Dear Dr. Barbara Ervens,

Thank you very much for your patience and help! Thank you for permission for an extension of the resubmission of the revised manuscript (Ms. Ref. No.:acp-2016-1183). Based on the two reviewers' comments, we have made a substantial revision again to our manuscript, including reanalyzing the model results, enhancing our discussion and changing the figures. Additionally, this resubmitted version has been polished by English editor. We are confident that it is ready for publishing in a high quality journal. Detailed item-by-item responses to the comments are listed below.

1

Best regards,

Yours sincerely,

Jianhua Qi

Response to Referee report 1

General Comments: First of all, the space was not inserted appropriately in many parts, so it is hard to read and follow. Such a crude revision with low presentation quality should not be sent to reviewers. I have reviewed again this manuscript and found some improvements on the manuscript; however, many replies have not been found in the revised manuscript and/or replied well to my concerns. I feel that the presentation quality is still low as to be published from the high quality journal of Atmospheric Chemistry and Physics. With regret, I have judged to reject this manuscript again.

Response: We are sorry for the space missing problem. We have a double check for our submitted version, but not find this problem. We therefore re-install our software and avoid the problem in the new submission. In the new version, we further improve the quality of the manuscript according to two reviewers' comments. We are confident that it is ready for publishing in a high quality journal.

Q1. I have partly understood my concerning issue regarding the definition of dust event. Further concerning issue is the sampling duration of continuous dust event. Even the dust event continued multiple days, how should we consider the representativeness of the sampling? For instance, sample 20080528 and 20080529 (please note that the sampling time of 20080529 will have typo) had approximately one day interval. Was there large temporal variation of PM10 concentration during continuous dust days? If there was large change on PM10 concentration, why the authors collected on the listed time? The authors should state the reason, and should present the representativeness of 4 hrs sampling. In the revised manuscript, it will be kind for readers to explicitly state that 'http://www.cfors.nies.go.jp/~cfors/' is for forecast model over Asia, and 'http://www.qepb.gov.cn/m2/' is for observed concentration at Qingdao.

Response: Due to no dust events lasting over 12 hrs (Lee et al., 2015; Su et al., 2017; Zhang et al., 2007), we collected one dust sample with a 4-hr duration in a day. The sampling for dust particles started only when the measured PM10 mass concentration in Qingdao (http://www.qepb.gov.cn/m2/) and the forecasted dust mass over Asia (http://www-cfors.nies.go.jp/~cfors/) had greatly increased.

The samples with ID of 20080528 and 20080529 were subject to two different dust events occurring in two days instead of continuous samples for one dust event. On March 20-21, 2010, two dust events subsequently swept Qingdao. The 4 hr dust samples with IDs of 20100320 and 20100321 may not capture the entirety of the two events. However, the on-line data can allow adequate separation of the two dust event samples. The same was true for the dust samples with IDs of 20110501, 20110502.

The link illustration for these two links has been also added properly in the new version.

Lee, Y. G., Ho, C., Kim, J., and Kim, J.: Quiescence of Asian dust events in South Korea and Japan during 2012 spring: Dust outbreaks and transports, Atmos. Environ., 114, 92-101, 2015.

Su X., Wang Q., Li Z., Calvello M., Esposito F., Pavese G., Lin M., Cao J., Zhou C., Li D., Xu H. Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin — A coastal Su, X., Wang, Q., Li, Z., Calvello, M., Esposito, F., Pavese, G., Lin, M., Cao, J., Zhou, C., Li, D., and Xu, H.: Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin — A coastal megacity in China, Sci. Total. Environ., 584–585, 381–392, 2017.

Zhang, K., and Gao, H. W.: The characteristics of Asian-dust storms during 2000–2002: From the source to the sea, Atmos. Environ., 41, 9136-9145, 2007.

Q2. I have partly agreed, but I have further question on the application of a 3-D air quality model. First, what is the merit of the application of 3-D air quality model? In the revised manuscript, only the spatial distributions of PM10 were shown (Fig. 2 from CFORS model and Figs. S1-S3 with CFORS and WRF-CMA. Can such application reinforce the authors' discussion points? The behavior of IN were discussed in this manuscript, so what is the purpose to show PM10? The authors stated that 'The spatial distribution of PM10 concentrations for each dust event was consistent with the model results of dust by the Chemical Weather Forecast System (CFORS) by Uno et al. (2003)' (L199-201). If the consistency between other models is important, why the author calculated on your own model? I cannot follow this reason from the revised manuscript.

Response: Thank you for the suggestion. We have deleted the results by CFORS. The CMAQ model (v5.0.2) was applied to simulate the concentration of PM10, NOx, NH₃, NO₃⁻ and NH₄⁺ over the East Asia area for aerosol samples on dust and comparison days. We have revised the discussion on model results. Distribution of PM10 was used to characterize the dust events. Spatial distributions of PM10 during each dust events were consistent with the records in the "Sand-dust Weather Almanac" (CMA, 2009; 2010; 2012; 2013). The model results indicated that CMAQ results reasonably reproduce the mass concentrations of NO₃⁻ (Fig. S6). Simulated NH₄⁺ concentrations in dust samples were severely under-predicted with NMB values at -71%. For reference samples, simulated NH₄⁺ concentrations sometimes can well reproduce the observational values, but sometimes totally off. The external mixing mechanism proposed in this study is urgently needed to be included in the model for accurately predicting the concentrations during dust events.

CMA: Sand-dust weather almanac 2008, China Meteorological Press, Beijing, 10-64, 2009.CMA: Sand-dust weather almanac 2009, China Meteorological Press, Beijing, 11-59, 2010.CMA: Sand-dust weather almanac 2010, China Meteorological Press, Beijing, 11-79, 2012.CMA: Sand-dust weather almanac 2011, China Meteorological Press, Beijing, 10-53, 2013.

Q3. The following specific points also should be revised to clarify the model application.

L189: Centered point is needed because we cannot follow the modeling domain at the current description.

L193: On the INTEX-B emission inventory (Zhang et al., 2009), I suppose that NH3 emissions have not been provided. If so, this description should be changed.

L195, and Figures 6 and 8: So, all calculations were based on the emission level on 2008? Because the temporal resolution of INTEX-B emission inventory is month, I feel that there are no need to display all emissions on all dust samples. These emissions level should be differed only on month. Therefore, I suppose that the averaged (spring time) emissions of NOx and NH3 on each one figure is enough.

Response: We have supplemented the centered point $(110 \times, 34 \times)$ in the new version.

According to the publications of INTEX-B and TRACE-P Asia emission inventories (Zhang Q et al., 2009; Streets et al., 2003.), INTEX-B inventory was developed based on TRACE-P inventory with NH₃ emission considered (the annual emission amount of NH₃ in China was 13.6 Tg). However, due to the low priority and low variability of NH₃ emission during 2000-2006, NH₃ emission was not updated in INTEX-B inventory, and the NH₃ emission in INTEX-B inventory was consistent with TRACE-P.

Agree and revised.

Zhang Q et al., Asian emissions in 2006 for the NASA INTEX-B mission; Atmos. Chem. Phys., 9, 5131-5153, 2009.

Streets D.G. et al., An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, 108 (D21), DOI: 10.1029/2002JD003093, 2003.

Q4. Figure S1: What is the purpose to show the difference between (b) and (c)? In this caption, what is 'WRF-CMA'?

Response: We have indicated that one exterior dust sample was collected on 1 March when no dust was recorded in Qingdao by MICAPS. However, the MICPAS information over the whole country indeed showed the dust events in China on 1 March. And the modeled spatial distribution of PM10 and TSP mass concentration for this dust event on 1 March implied that the sample should be classified into dust sample. Therefore we listed all the supporting figures in Fig. S1. Fig. S1 (b) was the weather information from the MICAPS at 8:00 on Mar.2, 2008 and (c) was hourly PM10 concentration modeled by the WRF-CMAQ model at 15:00 on Mar.1, 2008. We guessed that the reviewer maybe refer to the difference between (c) and (d), therefore we deleted (d).

We have revised the caption.

Q5. Figure S3: In the main manuscript, it was stated that 'each dust sampling day are shown' in Fig. S3 (L218-219, L895). However, only the hourly concentration of PM10 concentration at 14:00 on 19 Mar 2011 were shown. Please confirm this supplemental figure.

Response: We really modeled the PM10 concentration on each dust sampling day, but

only showed the PM10 concentration at the middle time of the sampling in Fig.S3 (Now Fig.S5 in the new version) due to too many figures. We have revised this section and the sentence has been revised into "The concentrations of PM10 and its major components NO_3^- and NH_4^+ over East Asia on dust days and comparison days were modeled using the WRF-CMAQ model (Fig. S5-6)" in L341-342 in the new version.

Specific comments:

Q6. L35-36: This conclusion does not match to the manuscript contents. The authors stated that input of nitrogen to the ocean depends on the dust events. Re-comment: cannot find this revision.

Response: The revision in the last round was prepared after the quick response. After a careful consideration, we agreed with the comment and delete the part in the last revised version.

Q7. I have confirmed and understood the meaning. However, is this revision corresponded to L226-230? If so, this revised sentence seems to contain many errors (NOT Table S2 but Table S1?). For example, we can find 410 μ g/m3 on dust day sample on 20080315. What is the value of 80-1303%? These increased value were not corresponded to 'Ratio of DD to CS' shown in Table S1.

Response: Yes, this revision corresponded to L226-230 in last version. And the times of dust to non-dust day samples were replaced by the ratio according to the former suggestion. To avoid the confusion, we have revised Table S1 to give the increased ratio.

Q8.L171: Again, I cannot follow the calculation of "1.7-21.9 times (mean: 6.9) ". L175: I cannot follow "10.3 times" for Fe. It can be calculated as 7.90 from the values in Table 2.

L176: "3.6-fold" will not be followed from Fig. 2. It should be listed in Table 2. Re-comment: So, in this revised manuscript, these statements of the increment ratio on dust-day compared to non-dust day have not been explicitly appeared. In L243, the authors stated 'Table S1', but Table S1 contained not only the information of inorganic nitrogen but also TSP, AI, Fe, and nss-Ca. So, it is appropriate to mention on Table S1 in Section 3.1.

Response: Agree and revised.

Q9.L175: So, please state explicitly regarding this point to the readers. In the current form, nss-Ca was suddenly shown in Fig. 3 without any introduction.

Response: Agree and revised.

Q10. First of all, I cannot find the revision of 'The concentrations of ammonium were increased by 20' anywhere. Is this corresponded to Table S1? I suppose that the

authors discussed regarding this point in L240-L244. Although ratio was shown in Table S1, percentages are discussed here. So it is hard to follow the manuscript. Why the discussion point have not been arranged on the uniformed unit?

Response: Agree and revised.

Q11.L194-L195: In this sentence, the authors stated "the effect of dust on inorganic nitrogen differed during different types of dust events ". Why the authors suddenly focused on inorganic nitrogen here? In L192-193, it was mentioned "inorganic ion $SO_4^{2^-}$ exhibited concentration variations that were similar to those of nitrate". L197: The figures for inorganic nitrate will be helpful information here, if the authors focused on inorganic nitrogen.

Re-comments: I cannot find this revision.

Response: The revision in the last round was prepared after the quick response. After a careful consideration, we completely rewrote the part to avoid confusion in the last revised version.

Q12. L207: (respectively less than 50 ug/g and 6 ug/g) will be the correct expression for ammonium.

Re-comments: I cannot find this revision.

Response: The revision in the last round was prepared after the quick response. After a careful consideration, we completely rewrote the part into "The ratios of mass concentrations of nitrate and ammonium to the total mass of sand particles were very low, i.e., less than 81 μ g/g, which are approximately three orders of magnitude less than the corresponding values in our dust samples." at L230-232.

Q13.I am wondering that the differences of IN concentration between Duolun and Zhurihe. Both are Hunshandadke Desert, however, as is shown in Table 5, IN concentration was much higher in Duolun. Are there some emission source?

Response: Sand samples were collected at a remote site in Zhurihe desert. Little anthropogenic influence is expected. Atmospheric aerosol samples were collected at an urban site in Duolun on dust days for comparison. It is not surprised for a strong signal for anthropogenic sources. This has been clarified in the new version.

Q14. Again, only from the dust spatial distribution, it is hard to state the dust intensity.

Response: We had made a substantial revision on the part in the last round revision and didn't consider dust intensity as an important factor for our unique results.

Q15. L214-L216: Without more information of the intensity of dust, the discussion on 'dilution effect' seems to be lacked in scientific understanding. This part should be fully revised based on not only dilution effect but also dust intensity.

Re-comments: Again, only from the dust spatial distribution, it is hard to state the dust intensity.

Response: We had made a substantial revision on the part in the last round revision and didn't consider dust intensity as an important factor for our unique results.

Q16. I have confirmed the revision, but if the authors discussed on average (L300-303), the averaged values were also needed.

Response: We really had given the average of TSP in form of average±standard deviations at L300-303 in last revision. Now we had made a substantial revision on this part and didn't discuss TSP average concentration.

Q17. L227-L228: The favorable condition to form ammonium cannot be discussed without the information of NH3. In addition, Table 3 indicated the aerosol samples in the coastal region of the Yellow Sea. How about the status over air mass path? Is it sufficient to conclude only from the downwind information to the formation of inorganic nitrogen?

Re-comments: Again, I cannot understand the model application results.

Response: We modeled the emission and concentration of NOx and NH₃ over East Asia on the dust and comparison days. The model results showed that the calculated trajectories of the entire dust air mass passed over those highly polluted regions with strong emissions of NO_x and NH₃ shown in Fig 6 and experienced different residence times therein. The average concentration of NO_x and NH₃ during transport were calculated and discussed according to Categories 1 and 2. The air masses in Category 1 took over 11-39 hrs to cross over the highly polluted area with appreciable concentrations of NOx (5.7 ± 1.4 ppb) and NH₃ (7.6 ± 3.3 ppb). Except for the exterior samples, air masses in Category 2 took less than 10 hrs to cross over the polluted areas with lower concentrations of NOx (3.6 ± 3.4 ppb) and NH₃ (4.7 ± 4.7 ppb) and the mixing layer height along the route was 916-1194 m (on average) for each dust event. This further led to the external mixing of anthropogenic particulate matters and dust.

Q18. L230: "strong dust storm" cannot be discussed without any information on dust intensity here.

Re-comments: Again, from the additional information of CFORS, the spatial distribution pattern was found; however, how can we estimate the intensity?

Response: We had made a substantial revision on the part in the last round revision and didn't consider dust intensity as an important factor for our unique results.

Q19. L233-L234: But NOx concentration was high in Case 3. I cannot follow why the authors concluded on Case 3.

Re-comments: So where did the authors discussed the NOx concentration in the manuscript?

Response: We had made a substantial revision on the part in the last round revision after the quick response. The NO_x concentration was discussed in Section 4.3 in the new revision.

Q20. L254-L255: The authors simply mentioned "local emissions" here. Because the samples were collected on downwind regions in the coastal region of the Yellow Sea, I guess that the discussion on emission characteristics of each (or, at least, some categorized) air mass should be discussed in detail. The inorganic nitrogen concentrations are highly related to the local conditions both on emissions strength and meteorological parameters, so the discussion only on air mass speed and air mass path over ocean are insufficient.

Re-comments: Again, model is used only for spatial distribution and not inform the chemical production process.

Response: We had made a substantial revision according to the suggestion. The chemical production process was discussed in Section 4.1 "Theoretical analysis of the three categories". In Category 1, ammonium salt aerosols may externally exist with dust aerosols in these dust day samples and NO_3^- and SO_4^{2-} were almost completely associated with NH_4^+ in these dust day samples; whereas a larger fraction of $NO_3^-+SO_4^{2-}$ may exist as metal salts due to reactions of their precursors with dust aerosols in Category 2. The simulated NO_3^- and NH_4^+ concentrations was compared with the observation in Qingdao, and the results indicated that the external mixing mechanism proposed in this study is urgently needed to be included in the model for accurately predicting the concentrations during dust events.

Q21. I have rechecked the discussion of backward trajectories discussed on Section 3.4. There are many points should be clarified.

Figure 5: Please add the explanation of the trajectory of 20110415 was excluded based on the discussion on Fig. 2. Why the authors displayed "non-dust samples"? What were the differences between non-dust and dust samples trajectories? I feel that these were similar.

Response: Agree and revised.

Q22. L314: What is the 'remaining one'? Please specify the trajectory data. In my opinion, two trajectories of 20110418 and 20110501 originated from northeast China.

Response: Yes, trajectory 20110501 was really from northeast China, however it then passed over the Inner Mongolia, and arrived at Qingdao from north, just like 20110502. Therefore, we grouped the trajectory into the air mass originated from Inner Mongolia, China. However, it was really easy to mislead the readers. Therefore, we accepted the suggestion, and revised the sentences into "The calculated air mass trajectories for 13 out of 14 samples showed that the air mass originated from North and Inner Mongolia, China (Fig. 5), generally consistent with the results of Zhang and Gao (2007). The remaining one, with ID of 20110418 originated from Northeast China.".

Q23. L317: What is the 'one exterior sample' ? Please specify.

Response: Agree and revised.

Q24. L319: I cannot see 'the air masses crossed over the sea for 94-255km' from Figure 5, because Fig. 5 showed the whole view of trajectories across China. More detailed figure or explanation will be required.

