Dear Dr. Ervens,

Thank you very much for your patience and help! Thank you for permission for an extension of the resubmission of the revised manuscript (Ms. Ref. No.:acp-2016-1183). Based on the critical comments of the two reviewers, we have made a substantial revision to our manuscript, including reanalyzing the data, supplementing the model results, enhancing our discussion and changing the references. Most figures and tables have been revised. Additionally, we added 8 supporting files. Due to the substantial changes, the contributions of the authors of this manuscript have changed; hence, we have added two authors and revised the title of the revised manuscript. Detailed item-by-item responses to the comments of Referee #2 are listed below.

1

Best regards,

Yours sincerely,

Jianhua Qi

Reply to Interactive comment on "The concentration, source apportionment and deposition flux of atmospheric particulate inorganic nitrogen during dust events" by Jianhua Qi et al. Anonymous

Referee #2 Received and published: 27 March 2017

General comments: This paper attempts to study the impact of spring time dust storms in the Chinese deserts on the atmospheric concentration and deposition of inorganic nitrogen (IN) in the coastal Yellow Sea location. The study uses 4 years of particulate matter measurements and their chemical composition to understand how different types of dust storms can affect the abundance of inorganic nitrogen and calculate dry deposition of IN to the coastal Yellow Sea. This type of work is relevant since atmospheric deposition of nutrients and its implications is not a well understood topic and can be important for the regions that receive high atmospheric input like the Yellow Sea. However, the authors have not made best use of the data. There needs to be significant improvement in data interpretation and much more analysis needs to be done to support the main results. I would thus recommend a resubmission and see if there is any substantial improvement in the manuscript. My main comments are given below.

Reply: Thank you for the suggestion. We have reanalyzed the data and supplemented the modeling results using a 3-D air quality model to support the main results in the revised version. We have added "Theoretical analysis of three categories" and "The impact of dust on nitrogen dry deposition flux under anthropogenic activity" to the discussion section. Some figures have been redrawn, and some references have been updated. The data interpretation and the writing have also been improved. In brief, we have made substantial improvements to our manuscript.

Q1.First of all, the manuscript needs an overall improvement in writing. Not sufficient care has been given to the details and there are parts which are difficult to follow. I will provide some examples later, but there are many such cases of improper and awkward sentence constructions. Second, on what basis are these dusty and non-dusty days decided? More information are needed to show whether the dust storms originating from the deserts are actually passing over the measurement site and it is not the locally produced soil dust in cases of the days with low TSP values. Satellite aerosol products and meteorological data can be used to support this. Again later Al concentration is used to identify dust weather (lines 171-172). Please provide a clear definition of dust days and maintain that throughout the manuscript.

Reply: We have revised all sections of this manuscript, especially the sections "Experimental Method" and "Results and Discussion", to provide detailed methods and a logical analysis of the data. The discussion was revised substantially. Additionally, the writing has also been improved by a native English speaker.

In this study, a dust event was defined according the definition adopted in regulations of surface meteorological observation in China (CMA, 2004;Wang et al., 2008) and was identified based on the meteorological record information from Meteorological Information Comprehensive Analysis and Process System (MICAPS) of China Meteorological Administration. The sampling information is listed in the Table 1. Based on the forecast, we also collected aerosol particle samples immediately before or after the dust event for comparison. The post-dust event samples were collected under clear and sunny weather conditions and at low mass concentrations of PM₁₀.

All air mass trajectories showed that dust storms originated from deserts or Gobi and passed over the measurement site. More information on the dust events has been added to Tables 1 and 4. According to the suggestion, we tried to obtain aerosol particle concentrations using satellite aerosol products; however, the daily satellite data were incomplete. Therefore, we have included modeled dust concentrations over East Asia based on the CFORS model by Uno et al. (2003) (http://www-cfors.nies.go.jp/) and the PM10 modeling results for each dust event using a 3-D air quality model to support our analysis in the revision. The model results for each event are shown in Fig. 2 and Fig.S3. Based on Fig. 2, we found that the Sample 20110418 was mainly affected by local blowing dust. To focus on the impact of long-range transported dust on aerosol samples in downwind areas, this sample 20110415 was not included in the analysis and discussion in later sections.

