposphere (Table 1). This range of 291 

resolutions is not designed to reproduce local aspects of pollen distribution, instead covering the 292 



11 

 

whole continent and describing the large-scale transport. The 10km grid cells reach the sub-city 293 

scale but still insufficient to resolve the valleys and individual mountain ridges. The limited number 294 

of vertical dispersion layers used by some models is a compromise allowing for high horizontal 295 

resolution. Thick layers are not a major limitation as long as the full vertical resolution of the input 296 

meteorological data is used for evaluation of dispersion parameters (Sofiev, 2002). 297 

The simulations were made retrospectively for the season of 2014 starting from 1 January (the 298 

beginning of the heat sum accumulation) until 30 June when the pollen season was over. All models 299 

produced hourly output maps with concentrations at 8 vertical levels (near surface, 50, 250, 500, 300 

1000, 2000, 3000 and 5000 metres above the surface), as well as dry and wet deposition maps. 301 

All models considered pollen as an inert water-insoluble particle 28 m in diameter and with a 302 

density of 800 kg m
-3

.  303 

 304 

 305 
Table 1. Setup of the simulations for the participating models 306 

Model Horizontal 

dispersion grid 

Dispersion 

vertical 

Meteo input Meteo 

grid 

Meteo vertical 

EMEP 0.25  0.125 20 levels up to 

100 hPa 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.25  

0.125 

IFS lvs 39 – 91 

up to 100 hPa 

EURAD-

IM 

15 km, Lambert 

conformal proj. 

23 layers up to 

100 hPa 

WRF based on ECMWF IFS Same as 

CTM 

Same as CTM 

LOTOS-

EUROS 
0.25  0.125 3 dyn. lyrs up to 

3.5km, sfc 25m 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.5  

0.25 

IFS lvs 69-91 up 

to 3.5km 

MATCH 0.2  0.2 52 layers up to 7 

km 

ECMWF IFS 00 from MARS, 

internal preprocessor  
0.2  

0.2 

IFS vertical: 91 

lvs 

MOCAGE 0.2° x 0.2° 47 layers up to 

5hPa (7 in ABL) 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.125  

0.125 

IFS vertical 91 

lvs 

SILAM 0.1  0.1 9 layers up to 

7.5 km 

ECMWF IFS 00 operational 

forecast, internal preprocessor 
0.125  

0.125 

IFS lvs 62-137 

up to ~110hPa 

 307 

 308 
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4. Results for the pollen season of 2014 309 

4.1. Observed peculiarities of the season 310 

At French Mediterranean stations (Aix-en-Provence, Avignon, Montpellier, Nice, Nîmes and 311 

Toulon), the mean value of the Seasonal Pollen Index (SPI) in 2014 was quite similar to that of 312 

2012 but lower than in 2013 (see (de Weger et al., 2013) for the SPI relevance to allergy).  313 

The start of the pollen season was earlier than in the previous five years. The duration of the season 314 

has been the longest one on Aix-en-Provence, Nice and Nîmes since 2010. On Ajaccio (Corsica) 315 

station, the SPI was higher in 2014 than at other stations, similar to the situation in 2012. 316 

In Andalusia, 2014 was the second warmest year during the last decades but more humid than usual, 317 

5% above the typical relative humidity level (https://www.ncdc.noaa.gov/sotc/global/201413).  318 

However, after an intense olive flowering in 2013, in 2014 the flowering intensity was lower and 319 

similar to 2012, in agreement with the bi-annual alterations of the season severity. 320 

In Northern Italy, the 2014 olive pollen season was less intense than the average of the previous ten 321 

years (2004-2013). Instead, in Southern Italy, the 2014 season was more intense in the first part and 322 

less intense in the second part (after the beginning of June) than during previous seasons. No 323 

differences were noted with respect to the start and the end of the season in both cases. 324 