Response: The distance over sea of the air mass for each sample was measured from the trajectory using TrajStat software (Wang et al., 2009). We have added the explanation in Section 2.3.

Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ. Modell. Softw., 24, 938-939, 2009.

Q25. L328-329: What is the definition of the 'average mixing layer'. I suppose that the altitude of backward trajectories were so high because most of trajectories were originated outside China on 72 hrs. So, where is the averaged region to calculate '900m' in this sentence?

Response: The average mixing layer was calculated as an average of all points on the air mass back trajectory of each sample. This has been clarified in section 2.4 in the new version.

Q26. I cannot still understand the authors' conclusion here. As was discussed on L355-361, Fig. 8, and Table 7, although the coal combustion have increased on dust days, the contributions of local anthropogenic sources (especially secondary aerosols) have decreased on dust days. According to the discussion on Section 3.3, the authors concluded that ammonium salts were externally co-exist with dust aerosols in Category 1. So, why the contribution of secondary aerosols were decreased from PMF analysis. I feel that these results have contradicted. More careful discussion is required for this conclusion.

Response: The source of coal combustion on dust days became complicated. "mixture of coal combustion and other pollutants" means these compounds present contemporaneously, because that PMF model can't show the mixing or existing state. We have revised the sentence into "The source profile for coal combustion in dust day samples showed a high percentage of K+, Cl-, Ca, Mg, Co, Ni, As, Al and Fe, indicating coal combustion presenting contemporaneously with other pollutants emitted along the transport path on dust days.". Ammonium salts were externally co-exist with dust aerosols in Category 1, but showed lower concentrations in Category 2 likely due to unfavorable conditions for forming ammonium salts. Here the conclusion was a result of source appointment for all dust samples including Category 1 to 3. And we have revised the sentence "In these dust samples, including Categories 1-3, oil combustion, industry, soil dust, secondary aerosols, and coal combustion/other sources were identified as five major sources (Table 6). Q27.L306: I cannot follow the calculation of "a factor of 1.1-5.8" and "a factor of 1.8-6.3". Re-Comments: I cannot find this revision.

Response: We had made a revision on these sentences in the last round revision after the quick response. According to the former suggestion, we changed the factor to ratios. And this sentence was revised to "In Category 1, the dry deposition fluxes of $N_{NH4++NO3-}$ increased by 9-75% with increased TSP flux by 86-252% (Table S3)" at L371-372 in the new revision. And we also revised Table S3 to give increased proportion and the calculation method.

Q28. L309: What is the calculation method of "63%" and "46%"? L310: What is the calculation method of "14%"? Re-Comments: I cannot find this revision.

Response: We had made a revision on these sentences in the last round revision after the quick response. We have revised Table S3 to give increased proportion and the calculation method.

Q29. L317: For Fe, it seems that the increased ratio were 2.81-11.08 from Table S3.

Response: This sentence has been revised to "However, the dry atmospheric deposition fluxes of Fe increased by a factor of 124-2370% in dust day samples." at L383-384 in new revision.

Specific comments: Q30.Table 6: Missing the note of a and b.

Response: Done.

Q31. Table S2: Please align the right-column, it is hard to follow. What is the meaning of *?

Response: Agree and revised.

Response to Referee report 2

This manuscript focuses on an important issue, specifically the relationship between ammonium and nitrate with mineral dust in China. The variability in previously reported relative concentration trends is worth exploring in detail. There are a number of areas where the paper could use improvement prior to publication, particularly with connecting to the literature and placing the work in context.

Response: We thank the reviewer's constructive comments and revise our manuscript accordingly. We are confident that it is ready for publishing in a high quality journal.

Comments:

Q1 - Throughout the manuscript there are odd spacing issues, where two words are together without a space. As an example in the abstract "For these two groups, NH4+in dust day samples was present in the form of ammonium salts externally co - existing with dust aerosols or the residual of incomplete reactions between ammonium salt and carbonate salts."

Response: We are sorry for the space missing problem. We have a double check for our submitted version, but not find this problem. We therefore re-install our software and avoid the problem in the new submission.

Q2 - Line 51 - 54: The authors state the Asian dust has been transported as far as the north pacific, but this understates what has been observed for Asian Dust. Uno et al 2009 Nat Geosci showed that Asian dust can circumnagivate the globe. showed Asian dust impacting California air quality, while Ault et al. 2011 JGR and Creamean 2013 Science showed impacts of Asian dust on orographic precipitation in the Sierra Nevada (in California). Pratt et al. 2009 Nat Geo showed Asian dust influencing clouds over Wyoming.

Response: Thank you very much for the suggestion. We revised the sentence to "Asian dust has been reported to not only frequently cross over the mainland and the China Seas, but also to occasionally reach the remote northern Pacific Ocean or North America (Creamean 2013; Tan and Wang, 2014; Van Curen and Cahill, 2002; Zhang and Gao, 2007). In an extreme case, Asian dust was found to be transported more than one full circuit around the globe in approximately 13 days (Uno et al 2009)." at Line 45-49.

Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A. B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., Prather, K. A.: Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S., Science, 339, 1572-1578, 2013.

Tan, S. C., and Wang, H.: The transport and deposition of dust and its impact on phytoplankton growth in the Yellow Sea, Atmos. Environ., 99, 491-499, 2014.

VanCuren, R., and Cahill, T.: Asian aerosols in North America: Frequency and concentration of fine dust, J. Geophys. Res., 107(D24), 4804, doi:10.1029/2002JD002204, 2002.

Zhang, K., and Gao, H. W.: The characteristics of Asian-dust storms during 2000-2002: From the

source to the sea, Atmos. Environ., 41, 9136-9145, 2007.

Q3 Though the authors note that a native English speaker was utilized for the revision, a considerable improvement in the grammar and proofreading are needed before the writing is at a publishable level.

Response: This resubmitted version has been polished by English editor.

Q4 Line 233 insert comma after "samples"

Response: Done.

Q5 Line 266: Is it really a safe assumption that gas aerosol thermodynamic equilibrium is met for inorganic ions during a dust storm? It would seem that many non - aqueous (i.e. solid) aerosol would be present that would not have normal equilibrium partitioning. It would be nice to see some evidence of this. This would also help support the conclusion that Ca(NO3)2 and CaSO4 are negligible.

Response: According to this reviewer's suggestion, the progresses on this issue in literature have been summarized and cited to support our analysis.

Q6 Line 282: The presence of Cu, brings to mind the question of transition metal ions and industrial sources of metal containing particles. How were these accounted for? Particularly since they often have different properties and propensity for generating ROS as Weber and company at Georgia Tech have shown.

Response: Cu was once used as an effective marker of diesel and biodiesel-blend exhaust (Gangwar et al., 2012), while it can also be derived from copper pyrites (CuFeS₂) in Inner Mongolia mines (Huang et al., 2010). The increase of Cu in the mass concentration in dust samples implied dust particles mixed with anthropogenic particles, particularly from industrial emissions, during transport.

Gangwar, J. N., Gupta, T., and Agarwal, A.K.: Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine, Atmos. Environ., 46, 472-481, 2012.

Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin Y., and Fu J. S.: Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, J. Geophys. Res-Atmos, 115, D00k13, Doi:10.1029/2009jd013145, 2010.

Q7. - It should be noted that there is a great deal of uncertainty regarding aerosol pH, particularly in North China, with estimates ranging from 3 - 7 pH units. This of course will affect nitrate. The authors could comment on this with respect to their data, though keeping in mind Hennigan et al showing the proxy methods such as NH4+/(NO3 - +SO42 -) are qualitative at best.

Response: We thank the comments. We are not sure whether the estimated aerosols pH from 3 - 7 pH units in north China were valid or not, by considering three types of

aerosols, i.e., ammonium salt aerosol, K_2SO_4 or KNO₃ aerosol, and CaCO₃. TSP was collected in this study while PM2.5 was used for analysis by Hennigan et al (2015). It is not surprised parts of NO₃⁻ and SO₄²⁻ to be associated with metals in TSP samples, but we agree that NO₃⁻ and SO₄²⁻ may overwhelmingly associated with NH₄⁺ in PM2.5 as found by Hennigan et al (2015). However, we tried our best to properly interpret the formation of nitrate and sulfate in different Categories in the revised version.

Hennigan, C. J., J. Izumi, A. P. Sullivan, R. J. Weber, and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15(5), 2775–2790, 2015.

Q8. What is the mineralogy of the Hunshandake Desert? Is it rich in CaCO3? Based on a few assumptions made, documentation of the presence of this mineral from aerosols in the region would be helpful. Perhaps some of Ro and co - workers analysis of transported dust with SEM - EDX?

Response: Thank you for the suggestion. The references results show that mineral dust is relatively enriched with Calcite (Matsuki, et al., 2005; Formenti et al., 2011; Nie et al., 2012) and the carbonate content generally de-creases from west to east with exception of the Gurbantunggut desert in China desert (Fig.RS1, Formenti et al., 2011). Except for 20080502, the remaining dust samples in Category 2 were transported from the desert relatively enriched with CaCO₃ (1-25% in Wt%) (Formenti et al., 2011). And Huang et al. (2010) found that calcite was one of the main species in the aerosol over Duolun and the high content of CaCO₃ (~80% in dust storm days) in the total soluble part of Duolun aerosol. A positive correlation between NO_3^{-1} and SO_4^{-2-1} in Category 2 against a negative correlation in Category 1 also implied that the dust particles enriched with CaCO₃ in Category 2 might play an important role to form SO_4^{2-} and NO_3^{-} . Ca-rich dust particles coated with highly soluble nitrate were observed at Kanazawa in Japan during Asian dust storm periods using SEM/EDX (scanning electron microscopy equipped with an energy dispersive X-ray spectrometer) (Tobo et al., 2010). The single-particle observation conducted by Hwang and Ro (2006) showed that $CaCO_3$ in dust particles was almost completely consumed to produce mainly Ca(NO₃)₂ species.

Fig. 2. Potential source areas in Eastern Asia based on work by Xuan et al. (2004), Laurent et al. (2006), Shao and Dong (2006), Kim et al. (2007), Wang et al. (2008), and Zhang et al. (2003e). Outlines of potential source areas (shaded areas) are drawn by hand. PSA EAS-1: Taklamakan; PSA EAS-2: Gurbantunggut; PSA EAS-3: Kumtaq, Qaidam, Hexi corridor; PSA EAS-4: Mongolian (Northern Gobi) deserts; PSA EAS-5: Inner Mongolian (Southern Gobi) deserts: Badain Jaran and Tengger (PSA EAS-5a), Ulan Buh, Hobq, Mu Us (PSA EAS-5b); PSA EAS-6: north-eastern deserts (Otindag Sandy Land, Horquin Sandy Land, Hulun Buir Sandy Land).

Figure RS1. Potential source areas in Eastern Asia adapted from Formenti et al., 2011(a) and The 72-h backward trajectories for samples in Category 2 (b).

Formenti, P., Sch"utz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and chemical properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231–8256, doi:10.5194/acp-11-8231-2011, 2011.

Huang K., Zhuang G., Li J., Wang Q., Sun Y., Lin Y., and Fu J. S.Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. Journal Of Geophysical Research, Vol. 115, D00k13, Doi:10.1029/2009jd013145, 2010

Hwang, H. and Ro, C. U.: Direct observation of nitrate and sulfate formations from mineral dust and sea-salts using low-Z particle electron probe X-ray microanalysis, Atmos. Environ., 40, 3869-3880, 2006.

Matsuki, A., Iwasaka, Y., Shi, G. Y., Chen, H. B., Osada, K., Zhang, D., Kido, M., Inomata,Y., Kim, Y. S., Trochkine, D., Nishita, C., Yamada, M., Nagatani, T., Nagatani, M., and Nakata, H.: Heterogeneous sulfate formation on dust surface and its dependence on mineralogy: balloon-borne observations from ballon-borne measurements in the surface of Beijing, China, Water Air Soil Poll., 5, 101–132, 2005.

Nie, W., Wang, T., Xue, L. K., Ding, A. J., Wang, X. F., Gao, X. M., Xu, Z., Yu, Y. C., Yuan, C., Zhou, Z. S., Gao, R., Liu, X. H., Wang, Y., Fan, S. J., Poon, S., Zhang, Q. Z., and Wang, W. X.: Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry, Atmos. Chem. Phys., 12, 11985-11995.

Tobo, Y., Zhang, D. Z., Matsuki, A., and Iwasaka, Y.: Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions, PNAS Proceedings of the National Academy of Sciences of the United States of America, 107, 17905–17910, 2010.

Q8 - Line 321 some evidence for "humid marine conditions might have enhanced particle - particle coagulation" would be helpful. The number concentrations in the marine boundary layer are unlikely to be > 105 #/cm3 where coagulation is prevalent, more likely in the 102—103 #/cm3. Are the authors referring to fog - processing? That would seem to be the primary way this could happen in a marine environment.

Response: We are sorry for the confusion. The sentence has been revised to "On the other hand, the humid marine conditions (the average RH ranged in 50-75% over the Bohai and Yellow Seas in 2006-2012) might have enhanced hetero-coagulation between dust and smaller anthropogenic particles, leading to the release of NH_3 via reactions between preexisting ammonium salts and carbonate salts.".

Tobo Y., Zhang D., Matsuki A., Iwasaka Y. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions, PNAS, 2010, 107: 17905–17910.

Q9 - Line 326 The line "ammonium salts mostly co - existed with dust aerosols externally" is confusing as written. Is the population externally mixed with respect to ammonium nitrate and dust? Or are the salts co - existing with dust, but not other particle types? Please rephrase for clarity.

Response: Thank you for the suggestion. We have revised to "ammonium salt aerosols may externally exist with dust aerosols".

Q10 - Overall many of the conclusions on page 12 appear to mostly be speculation with little data to support it. I would recommend sticking to conclusions with more support from the data in the paper.

Response: We have made major revision on this section in the new revision.

Q11 - Line 357: The source profile for coal, could it have dust mixed in? When the author's say that there is a "mixture of coal combustion and other pollutants" are they saying that they are internally mixed or simply present contemporaneously? Clarifying that point would be helpful.

Response: "mixture of coal combustion and other pollutants" means these compounds present contemporaneously, because that PMF model can't show the mixing or existing state. We have revised the sentence into "The source profile for coal combustion in the dust day samples showed a high percentage of K^+ , Cl^- , Ca, Mg, Co, Ni, As, Al and Fe, indicating that coal combustion particles may exist contemporaneously with other anthropogenic pollutants emitted along the transport path.".

Q12 - Overall the Figures could use improvement as portions are hard to read and the take home point of each is not always clear. It seems at times as if the authors are simply showing everything they can, as opposed to targeting their figure to the main points of the paper.

Response: Agree and revised.

Jianhua Qi¹, Xiaohuan Liu¹, Xiaohong Yao¹, Ruifeng Zhang¹, Xiaojing Chen¹, Xuehui
 Lin², Huiwang Gao¹, Ruhai Liu¹

¹Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of
 China, Qingdao, 266100, China

- 9 ²Qingdao Institute of Marine Geology, Qingdao, 266100, China
- 10 Correspondence to: Jianhua Qi (qjianhua@ouc.edu.cn)

11

12 Abstract. Asian dust has been reported to carry anthropogenic reactive nitrogen during the transport from source areas to the oceans. In this study, we attempted to characterize the NH_4^+ and 13 NO₃⁻ in atmospheric particles collected at a coastal site in northern China during spring dust events 14 15 from 2008 to 2011. Based on the mass concentrations of NH_4^+ and NO_3^- in each total suspended 16 particle (TSP) sample, the samples can be classified into increasing or decreasing two-typesgroups. <u>I</u>: in Category 1, the concentrations of NH_4^+ and NO_3^- were 20%-440% higher in dust day samples 17 relative to samples collected immediately before or after a dust event, while in Categories 2 and 18 19 3, . Tthese concentrations decreased by 10-75% in the dust day samples in Categories 2 and 3. 20 Back trajectory analysis suggested showed that multiple factors such as the transport distance 21 prior to the reception site, the mixing layer depth on the transport route and the residence time across highly polluted regions, might affect affect the concentrations of NH_4^+ and NO_3^- were 22 23 apparently affected by the transport distance over sea prior to the reception site, the mixing layer 24 depth and the residence time across highly polluted regions during transport. For these two groups, NH_4^+ in the dust day samples was likely present either in the form of ammonium salts existing 25 26 externally existing co-existing with dust aerosols or as the residual of incomplete reactions 27 between ammonium salts and carbonate salts. The-NO3 in the dust day samples was attributed to various formation processes interactions between anthropogenic air pduring the long-range 28 29 transport transport of the source zone to the 30 reception site. Back trajectory analysis showed that the concentrations of NH4⁺ and NO3⁻were

31	apparently affected by the transport distance over sea prior to the reception site, the mixing layer
32	depth and the residence time across highly polluted regions during transport. The positive matrix
33	factorization (PMF) receptor model results showed that the contribution of soil dust increased
34	from 23% to 36% (90% of the residuals<3.0 and r^2 =0.97) on dust days with decreasing
35	contributions of from local anthropogenic inputs, especially secondary aerosols and
36	assoacitedassociated secondary aerosols. The dry deposition flux of atmospheric particulates
37	increased from 2,800±700 mg/m ² /month on non-dust comparison days to 16,800±15,900
38	mg/m ² /month on dust days. The dry deposition flux of particulate inorganic nitrogen increased by
39	9-285% in Category 1. The average dry deposition flux of nitrate decreased by 46%-73% in
40	Category 2, while that of ammonium decreased by 47% in Category 3. The estimated dust
41	deposition flux of inorganic nitrogen varied greatly from event to event, e.g., the dry deposition
42	flux of particulate inorganic nitrogen increased by 9-285% in Category 1, but decreased by
43	46%-73% in Category 2. Overall, a slight increase in dry deposition flux of particulate inorganic
44	nitrogen associated with dust events in this study relative to values in the literature may reflect the
45	combined effect of anthropogenic nitrogen emissions and the occurrence of natural dust events.