As the reviewer suggested, the samples can be affected by local soil dust. Therefore, we used the criterion method of total Al concentration in TSP samples proposed by Hsu et al. (2008) to confirm that our samples originated from the sandy sources, as proposed in the previous version of this manuscript. We have added the distribution of hourly dust concentrations modeled over East Asia by the CFORS model for dust events in the revised version. The model results show the dust occurrence and transport patterns, thereby providing much more information than the Al criteria method. Therefore, we revised this section and replaced the Al criteria method with the model results in the revised manuscript.

Sampling Year	Sample category	Sampling number	Sampling time	Weather characteristics
		20080301	From 13:22 a.m. to 17:22 p.m. on Mar. 1st	Floating dust ^a
		20080315	From 13:21 a.m. to 17:21 p.m. on Mar. 15 th	Floating dust
	Samples on dust days	20080425	From 13:14 a.m. to 17:14 p.m. on Apr. 25th	Floating dust
2008		20080528	From 11:38 a.m. to 15:38 p.m. on May 28th	Floating dust
2008		20080529	From 10:15 a.m.to 12:15 p. m. on May 29th ^b	Floating dust
	Samples on non-dust days	20080316	From 13:00 a.m. to 17:00 p.m. on Mar. 16th	Sunny day
		20080424	From 13:00 a.m. to 17:00 p.m. on Apr. 24th	Sunny day
		20080522	From 13:00 a.m. to 17:00 p.m. on May 22nd	Cloudy day with mist
2009	Samples on dust days	20090316	From 8:25 a.m. to 12:25 p.m. on Mar. 16th	Floating dust
2009	Samples on non-dust days	20090306	From 13:00 a.m.to 17:00 p.m. on Mar. 6th	Sunny day

Table 1. Sampling information for the aerosols samples collected at the Baguanshan site in the	
coastal region of the Yellow Sea.	

		20100315	From 11:30 a.m.to 15:30 Mist after Floating p.m. on Mar. 16th dust
	Samples on dus days	t 20100320	From 10:30 a.m. to 14:30 p.m. on Mar. 20th Floating dust
2010	2	20100321	From 10:30 a.m. to 14:30 p.m. on Mar. 21st Floating dust
	Samples or non-dust days	¹ 20100324	From 11:30 a.m. to 15:30 p.m. on Mar. 24th Sunny day
		20110319	From 12:00 a.m. to 16:00 p.m. on Mar. 19th Floating dust
		20110415	From 12:00 a.m. to 16:00 p.m. on Apr. 15th Floating dust
	Samples on dus days	t 20110418	From 12:25 a.m. to 16:25 p.m. on Apr. 18th Floating dust ^c
• • • • •		20110501	From 12:10 a.m. to 16:10 p.m. on May 1st Floating dust
2011		20110502	From 16:00 a.m. to 20:00 p.m. on May 2nd Floating dust
		20110308	From 12:00 a.m. to 16:00 p.m. on Mar. 8th Sunny day
	Samples or non-dust days	¹ 20110416	From 12:00 a.m. to 16:00 p.m. on Apr. 16th Sunny day
		20110523	From 12:00 a.m. to 16:00 p.m. on May 23rd Sunny day

^aNote that one exterior dust sample was collected on March 1 when no dust was recorded by the MICAPS. However, the MICAPS information indeed showed dust events in China on March 1. The modeled spatial distribution of the PM_{10} mass concentration for this dust event on March 1 implies that the sample should be classified as a dust sample. The supporting figure is Fig. S1. ^b The sampling duration was reduced to only 2 hrs because of extremely high particle loads.

^cNote that one exterior dust sample was collected on April 18 when no dust was recorded by the MICAPS. However, blowing dust occurred and was recorded on April 17 by the Sand-dust weather almanac 2011 (CMA, 2011). The modeled spatial distribution of the PM_{10} mass concentration for this dust event on April 18 implies that the sample should be classified as a dust sample. The supporting figure is Fig. S2

Table 4. Average concentrations of inorganic nitrogen, TSP, NOx, Relative Humidity (RH) and air temperature for each Category in aerosol samples in Qingdao