In Thessaloniki, Greece, in 2014, the pollen season started in the same time as during the last 325 

decades (first half of April), but ended about 1.5 month later (last half of October). The pollen 326 

season peak has been steadily in May. The SPI was considerably higher in 2014 (418 pollen day m
-

327 

3
), compared against the previous two years (approximately 300 pollen day m

-3
). The overall shape 328 

of the pollen season in 2014 resembled the ones during the last decade, however, with a multi-329 

modal and less peaky pattern. 330 

 331 

https://www.ncdc.noaa.gov/sotc/global/201413
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 332 

Figure 3. Observed (dots) and MEDIAN-model predicted (shades) Seasonal Pollen Index (SPI, sum of daily concentrations), 2014, [pollen day m-3]. 333 

 334 
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 335 

Figure 4. Mdelled Seasonal Pollen Index (SPI) by the individual ensemble members and mean models, 2014, [pollen day m-3]. 336 
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4.2. Model results 337 

The total seasonal olive pollen load (Figure 3, Figure 4) expectedly correlates with the map of olive 338 

plantations (Figure 1), which is also confirmed by the observations (Figure 3). The highest load is 339 

predicted over Spain and Portugal, whereas the level in the Eastern Mediterranean is not so high 340 

reflecting smaller size of the areas covered by the olive trees and limited long-range transport over 341 

Mediterranean. The model predictions differ up to a factor of a few times (Figure 4), reflecting the 342 

diversity of modelling approaches, especially the deposition and vertical diffusion 343 

parameterizations (see Table 1 and section 3.1). 344 

Since the olive plantations are located within a comparatively narrow climatic range, flowering 345 

propagates through the whole region within a few weeks starting from the coastal bands and 346 

progressing inland (not shown). 347 

 348 

 349 

Figure 5. Example of hourly olive pollen concentrations, 12 UTC 08.06.2014, [pollen m-3]. 350 
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 351 

Hot weather during the flowering season leads to strong vertical mixing and deep atmospheric 352 

boundary layer (ABL), which in turn promotes the pollen dispersion. As seen from Figure 5, the 353 

pollen plumes can reach out over the whole Mediterranean and episodically affect Central Europe. 354 

Both Figure 4 and Figure 5 illustrate the differences between the models, e.g. substantially higher 355 

concentrations reported by EURAD-IM and MOCAGE as compared to other models. What regard 356 

to pollen transport, the shortest transport with the fastest deposition is manifested by LOTOS-357 

EUROS (also, showed the lowest concentrations), while the longest one is suggested by MOCAGE. 358 

The most-important general parameters describing the season timing are its start and end (Figure 6). 359 

Following Andersen (1991), these dates are computed as dates when 5% and 95% of the SPI are 360 

reached. 361 

Computations of the model-measurement comparison statistics faces the problem of non-362 

stationarity and non-normal distribution of the daily pollen concentrations (Ritenberga et al., 2016). 363 

For such processes, usual non-parametric statistics have to be taken with high care since their basic 364 

assumptions are violated. Nevertheless, they can be formally calculated for both individual models 365 

and the ensemble (Figure 7, Figure 8). The main characteristic of the ensemble, the discrete rank 366 

histogram and the distribution of the modelled values for the below-detection-limit observations 367 

(Figure 9) show that the spread of the obtained ensemble is somewhat too narrow in comparison 368 

with the dynamic range of the observations. The same limitation was noticed for the birch 369 

ensemble. 370 

The patterns in Figure 6 and Figure 7 reveal a systematic early bias of the predicted season start and 371 

end, which is well seen from normalised cumulative concentration time series (Figure 10). This bias 372 

is nearly identical for all models, except for EURAD-IM, which also shows higher correlation 373 

coefficient than other models. The reasons for the problem and for the diversity of the model 374 

response are discussed in the next section. 375 
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Season start day, 5%, observed 

 

Season start day, 5%, ensemble median 

 

Season end day, 95%, observed 

 