46 Keywords: aerosols, nitrogen, dust, source apportionment, dry deposition flux

47 **1** Introduction

48	Reactive nitrogen carried in dust particles can be transported over along distances, and the
49	atmosopheric nitrogen deposition in oceans has been recognized as an important external source of the
50	nitrogen supporting phytoplankton growth (Duce et al., 2008; Zhang et al., 2010b). This hypothesis has
51	been evaluated in-through incubation experiments, in_situ_in situ_experiments, and through the use of
52	satellite observational data (Banerjee and Kumar 2014;Shi et al., 2012; Guo et al., 2012; Liu et al.,
53	2013; Shi et al., 2012; Banerjee and Kumar 2014; Tan and Wang, 2014). For example, Tan and Wang
54	(2014) found that a phytoplankton bloom with a nearly four fold increase in chlorophyll concentrations
55	occurred 10-13 days after dust deposition. In addition, Banerjee and Kumar (2014) hypothesized that
56	dust-induced episodic phytoplankton blooms are important to the interannual variability of chlorophyll
57	in the Arabian Sea. However, the process is dynamic because of due to the worldwide changing
58	emisisonsemissions of NO ₈ and NH ₃ worldwidely in the last few decades. For example, China and
59	most of the developing countries in Asia experenced experienced a large Dramatic changes have
	17

带格式的:下标 带格式的: 下标

60	occurred in the reactive nitrogen in anthropogenic emission in the last three decades, e.g., large
61	increases in emissions of NH3 and NOx in emissions in China and other developing countries in Asia
62	and while a substantial decrease in emissions occurred in Europe over the last three decades (Grice et al.,
63	2009; Liu et al., 2017; Ohara et al., 2007; Skjøth and Hertel, 2013). These changes would may greatly
64	affect the nitrogen_carried by dust particles to some extent, but and updated few recent studies have are
65	thereby essentialexamined this issue.
66	
67	Asian dust is one of three largest dust sources the main components of dust worldwide on the earth.
68	Asian dust has been reported to not only to frequently cross over cross over the mainland and the
69	marginal seas of China Seas-frequently and reach, but also to occasionally reach as far as the remote
70	northern Pacific Ocean or the continent of the USNorth America-oceasionally (Creamean 2013; Tan
71	and Wang, 2014; Van Curen and Cahill, 2002; Zhang and Gao, 2007; Tan and Wang, 2014). In an
72	extreme case, And Asian dust iswas found that canto be transported more than one full circuit
73	around the globe in approximately 13 days (Uno et al 2009). During the long-range transport, dust
74	particles may mix with anthropogenic gas and particlesair pollutants and, consequently undergo
75	resulting in-complicated chemical reactions (Cui et al., 2009; Li et al., 2014; Ma et al., 2012; Wang et
76	al., 2011; Wang et al., 2016, Wang et al., 2017 <u>a: Xu et al., 2014; Li et al., 2014; Ma et al., 2012; Yang</u>
77	et al., 2002). However, the extent of these chemical reactions varies widely and depends on the
78	meteorological conditions, such as cloud fraction, wind speed, relative humidity_and atmospheric
79	eirculation (Yang et al., 2002;-Li et al., 2014; Ma et al., 2012: Yang et al., 2002). For example, a few
80	studies have shown that the concentrations of atmospheric particulate NO_3^- and $\mathrm{NH_4^+}$ on dust storm
81	days were 2-5 times larger than those prior to the events in Beijing (Liu et al., 2014; Liu and Bei, 2016).
82	Xu-et-al. (2014)-also-reported-that-concentrations-of-particulate-SO42and-NO3-simultaneously
83	increased during dust storm events along the northern boundary of the Tibetan Plateau. Fitzgerald et al.
84	(2015) found that almost all Asian dust events observed in Korea contained considerable amounts of
85	nitrate-and proposed that the dust from the Gobi and Taklamakan Deserts probably mixed and reacted
86	with anthropogenic air pollutants during transport over the Asian continent. However, Although
87	increased concentrations of NO_3^- and NH_4^+ in acrosol particles were observed on dust storm days in
88	northern China relative to those non dust days prior to the dust storm events, Zhang et al. (2010a)
89	reported an interesting result, i.e., also found that the concentrations of the two species were associated

90	with the intensity of the dust storm, i.e., the stronger dust storms corresponded to the smaller increases
91	in these ions. In other words, lower NO ₃ ⁻ and NH ₄ ⁺ concentrations occurred during strong dust storm
92	events than during weak dust events (Zhang et al., 2010a). This raises the complex for carrying reactive
93	nitrogen by dust particles.
94	A few contradictory results wasere also reported in the literature, which made the scientific issue
95	even more complicated. On the other hand, some studies reported the reverse resultFor example, at
96	Yulin, a rural site near the Asian dust source region, the concentration of NO3 in atmospheric aerosols
97	on dust days was significantly lower in comparison to the concentration measured immediately before
98	or after the event, as a result of the dilution effect at a rural site at -in Yulin near the Asian dust source
99	region (Wang et al., 2016). The phenomenon was also observed in Shanghai, a mega city at a few
100	thousands of kilometers from dust source zones in China, and more downwind sites Even in Shanghai,
101	a mega city located at a few thousands kilometers from dust source zones in China, the concentrations
102	of NO3 ⁻ and NH4 ⁺ were notably lower in the observed dust plumes than in a polluted air parcel observed
103	immediately prior to the dust events (-Kang et al., 2013; Li et al., 2014; Wang et al., 2013). Li et al.
104	(2014) also found that the concentrations of nitrate and ammonium decreased on dust storm days with a
105	decreasing ratio of the total soluble inorganic ions to PM2.5_ in the Yellow River Delta, China. When
106	dust was rapidly transported from desert regions without passing through major urban areas and
107	lingering over the Yellow Sea, the concentrations and size distributions of nitrate and ammonium had
108	no significant variation in heavy Asian dust (AD) plumes (Kang et al., 2013).
109	To upadteupdate and improve our knowledge on reactive nitrogen carried by dust particles, The
110	contradictory results highlight the importance of investigating the concentrations of ammonium and
111	nitrate in atmospheric particles during dust events based on a larger database. In this study, we
112	collected atmospheric aerosol particles during and prior to (for post, but after, only when no sample
113	was collected prior to) dust events) at a coastal site adjacent to the Yellow Sea during the in each spring
114	from-of_2008 to2011-when-smaller outbreak peaks of dust storms occurred. We measured tThe
115	concentrations of inorganic nitrogen in the samples as well as and other components were
116	determined for to facilitate our analysis. In this study, www first characterized the
117	concentrations of inorganic nitrogen eoncentrations in various dust samples by comparing them with
118	events relative to the concentrationsthe values in atmospheric particles _ in samples collected measured
119	either prior to or <u>postafter the events the event</u> . We then conducted source apportionment to quantify

their sources. Finally, we calculated <u>and discussed</u> the deposition flux of atmospheric particulate
 inorganic nitrogen during dust events and compared the results with the values in the literature in order
 to update the flux values due to dynamic changes in anthropogenic emissions and other factors.

123 2 Experimental methods

124 **2.1 Sampling**

125 Fig. 1 shows the sampling site, which is situated at the top of a coastal hill (Baguanshan) in Qingdao 126 in northern China (36°6' N, 120°19' E, 77 m above sea level) and is approximately 1.0 km from the 127 Yellow Sea to the east. A high-volume air sampler (Model KC-1000, Qingdao Laoshan Electronic 128 Instrument Complex Co., Ltd., China) was set up on the roof of an two-story office building_to collect 129 total suspended particle (TSP) samples on quartz microfiber filters (Whatman QM-A) at a flow rate of 130 1 m³/min. Prior to the sampling, the filters were heated at 450 °C for 4.5 hrs to remove organic 131 compounds. Our sample collection strategy involved collecting dust samples representing long-range 132 transported particles. We followed the definition of dust events adopted in the regulations of surface 133 meteorological observations of China (CMA, 2004; Wang et al., 2008) and identified dust events based 134 on the meteorological records (Weather Phenomenon) of Qingdao from the Meteorological Information 135 Comprehensive Analysis and Process System (MICAPS) of the China Meteorological Administration. 136 Due to no dust events without enhancive-source lasting over 12 hrs-(Lee et al., 2015; Su et al., 2017; 137 Zhang et al., 2007), we collected only-one dust sample with a 4-hr duration in a daywas collected for 138 dust events with durations of less than one day. And tThe sampling for dust particles started only when 139 measured PM10 mass concentration observed in Qingdao on the website forecasted 140 (http://www.qepb.gov.cn/m2/) and the dust mass over Asia 141 (http://www-cfors.nies.go.jp/~cfors/) had greatly increased. 142 HOn 20-21 March 20-21, 2010, two dust events subsequently swept Qingdao. The 4- hr dust samples 143 with IDs of 20100320 and 20100321 may not capture the entirety of the two whole events. However, 144 the on-line data can allow adequate well separating separation of theseparating two dust event samples. 145 The same was turetrue for the dust samples with IDs of For dust events with durations greater than one due to supplementing from enhancive source, such as 20100320, 20100321 and 20110501, 146 147 20110502. , a 4 hr dust sample was collected once per day according to temporal variation of PM10

148	concentration. This can be clearly identified from the on-line data of PM10 concentration. Each dust
149	sample was collected over 4 hrs, and the sampling started only when the PM_{10} and dust mass
150	eoncentration available on the website
151	(http://www-cfors.nies.go.jp/~cfors/;http://www.qepb.gov.cn/m2/) had increased greatly. <u>4 hrs</u>
152	samplings may not full represent these dust event samples since some events lasted over 4 hrs, and in
153	factbecause off-line samplings are practically hard to exactly cover the whole dust event period.
154	However <u>Tthis approach made the dust sample more representative relative to urban background</u> under
155	off-line samplings This approach made the dust sample more representative relative to urban
156	background. For dust events with durations of less than one day, only one sample was collected. For
157	dust events with durations greater than one day, a 4 hr dust sample was collected once per day. Table 1
158	lists the sampling information. Based on the forecast, we also collected aerosol particle samples
159	immediately before, which were regarded as the reference samples or after the dust event for
160	comparison. These reference comparison-samples were further classified into sunny day samples and,
161	cloudy day samples. For those events missing sampling prior to dust events, we collected - and
162	post-dust samples. The post-dust samples were collected ununder clear and sunny weather conditions
163	and low PM ₁₀ mass concentrationsas early as possible.
164	Since Asian dust events weerwere at the sampling site mostly observed occur in the spring at the
165	sampling site.; Our intensive samplings were concentrated in the period of we collected samples during
166	every spring, i.e., from March to May in , from 2008-2011, wherewhen a, A smaller outbreak peak
167	forin Asian dust events was observed in northern eastern-China in 2008 2011, which followed a larger
168	peak in 2000-2003 during this century (Fig. 655). Overall, a total of 14 sets of dust samples and 8 sets
169	of comparison samples were avaiable available for analysiscollected for in this study.
170	To facilitate the coastal sampling data analysis, sand samples were collected at the remote site at of
171	the Zhurihe site (42 22'N, 112 38'E) in the Hunshandake Desert, one of the main Chinese sand deserts,
172	in April 2012Sand samples were packed in clean plastic sample bags and were stored below -20 $^\circ C$

before the transfer. An ice-box was used to store the samples during transport to the lab for chemical 173 174 analysis.

2.2 Analysis 175

176

The aerosol samples were weighted according to the standradstandard protocoalprotocolallowed to 21

-[带格式的: 自动设置	字体:	10	磅,	字体颜色:
-{	带格式的: 自动设置	字体:	10	磅,	字体颜色:

177 achieve equilibrium in an air conditioned chamber at a constant relative humidity and temperature for 178 24hrs before weighing. The sample membranes were then cut into several portions for analysis. One 179 portion of each aerosol sample was ultrasonically extracted with ultra-pure water in an ice water bath₇ 180 and the concentration of for determining inorganic water-soluble ions was determined using ICS-3000 181 ion chromatography (Qi et al., 2011). The sand samples collected at the Zhurihe site were analyzed 182 using the same procedure. We later refer to dissolved inorganic nitrogen (DIN) as, the sum of nitrate 183 and ammonium-later, in the later discussion - by excluding nitrite because of its due to the very low 184 concentration. of nitrite in the samples.

One portion of the each aerosol filter was cut into 60 cm² pieces and digested with 185 HNO₃+HClO₄+HF (5:2:2 by volume) at 160 °C using an electric heating plate. TA blank membrane 186 187 was also analyzed using the same procedure to ensure analytical precision. The concentrations of Cu, 188 Zn, Cr, Sc and Pb were measured using inductively coupled plasma mass spectrometry (Thermo X 189 Series 2), while the concentrations of Al, Ca, Fe, Na and Mg were measured_using inductively coupled 190 plasma_atomic emission spectroscopy (IRIS Intrepid II XSP). Field bThe membrane blanks have been 191 eorrected for in the calculation of the metal concentrations. A blank membranes was ere also analyzed 192 for correctionusing the same procedure to ensure analytical precision. T

One portion of each-aerosol sample was digested with an HNO₃ solution (10% HNO₃, 1.6 M) at 194 160 °C for 20 min in a microwave digestion system (CEM, U.S.). The–_Hg and As in sample extracts 195 were analyzed following the U.S. Environmental Protection Agency method 1631E (U.S. EPA, 2002) 196 using cold vapor atomic fluorescence spectrometry (CVAFS). The detection limits, precisions and 197 recoveries of water-soluble ions and metal elements are listed in Table 2.

198 2.3 Computational modeling

(-- (--)

199

200

The enrichment factor of metal elements was given by

$$EFi = \frac{(X_i/X_{\rm Re})_{aerosols}}{(X_i/X_{\rm Re})_{crust}}$$
(1)

)

where subscripts *i* and *Re* refer to the studied metal and the reference metal. respectively; $(X_i/X_{Re})_{aerosols}$ is the concentration ratio of metal *i* to metal *Re* in the aerosol samples; and $(X_i/X_{Re})_{crust}$ is the ratio of metal *i* to metal *Re* in the Earth's crust. For the calculation of the enrichment factor of the metal elements, scandium was used as the reference element (Han et al., 2012), and the abundance of elements in the Earth's crust given by Taylor (1964) was adopted.

207	(Wang et al., 2009) and the-NOAA GDAS (Global Data Assimilation System) archive data (http://	
208	www.arl.noaa.gov/ready/hysplit4.html). The air mass back trajectories were calculated at an altitude of	
209	1500 m to identify the dust origin. In addition, the distance over sea of the air mass for of each sample	
210	was measured from the trajectory using TrajStat software (Wang et al., 2009).	
211	The positive matrix factorization (PMF) is a commonly used receptor modeling method. This model	
212	can quantify the contribution of sources to samples based on the composition or fingerprints of the	
213	sources (Paatero and Tapper, 1993; Paatero, 1997). The measured composition data can be represented	
214	by a matrix X of i by j dimensions, in which i number of samples and j chemical species were	
215	measured, with uncertainty u . X can be factorized as a source profile matrix (F) with the number of	带格式的:字体:倾斜 带格式的:字体:倾斜
216	source factors (p) and a contribution matrix (G) of each source factor to each individual sample, as	带格式的: 字体: 倾斜
217	shown in Equation 2.	
218	$X_{ij} = \sum_{k=1}^{p} G_{ik} F_{kj} + E_{ij} $ (2)	
219	where <i>Eij</i> is the residual for species <i>j</i> of the i-th sample.	
220	The aim of the model is to minimize $\frac{1}{\alpha-1}$ objective function Q , which was calculated from the	带格式的: 字体: 倾斜
221	residual and uncertainty of all samples (Equation 3), to obtain the most optimal factor contributions and	
222	profiles.	
223	$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} (E_{ij}/u_{ij})^2 $ (3)	
224	The EPA PMF 3.0 model was used to obtain the source apportionment of atmospheric particulates on	
225	dust and comparison days. The correlation coefficient between the predicted and observed	
226	concentrations was 0.97.	
227	Dry deposition velocities were obtained using Williams' model (Williams, 1982) by accounting for	
228	particle growth (Qi et al., 2005). Williams' model is a two-layer model used to calculate the dry	
229	velocity of size-segregated particles over the water. In an upper layer below a reference height (10 m),	
230	the deposition of aerosols particles is governed by turbulent transfer and gravitational settling. In the	
231	deposition layer, the gravitational settling of particles is affected by particle growth due to high relative	
232	humidity. To obtain the deposition velocity of different particle sizes, Williams' model needs many	
233	input parameters, such as the wind speed at $\frac{10-10}{10}$ -m height (U ₁₀), air/water temperature, and relative	
234	humidity. Relative humidity, air temperature and U_{10} obtained from the National Centers for 23	

Environmental Prediction (NCEP) were used in this study. Surface seawater temperature data was collected from the European Centre for Medium-Range Weather Forecasts (ECMWF). The meteorological and seawater temperature data had a six-hour resolution. According to a previously reported method (Qi et al., 2013), the dry deposition fluxes of the particles and the nitrogen species were calculated for dust and comparison days.