	Sample number	TSP µg∙m ⁻³	NO3 ⁻ μg·m ⁻³	NH_4^+ $\mu g \cdot m^{-3}$	RH %	T °C	NOx µg∙m ⁻³	Summary
	20080301	527	20.5	12.7	57	7.0	36	IN concentrationon dust
Category	20080315	410	19.5	29.9	62	11.0	59	days higher than that on
	20090316	688	15.9	17.2	27	16.0	75	ND days
					4			

	20100321	519	16.5	9.4	51	8.8	76	
	20110502	810	21.0	11.0	49	17.7	62	
	20080425	622	6.8	2.0	30	18.0	40	
	20080528	2579	9.2	2.7	17	27.0	34	IN concentrationon dust
Category 2	20080529	2314	17.5	4.8	60	20.0	29	days lower than that on
-	20110319	939	12.3	9.4	16	12.6	93	ND days
	20110501	502	4.5	5.3	23	21.6	66	
	20100315	501	5.4	4.3	30	7.2	73	NO ₃ ⁻ concentration on
Category 3	20100320	3857	5.5	3.4	35	10.6	92	dust days lower than that on ND days;NH4 ⁺ close to
5	20110418	558	3.8	6.6	33	12.6	47	that on ND days
	20080316	225	12.6	8.4	28	11.0	60	
	20080424	137	21.7	7.2	49	18.0	53	
	20080522	206	27.4	16.6	78	20.0	60	
Non-dus	20090306	94	2.9	3.0	29	7.00	51	
t ^a	20100324	275	7.2	2.4	23	9.0	82	
	20110308	194	13.0	13.1	20	11.5	111	
	20110416	252	5.6	5.4	26	14.1	55	
	20110523	224	15.2	10.2	42	20.6	49	

^a The corresponding ND day for each dust event see Table 1.

Figure 2. Modeled dust concentrations over East Asia by CFORS model during each dust sampling day from 2008 to 2011 (http://www-cfors.nies.go.jp/). (The figures show the modeled dust concentration in the middle of each sampling duration). No data are available for Mar. 19, 2011, because of the earthquake in Japan. Hourly PM10 concentrations were modeled by the WRF-CMAQ model for each sampling day, and the results are shown in Fig. S3.

Figure S3. Hourly PM10 concentration in China modeled by the WRF-CMA model for Sample 20110418 (The figure shows the modeled PM10 concentration at the middle of the sampling

period).

CMA: Regulations of Surface Meteorological Observation, China Meteorological Press, Beijing, 154–156, 2004.CMA: Sand-dust weather almanac 2011, China Meteorological Press, Beijing, 36-53, 2013.

Hsu, S. C., Liu, S. C., Huang, Y. T., Lung, S. C. C., Tsai, F., Tu, J. Y., and Kao, S. J.: A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007, J. Geophys. Res-Atmos., 113, 1044-1044, 2008.

Uno, I., Carmichael, G. R., Streets, D. G., Tang, Y., Yienger, J. J., Satake, S., Wang, Z., Woo, J. H., Guttikunda, S., Uematsu, M., Matsumoto, K., Tanimoto, H., Yoshioka, K., and Iida, T.: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment, J. Geophys. Res-Atmos., 108, 1147-1164, 2003.

Wang, Y. Q., Zhang, X. Y., Gong, S. L., Zhou, C. H., Hu, X. Q., Liu, H. L., Niu, T., and Yang, Y. Q.: Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust, Atmos. Chem. Phys., 8, 545-553, 2008.

Q2. The authors have divided dusty days into 3 categories based on inorganic nitrogen (IN) concentrations relative to the non dust (ND) days. They are reporting that in some cases IN concentrations are more than the ND days, in some cases IN concentration are less than the ND days and in some cases nitrate concentration on dust days are less than ND days while ammonium concentrations on dust days are more compared to ND days. Next, the authors are reporting that sand from Duolun (which is a source for dust storms affecting the Yellow Sea region) is poor in nitrate and ammonium content. First of all, trajectory analysis does not seem to point that coastal Yellow Sea region is only affected by dust originating from Duolun region. There are many other dust sources over which the trajectories are passing. And if Duolun is deficient in IN you need to provide a detailed discussion on the possible sources of IN in dust sampled from the coastal region of the Yellow Sea and about the mixing of anthropogenic aerosols with the dusty air mass. The authors have related the 3 cases of IN in dust samples to the wind speed concluding that when wind speed is less IN concentration increased and vice versa. I am not clear how this conclusion is arrived at, especially, with only 5 cases for IN<ND. Forexample, in Table 5 sample number 110501 NO3- and NH4+ concentrations are lowand the wind speed is also low. Again, sample 080315 has higher NO3- and NH4+concentrations at higher wind speed. What is the rationale of using wind speed of 40.5km/h in this study and how is this threshold derived? I would suggest the authors togroup the trajectories according to dust and non dust days and also according to the levels of nitrogen and see which of these trajectories are passing over highly populated regions.