Season end day, 95%, ensemble median 

 376 
Figure 6. The start (date of 5% of the cumulative seasonal concentrations) and the end (95% of the cumulative seasonal concentrations) of the olive season in 2014 as day 377 

of the year, predicted by the median of the ensemble and observed by the stations with sufficient amount of observations. 378 

 379 
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Correlation coefficient, dot size refers to p-value 

 

Absolute bias, mean April-June, [pollen m
-3

]  

 

RMSE, [pollen m
-3

] 

 

Error in the season start, days 

 380 
Figure 7. Results of model-measurement comparison for the ensemble mean: correlation coefficient for daily time series, mean bias April-June (pollen m-3), RMSE (pollen m-381 
3), error in the season start (days). 382 

 383 
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 384 

 

Correlation coefficient and fraction of p<0.01 

 

Absolute bias, mean April-June [pollen m
-3

] 

 

RMSE, [pollen m
-3

] 

 

Error in the season start, days 

 385 

Figure 8. Scores of the individual models, mean over all stations. The same parameters as in Figure 7. The sensitivity 386 

run SILAMos150 is explained in the discussion section 387 

 388 

 389 
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 390 
Figure 9. Ensemble characteristics. Left: discrete rank histogram for the constructed ensemble (daily concentration 391 

statistics); right: histogram of model predictions when observations were below the detection limit 0.5 pollen m-3, 392 

 393 

  
 394 
Figure 10. Cumulative time series of olive concentrations at Tarragona (Spain) and Parma (Italy). Upper row: 395 

normalized to the seasonal SPI [relative unit], lower: absolute cumulative concentrations [pollen day m-3]. 396 
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5. Discussion 397 

In this section, we consider the key season parameters and the ability of the presented ensemble to 398 

reproduce those (section 5.1), the added value of the multi-model ensembles, including the 399 

optimized ensemble (section 5.2), main uncertainties that limit the model scores (section 5.3), and 400 

the key challenges for future studies (section 5.4). 401 

5.1. Forecast quality: model predictions for the key season parameters 402 

The key date of the pollen season is its start: this very date refers to adaptation measures that need 403 

to be taken by allergy sufferers. Predicting this date for olives is a significantly higher challenge 404 

than, e.g., for birches: the heat sum has to be accumulated starting from 1 January with the season 405 

onset being in mid-April, whereas for birches it is 1 March and mid-March, respectively. As a 406 

result, prediction of the olive season start strongly depends on the temperature predictions by the 407 

weather prediction model and the way this temperature is integrated into the heat sum. 408 

Inconsistency between these, even if small, over the period of almost 4 months can easily lead to a 409 

week of an error. As one can see from Figure 8 and Figure 7, there is a systematic, albeit spatially 410 

inhomogeneous bias of all models by up to 10 days (too early season). Exception is the 411 

SILAMos150 sensitivity run, which used the higher heat sum threshold, by 150 degree-days 412 

(~10%), than the standard level (Figure 2). No other sensitivity runs, including the simulations 413 

driven by ERA-Interim fields, showed any significant improvement of this parameter. Importantly, 414 

EURAD-IM, which is driven by WRF meteo fields, also showed a similar bias. Finally, the shift 415 

varies among the stations: from near-zero (France, some sites in Italy, Croatia, Greece, and Israel) 416 

up to almost three weeks in North-Western Spain. It means that no “easy” solution exists and calls 417 

for an analysis of long-term time series, aiming at refinement of the heat sum formulations and 418 

threshold values.  419 

The end of the season showed an intriguing picture: EURAD-IM, despite starting the season as 420 

early as all other models, ends it 2 days too late instead of 5 days too early as all other models (see 421 

examples for two stations in Figure 10). This indicates that WRF, in late spring, predicts lower 422 

temperature than IFS, which leads to longer-than-observed season in the EURAD-IM predictions. 423 

Other models showed correct season length and, due to initial early bias, end it a few days too early. 424 