The CMAQ model (v5.0.2) was applied over the East Asia area to simulate the concentrations of 240 241 PM10, NO_x and NH₃ for 14 samples collected during 11 dust events. The simulated domain contains 242 164×97 grid cells with a $\frac{36-36}{26}$ km spatial resolution, and the centered point was 110×34 N. The 243 vertical resolution includes 14 layers from the surface to the tropopause, with the first model layer at a 244 height of 36_m above the ground level. The meteorological fields were generated by the Weather 245 Research and Forecasting (WRF) Model (v3.7). Considering that the simulated area is connected to the 246 Yellow Sea, the CB05Cl chemical mechanism was chosen to simulate the gas-phase chemistry. The 247 emissions of NO_x and NH₃ over East Asia for each dust event were also modeled using the CMAQ 248 model according to the emission inventory in 2008, which was generated by extrapolating the 2006 249 activity data to the year 2008 using the method described by Zhang et al. (2009). Initial conditions 250 (ICONs) and boundary conditions were generated from a global chemistry model of GEOS-CHEM. All 251 the dust events simulations are performed separately, each with a 1-week spin-up period to minimize 252 the influence of the ICONs. The Validation validation of the application of the CMAQ model in China 253 has been reported by Liu et al. (2010a, b). The spatial distribution of PM10 concentrations for each 254 with the model results of dust by the Chemical Weather Forecast System nsistent 255 (CFORS) by Uno et al. (2003).

256 2.4 Other data sources and statistical analysis

257 Meteorological data were obtained from the Qingdao Meteorological Administration 258 (http://qdqx.qingdao.gov.cn/zdz/ystj.aspx) and the MICAPS of the Meteorological Administration of 259 China. Different weather characteristics, such as sunny days, cloudy days and dust days, were defined 260 according to information from the MICAPS and Qingdao Meteorological Administration. According to 261 the altitude, longitude and latitude of the $\frac{72-72}{12}$ hr air mass back trajectory of each dust sample, the 262 pressure level, temperature and relative humidity (RH) data along the path of the air mass were derived 263 from the NCEP/NCAR re-analysis system

264	(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for each sample. The mixed
265	layer depth during the air mass transport of dust samples was obtained from the HYSPLIT Trajectory
266	Model (http://ready.arl.noaa.gov/hypub-bin/trajasrc.pl) using the same method. Then the average
267	mixing layer, transport altitude, air temperature and RH were calculated as an average of all points
268	onduring the air mass back trajectory of each sample. Spearman correlation analysis was applied to
269	examine the relationships of nitrate and ammonium with transport parameters, and P values of <0.05
270	were considered to be statistically significant.
271	3 Results and discussion
272	3.1 Characterization of aerosol samples collected during dust events
273	To support our analysis, the spatial distributions of PM ₁₀ concentration over East Asia for each dust
274	event were modeled by WRF CMAQ model (Fig. S3)are shown in Fig. 2 and Fig. S3. From Fig.S 3.
275	we can found that almost all dust events originated in northern or northwestern China and passed over
276	the sampling site and then transported eastward to the China Sea and furtherother ocean region.
277	However, Sample 20110415 was judged to be local blowing dust because no correspondinghigh dust
278	eoncentrations were observed in the dust source areas; this sample was therefore excluded from further
279	analysis. All these dust events, affectedobserved in Qingdao, had a characteristicsa characteristic of
280	large influence range and relatively strong intensity. Though the dust intensity was judged by visibility
281	in China (CMA, 2004), the PM10 concentration during a dust event can also show the dust intensity
282	indirectly. Generally, strong dust storm had a high PM ₁₀ value, such as 2010320, consistent with the
283	dust records (CMA, 2009). The dust intensity and influence range of these dust events varied greatly.
284	depending on the dust event. The different dust events were expected to had different impact on the
285	composition of aerosols in downwind areaintensity and influence range of the dust events modeled by
286	Uno et al. (2003) were analyzed, and the spatial distributions of dust concentration over East Asia
287	during each dust sampling day are shown in Fig. 2 and Fig. S3. Almost all dust events originated in
288	northern or northwestern China and passed over the sampling site. However, Sample 20110415 was
289	judged to be local blowing dust because no correspondinghigh dust concentrations were observed in
290	the dust source areas; this sample was therefore excluded from further analysis
291	Before characterizing the inorganic nitrogen in atmospheric particles from the Baguanshan site, Wwe

带格式的: 缩进: 首行缩进: 0 字符

292	first examined the mass concentrations of TSP samples and the concentrations of crustal and
293	anthropogenic metals therein through a comparison with the reference to compare samples reference
294	samples collected on dust days and immediately before or after days, providing the background
295	information for our target specieis analyzed later. The comparative results are highlighted below. For
296	these <u>reference</u> samples, the TSP mass concentrations ranged from 94 to 275 μ g·m ⁻³ , with
297	an average of 201 μ g·m ⁻³ (Fig. 2 <u>, Table S1</u>). The TSP mass concentration increased substantially to
298	501410-3857 µg·m ⁻³ in dust day samples, with an average of $1140.2-3$ µg·m ⁻³ . In each dust
299	day comparison day sample pair of dust day sample aganist reference sample, the net increase in
300	the mass concentration of TSPs increased bywas 8082-1303%, with a median value of 537403% (Table
301	S1). A similar increase was present in the crustal elements in each pair of samples. For example, the
302	mean concentrations of Sc, Al, Fe, Mg Ca and nss-Ca (usually used as a typical dust index) Mg
303	increased by over-more than a factor of four-two-in dust day samples relative to comparison samples.
304	On the other handIn addition, the enrichment factors (EF) of Al, Fe, Ca, and Mg were less than three in
305	dust day samples with - but were the values - less than 14 in the reference comparison ssamples (Table
306	3). Lower values are indicative of elements from the a primarily crustal origin. Although tThe average
307	mass concentrations of anthropogenic elements, such as Cu, Pb, Zn, Cr, Hg and As, in dust day samples
308	increased by 107% to 722% relative to against t-those in comparison-the reference samples, ; however,
309	the EF of the anthropogenic metal elements however-decreased in the formerdust day samples. This
310	pattern indicates a decreasing relative contribution of anthropogenic sources to the total TSP mass in
311	dust day samples. This indicates that dust particles likely carried more anthropogenic elements,
312	although their relative contribution to the total mass was lower than that in the reference sample. Noted
313	that <u>sSample 20110415 was excluded for further analysis aforementioned</u> . It was judged as a local
314	blowing dust event because of no corresponding dust event existed upwind.
315	3.2 Concentrations of inorganic nitrogen in dust day samples

-{	带格式的:	非突出显示
-(带格式的:	非突出显示
\neg	带格式的:	非突出显示
$\langle \rangle$	带格式的:	非突出显示
Y	带格式的:	非突出显示

316	When the mass concentrations of $\mathrm{NH_4^+}$ and $\mathrm{NO_3^-}$ in each pair of TSP samples were compared, the
1	

- 317 concentrations of NH_4^+ increased by $45\underline{8}\%-4\underline{87473}\%$ in some dust day samples (20080301, 20080315,
- **318** 20090316, 20100315, 20100320, 2010031520100321-, 20110415 20110418 and 20110502), but
- decreased by 28-84% in other dust day samples (Fig. 3, <u>Column NH₄⁺ and NO₃⁻ in Table S1Table S1</u>).
- 320 The same was generally true for the measured concentrations of NO_3^{-1} .

带格式的: 字体: (默认) Times New Roman, 10 磅, 字体颜色: 自动设置

321	Considering the relative values of NH_4^+ and NO_3^- in dust day samples relative to the reference
322	comparison-samples, we classified the dust day samples can be classified into three categories (Table 4).
323	In Category 1, the mass concentrations of NH_4^+ and NO_3^- were larger in dust day samples against
324	than in the reference comparison samples. In Category 2, the reverse was true. In Category 3, the mass
325	concentrations of NO3 were lower in the dust samples than in the <u>reference comparison</u> -samples,
326	whereas the <u>concentrations of</u> reverse was true for NH_4^+ was ere close to the reference comparison ones.
327	As reported, Considering that the Yellow Sea encounterredencountered was mainly affected by dust
328	storms mainly derived from the Hunshandake Desert (Zhang and Gao, 2007). W. we thereby compared
329	our observations with the sand particles collected from this desert (Table 5). The ratios relative mass
330	concentrof mass concentrations ations of nitrate and ammonium to the total mass of sand particles were
331	very low, i.e., less than 81_µg/g _due to little anthropogenic influence expected , which are approximately
332	three orders of magnitude less than the corresponding values in our dust samples. Therefore, the
333	values obtained from atmospheric aerosols at an-the urban sites of Duolun (Cui, 2009) and Alxa Right
334	Banner (Niu and Zhang, 2000), which are closer to the desert, -increased on dust daysincreased, but
335	were still also more than over one order of magnitude lower than the corresponding values in this study
336	(Table 5). This suggested that NO_3^- and NH_4^+ observed in the dust day samples were very likely due to
337	The mixing and chemical interactions and mixing between anthropogenic air pollutants and dust
338	particles during the transport from the source zone to the reception site likely played an important role
339	toin increaseing the ratios, leading to an extremely larger ratio values at this site relative to those in
340	source dust and in upwind atmospheric particles (Cui et al., 2009, Wang et al., 2011; Wu et al., 2016).
341	However, the increase or decrease in the mass concentration absolute of nitrate and ammonium in
342	different dust samples agaistagainst the reference implied the complex for the interactionsalong the
343	different transport paths of Asian dust, air pollutant emissions, meteorological conditions, chemical
344	reactions, and other factors can affect the abundance of NH_4^+ and NO_3^- in atmospheric particles. These
345	factors can vary greatly among different dust events, hence leading to the three different categories.
346	4. Discussion and conclusion
347	34.13 Theoretical analysis of the three categories

348 Ammonium salts are common in atmospheric particles with diameters of less than 2 μ m (Yao et al., 349 2003; Yao and Zhang, 2012). Many modeling studies have shown that the Gasgas-aerosol

带格式的: 首行缩进: 0 字符, 段 落间距段前: 0 磅

带格式的: 字体:(默认)Times New Roman, 10 磅

1	
350	thermodynamic equilibrium is widely assumed to be fully attained for inorganic ions, including
351	ammonium salts in PM _{2.5} (Dentener et al., 1996; Underwood et al., 2001; Wang et al., 2017a; Zhang et
352	al., 1994; Zhang and Carmichael, 1999), in all regional air quality modeling studies. Reasonably good
353	agreements between ammonium salt modeling results and observations reported in the_literature
354	support the validity of this assumption (Chen et al., 2016; Penrodet al., 2014; Walker et al., 2012).
355	Supposeding Assuming that a thermodynamic equilibrium had been attained by the ammonium salts in
356	Category 1, the reactions between carbonate salts and ammonium salts, such as 1) $(NH_4)_2SO_4+$
357	$CaCO_3 \Rightarrow CaSO_4 + NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ and } 2\text{) } 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ and } 2\text{) } 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ and } 2\text{) } 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ and } 2\text{) } 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ and } 2\text{) } 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +H_2O \text{ (gas) } +CO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 \text{ (gas) } +CO_2 \text{ (gas) } +H_2O \text{ (gas) } +CO_2 $
358	+CO ₂ (gas) +H ₂ O, will release NH ₃ (gas) until CaCO ₃ has been completely used up. During dust events,
359	much-very high concentrations of Ca^{2+} were observed, and high $CaCO_3$ concentrations were therefore
360	expected. For example, tThe single-particle characterization showed that Asia dust from the Gobi and
361	the-Inner Mongolian Deserts had rich CaCO ₃ , with a ratio of 4.3-6.7% for reacted CaCO ₃ and
362	3.0-4.6% for unreacted CaCO ₃ (Hwang et al., 2008). Heterogeneous chemical reactions of mineral
363	dust mostly occurred on CaCO ₃ mineral dust (Hwang and Ro, 2006). However, When when Category 1
364	was considered alone and one exterior sample was excluded, a good correlation however, was obtained
365	for $[NH_4^+]_{equivalent concentration} = 0.98*[NO_3^-+SO_4^{2-}]_{equivalent concentration}(R^2=0.83, P<0.05)$. The good correlation.
366	together with the slope of 1_{2} strongly indicated that the NO ₃ ⁻ and SO ₄ ²⁻ were almost completely
367	associated with NH_4^+ in these dust day samples. It was commonly believed generally accepted-that
368	anthropogenic ammonium nitrate and ammonium sulfate were produced by gas, aqueous phase reaction
369	and thermodynamic equilibrium processes, and thesethis anthropogenic ammonium nitrate and
370	ammonium sulfate weresulfate was externally mixed with dust particles (Wang et al., 2017a). In
371	reverses And The poor correlation of Ca ²⁺ to NO ₃ ⁻ and SO ₄ ²⁻ showed that T the formation of
372	CaSO ₄ and/or Ca(NO ₃) ₂ was probably negligible. Thus, ammonium salt aerosols may externally
373	co-exist with dust aerosols in these dust day samples. Wang et al. (2017a) also found that coarse mode
374	ammonium was quite low and fine mode dust particles were externally mixed with anthropogenic
375	ammonium nitrate and ammonium sulfate. The results on Asia dust samples verified that NO3 and
376	NH ₄ ⁺ in Asia dust samples were argured argued to beverified that more physically affected by the dust
377	storm-for Asia dust samples, i.e., the dilution effect, rather than the chemical reaction on the dust
378	(Huang et al., 2010). The hypothesis appeared to be valid Note that only samples in Category 1, where
379	<u>showed NH_{4}^{+} to be was negatively correlated with Ca^{2+} (Fig.S4).</u> In the exterior sample collected on 28

带格式的: 上标

带格式的:	下标
带格式的:	上标
带格式的:	下标
带格式的:	上标

380	21 March 2010, $[NH_4^+]$ only accounted for ~70% of the observed $[NO_3^-+SO_4^{2-}]$ in <u>an</u> equivalent	
381	concentration. This result suggested that ~30% of $(NO_3^{-}+SO_4^{-2})$ may be associated with dust aerosols	
382	via the formation of metal salts of the two species. The This hypothesis was supported by the	
383	correlation result, i.e., NO_3^- was positively correlated with NH_4^+ and Cu, and SO_4^{2-} was correlated with	
384	K ⁺ , Na ⁺ and Mg ²⁺ (Fig.S4). Cu was once was generally used as an effective markers of vehicular	
385	emission sources from diesel and biodiesel-blend exhaust (Gangwar et al., 2012), while it also can also	
386	be and was also derived from copper pyrites (CuFeS ₂) in Inner Mongolia mines (Huang et al., 2010).	
387	The increase of Cu in the mass concentration in dust samples implied - indicating dust particles mixed	
388	with the anthropogenic particles, particularly from industrail industrial emissions, during transport. Note	
389	that only samples in Category 1 showed NH_4^{+-} to be negatively correlated with Ca ²⁺ (Fig.S4).	
390	For Category 2, no correlation between $[NH_4^+]_{equivalent concentration}$ and $[NO_3^-+SO_4^{2-}]_{equivalent concentration}$	带格式的: 首行缩进: 0 字符,定 义网格后不调整右端进 - 段茨间距段后:
391	existed. When Category 2 was considered alone and one exterior sample was excluded, the equivalent	0磅,不调整西文与中文之间的空格, 不调整中文和数字之间的空格
392	ratios of NH_4^+ to $NO_3^-+SO_4^{-2}$ were generally much smaller than 1, suggesting that a larger fraction of	
393	$NO_3^{-}+SO_4^{-2}$ may exist as metal salts due to reactions of their precursors with dust aerosols. NO_3^{-} and	
394	SO_4^{2-} showed no correlations with NH ₄ ⁺ but did show significant correlations with Pb (Fig.S4), and	
395	effective marker of vehicular emission sources, implying that $NO_2 + SO_4^{2-}$ existed as metal salts. The	
396	average concentration of Ca^{2+} in Category 2 (0.43±0.40µg/m ³) was evidently elearly higher	
397	than that in Category 1 (Ca ²⁺ : $0.17\pm0.04\mu$ g/m ³), implying the probable formation of CaSO ₄ and/or	
398	Ca(NO ₃) ₂ and the release of NH ₃ (gas) , resulting in a decrease in NH₄⁺. Moreover, eHowever, the	
399	concentration of total Ca was 1.11 ± 0.70 µg/m ³ in Category 1 and 0.74 ± 0.49 µg/m ³ in Category 2.	
400	Except for 20080502, the remaining dust rest-samples in Category 2 wasere transported from the	
401	middle-desert in China carrying dust-relatively enriched with CaCO ₃ (1-25% in Wt%) (Formenti et al.,	带格式的: 下标
402	2011). A positive correlation between In Category 1, NO ₃ ⁻ was negatively correlated with SO ₄ ²⁻ (Fig.S4),	
403	suggesting competition for NH ₃ -under NH ₃ -poor dust days during long range transport. However, NO ₃ -	
404	was positively correlated withand SO_4^{2-} in Category 2 against a negative correlation in Category 1	
405	alosalso implied that the dust particles enriched with CaCO ₃ in Category 2 might play an important role	
406	to form. The latter relationship can be explained by the fact that the amount of CaCO3 was sufficient to	
407	absorb the precursors of both-SO4 ²⁻ and NO3 ⁻ in these dust days. Tobo et al. (2010)-provide field	
408	evidence for the existence of Ca-rich dust particles coated with highly soluble nitrate were observed at	
	•	