Reply: First of all, East Asia has three major dust aerosol sources: the western China sources, including the Taklimakan Desert and surrounding areas; the Mongolia sources, including the desert and semi-desert areas in southern Mongolia; and the northern China sources, including the BadainJaran Desert, the Tengger Desert, the Ulan Buh Desert and the Hunshandake Desert (Fig. SR1). Duolun and Zhurihe belong to the Hunshandake Desert in northern China. According to studies, 52%-71% of the dust storms that affect the Yellow Sea are from this sand source (Zhang and Gao, 2007; Gao et al., 2010). For our 14 dust samples, 13 events were from northern sources, and the remaining one was from northern sources but was transported to the northeast before being transported to the measurement site (the 72 h trajectory only showed transport from the northeast). Therefore, we collected sand samples at the Zhurihe site and used reported aerosol values from Duolun to characterize the aerosol particles in the source region. As the reviewer suggested, the coastal Yellow Sea region is affected by dust originating not only from the Duolun region but also from other regions. We added the nitrate and ammonium contents in sand samples collected from

other sand sources in China. We also added the reported concentrations of nitrate and ammonium in aerosol particles on dust days at or close to the dust source region in Table 5 in the revised manuscript. All these data verified that the mass concentrations of nitrate and ammonium relative to the total mass of sand particles were very low, i.e., less than $81\mu g/g$. We have added the modeling results of NO_x and NH₃ emissions using a 3-D air quality model and discussed the theoretical analysis of three categories in section 3.3 in the revised manuscript.

To characterize the transport paths of dust day samples more exactly, we reanalyzed the air mass trajectory of each sample at 1500 m altitude and redrew Fig. 5 to distinguish trajectories for samples collected on dust and non-dust days. According to the suggestion, we first we investigated whether these trajectories passed over highly populated regions. All trajectories involved transport from the source over highly populated regions and exhibited different transport times in these regions. We found that the concentrations of nitrate and ammonium depended on the transport distance over the sea, the mixed layer depth and the transport time over highly polluted regions. We have rewritten this section according to the suggestion to discuss the influence of transport paths on nitrate and ammonium contents in the revised manuscript.

Figure SR1. Map of the main source regions of sand and dust storms in China (from Wang et al., 2008).

Figure 5. The 72-h backward trajectories for non-dust (a) and dust (b) samples from 2008 to 2011 (the yellow domains in the maps represent the dust source regions in China.

Sands sampled	in dust so	urce regions	Aerosols in or cl region on dust day		Aerosols in the coastal region			
Study region and	Relative	concentration ^a	Study region and	Relativ		of the Yellow Sea		
data source	NO ₃ -	$\mathrm{NH_4}^+$	data source	NO ₃ NH ₄ ⁺		NO ₃ -	$\mathrm{NH_4}^+$	
Zhurihe (This study)	25.46± 22.87	4.21± 1.03	Duolun (Cui, 2009)	1200	900	Non-dust: 28,200±24,819	Non-dust: 24,063±21,515	
AlxaLeft Banner, Inner Mongolia (NiuandZhang, 2000)	62.1±7.4	79.1±1.1	AlxaRightBanner, Inner Mongolia (NiuandZhang, 2000)	1975 ^b	4091 ^b	Category 1: 34,892±9570	Category 1: 22,571±7,016	
Yanchi, Ningxia (NiuandZhang, 2000)	46.4±2.2	80.9±1.3	Hinterland of theTaklimakan Desert, Xinjiang (Dai et al., 2016)	142-233	2-15	Category 2: 5,542±5,117	Category 2: 4,758±5,698	
			AverageofSonidYouqi,Huade(InnerMongolia),Zhangbei(Hebei)(Mori et al., 2003)	253	710	Category 3: 6,359±4,697	Category 3: 7,059±5,591	
			Yulin, the north edge of Loess Plateau (Wang et al., 2011)	216.4	80.6			
			Golmud, Qinghai(Sheng et al.,8 2016)	892.9	_c			
			Hohhot, Inner Mongolia (Yang and Wang, 1995)		No data			