The de-biased run SILAMos150 run shows almost perfect shape and hits both start and end with 1 425 

day accuracy, which supports 250 degree day as a season length parameter. 426 
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The most-diverged model predictions are shown for the absolute concentrations (Figure 8). With the 427 

mean observed April-June concentration of 35 pollen m
-3

 the range of predictions spans over a 428 

factor of four: EURAD-IM and MOCAGE being twice higher and EMEP and LOTOS-EUROS 429 

twice lower. Shifting the season by 5 days in the SILAMos150 run also changes the model bias, 430 

reflecting differences in the transport patterns and the impact of stronger vertical mixing in later 431 

spring. Spatially, the bias is quite homogeneous, except for southern Spain, where heterogeneous 432 

pattern is controlled by local conditions at each specific site (Figure 7). 433 

Temporal correlation is generally high in coastal areas (Figure 7) but at or below 0.5 in terrestrial 434 

stations of Iberian Peninsula (the main olive plantations). This is primarily caused by the shifted 435 

season: the simulations with more accurate season showed the highest correlation among all models 436 

with ~60% of sites with significant correlation (p<0.01, Figure 8).  437 

Comparison with local statistical models made for single or a few closely-located stations 438 

expectedly shows that local models are usually comparable but somewhat more accurate (at their 439 

locations) than the European-scale dispersion models (see also discussion in (Ritenberga et al., 440 

2016)). Thus, (Gala et al., 2001) analyzed performance of three popular local models for Cordoba, 441 

with the best one showing the mean error of the start of the season of 4.7 days but reaching up to 14 442 

days in some years. Similar error was found for Andalusia (Galán et al., 2005) and two sites 443 

(Perugia and Ascoli Piceno) in Italy (Frenguelli et al., 1979) – 4.8 and 4.33 days of the standard 444 

error, respectively. A recent study (Aguilera et al., 2014) constructed three independent statistical 445 

models for Spain, Italy and Tunisia and ended up with over 5 days of a standard error for the 446 

Mediterranean. In another study, the authors admitted the scale of the challenges: “The specific 447 

moment for the onset of the olive heat accumulation period is difficult to determine and has 448 

essentially remained unknown” (Aguilera et al., 2013).  449 

One of the strengths of continental-scale dispersion models is their ability to predict long-range 450 

transport events. However, direct evaluation of this feature for olive pollen is difficult since 451 

countries without olive plantations usually do not count its pollen. One can however refer to Figure 452 

3 (zoomed map of Spain), which shows that the ensemble successfully reproduces the drastic 453 

change of the SPI from nearly 10
5
 pollen day m

-3
 in the south of Spain down to less than 100 pollen 454 

day m
-3

 in the north. Episode-wise, an example of a well-articulated case of olive pollen transport 455 

from Italy to Hungary in 2016 was brought up by Udvardy et al., (2017), who analyzed it with 456 

adjoint SILAM simulations. The episode was also well-predicted by the forward computations. 457 
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5.2. Ensemble added value 458 

Arguably the main uncertainty of the model predictions was caused by the shift of the season start 459 

and end – the parameters heavily controlled by temperature, i.e. least affected by transport features 460 

of the models. As a result, application of the “simple” ensemble technologies does not lead to a 461 

strong improvement. Some effect was still noticed but less significant than in case of birch or 462 

traditional AQ forecasting. Therefore, in this section we also consider a possibility of ensemble-463 

based fusion of the observational data with the model predictions. All ensembles were based on 464 

operational models, i.e. the SILAMos150 run was not included in either of them. 465 