409	Kanazawa in Japan during Asian dust storm periods using SEM/EDX (scanning electron microscopy		
410	equipped with an energy dispersive X-ray spectrometer) Tobo et al., 2010). The		
411	single-particle observation conducted by Hwang and Ro (2006) eharacterization showed that CaCO3 in		
412	dust species particles was almost completely consumed reacted to produce mostly mainly Ca(NO3)2		
413	species-(Hwang and Ro, 2006). Due to the absence of TSP concentration data along the transport		
414	pathway, we compared TSP concentrations at the sampling site and found that the average value of		
415	Category 2 (1391±981 µg/m ³) was substantially higher than that of Category 1 (591±158 µg/m ³). This		
416	implied that dust events in Category 2 were even stronger, Note that the NO ₂ concentrations in		带格式的
417	Category 2 (1.35+2.45 µg/m ²) were lower or comparable to those in Category 1 (1.51+2.16 µg/m ²).		带格式的
418	The potential formation of nitrate metal salts was expected to be similar between the two categories,		带格式的
419	while unfavorable formation conditions for ammonium nitrate greatly increased decreased the mass		带格式的带格式的
420	concentrations of nitrate and the contributions to the TSPs in Category 12. Note that the NO ₂		带格式的带格式的
421	<u>concentrations in Category 2 (1.35±2.45 µg/m³) were lower or comparable to those in Category 1</u>	1	带格式的
422	$\frac{(1.51\pm2.16 \mu\text{g/m}^3)}{1.51\pm2.16 \mu\text{g/m}^3)}$		带格式的 Adv0T86
423	Overall, the higher ammonium concentrations observed in the dust day samples in Category 1 were		Adv0T86 色, (国
424	likely associated with external co-existence of ammonium salt acrosols and dust particles in some dust		
425	days. However, the lower concentrations in Category 2 were likely due to unfavorable conditions for		
426	forming ammonium salts <u>in some dust days</u> . The observed ammonium was just the residual of		
427	incomplete reactions between preexisting ammonium salt and carbonate salts depending on dust event,		
428	atmospheric chemical state, etc. More discussion on this issue will be presented in Section 3.4.		
429	3.4 Influence of transport pathways on particulate inorganic nitrogenin dust samples		
430	The calculated air mass trajectories of 13 out of 14 samples showed that the air mass originated from		
431	north and Inner Mongolia, China (Fig. 54), generally consistent with the results by Zhang and Gao		
432	(2007). The remaining one 20110418, originated from Northeast China. Figs. 6 and 7 <u>5 (taking emission</u>		
433	in 2008 as an example) show a few areas with high emissions of NO_{\star} and NH_{3} , e.g., Liaoning,		
434	Beijing Tianjin Hebei, Shandong, Henan and Jiangsu in China. The calculated trajectories showed that		
435	all the air mass passed over parts of these highly polluted regions and experienced different residence		
436	time in these regions. In Fig. 54, except for the one exterior sample 20110502, all trajectories in		
437	Category 1 showed that the air masses were transported from either the north or northwest over the		

带格式的:	字体颜色:	红色
带格式的:	字体颜色:	红色

捗格式的:字体:(默认) dv0T863180fb,(中文) dv0T863180fb, 8 磅,字体颜色:红 5,(国际)+西文正文(Calibri)

438	continent. In Category 2, the air masses crossed over the sea for 94 255 km prior to arriving at the	
439	reception site. NH ₃ -poor conditions in the marine atmosphere disfavored the formation and existence of	
440	ammonium nitrate. On the other hand, the humid marine conditions (the average RH beingranged in	
441	<u>50-75% over the Bohai and Yellow Sea in Qingdaoin 2006-2012) might have enhanced</u>	
442	hetero coagulation between dust and smaller anthropogenic particles particle particle coagulation and	
443	might have led to the release of NH ₂ via reactions between preexisting ammonium salts and carbonate	
444	salts. Tobo et al. (2010) suggested that the conversion of insoluble CaCO2 to Ca(NO2)2 tends to be	\leq
445	dominated over urban and industrialized areas of the Asian continent, while relatively moist conditions	
446	in the marine boundary layer (usually, RH >60%), it is highly likely that the production of CaCle	
447	exceeds that of Ca(NO22 by modifying Ca rich particles in dust storms, Therefore we think the input	
448	of marine air during the transport was one reason for the low concentration of $NH_4^++NO_3^-$ in Category	C
449	<u>2.</u>	
450	Moreover, we also examined the links among the measured concentrations of particulate ammonium	
451	and nitrate, the mixing layer along the back trajectories, and the residence time of air masses crossing	
452	over the highly polluted zones. The results supported our hypothesis, i.e., ammonium salts mostly	
453	co-existed with dust aerosols externallyFor example, except for 20080425, most of the time_all dust	
454	day samples mostly traveled at an altitude above the mixing layer before mixing down to ground level.	
455	The transport of dust air masses above the mixing layer reduced the possibility for internal mixing of	
456	ammonium salts and reaction with dust aerosols along the long transport path. For most sampling days	
457	in Category 1, the average mixing layer was less than 900 m, favoring the trapping of locally emitted	
458	anthropogenic air pollutants in the mixing layer. In addition, the air masses in Category 1 at this	
459	elevation apparently moved slowly and took over $10 \frac{11 \cdot 39}{11 \cdot 39}$ hr to cross over the highly polluted area.	
460	Even lower speeds were expected for air masses at the bottom of the mixing layer, as wind speed	
461	decreases with height. Except for exterior samples, the sampling days in Category 2 featured a mixing	
462	layer that was, higher than 900 m on average (916-1194m), higher than 900 m. The air masses in this	
463	Category at this elevation took less than 10 hr to cross over the highly polluted areas and generally had	
464	higher speeds. Theoretically, a lower mixing layer and a lower wind speed favored the accumulation of	
465	air pollutants and the formation of ammonium nitrate to some extent. The transport of dust air masses	
466	above the mixing layer reduced the possibility for internal mixing of ammonium salts and reaction with	
467	dust aerosols along the long transport path. The shorter time for dust air masses mixing down to ground	

_	带格式的:	下标
(带格式的:	下标
$ \land $	带格式的:	下标
_	带格式的:	下标
_	带格式的:	下标
-(带格式的:	下标
	· · · · · · · · · · · · · · · · · · ·	

468	level before arriving at the reception site and lower wind speed (mean of 2.8m/s at sampling site) also	
469	increased the possibility for external co-existence between ammonium salt aerosols and dust aerosols in	
470	Category 1. The reverse could be argued to explain the observations for Category 2_(average wind	
471	speed being 6.2 m/s at sampling site). The single particle characterization also showed that the Asian	
472	dust particles collected in Korea were mixed with sea salts entrained over the Yellow Sea, as well as air	
473	pollutants from the eastern China coastal areas for a slow-moving, low-altitude air-mass (Hwang et al.,	
474	2008). The correlation analysis results in Table S2 indirectly support these conclusions. In fact,	
475	previous studies proposed that nitrate is rarely formed on the surface of dust particles for some dust	
476	events(Zhang and Iwasaka, 1999). Therefore, much lower nitrate concentrations were observed in	
477	Category 2. Noted that the exteriors with ID of 20110415 and 20110502 have not yet been explained.	
478	<u>34.5-2</u> Source apportionment of aerosols during_dust and non-dust events	
479	The sources of atmospheric aerosols in on ddust and reference samples comparison days-were	
480	determined by the PMF modeling (Paatero and Tapper, 1993; Paatero, 1997). Fig. 8-6_shows that	
481	atmospheric aerosols in the reference samples on <u>comparison days</u> mainly included mainly consisted	
482	of-six sources, i.e., -industry, soil dust, secondary aerosols, sea salt, biomass burning, and coal	
483	combustion/other sources, with 90% of the scaled residuals falling between -3 and +3; r^2 =0.97. In these	
484	dust samples. On all dust days incincluding Categoryies 1-3,, the sources of aerosols mainly included	
485	eoil combustion, industry, soil dust, secondary aerosols, and coal combustion/other sources_were	
486	identified as five major sources (Table 7). These values are compared in Table 7. The contribution of	
487	soil dust evidently increased from 23% to 36% in the dust samples on dust days relative to the	
488	reference comparison days, consistent with the high concentrations of TSPs and crustal metals observed	
489	on dust days. <mark>Liu et al. (2014) also found an even larger increase in the contribution of dust acrosols to</mark>	带格式的: 突出显示
490	PM _{tor} i.e., 31% 40%, on dust days relative to non dust days, Accordingly, the contributions of local	
491	anthropogenic sources decreased on dust days, especially those of secondary acrosols, consistent with	
492	EF of anthropogenic metals observed on dust days. The source profile for coal combustion in dust day	带格式的: 字体颜色: 红色
493	samples showed a high percentage of K ⁺ , Cl ⁻ , Ca, Mg, Co, Ni, As, Al and Fe, indicating coal	
494	combustion presenting contemporaneously with a mixture of coal combustion and other pollutants	带格式的:字体颜色:红色
495	emitted along the transport path on dust daysThe calculation results also showed that the ed	带格式的:字体颜色:红色
496	contribution of nitrate plus ammonium from the soil dust source acrosol mass (the sum of nitrate and	带格式的: 字体颜色:红色
		审恰വ的 ; 于 伊 颜 巴 : 红 巴

497	ammonium associated with the dust source) to the total aerosol-mass (the totalof nitrate plusand
498	ammonium) in the dust samples greatly increased on dust days. However, we could not determine the
499	contributions of above sources to aerosols for the different dust Categories because of the limited
500	number of samples. The source profile for coal combustion in the dust day samples showed a high
501	percentage of K ⁺ , Cl ⁻ , Ca, Mg, Co, Ni, As, Al and Fe, indicating that coal combustion particles may
502	exist contemporaneously with other anthoropogenic anthropogenic pollutants emitted along the
503	transport path, Liu et al. (2014) also found an even larger net increase in the the-contribution of dust
504	aerosols to the mass of PM ₁₀ , i.e., 31%-40%, on dust days agaist relative to-non-dust days in Beijing
505	which is approxiately 600 km upwind of Qingdao, Accordingly, they reported that the contributions of
506	local anthropogenic sources decreased on dust days, especially those of from secondary aerosols,
507	consistent with the EF of anthropogenic metals observed on dust days.
508	4.3 Influence of transport path ways on particulate inorganic nitrogen in dust samples
509	The calculated air mass trajectories for 13 out of 14 samples showed that the air mass originated from
510	nNorth and Inner Mongolia, China (Fig. 4), generally consistent with the results byof Zhang and Gao
511	(2007). The remaining one, with ID of 20110418 originated from Northeast China. The calculated
512	trajectories showed that all-the entire dust air mass passed over those highly polluted regions with
513	strong emissions of NO _x and NH ₃ shown in Fig 5 and experienced different residence times therein. Fig.
514	4 showeds that all air mass trajectories in Category 1 were transported from either the north or
515	northwest over the continent, except for the one exterior sample 20110502. In Category 2, the air
516	masses always took a 94-255 km trip over the sea prior to arriving at the reception site. NH ₃ -poor
517	conditions in the marine atmosphere disfavored the formation and existence of ammonium nitrate. On
518	the other hand, the humid marine conditions (the average RH ranged in 50-75% over the Bohai and
519	Yellow Seas in 2006-2012) might have enhanced hetero-coagulation between dust and smaller
520	anthropogenic particles, leading to the release of NH ₃ via reactions between preexisting ammonium
521	salts and carbonate salts.
522	The average mixing layer was less than 900 m along the air mass transport routes for most sampling
523	days in Category 1 (Table 7), favoring the trapping of locally emitted anthropogenic air pollutants in
524	the mixing layer. The air masses in Category 1 took over 11-39 hrs to cross over the highly polluted
525	area with appreciable concentrations of NO ₅ (5.7 \pm 1.4 ppb) and NH ₃ (7.6 \pm 3.3 ppb). Except for the 33

带格式的:	字体颜色:	红色
带格式的:	字体颜色:	红色
带格式的:	字体颜色:	红色
带格式的:	字体颜色:	红色

-{	带格式的:	非突出显示
-{	带格式的:	非突出显示

526	exterior samples, air masses in Category 2 took less than 10 hrs to cross over the polluted areas with		
527	lower concentrations of NO _x (3.6 \pm 3.4 ppb) and NH ₃ (4.7 \pm 4.7 ppb) and the mixing layer height along		
528	the route was 916-1194 m (on average) for each dust event. Moreover, the averaged wind speed at		
529	sampling site was 2.8 m/s in Category 1, but 6.2 m/s in Category 2. The lower wind speed in Category		
530	1 was unexpected, implying dust particles very likely traveled at aloft with a high speed and then		
531	mixed down to the ground through subsidence. This further led to the external mixing of anthropogenic		
532	particulate matters and dust. The correlation analysis results in Table S2 indirectly support these		
533	conclusions.		
			带格式的: 下标
534	The concentrations of PM10 and its major components NO3 ⁻ and NH4 ⁺ over East Asia on dust days and	\square	
525	comparison days were modeled using the WPE CMAO model (Fig. S3). Spatial distributions of PM10	$\overline{}$	带格式的: 下标
222	comparison days were modeled using the wKr-CMAQ model (Fig. 35). Spatial distributions of FMT0		带格式的: 上标
536	during each dust events were consistent with the records in the "Sand-dust Weather Almanac" (CMA,		
537	2009; 2010; 2012; 2013). The dust particles were transported eastward by passing over the sampling		
538	site, the China Sea and arriving at the far remote ocean region, except for the local blowing dust sample		
539	with ID of 20110415, as mentioned previously. NMB (normalized mean bias) values of NO_{3} were -4%		带格式的: 下标
			带格式的: 上标
540	and -12% in dust and non-dust reference samples, respectively, indicating that CMAQ results		
541	reasonably reproduce the mass concentrations of NO_3^- (Fig. S4). Simulated NH_4^+ concentrations in dust		带格式的: 下标 ### ■ ## ■ ## ■ ## ■ ## ■ ## ■ ## ■ ##
542	samples were severely under-predicted with NMR values at -71%. For reference samples, simulated	\nearrow	带榴式的 : 工称 带格式的: 下标
342	samples were severely under predicted with MHD values at 7176. For reference samples, simulated		带格式的: 上标
543	NH_{d}^{+} concentrations sometimes can well reproduce the observational values, but sometimes totally off.	<	带格式的: 下标
544	The external mixing mechanism proposed in this study is urgently needed to be included in the model		带格式的: 上标
E 4 E			
545	for accurately predicting the concentrations during dust events.		
546	All these dust events, observed in Qingdao, had a characteristic of large influence range and relatively		带格式的:非突出显示
547	strong intensity. Though the dust intensity was judged by visibility in China (CMA, 2004), the PM10		
548	concentration during a dust event can also show the dust intensity indirectly. Generally, strong dust		
549	storm had a high PM ₁₀ value, such as 2010320, consistent with the dust records (CMA, 2009). The dust		
550	intensity and influence range of these dust events varied greatly, depending on the dust event. The		
551	different dust events were expected to had different impact on the composition of aerosols in		
552	downwind area _		
553	*	\times	带格式的: 突出显示
			带格式的: 缩进:首行缩进: 0 字符
554			