Table 5. Comparison of nitrate and ammonium content in sand and aerosol particles on dust days or close to the dust source region(unit: $\mu g/g$)

^aRelative concentration ofnitrate and ammonium per aerosol particle mass

^bSamples collected on a floating dust day (Horizontal visibility less than 10000 m and very low wind speed)

^c The ammonium concentration was lower than the detection limit of the analytical instrument.

Cui, W. L.: Chemical transformation of dust components and mixing mechanisms of dust with pollution aerosols during the long range transport from north to south China, M.S. thesis, Department of Environmental Science and Engineering, FudanUniversity, China, 38 pp., 2009.

Dai, Y. J.: Vertical distribution of characteristics of dust aerosols in the near-surface in hinterland of Taklimakan Desert, M.S. thesis,

College of Resources and Environmental Science, Xinjiang University, China, 26 pp., 2016.

- Mori, I., Nishikawa, M., Tanimura, T., and Quan, H.: Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport, Atmos. Environ., 37, 4253-4263, 2003.
- Niu, S. J. and Zhang, C. C.: Researches on Sand Aerosol Chemical Composition and Enrichment Factor in the Spring at Helan Mountain Area, Journal of Desert Research, 20, 264-268, 2000.
- Sheng, Y., Yang, S., Han, Y., Zheng, Q., and Fang, X.: The concentrations and sources of nitrate in aerosol over Dolmud, Qinghai, China, Journal of Desert Research, 36, 792-797, 2016.
- Wang, Q. Z., Zhuang, G. S., Li, J., Huang, K., Zhang, R., Jiang, Y. L., Lin, Y. F., and Fu, J. S.: Mixing of dust with pollution on the transport path of Asian dust Revealed from the aerosol over Yulin, the north edge of Loess Plateau, Sci. Total. Environ., 409, 573–581, 2011.
- Yang, D. Z., Wang, C., Wen, Y. P., Yu, X. L., and Xiu, X. B.: Ananalysis of Two Sand Storms In Spring 1990, Quarterly Journal of Applied Meteorology, 6, 18-26, 1995.

Specific comments:

Q3. L11-13: Reconstruct the sentence.

Reply: These sentences have been rewritten as "Asian dust has been reported to transport anthropogenic reactive nitrogen from source areas to the oceans. In this study, we attempted to characterize the NH_4^+ and NO_3^- in atmospheric particles collected at a coastal site in northern China during spring dust events from 2008 to 2011."

Q4. L20-25: This is not conclusive from the discussions that follow. Statements like "storms were weak or slow moving" and "rapid transport in a strong dust storm" are not supported by proper analysis of the storm characteristics.

Reply: We have written the conclusion.

Q6. L35-36: This is contradicting L32-33.

Reply: We apologize for the confusion in the revision. We will revise the abstract sentence into "The dust deposition was an uncertain source of nitrogen for the ocean".

Q7. L40: These references point to anthropogenic contribution to atmospheric nitrogen deposition.

Reply: We apologize for the confusion in the revision. We have revised the abstract.

Q8. L62-64: The first part of the sentence seems to contradict the last part.

Reply: To avoid confusion, we have revised the sentence to "Although increased concentrations of NO_3^- and NH_4^+ in aerosol particles were observed on dust storm days in northern China relative to those non-dust days prior to the dust storm events, Zhang et al. (2010) also found that the concentrations of the two species were associated with the intensity of the dust storm, i.e., the stronger dust storms corresponded to the smaller increases. In other words, lower NO_3^- and NH_4^+ concentrations occurred during strong dust storm events than during weak dust events (Zhang et al., 2010)."

Q9. L79-81: Meaning is not clear.

Reply: We have deleted this sentence in the revised manuscript because this reference is not closely related to Asian dust.