5.2.1. Mean ensembles: arithmetic average and median 466 

Considering the mean-ensemble statistics, one should keep in mind that both the meteorological 467 

driver and the source term parameterization were the same for all models (except for EURAD 468 

driven by WRF). This resulted in the under-representative ensemble (Figure 9), where several good 469 

and bad features visible in all models propagate to the mean ensembles.  470 

Among the simple means, arithmetic average performed better than the median, largely owing to 471 

strong EURAD-IM impact. That model over-estimated the concentrations and introduced a 472 

powerful push towards extended season, thus offsetting the early bias of the other models. Since 473 

median largely ignored this push, its performance was closer to that of other models. Nevertheless, 474 

both mean and median demonstrated low RMSE, median being marginally better. 475 

5.2.2. Fusing the model predictions and observations into an optimized 476 

ensemble: gain in the analysis and predictive capacity 477 

Developing further the ensemble technology, we present here the first attempt of fusion of the 478 

observational data with the multi-model ensemble for olive pollen.  479 

In the Section 3.1, the Eq. (2) requires three parameters to prescribe: the regularization scaling 480 

parameters  and , and length of the assimilation window T. For the purposes of the current 481 

feasibility study, several values for each of the parameters were tested and the robust performance 482 

of the ensemble was confirmed with very modest regularization strength and for all considered 483 

lengths of the analysis window – from 1 to 15 days. Finally, 0.1, 0.1, 5T days    were 484 

selected for the below example as a compromise between the smoothness of the coefficients, 485 

regularization strength and the optimization efficiency over the assimilation window. 486 
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The optimized ensemble showed (Figure 11, left-hand panel) that each of the 6 models had 487 

substantial contribution over certain parts of the period. Over some times, e.g. during the first half 488 

of May, only one or two models were used, other coefficients being put to zero, whereas closer to 489 

the end of the month, all models were involved. Finally, prior to and after the main season, 490 

concentrations were very low and noisy, so the regularization terms of Eq. (2) took over and pushed 491 

the weights to a-priori value of 1/6. 492 

The bulk of the improvements came in the first half of the season (Figure 11, middle panel). After 493 

the third peak in the middle of May, the effect of assimilation becomes small and the optimization 494 

tends to use intercept to meet the mean value, whereas the model predictions become small and 495 

essentially uncorrelated with the observations. This corroborates with the observed 8-days shift of 496 

the season, which fades out faster in the models than in the observed time series (Figure 10). 497 

There was little reduction of the predictive capacity of the optimized ensemble when going out of 498 

assimilation window towards the forecasts. In-essence, only the first peak of concentrations (and 499 

RMSE) is better off with shorter forecasts. For the rest of the season (before and after the peak) the 500 

5-day assimilation window led to a robust combination of the models that stayed nearly-optimal 501 

over the next five days. 502 

Comparison with other forecasts expectedly shows that the optimized ensemble not only has 503 

significantly better skills than any of the individual models, but is up to 25-30% better than mean 504 

and median of the ensemble (Figure 11, middle panel). A stronger competitor was the “persistence 505 

forecast” when the next-day(s) concentrations are predicted to be equal the last observed daily 506 

value. The one-day persistence appeared to be the best-possible “forecast”, which shows at the 507 

beginning of May almost twice lower RMSE than the one-day forecast of the optimal ensemble 508 

(Figure 11, right-hand panel). However, already two-days persistence forecast had about-same 509 

RMSE as the ensemble, and 3- and 4- days predictions were poor. 510 
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 511 

   

 512 

Figure 11. Optimal weights of the individual models and ensemble correlation score over the 5-days-long assimilation window (left panel); RMSE of the of individual models 513 

and the optimal ensemble forecasts against those of individual models and simple ensemble means (middle) and against persistence-based forecasts (right-hand panel). 514 

 515 
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Strong performance of the one-day persistence forecast is not surprising and, with the current 516 

standards of the pollen observations, has no practical value: the data are always late by more than 517 

one day (counting can start only next morning and become available about mid-day). The second 518 

problem of the persistence forecast is that it needs actual data, i.e. the scarcity of pollen network 519 

limits its coverage. Thirdly, persistence loses its skills very fast: already day+2 forecast has no 520 

superiority to the optimal ensemble, whereas day+3 and +4 persistence-based predictions are 521 

useless. Finally, at local scale, state-of-art statistical models can outperform it – see discussion in 522 