555	Moreover, we also examined the links among the measured concentrations of particulate ammonium	带格式的:	字体颜色:	红色
556	and nitrate, the mixing layer along the back trajectories, concentration of NO ₂ and NH ₂ -along the back	带格式的:	下标	
		带格式的:	下标	lat La
557	trajectories, and the residence time of air masses crossing over the highly polluted zones. The results	 (审 格 式 的 :	子 体 颜 巴 :	红巴
558	supported our hypothesis, i.e., ammonium salts mostly existed with dust aerosols externally. For			
559	example, except for 20080425, most of the time all dust day samples traveled at an altitude above the			
560	mixing layer before mixing down to ground level. The transport of dust air masses above the mixing			
561	layer reduced the possibility for internal mixing of ammonium salts and reaction with dust aerosols			
562	along the long transport path. For most sampling days in Category 1, the average mixing layer was less			
563	than 900 m with high concentration of NO _e and NH ₂ in range of 13,000-48,000 (Table 5), favoring the	带格式的:	下标	
		帯格式的:	下标	祈祷
564	trapping of locally emitted anthropogenic air pollutants in the mixing layer. In addition, the air masses	带 倍 式 的 :	子仲颜巴:	紅巴
565	in Category 1 took over 11-39 hr to cross over the highly polluted area. Except for exterior samples, the			
566	sampling days in Category 2 featured a mixing layer that was higher than 900 m on average			
567	(916-1194m) and much low concentration of NO ₃ and NH ₂ in range of 26-13,100 (Table 5). The air	带格式的:	字体颜色:	红色
568	masses in this Category took less than 10 hr to cross over the highly polluted areas. Theoretically, a			
569	lower mixing layer, high concentration of NO _x and NH _x and a lower wind speed favored the	带格式的:	字体颜色:	红色
570	accumulation of air pollutants and the formation of ammonium nitrate to some extent. The shortlonger	带格式的:	字体颜色:	红色
571	residence time over the highly polluted zones for dust air masses mixing down to ground level before	带格式的:	字体颜色:	红色
572	arriving at the reception site and lower wind speed (mean of 2.8m/s at sampling site) also increased the	带格式的:	字体颜色:	红色
573	possibility for external existence between ammonium self aerosols and dust aerosols in Category 1. The			
575	possibility for external existence between animomum sait acrossis and dust acrossis in category 1. The			
574	reverse could be argued to explain the observations for Category 2 (average wind speed being 6.2 m/s			
575	at sampling site). The single particle characterization also showed that the Asian dust particles			
576	collected in Korea were mixed with sea salts entrained over the Yellow Sea, as well as air pollutants			
577	from the eastern China coastal areas for a slow moving, low altitude air mass (Hwang et al., 2008).			
578	The correlation analysis results in Table S2 indirectly support these conclusions. In fact, previous			
579	studies proposed that nitrate is rarely formed on the surface of dust particles for some dust events			
580	(Zhang and Iwasaka, 1999). Therefore, much lower nitrate concentrations were observed in Category 2.			
581	Noted that the exteriors with ID of 20110415 and 20110502 have not yet been explained.			
582				

<u>34.64</u> Dry deposition fluxes of TSP, particulate inorganic nitrogen and metals

584 Dust events are known to increase the -concentrations and-deposition fluxes of aerosol particles 585 during long range transport along the transport path because of high particle loadings. For example, Fu 586 et al. (2014) found that the long-range transported dust particles increased the dry deposition of PM₁₀ in 587 the Yangtze River Delta region by a factor of approximately 20. In terms of atmospheric deposition in 588 the oceans, a few some-studies reported enhancements in oceanic chlorophyll a following dust storm 589 events (Banerjee and Kumar, 2014; Tan and Wang, 2014; Banerjee and Kumar, 2014). However, the 590 deposition fluxes of dust varied greatly among different dust storms, and only a few dust episodes were 591 followed by an increase in oceanic chlorophyll a (Banerjee and Kumar, 2014). In addition to those in 592 high-nutrient and low-chlorophyll (HNLC) regions, the input of nitrogen and other nutrients associated 593 with dust deposition is expected to promote the growth of phytoplankton in oceans with varingvarying -594 However, the extent canvary greatly depending on the nutrient limitation conditions-in the oceans. A 595 similar principle holds for the occurrence or absence of algal blooms following dust events. Thus, we 596 calculated the dry deposition fluxes of aerosols particles, N_{NH4++NO3} and metal elements during dust and 597 comparison reference periods using the measured component concentrations and modeled dry 598 deposition velocities (Table 8). We then also compared the calculated dry deposition flux of TSP and $N_{NH4++NO3}$ with the previous observations in the literature. 599 600 The dry deposition fluxes of atmospheric particulates increased on dust dayse agaistagainst the 601 referencerelative to comparison days to some extent. All increases or decreases in this section reflected 602 the value on dust days relative to comparison days, if not specified. For example, the dry deposition 603 flux of TSP was only 2,800±700 mg/m²/month on comparison days in the coastal region of the Yellow 604 Sea. The particle deposition fluxes varied over a wide range from 5,200 to $65,000 \text{ mg/m}^2/\text{month}$ under 605 in different dust sampling days, with an average of 18,453 mg/m²/month, in comparison with --the dry 606 deposition flux of TSP to be f 2,800±700 mg/m²/month onfrom the reference periods in the coastal 607 region of the Yellow Sea. However, tThe dry deposition fluxes of N_{NH4++NO3}- varied, depending on 608 <u>Category 1, 2 or 3did not follow this pattern</u>. In Category 1, the dry deposition fluxes of $N_{NH4++NO3}$ 609 increased by 9-28575% with, corresponding to the increased in the TSP flux of by 86-252% (Table S3). 610 In Categories 2 and 3, the dry deposition fluxes of TSP increased by 126% to 2,226% against the 611 reference compared to that on comparison dayss. Excludeding cept for ammonium in Category 3, the dry 612 deposition fluxes of particulate N_{NH4++NO3}, however, decreased by 4144% (on average). A larger 613 relative decrease in the concentration for of nitrate was present found for in Categoryies 2 and 3the

614 concentration of nitrate, i.e., decreases of ___73% and 46% in Category 2 and 3, respectively. Note that
615 the average ammonium deposition flux decreased by 47% in Category 2 but increased by 10% in
616 Category 3.

617	The dry atmospheric deposition fluxes of Fe increased by a factor of 124 2370% on dust days.
618	Atmospheric inputs of iron to the ocean have been proposed to enhance primary production in HNLC
619	areas (Jickells et al., 2005)Moreover, eExcept for Pb and Zn in Category 2, the dry deposition fluxes
620	of Cu, Pb and Zn increased with those of nitrogen and iron-on dust days. Trace metals were found to
621	have a toxic effect on marine phytoplankton and inhibit their growth (Bielmyer et al., 2006; Echeveste
622	et al., 2012). Liu et al. (2013) found that this the inhibition coexisted with the promotion of some
623	phytoplankton species in incubation experiments in the southern Yellow Sea in the spring of 2011 by
624	adding involving the addition of Asian dust samples to collected seawaters in the southern Yellow Sea
625	in the spring of 2011. However, the dry atmospheric deposition fluxes of Fe increased by a factor of
626	124-2370% in dust day samples. Wang et al. (2017b) recently reported that Fe can alleviate the toxicity
627	of heavy metals. Moreover, Aatmospheric inputs of iron to the ocean have been widely proposed to
628	enhance primary production in HNLC areas (Jickells et al., 2005).
629 630	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity
629 630 631	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in
629 630 631 632	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4++NO3} dry deposition flux of N _{NH4++NO3}
629 630 631 632 633	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4+NO3} dry deposition flux of N _{NH4++NO3} should have theoretically increased with the increase in inorganic nitrogen-the emissions_of inorganic
 629 630 631 632 633 634 	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (Fig_S5). Accordingly, tThe NNH4+NO3-dry deposition flux of NNH4+NO3 should have theoretically increased with the increase in inorganic nitrogen-the_emissions_of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry
 629 630 631 632 633 634 635 	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe NNH4+NO3-dry deposition flux of NNH4+NO3 should have theoretically increased with the increase in inorganic nitrogen-the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data
 629 630 631 632 633 634 635 636 	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4+NO3} dry deposition flux of N _{NH4++NO3} should have theoretically increased with the increase in inorganic nitrogen the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen
 629 630 631 632 633 634 635 636 637 	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4+NO3} dry deposition flux of N _{NH4++NO3} should have theoretically increased with the increase in inorganic nitrogen the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen
629 630 631 632 633 634 635 636 637 638	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4+NO3} dry deposition flux of N _{NH4++NO3} should have theoretically increased with the increase in inorganic nitrogen the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considereding the different the uncertainty in dry deposition velocity-velocities to be used in various studies, we recalculated normalized the dry deposition flux of N _{NH4++NO3} in the
629 630 631 632 633 634 635 636 637 638 639	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe NNH4++NO3-dry deposition flux of NNH4++NO3 should have theoretically increased with the increase in inorganic nitrogen the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considereding the different the uncertainty in dry deposition velocity-velocities to be used in various studies, we recalculated normalized the dry deposition flux of NNH4++NO3 in the literature using the concentration of nitrate and ammonium reported in the literature and the
629 630 631 632 633 634 635 636 637 638 639 640	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by anthropogenic activity Due to anthropogenic activity and economic development, inorganic nitrogen emissions_increased_in China from 1980 to 2010 (FigS5). Accordingly, tThe N _{NH4++NO3} dry deposition flux of N _{NH4++NO3} should have theoretically increased with the increase in inorganic nitrogen the emissions of inorganic nitrogen. However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considering However, from the limited data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considered flux of inorganic nitrogen during the dust days. Considered flux of inorganic nitrogen during the dust days. Considered in the expected increase in dry deposition flux of inorganic nitrogen during the dust days. Considered flux of inorganic nitrogen during the dust days. Considered flux of inorganic nitrogen during the dust days. Considered flux of inorganic nitrogen during the dust days. Considered flux of N _{NH4++NO3} in the literature using the concentration of nitrate and ammonium reported in the literature and the recommended dry deposition velocity velocities of 1 cm/s for nitrate and 0.1 m/s for ammonium, as in

带格式的:	字体颜色:	红色
带格式的:	字体颜色:	红色

N_{NH4++NO3} over the Yellow Sea during the dust days increased greatly from 1999 to 2007, but the

643	values. The fluxes of NNH4++NO3- in Qingdao, including during the dust days,varied narrowly with in	
644	a range of 94.75-99.65 mg N/m ² /month during the dust days from 1997 to 2011 (Table 8). The	
645	complicated results implied that even more updated works are needed in the future. may reflect the	
646	combined effects of NOx and NH3-emissions in northern China, the occurrence frequency and intensity	
647	of dust events and metrological conditions affecting the transport pathways and moving speeds of dust	
648	air masses and chemical reactions occurring therein. For example, dust events commonly exhibited a	
649	periodic variation from 2000 to 2011 (Fig.S5). However, from the limited data shown in Table 9, we	
650	did not find the expected increase in dry deposition flux of inorganic nitrogen during the dust days.	
651	4 Conclusion	
652	The concentrations of nitrate and ammonium in TSP samples varied greatly from event to event on dust	带格式的: 约
653	days. Relative to non-dust day samples, the concentrations were both higher in some cases and lower in	
654	others. The observed ammonium in dust day samples was explained by ammonium salt aerosols	
655	co existing externally with dust aerosols or the residual of incomplete reactions between ammonium	
656	salts and carbonate salts. NO3 ⁻ in the dust day samples was partially related to mixing and reactions	
657	between anthropogenic air pollutants and dust particles during the transport from the source zone to the	
658	reception site. However, this process was generally much less effective and led to a sharp decrease in	
659	nitrate in Category 2 TSP samples. The external co-existence of ammonium salt aerosols with dust	
660	aerosols and the extent of the reactions between ammonium salts and carbonate salts were apparently	
661	associated with the transport pathway, moving speeds and metrological conditions, among other	
662	factors.	
663	Due to a sharp increase in dust loads on dust days, the contribution of soil dust to the total aerosol	
664	mass was higher on dust days than on comparison days, while the contributions from local	
665	anthropogenic sources were accordingly lower.	
666	Overall, this study strongly suggested that atmospheric deposition of N _{NH4++NO3} on dust days varied	
667	greatly and that no simple linear increase existed with increasing dust load. More observations at	
668	various locations are needed to obtain a statistical relationship between dust events and atmospheric	
669	deposition of N _{NH4++NO3} . A simple assumption of a linear increase in N _{NH4++NO3} -with increasing dust	
670	load, like that in the literature, could lead to considerable overestimation of the dry deposition flux of	

缩进: 首行缩进: 0 字符

671	nutrients into the oceans and the consequent primary production associated with dust events.

673	Acknowledgments. This work was supported by the Department of Science and Technology of the P. R.
674	China through the State Key Basic Research & Development Program under Grant No. 2014CB953701
675	and the National Natural Science Foundation of China (No. 41375143). We thank Prof. Yaqiang Wang
676	and Jinhui Shi for the valuable discussion regarding this research. We also express our appreciation to
677	Tianran Zhang for help with sand sampling, and Qiang Zhang, Yang Yu and Jiuren Lin for data
678	collection.

679 References

680	Banerjee, P., and Kumar, P. S.: Dust-induced episodic phytoplankton blooms in the Arabian Sea during
681	winter monsoon, J. Geophys. Res-Oceans., 119, 7123-7138, 2014.

- Bielmyer, G. K., Grosell, M., and Brix, K. V.: Toxicity of silver, zinc, copper, and nickel to the copepod
 Acartia_tonsa exposed via a phytoplankton diet, Environ. Sci. technol., 40, 2063-2068, 2006.
- Chen, D., Liu, Z. Q., Fast, J., and Ban, J. M.: Simulations of sulfate-nitrate-ammonium (SNA)
 aerosols during the extreme haze events over northern china in october 2014, Atmos. Chem. Phys.,
 16, 10707-10724, 2016.
- 687 CMA: Regulations of Surface Meteorological Observation, China Meteorological Press, Beijing, 154–
 688 156, 2004.
- 689 CMA: Sand-dust weather almanac 2008, China Meteorological Press, Beijing, 10-64, 2009.
- 690 CMA: Sand-dust weather almanac 2009, China Meteorological Press, Beijing, 11-59, 2010.
- 691 CMA: Sand-dust weather almanac 2010, China Meteorological Press, Beijing, 11-79, 2012.
- 692 CMA: Sand-dust weather almanac 2011, China Meteorological Press, Beijing, <u>3610</u>-53, 2013.
- 693 <u>Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A. B., 694</u>
 694 <u>Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., Prather, K. A.: Dust and Biological 695</u>
 695 <u>Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S., Science, 339</u>,
- 696 <u>1572-1578, 2013.</u>
 697 Cui, W. L., Guo, R., and Zhang, H.: The Long range Transport of Dust from MongoliaGobi to the
 698 Yangtze River Basin and itsMixing with Pollutant Aerosols, Journal of Fudan University (Natural)
- 699 Science), 48, 585-592, 2009a.
 700 Cui, W. L.: Chemical transformation of dust components and mixing mechanisms of dust with pollution aerosols during the long range transport from north to south China, M.S. thesis,
- 702 Department of Environmental Science and Engineering, Fudan University, China, 38 pp., 2009b.
- Dai, Y.J.: Vertical distribution of characteristics of dust aerosols in the near-surface in hinterland of
 Taklimakan Desert, M.S. thesis, College of Resources and Environmental Science, Xinjiang
 University, China, 26 pp., 2016.
- Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J.: Role of mineral aerosol
 as a reactive surface in the global troposphere, J. Geophys. Res-Atmos., 101, 22869-22889, 1996.
- 708 Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener,

709 710	F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J.,
711 712 713	Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320, 893-897 2008
714	Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M.,
715	Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D.,
716	Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and
717	Zhou, M. Y.: The atmospheric input of trace species to the world ocean, Global. BiogeochemCy., 5,
718	193-259, 1991.
719	Echeveste, P., Agust í S., and Tovar-Sánchez, A.: Toxic thresholds of cadmium and lead to oceanic
720	phytoplankton: cell size and ocean basin-dependent effects, EnvironToxicolChem., 31, 1887-
721	<u>-</u> 1894, 2012.
722	Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and Prather, K. A.: Comparison of
723	the mixing state of long-range transported Asian and African mineral dust, Atmos. Environ., 115,
724	19-25, 2015.
725	Formenti, P., Schütz's, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens,
726	D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and chemical
727	properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231–8256, 2011.
728	Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J. D., and Hao, J. M.: Source, transport and
729	impacts of a heavy dust event in the Yangtze River Delta, China, in 2011, Atmos. Chem. Phys., 14,
730	1239-1254, 2014.
731	Gangwar, J. N., Gupta, T., and Agarwal, A.K.: Composition and comparative toxicity of particulate
732	matter emitted from a diesel and biodiesel fuelled CRDI engine, Atmos. Environ., 46, 4/2-481,
733	<u>2012.</u> Crite S. Stadaran J. Kent A. Habert M. Namis J. Abbett J. and Casha S. Davast trands and
734	projections of primery NO, emissions in Europe, Atmos Environ, 42, 2154, 2167, 2000
735	Guo C Yu I Ho T X Wang I Song S Kong I and Liu H: Dynamics of phytoplankton
730	community structure in the South China Sea in response to the East Asian aerosol input
738	Bioreosciences 9 1519-1536 2012
739	Han, X., Ge, C., Tao, J. H., Zhang, M. G., and Zhang, R. J.: air Air quality modeling for of a strong
740	dust event in east asia Asia in march 2010, Aerosol. Air. Qual. Res., 12, 615-628, 2012.
741	Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin Y., and Fu J. S.: Mixing of Asian dust with
742	pollution aerosol and the transformation of aerosol components during the dust storm over China in
743	spring 2007, J. Geophys. Res-Atmos, 115, D00k13, Doi:10.1029/2009jd013145, 2010.
744	Hwang, H. and Ro, C. U.: Direct observation of nitrate and sulfate formations from mineral dust and
745	sea-salts using low-Z particle electron probe X-ray microanalysis, Atmos. Environ., 40, 3869-3880,
746	<u>2006.</u>
747	Hwang, H., Kim, H. K., and Ro, C. U.: Single-particle characterization of aerosol samples collected
748	before and during an Asian dust storm in Chuncheon, Korea, Atmos. Environ., 42, 8738-8746, 2008.
749	Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P.
750	W., Duce, R. A., Hunter, K., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N.,
751	Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between desert

dust, ocean biogeochemistry, and climate, Science, 308, 67-71, 2005.