(Ritenberga et al., 2016).  523 

One should however point out that one-day predicting power of the persistence forecast (or more 524 

sophisticated statistical models based on it) can be a strong argument for the future real-time online 525 

pollen monitoring, which delay can be as short as one hour (Crouzy et al., 2016; Oteros et al., 526 

2015). Such data have good potential as the next-day predictions for the vicinity of the monitor. 527 

5.3. Sensitivity of the simulations to model and source term parameters 528 

The above-presented results show that arguably the most-significant uncertainty was due to shifting 529 

the start and the end of the season. It originated from the long heat sum accumulation (since 1 530 

January), where even a small systematic difference between the meteorology driving the multi-531 

annual fitting simulations and that used for operational forecasts integrates to a significant season 532 

shift by late spring. In some areas, resolution of NWP model plays as well: complex terrain in the 533 

north of Spain and in Italy requires dense grids to resolve the valleys. Other possible sources of 534 

uncertainties might need attention.  535 

To understand the importance of some key parameters, a series of perturbed runs of SILAM was 536 

made: 537 

- os100 and os150 runs with the season starting threshold increased by 100 and 150 degree 538 

days (the os150 run is referred in the above discussion as SILAMos150) 539 

- era run with ERA-Interim meteorological fields, which were used for the source parameters 540 

fitting 541 

- series of 3 runs with reduced vertical mixing within the ABL and the free troposphere 542 

- smlpoll run with 20 m size of the pollen grain 543 

- smlpoll_coarse run with 20 m pollen size and coarse computational grid (0.2×0.2) 544 

 545 
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 546 

Figure 12. Sensitivity of optimized ensemble to the length of assimilation window. Upper row: optimal weights of the 547 

individual models and ensemble score over the 1- (left) and 15- (right) days-long assimilation windows; lower row: 548 

RMSE of the of individual models and the optimal ensemble forecasts against those of individual models. Obs. earlier 549 

first available date for 1-day-analysis window. 550 

 551 

The era simulations with ERA-Interim reduced the shift of the season start by 2 days but increased 552 

the shift of the end by 3 days, i.e. made the season shorter by 5 days. At the same time, the os150 553 

run showed that a simple increase of the heat sum threshold by ~10% (150 degree days) essentially 554 

eliminates the mean shift – for 2014 – but it remains unclear whether this adjustment is valid for 555 

other years. 556 

Variations of the mixing parameterization (perturbing the formula for the Kz eddy diffusivity) did 557 

not lead to significant changes: all scores stayed within 10% of the reference SILAM simulations. 558 
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Evaluation of the impact of deposition parameterizations was more difficult since they are model-559 

specific. Higher deposition intensity causes both reduction of the transport distance and absolute 560 

concentrations. This issue might be behind the low values reported by LOTOS-EUROS and, 561 

conversely, high concentrations of EURAD-IM and MOCAGE. Its importance was confirmed by 562 

the SILAM sensitivity simulations with smaller pollen size, smlpoll and smlpoll_coarse. Both runs 563 

resulted in more than doubling the mean concentrations but with marginal effect on temporal 564 

correlation. They also differed little from each other.  565 

Variations of the fusion parameters showed certain effect. For short averaging window (5 days or 566 

less), the variations of weighting coefficients increased and the time series became noisier (Figure 567 

12). On return, the correlation increased almost up to 0.8 – 0.9 for some analysis intervals, though 568 

stayed the same for other periods. Also, the one-day forecast RMSE decreased for some days but 569 

little difference was found for longer predictions.  570 

5.4. Main challenges for the future studies 571 

The current study is the first application of numerical models to olive pollen dispersion in Europe. 572 

One of its objectives was to identify the most-pressing limitations of the current approach and the 573 

extent to which the ensemble and data fusion technologies can help in improving the forecasts. 574 