Kang, E., Han, J., Lee, M., Lee, G., and Kim, J. C.: Chemical characteristics of size-resolved aerosols
 from Asian dust and haze episode in Seoul Metropolitan City, Atmos. Res., 127, 34-46, 2013.

- Lee, Y. G., Ho, C., Kim, J., and Kim, J.: Quiescence of Asian dust events in South Korea and Japan during 2012 spring: Dust outbreaks and transports, Atmos. Environ., 114, 92-101, 2015.
- 757 Li, W. J., Shao, L. Y., Shi, Z. B., Chen, J. M., Yang, L. X., Yuan, Q., Yan, C., Zhang, X. Y., Wang, Y. Q.,
- Sun, J. Y., Zhang, Y, M., Shen, X. J., Wang, Z. F., and Wang, W. X.: Mixing state and hygroscopicity
 of dust and haze particles before leaving Asian continent, J. Geophys. Res-Atmos., 119, 1044–1059,

760

2014.

- Lin, X. H., Liu, C. L., and Zhang, H.: Determination of Metal Elements in Aerosol by ICP-AES, Rock
 & Mineral Analysis, 17, 143-146, 1998.
- Liu, L., Zhang, X. Y., Xu, W., Liu, X. J., Li, Y., Lu, X. H., Zhang, Y. H., and Zhang, W. T.: Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980, Atmos. Chem. Phys., 106, 1-32, 2017.
- Liu, Q. Y., and Bei, Y. L.: Impacts of crystal metal on secondary aliphatic amine aerosol formation
 during dust storm episodes in Beijing, Atmos. Environ., 128, 227-334, 2016.
- Liu, Q. Y., Liu, Y. J., Yin, J. X., Zhang, M. G., and Zhang, T. T.: Chemical characteristics and source apportionment of PM 10 during Asian dust storm and non-dust storm days in Beijing, Atmos.
 Environ., 91, 85-94, 2014.
- Liu, X. H., Zhang, Y., Cheng, S. H., Xing, J., Zhang, Q., Streets, D. G., Jang, C., Wang, W. X., and Hao,
 J. M.: Understanding of regional air pollution over China using CMAQ, part I performance
 evaluation and seasonal variation, Atmos. Environ., 44, 2415-2426, 2010a.
- Liu, X. H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D. G., Jang, C., Wang, W. X., and Hao, J.
 M.: Understanding of regional air pollution over China using CMAQ, part II. Process analysis and
 sensitivity of ozone and particulate matter to precursor emissions, Atmos. Environ., 44, 3719-3727,
 2010b.
- Liu, Y., Zhang, T. R., Shi, J. H., Gao, H. W., and Yao, X. H.: Responses of chlorophyll a to added nutrients, Asian dust, and rainwater in an oligotrophic zone of the Yellow Sea: Implications for promotion and inhibition effects in an incubation experiment, J. Geophys._Res-Biogeo_, 118, 1763-1772, 2013.
- 783 Ma, Q. X., Liu, Y. C., Liu, C., Ma, J. Z., and He, H.: A case study of Asian dust storm particles:
 784 Chemical composition, reactivity to SO₂ and hygroscopic properties, J. Environ. Sci., 24, 62-71,
 785 2012.
- Mori, I., Nishikawa, M., Tanimura, T., and Quan, H.: Change in size distribution and chemical
 composition of kosa (Asian dust) aerosol during long-range transport, Atmos. Environ., 37,
 4253-4263, 2003.
- Niu, S. J., and Zhang, C. C.: Researches on <u>Sand_sand_Aerosol_aerosol_Chemical_chemical</u>
 Composition_composition_and <u>Enrichment_enrichment_Factor_factor_in</u> the <u>Spring_spring_at Helan</u>
 Mountain <u>Arenarea</u>, Journal of Desert Research, 20, 264-268, 2000.
- Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian
 emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem.
 Phys., 7, 4419-4444, 2007.
- Paatero, P., and Tapper, U.: Analysis of different modes of factor analysis as least squares fit problems,
 Chemometr. Intell. Lab., 18, 183-194, 1993.

带格式的:下标

Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab.,
37, 23-35, 1997.

Penrod, A., Zhang, Y., Wang, K., Wu, S. Y. and Leung, L. R.: Impacts of future climate and emission
changes on U.S. air quality, Atmos. Environ., 89, 533-547, 2014.

- Qi, J. H., Gao, H. W., Yu, L. M., and Qiao, J. J.: Distribution of inorganic nitrogen-containing species
 in atmospheric particles from an island in the Yellow Sea, Atmos. Res., 101, 938-955, 2011.
- 803 Qi, J. H., Li, P. L., Li, X. G., Feng, L. J., and Zhang, M. P.: Estimation of dry deposition fluxes of
- particulate species to the water surface in the Qingdao area, using a model and surrogate surfaces,Atmos. Environ., 39, 2081-2088, 2005.
- 806 Qi, J. H., Shi, J. H., Gao, H. W., and Sun, Z.: Atmospheric dry and wet deposition of nitrogen species
 807 and its implication for primary productivity in coastal region of the Yellow Sea, China, Atmos.
 808 Environ., 81, 600-608, 2013.
- Sheng, Y., Yang, S., Han, Y., Zheng, Q., and Fang, X.: The concentrations and sources of nitrate in aerosol over Dolmud, Qinghai, China, Journal of—Desert Research, 36, 792-797, 2016.
- Shi, J. H., Gao, H. W., Zhang, J., Tan, S. C., Ren, J. L., Liu, C. G., Liu, Y., and Yao, X. H.: Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea,
 China, J. Geophys. Res-Atmos., 117, 127-135, 2012.
- Shi, J. H., Zhang, J., Gao, H. W., Tan, S. C., Yao, X. H., and Ren, J. L.: Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea, Deep-sea. Res. Pt. II, 97, 43–50, 2013.
- Skjøth C. A., and Hertel, O.: Ammonia Emissions in Europe, Urban Air Quality in Europe, Springer
 Berlin Heidelberg, The Handbook of Environmental Chemistry, Germany, 163 pp., 2013.
- 819 Su, X., Wang, Q., Li, Z., Calvello, M., Esposito, F., Pavese, G., Lin, M., Cao, J., Zhou, C., Li, D., and
 820 Xu, H.: Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin A
 821 coastal megacity in China, Sci. Total. Environ., 584-585, 381-392, 2017.
- Tan, S. C., and Wang, H.: The transport and deposition of dust and its impact on phytoplankton growth
 in the Yellow Sea, Atmos. Environ., 99, 491-499, 2014.
- Taylor, S. R.: Abundance of chemical elements in the continental crust: a new table, Geochim.
 Cosmochim. Ac., 28, 1273-1285, 1964.
- Tobo, Y., Zhang, D. Z., Matsuki, A., and Iwasaka, Y.: Asian dust particles converted into aqueous
 droplets under remote marine atmospheric conditions, PNAS Proceedings of the National Academy
 of Sciences of the United States of America, 107, 17905–17910, 2010.
- U. S., EPA.: Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, US Environmental Protection Agency Washington, DC, 2002.
- 831 Underwood, G. M., Song, C. H., Phadnis, M., Carmichael, G. R., and Grassian, V. H.: Heterogeneous
 832 reactions of NO₂ and HNO₃ on oxides and mineral dust: a combined laboratory and modeling study,
 833 J. Geophys. Res-Atmos., 106, 18055-18066, 2001.
- Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara,
 Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, Nat. Geosci., 2,
 557-560, 2009. Uno, I., Carmichael, G. R., Streets, D. G., Tang, Y., Yienger, J. J., Satake, S., Wang,
 Z., Woo, J. H., Guttikunda, S., Uematsu, M., Matsumoto, K., Tanimoto, H., Yoshioka, K., and Iida,
 T.: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of
 surface observations at Japanese island stations during the ACE Asia experiment, J. Geophys.

840 Res Atmos., 108, 1147–1164, 2003.

带格式的:下标 **带格式的:**下标

841	VanCuren, R. A. and Cahill, T. A.: Asian aerosols in North America: Frequency and concentration of
842	fine dust, J. Geophys. Res., 107, 163-176, 2002.

- Walker, J. M., Philip, S., Martin, R. V., and Seinfeld, J. H.: Simulation of nitrate, sulfate, and
 ammonium aerosols over the United States, Atmos. Chem. Phys., 12, 11213-11227, 2012.
- Wang, Z., Pan, X., Uno, I., Li, J., Wang, Z., Chen, X., Fu, P., Yang, T., Kobayashi, H., Shimizu, A.,
 Sugimoto, N., and Yamamoto, S.: Significant impacts of heterogeneous reactions on the chemical
 composition and mixing state of dust particles: A case study during dust events over northern China,
- 848 <u>Atmos. Environ., 159, 83-91, 2017a.</u>
- Wang, F. J., Chen, Y., Guo, Z. G., Gao, H. W., Mackey, K. R., Yao, X. H., Zhuang, G. S. and Paytan, A.:
 Combined effects of iron and copper from atmospheric dry deposition on ocean productivity,
 Geophys. Res. Lett., 44, 2546-2555, 2017b.
- Wang, L., Du, H. H., Chen, J. M., Zhang, M., Huang, X. Y., Tan, H. B., Kong, L. D., and Geng, F. H.:
 Consecutive transport of anthropogenic air masses and dust storm plume: Two case events at
 Shanghai, China, Atmos. Res., 127, 22-33, 2013.
- Wang, Q. Z., Zhuang, G. S., Huang, K., Liu, T. N., Lin, Y. F., Deng, C. R., Fu, Q. Y., Fu, J. S., Chen, J.
 K., Zhang, W. J., and Yiming, M.: Evolution of particulate sulfate and nitrate along the Asian dust
 pathway: Secondary transformation and primary pollutants via long-range transport, Atmos. Res.,
 169, 86-95, 2016.
- Wang, Q. Z., Zhuang, G. S., Li, J., Huang, K., Zhang, R., Jiang, Y. L., Lin, Y. F., and Fu, J. S.: Mixing
 of dust with pollution on the transport path of Asian dust —___Revealed from the aerosol over Yulin,
 the north edge of Loess Plateau, Sci. Total. Environ., 409, 573–581, 2011.
- Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various trajectory
 statistical analysis methods to identify potential sources from long-term air pollution measurement
 data, Environ. Modell. Softw., 24, 938-939, 2009.
- Wang, Y. Q., Zhang, X. Y., Gong, S. L., Zhou, C. H., Hu, X. Q., Liu, H. L., Niu, T., and Yang, Y. Q.:
 Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust, Atmos.
 Chem. Phys., 8, 545–553, 2008.
- Wang, Z., Pan, X. L., Uno, I., Li, J., Wang, Z. F., Chen, X. S., Fu, P. Q., Yang, T., Kobayashi, H.,
 Shimizu, A., Sugimoto, N., and Yamamoto, S.: Significant impacts of heterogeneous reactions on the
 chemical composition and mixing state of dust particles: A case study during dust events over
 northern China, Atmos. Environ., 159, 83-91, 2017-.
- Williams, R. W.: A model for the dry deposition of particles to natural water surface. Atmos. Environ.,
 16, 1933-1938, 1982.
- Wu, F., Zhang, D. Z., Cao, J. J., Guo, X., Xia, Y., Zhang, T., Lu, H., and Cheng, Y.: Limited production
 of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated
 areas in northwestern China, Atmos. Chem. Phys., 853, 1-22, 2016.
- Xin, W. C., Lin, X. H., and Xu, L.: ICP-MS Determination of 34 Trace trace Elements clements in Marine marine Sedimentssediments, Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 4, 29, 2012.
- Xu, J. Z., Wang, Z. B., Yu, G. M., Qin, X., Ren, J. W., and Qin, D. H.: Characteristics of water soluble
 ionic species in fine particles from a high altitude site on the northern boundary of Tibetan Plateau:
 Mixture of mineral dust and anthropogenic aerosol, Atmos. Res., 143, 43-56, 2014.
- Yang, D. Z., Wang, C., Wen, Y. P., Yu, X. L., and Xiu, X. B.: Ananalysis of Two Sand Storms In Spring
 1990, Quarterly Journal of Applied Meteorology, 6, 18-26, 1995.

- Yang, D. Z., Yan, P., and Xu, X. D.: Characteristics of aerosols under dust and sand weather in Beijing,
 Quarterly Journal of Applied Meteorology, 1, 185-194, 2002.
- Yao, X. H., and Zhang, L.: Supermicron modes of ammonium ions related to fog in rural atmosphere,
 Atmos. Chem. Phys., 12, 11165-11178, 2012.
- Yao, X. H., Lau, A. S., Fang, M., Chan, C., and Hu, M.: Size Distributions and Formation of Ionic
 Species in Atmospheric Particulate Pollutants in Beijing, China: 1—Inorganic Ions. Atmos. Environ.,
 37, 2991-3000, 2003.
- Zhang, D., and Iwasaka, Y.: Nitrate and sulfate in individual Asian dust storm particles inBeijing,
 China in spring of 1995 and 1996, Atmos. Environ.,33, 3213-3223, 1999.
- Zhang, G. S., Zhang, J., and Liu, S. M.: Characterization of nutrients in the atmospheric wet_and dry deposition observed at the two monitoring sites_over Yellow Sea and East China Sea, J. Atmos.
 Chem., 57, 42-57, 2007.
- Zhang, J., Zhang, G. S., Bi, Y. F., and Liu, S. M.: Nitrogen species in rainwater and aerosols of the
 Yellow and East China seas: Effects of the East Asian monsoon and anthropogenic emissions and
 relevance for the NW Pacific Ocean, Global Biogeochem. Cy., 25, 113-120, 2011.
- Zhang, K., and Gao, H. W.: The characteristics of Asian-dust storms during 2000–2002: From the
 source to the sea, Atmos. Environ., 41, 9136-9145, 2007.
- 2 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S.,
 Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006
 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131-5153, 2009.
- Zhang, W. J., Zhuang, G. S., Huang, K., Li, J., Zhang, R., Wang, Q. Z., Sun, Y. L., Fu, J. S., Chen, Y.,
 and Xu, D. Q.: Mixing and transformation of Asian dust with pollution in the two dust storms over
 the northern China in 2006, Atmos. Environ., 44, 3394-3403, 2010a.
- 208 Zhang, Y. and Carmichael, G. R.: The role of mineral aerosol in tropospheric chemistry in East Asia a
 209 model study, J. Appl. Meteorol., 38, 353-366, 1999.

2hang, Y., Sunwoo, Y., Kotamarthi, V. R., and Carmichael, G. R.: Photochemical oxidant processes in
 the presence of dust: an evaluation of the impact of dust on particulate nitrate and ozone formation, J.
 Appl. Meteorol., 33, 813-824, 1994.

- 213 Zhang, Y., Yu, Q., Ma, W. C., and Chen, L. M.: Atmospheric deposition of inorganic nitrogen to the
 eastern China seas and its implications to marine biogeochemistry, J._Geophys. Res-Atmos., 115,
 3421-3423, 2010b.
- 918 919 920 921

- 922
- 923
- 924 925
- 926
- 927 928

Table 1. Sampling information for the aerosol samples collected at the Baguanshan site in the_coastal
region of the Yellow Sea.

Sampling	6 1	Sampling	Commiliant times	Weather	
<u>Yearyear</u>	Sample category	number	Sampling time	characteristics	
		20080301	From 13:22 a.m. to 17:22	Floating dust ^a	
			p.m. on Mar. 1st	T fouring dust	
		20090215	From 13:21 a.m. to 17:21	Floating dust	
			p.mon Mar. 15th	I louting dust	
	Samples on dust	st 20080425 F	From 13:14 a.m. to 17:14	Floating dust	
	days	20000425	p.m. on Apr. 25th	I loating dust	
		20080528	From 11:38 a.m. to 15:38	Floating dust	
2008		20000320	p.m. on May 28th	i loating dust	
2008		20080520	From 10:15 a.m. to 12:15	Floating dust	
		20080529	p. m. on May 29th ^b	Ploating dust	
		20080216	From 13:00 a.m. to 17:00	Suppy day	
		20080310	p.m. on Mar. 16th	Sullity day	
	Samples on	20080424	From 13:00 a.m. to 17:00	Suppy day	
	non-dust days20		p.m. on Apr. 24th	Sullity day	
		20080522	From 13:00 a.m. to 17:00	Cloudy day with mist	
			p.m. on May 22nd	Cloudy day with hilst	
	Samples on dust	20000316	From 8:25 a.m. to 12:25 p.m.	Electing dust	
2000	days	20090310	on Mar. 16th	Floating dust	
2009	Samples on	20000206	From 13:00 a.m.to 17:00	Suppy day	
	non-dust days		p.m. on Mar. 6th	Sullity day	
		20100315	From 11:30 a.m.to 15:30	Mist after floating	
		20100313	p.m. on Mar. 16th	dust	
	Samples on dust 20 10 20	20100220	From 10:30 a.m. to 14:30	Electing dust	
2010		20100320	p.m. on Mar. 20th	Floating dust	
2010		20100321	From 10:30 a.m. to 14:30	Electing dust	
_			p.m. on Mar. 21st	Floating dust	
	Samples on	20100224	From 11:30 a.m. to 15:30	Suppy day	
	non-dust days	20100324	p.m. on Mar. 24th	Sunny day	
	Samla an hat	20110210	20110210	From 12:00 a.m. to 16:00	Electing dust
		20110319	p.m. on Mar. 19th	Floating dust	
		20110415	From 12:00 a.m. to 16:00	Floating dust	
2011	Samples on dust	20110415	p.m. on Apr. 15th	Floating dust	
	days -	20110410	From 12:25 a.m. to 16:25	Floating dust ^c	
		20110418	p.m. on Apr. 18th	Floating dust	
		20110501	From 12:10 a.m. to 16:10	Floating dust	

		p.m. on May 1st	
	20110502	From 16:00 a.m. to 20:00	Electine duct
	20110502	p.m. on May 2nd	Floating dus
	20110208	From 12:00 a.m. to 16:00	Suppy day
Samples on non-dust days	20110308	p.m. on Mar. 8th	Sunny day
	20110416	From 12:00 a.m. to 16:00	Suppy day
	20110410	p.m. on Apr. 16th	Sulliy day
	20110522	From 12:00 a.m. to 16:00	Eveney dov
	20110323	n.m. on May 23rd	Sunny day

^aNote that one exterior dust sample was collected on March 1 when no dust was recorded by the
MICAPS. However, the MICAPS_information indeed showed dust events in China on March 1. The
modeled spatial distribution of the PM₁₀ mass concentration for this dust event on March 1 implies that
the sample should be classified as a_dust sample. The supporting figureis figures wasare shown in Fig.