The most-evident issue highlighted by the exercise is the shift of the pollen season in some key 575 

regions, which is similar in all models suggesting some unresolved inconsistencies between the 576 

heat-sum calculations of the source term and the features of the temperature predictions by the 577 

weather model. The issue suggests some factor(s) currently not included or mis-interpretted in the 578 

source term. One of the candidate processes is the chilling-sum accumulation suggested by some 579 

studies, e.g., (Aguilera et al., 2014). A switch to different types of phenological models with genetic 580 

differentiation of the populations following Chuine and Belmonte, (2004) is another promising 581 

option. 582 

The second issue refers to the under-estimation of the pollen concentration in France, which 583 

probably originates from a comparatively large number of olive trees spread in private gardens etc 584 

but not accounted for in the agriculture maps of olive plantations.  585 

The third set of questions refers to the pollen load prediction, i.e. a possibility to forecast the overall 586 

season severity before it starts. Several statistical models have been presented in the literature, e.g., 587 

(Ben Dhiab et al., 2016) for total annual load and (Chuine and Belmonte, 2004) for relative load. 588 

Their evaluation and implementation in the context of dispersion models is important. 589 
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An issue, mostly addressing the long-term horizon rather than the short-term forecasts is the validity 590 

of the developed models in the conditions of changing climate. The models have to be robust to the 591 

trends in meteorological forcing. Purely statistical models are among the most vulnerable in this 592 

respect because they just quantify the apparent correlations observed under certain conditions but 593 

do not explore the processes behind these relations. 594 

Finally, already the first steps towards ensemble-based fusion of the model forecasts and pollen 595 

observations showed strong positive effect. Further development of these techniques combined with 596 

progress towards near-real-time pollen data has very high potential for improving the forecasts. 597 

 598 

6. Summary 599 

An ensemble of 6 CAMS models was run through the olive flowering season of 2014 and compared 600 

with observational data of 8 countries of European Aeroallergen Network (EAN). 601 

The simulations showed decent level of reproduction of the short-term phenomena but also 602 

demonstrated a shift of the whole season by about 8 days (~20% of the overall pollination period). 603 

An ad-hoc adjustment of the season-start heat sum threshold by ~10% (150 degree days) in-average 604 

resolves the issue and strongly improves the model skills but its regional features and validity for 605 

other years and meteorological drivers remain unclear. 606 

The ensemble members showed quite diverse pictures demonstrating the substantial variability, 607 

especially in areas remote from the main olive plantations. Nevertheless, the observation rank 608 

histogram still suggested certain under-statement of the ensemble variability in comparison with the 609 

observations. This partly originates from the synchronized source term formulations and 610 

meteorological input used by all but one models.  611 

Simple ensemble treatments, such as arithmetic average and median, resulted in a more robust 612 

performance but they did not outrun the best models over significant parts of the season. Arithmetic 613 

average turned out to be better than median. 614 

A data-fusion approach, which creates the optimal-ensemble model using the observations over 615 

preceding days for optimal combination of the ensemble members, is suggested and evaluated. It 616 

was based on an optimal linear combination of the individual ensemble members and showed strong 617 

skills, routinely outperforming all individual models and simple ensemble approaches. It also 618 

showed strong forecasting skills, which allowed application of the past-time model weighting 619 
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coefficients over several days in the future. The only approach outperforming this fusion ensemble 620 

was the one-day persistence-based forecast, which has no practical value due to the manual pollen 621 

observations and limited network density. It can however be used in the future when reliable online 622 

pollen observations will become available. 623 

A series of sensitivity simulations highlighted the importance of meteorological driver, especially 624 

its temperature representation, and deposition mechanisms. The data fusion procedure was quite 625 

robust with regard to analysis window, still requiring 5-7 days for eliminating the noise in the 626 

model weighting coefficients. 627 

 628 
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