S1.

^bThe sampling duration was reduced to only 2 hrs because of extremely high particle loads. <u>In addition</u>,
the samples with IDs of 20080528 and 20080529 were subjected to two different dust events occurring

942 over two days instead of continuous samples for one dust event (CMA, 2009).

^cNote that one exterior dust sample was collected on April 18when no dust was recorded by the
MICAPS. However, blowing dust occurred and was recorded on April 17 by the Sand-dust weather
<u>Weather almanae Almanae</u> 2011 (CMA, 2013). The modeled spatial distribution of the PM₁₀ mass
concentration for this dust event_on April 18_implies that the sample should be classified as a_dust
sample. The supporting figure is Fig. S2.

带格式的: 字体:(默认)Times New Roman, 10 磅

978 Table 2. Detection limits, precisions and recoveries of water-soluble ions and metal	elements.
---	-----------

Component	Measurement	Detection limit	Precision	Recovery (%)	•(带格式的: 居中
P	method	$(\mu g L^{-1})$	(RSD%)			
NO ₃ ⁻		2.72	1.54	97		
SO_4^{2-}	IC	1.62	1.55	98		
NH_4^+	IC.	0.4	1.10	97	•	市借入的 , 后于
Ca ²⁺		0.44	0.79	94		
Cu	ICP-MS (Xin et	0.006	4.0	106	•(带格式的: 居中
Zn	al., 2012)	0.009	2.5	102		
Cr		0.004	3.0	95		
Sc		0.002	2.4	97		
Pb		0.008	3.9	104		
Al	ICP-AES (Lin et	7.9	0.6	103	•(带格式的: 居中
Ca	al., 1998)	5.0	1.2	99		
Fe		2.6	0.7	104		
Na		3.0	0.6	99		
Mg		0.6	0.6	105		
Hg	CVAFS	0.0001	6.6	105	•(带格式的: 居中
As	CVAFS	0.1	5.0	98	•(带格式的: 居中

Table 3. The_average	concentrations an	d EFs of metal	elements on du	ist and non-dust days.

Element	Concentratio	$on (ng/m^3)$	EF	*	
	Non-dust days	Dust days	Non-dust days	Dust days	
Sc	1.11	13.90	-	-	
Al	8.53×10^{3}	6.86×10^4	3.8	1.4	
Fe	4.91×10^{3}	3.88×10^4	3.	1.2	
Ca	1.05×10^4	4.29×10^4	14.0	2.1	
Mg	1.62×10^{3}	1.58×10^4	3.5	1.1	
Cu	50.2	124.5	36.3	6.1	
Pb	127.9	221.0	389.4	56.1	
Zn	340.0	457.7	248.9	20.6	
Cr	33.8	244.0	44.0	11.1	
Hg	0.26	0.36	176.0	13.8	
As	25.5	27.4	707.2	43.9	

1005	*EF values_less than 10 indicate that the studied element is mainly_derived mainly from crustal sources,
1006	whereas_EF values_much higher than 10 indicate_an anthropogenic source.
1007	
1008	
1009	
1010	
1011	
1012	
1013	
1014	
1015	
1016	
1017	
1018	
1019	
1020	
1021	
1022	
1023	
1024	
1025	

1035	Table 4. Average concentrations of inorganic nitrogen (DIN), TSP, NOx, relative humidity (RH) and
1036	air temperature for each aerosol sample_category_in Qingdao.

	Sample	TSP	NO ₃	NH_4^+	RH	T	NOx	Summary		
	number	<u>(</u> µg·m ⁻ -2	<u>(</u> µg·m [−])	<u>(</u> µg·m ⁻)	<u>(%)</u>	<u>(°C)</u>	<u>(</u> µg·m [−])			带格式表格
	20080301	527	20.5	12.7	57	7.0	36			带格式的: 非上标/下标
	20080315	410	19.5	29.9	62	11.0	59	DIN concentration_on		₩₩₽₩ ₩. ₽±
Category	20090316	688	15.9	17.2	27	16.0	75	dust days higher		带格式的: 居中
	20100321	519	16.5	9.4	51	8.8	76	than that on non-dust_days		
	20110502	810	21.0	11.0	49	17.7	62			
	20080425	622	6.8	2.0	30	18.0	40			
	20080528	2579	9.2	2.7	17	27.0	34	DIN concentration on		
Category	20080529	2314	17.5	4.8	60	20.0	29	dust days lower	4	带格式的: 居中
	20110319	939	12.3	9.4	16	12.6	93	than that on non-dust days		
	20110501	502	4.5	5.3	23	21.6	66			
	20100315	501	5.4	4.3	30	7.2	73	NO ₃		
	20100320	3857	5.5	3.4	35	10.6	92	concentration on dust days lower		
Category								than that on	4	带格式的: 居中
3								non-dust days;_		
	20110418	558	3.8	6.6	33	12.6	47	NH_4^+ close to		
								that on non-dust		
_								days	_	
	20080316	225	12.6	8.4	28	11.0	60			
	20080424	137	21.7	7.2	49	18.0	53			
Non-dust a	20080522	206	27.4	16.6	78	20.0	60			带格式的: 居中
	20090306	94	2.9	3.0	29	7.00	51			
	20100324	275	7.2	2.4	23	9.0	82			

20110308	194	13.0	13.1	20	11.5	111	
20110416	252	5.6	5.4	26	14.1	55	
20110523	224	15.2	10.2	42	20.6	49	
^a For the corresponding no	on-dustday	for each du	st event, se	ee Tabl	e 1.		

1043Table 5. Comparison of the inorganic nitrogen (DIN) content in sandand aerosol particles on dust days1044or close to the dust source region (unit: $\mu g/g)_{\underline{c}}$

Sands sampled	in dust sou	rce regions	Aerosols in or cl region on dust day	Aerosols in or close to dust source region on dust days			Aerosols in the coastal region		
Study region and	Relative co	oncentration ^a	Study region and	Relative concentra	ation ^a	of the Yellow Sea			
data source	NO ₃ ⁻ NH ₄ ⁺		data source	NO ₃ ⁻	$\mathrm{NH_4}^+$	NO ₃ -	$\mathrm{NH_4}^+$		
Zhurihe (This study)	25.46± 22.87	4.21± 1.03	Duolun (Cui, 2009)	1200	900	Non-dust: 28,200±24,819	Non-dust: 24,063±21,515		
Alxa_Left Banner, Inner Mongolia (Niu_and_Zhang, 2000)	62.1±7.4	79.1±1.1	Alxa_Right_Banner, Inner Mongolia (Niu_ and_Zhang, 2000)	1975 ^b	4091 ^b	Category 1: 34,892±9570	Category 1: 22,571±7,016		
Yanchi, Ningxia (Niu_and_Zhang, 2000)	46.4±2.2	80.9±1.3	Hinterland of the_ Taklimakan Desert, Xinjiang (Dai et al., 2016)	142-233	2-15	Category 2: 5,542±5,117	Category 2: 4,758±5,698		
			Average of Sonid_ Youqi, Huade (Inner Mongolia), Zhangbei (Hebei) (Mori et al., 2003)	253	710	Category 3: 6,359±4,697	Category 3: 7,059±5,591		
			Yulin, the north edge of Loess Plateau (Wang et al., 2011)	216.4	80.6				

带格式的:字体:10 磅

Golmud,

Qinghai(Sheng et al.,	892.9	_ ^c
2016)		
Hohhot, Inner		
Mongolia (Yang et al.,	588.1	No data
1005		

1995)

^aRelative concentration of DIN per aerosol particle mass

带格式的:字体:10磅

^b-Samples collected on a floating dust day (Horizontal-horizontal visibility less than 10000 m and very low wind speed) ^c-The ammonium concentration was lower than the detection limit of the analytical instrument.

inng dust and non-dust e	vents		
Dust ever	<u>it</u>	<u>Comparison</u>	<u>ı days</u>
ource	<u>% of TSP</u>	Source	<u>% of TSP</u>
<u>oil dust</u>	<u>36</u>	Soil dust	<u>23</u>
<u>lustrial</u>	<u>21</u>	Industrial	<u>24</u>
condary aerosol	<u>6</u>	Secondary aerosol	<u>23</u>
l combustion	<u>6</u>	Biomass burning	<u>16</u>
1 combustion and	<u>31</u>	Coal combustion	<u>5</u>
r uncertain sources			
		Sea salt	9

1072 Table 67. Concentrations of TSP, NO₃⁻, and NH₄⁺; transport speed; transport distance over the sea;
 1073 transport distance; air temperature; RH; average mixed layer during transport and transport time in
 1074 polluted region for atmospheric aerosol samples on dust days.

1	Group	Sample number	TSP (µg/m ³)	NO ₃ ⁻ (μg/g)	NH_4^+ (µg/g)	Speed (km/h)	Distanc e over	Transport altitude	Mixed layer	Residenc e time ^a	T ^b (<u>℃</u> ℃)	RH (%)
1							the sea (km)	(m)	depth (m)	(h)		
		080301	527	38,984	24,107	40.1	0	1,160±702	864±745	39	-2.9±11.7	29±10
	Category 1	080315	410	47,611	34,130	79.1	0	4,921±1,870	950±525	13	-32.5±16.4	34±16
	IN>ND	090316	688	23,050	25,012	86.2	0	3,739±1083	702±665	11	-19.1±11.7	42±17
		100321	519	31,741	18,155	87.2	0	3,407±1,249	1,113±760	19	-23.0±13.6	42±22
		110502	810	25,995	13,632	30.2	177	3,666±1,371	747±957	26	-13.2±15.8	31±13
		080425	256	4,089	372	29.6	0	887±656	1,161±1,04 0	10	-2.7±6.1	66±13
	Category 2	080528	2579	232	72	88.2	244	4,336±1461	1,064±830	8	-15.5±13.6	31±16
	IN <nd< td=""><td>080529</td><td>2314</td><td>26</td><td>166</td><td>63.7</td><td>94</td><td>2,148±1,725</td><td>1,194±816</td><td>43</td><td>3.6±18.4</td><td>25±17</td></nd<>	080529	2314	26	166	63.7	94	2,148±1,725	1,194±816	43	3.6±18.4	25±17
		110319	939	13,088	10,067	70.6	132	4,271±1867	790±719	27	-26.3±20.0	48±32
		110501	502	8,924	10,631	35.1	252	3,212±810	916±1,114	5	-13.4±8.5	39±13
	Category 3	100315	501	10,767	8,515	57.3	0	5,009±1410	1,110±365	7	-40.4±13.3	45±29
	NO ₃ <nd< td=""><td>100320</td><td>3857</td><td>1,418</td><td>884</td><td>76.9</td><td>0</td><td>1,284±401</td><td>525±371</td><td>10</td><td>-12.2±6.3</td><td>61±16</td></nd<>	100320	3857	1,418	884	76.9	0	1,284±401	525±371	10	-12.2±6.3	61±16
	$NH_4^+\cong ND$	110418	558	6,891	11,778	35.6	931	1,344±780	695±672	2	-0.1±8.2	52±28

1075 ^aResidence time of the air mass passeding over parts of highly polluted regions according to the
 1076 trajectories of samples.

<u>–^bAverage air temperature with the definition in Section 2.4.</u>

^cAverage relative humidity with the definition in Section 2.4.

_	带格式的:	上标			
\neg	带格式的:	字体:	10 磅		
	带格式的: Roman, 10	字体: 磅	(默认)	Times	New
	带格式的:	字体:	10 磅		
	带格式的:	上标			

Table 7. Sources and source contributions (expressed in%) calculated for aerosolsamples collected

Dust event		Comparison days		
Source	% of TSP	Source	% of TSP	
Soil dust	36	Soil dust	23	
Industrial	21	Industrial	24	
Secondary aerosol	6	Secondary aerosol	23	
Oil combustion	6	Biomass burning	16	
Coal combustion and	31	Coal combustion	5	
other uncertain sources				
		Sea salt	9	

	带格式的:	居中
	带格式的:	居中
/ /	带格式的:	居中
•	带格式的:	居中
	带格式的:	居中
- / / / Y	带格式的:	居中
	带格式的:	居中
▲ \\)	带格式的:	居中
$\langle \rangle \rangle$	带格式的:	居中
	带格式的:	居中
Y	带格式的:	居中

1	1	2	5

i.

1127 Table 8. Dry deposition of TSP ($mg/m^2/month$), particulate inorganic nitrogen ($mg N/m^2/month$) and

some toxic trace metals (mg/m ² /month) on dust and non-dust da	iys.
--	------

	Dry deposition flux							
	TSP	NO ₃ ⁻ -N	NH_4^+-N	N _{NH4++NO3} -	Fe	Cu	Pb	Zn
Category 1 ⁴	¹ 8,000± 1800	65±9	24±14	90±17	533±179	2±0.3	0.3±0.3	6±2
Category 2	^a 18000± 11,000	13±18	8±4	21 <u>+</u> 22	1300±100 0	3±2	0.08±0.04	4±1
Category 3	^a 29,000± 31,000	26±6	17±8	42±12	2100±220 0	6±1	0.20±0.02	5±3
Non-dust	2,800± 700	48±33	15±8	63±39	190±110	1±1	0.09±0.1	5±4

1129	⁴ For the characterization of $N_{\rm NH4++NO3-}$ concentration and sample information of the category, see in	 带格式的: 子体: 10 磅	
1130	Table 3.	带格式的: 字体:10磅	
1131			
1132			
1133			
1134			
1135			
1136			
1137			
1138			
1139			
1140			
1141			
1142			
1143			
1144			
1145			
1146			
1147			
1148			
1149			
1150			
1151			
1152			
1153			
1154			
1155			
1156			

1	1	-	-
T	т.	5	1

Table 9. Comparison of dry deposition flux and normalized flux of TSP (mg/m²/month) and N_{NH4++NO3} (mg N/m²/month) with observations from other studies (mg N/m²/month)

Source	Year	Area		TSP	N _{NH4++NO3} -	Normalized average flux
						of N _{NH4++NO3} - ^a
			Non-dust day	2,800±700	63±39	93.90
This work	2008-	Qingdao, coastal region of the Yellow	Dust day	10,138±15,9 40	58±36	101.39
	2011	Sea	Average of dust and non-dust			97.64
Qi et al., 2013	2005- 2006	Qingdao, coastal region of the Yellow Sea	Average of nine months samples	159.2 - 3,172.9	1.8-24.5	94.75
Zhang et al., 2011	1997- 2005	Qingdao	Average of annual samples		132	99.65
Zhang et al., 2007	1999- 2003	The Yellow Sea			11.43	9.91
			Non-dust day		19.2	132.17
Shi et al., 2013	2007	The Yellow Sea	Dust day		104.4	227.07
			Average of dust and non-dust			179.62
^a -The calculation	on metho	d of <u>the</u> normalized flu	ux of N _{NH4++NO3} -v	vas discussed	in section <u>S</u>e	ection 3.7.

带格式表格

带格式的:字体:10 磅

带格式的:字体: 10 磅

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

Figure 1. Location of the aerosol and dust sampling sites.

带格式的:字体:(默认) Times New Roman,(中文) 宋体,字体颜色:黑色

Figure 32._Mass concentrations of TSP, Al, Fe and nss-Ca in aerosol samples collected at the Baguanshan site on dust and comparison days from 2008-2011.

1220	Figure <u>32</u> Mas
1221	Baguanshan site
1222	
1223	
1224	
1225	
1226	
1227	
1228	
1229	
1230	
1231	
1232	
1233	
1234	
1235	
1236	
1237	

1239 Figure 4<u>3</u>. Mass concentrations of NH_4^+ and NO_3^- in aerosol samples collected at the Baguanshan site

1240 on dust and comparison days during March-May in 2008 to 2011.