Q10. L102: Zhurihe in Hunshandake Desert. Later you are using Duolun region which isnot introduced in Section 2. It will be difficult for readers to follow if they are not veryfamiliar with this region.

Reply: Thank you for the suggestion. The data at Duolun was adapted from the reference (Cui et al., 2009b). We have added the citation in the text of section 3.2. According to the former suggestion inQ2, we added new references for the dust components in source region to Table 4 in the revised manuscript (See reply to Q2). Additionally, we introduce Duolun and other study regions using references in Table 4.

Cui W. L.: Chemical transformation of dust components and mixing mechanisms of dust with pollution aerosols during the long range transport from north to south China, M.S. thesis, Department of Environmental Science and Engineering, Fudan University, 32-38 pp., 2009.

Q11. L135: Explain how the PMF model works.

Reply: We have added the PMF work principle in section 2.

Q12. L139: Explain how Williams' model works and cite the original paper.

Reply: We have added the work principle of the Williams' model and cited the original paper.

Q13. L140. Expand U10. In general, all the abbreviations used should be clearly defined.

Reply: We have added definitions for all the abbreviations in our revised manuscript.

Q14. L143: Meteorological data not "climatic" data.

Reply: The term "climatic" has been changed to "meteorological data".

Q15. L146: This heading does not reflect the text content.

Reply: The heading has been revised to "Other data sources and statistical analysis ".

Q16. L152: Please provide details on the MICAPS information used.

Reply: We have supplemented the details on the MICAPS in section 2.1.

Q17. L164: What is the average TSP concentration on dust days?

Reply: We have added the average TSP concentration (1140.3 μ g·m⁻³) on dust days in the revised manuscript.

Q18. L167: Please provide a brief description on how EF is calculated and what is the significance of using this method.

Reply: We have provided a brief description of EF and the significance of using EF in section 2.3.

Q19. L171-173: The authors were using MICAPS information of dust storm (which has to be explained) and now are relying on AI levels to define AD events. How are these two definitions consistent?

Reply: First, we defined dust days according to MICAPS information in Qingdao. However, the intensity of a dust event decreases gradually during the long-range transport, and high PM10 episodes of anthropogenic origin (dust is regarded as of natural origin) can be erroneously judged as a dust event in downwind regions. Hsu et al. (2008) proposed the "geometric mean $\times 2$ GSD" of Al concentrations in order to identify major Asian dust (AD) events in downwind regions and obtained good results. Our focus was the impact of long-range transported dust on aerosol samples in downwind area; therefore, we verified the long-range AD using reported GSD criterion in former manuscript. Just as discussed above, we have revised this section and replaced the Al criteria method using the model results in the revised manuscript.

Hsu, S. C., Liu, S. C., Huang, Y. T., Lung, S. C. C., Tsai, F., Tu, J. Y., and Kao, S. J.: A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007, Journal of Geophysical Research Atmospheres, 113, 1044-1044, 2008.

Q20. L178-179: This has to be explained with respect to the EF of the anthropogenic elements.

Reply: We have added the calculation and significance of EF in section 2.3 in revised manuscript.

Q21. L214-216: You need to examine the dust sources, transport pathways (if passing over heavy populated regions), the height at which dust is transported together with dust concentration on a case by case basis to conclude these lines. This is very important for the entire paper. How do you decide "stronger a e "stronger a dust storm"?

Reply: Similar to the reply for Q2, we have revised the section according to the suggestion. In addition, the modeling dust concentration, and transport altitude were supplemented.

Q22. L225-230: The average for Case 1 is 700 μ g/m3 with values lying well above the average as is evident from Table 5. Again, there are TSP values in Case 2 in Table 5 which are lower than average of Case 1.

Reply: We have rewritten this section. By comparing the relative values of NH_4^+ and NO_3^- in dust day samples to those in comparison samples, the characteristics of dust day samples were discussed, and a theoretical analysis of the three categories was added.

Q23. L230-231: Again, what is your definition of "strong dust storm"? Without sufficient analysis I am not sure how "dust might be transported quickly" is factoring here. This

entire section has to be revisited.

Reply: According to the suggestion inQ2, we have added modeled dust concentrations over East Asia based on the CFORS model for dust event samples (http://www-cfors.nies.go.jp/) and rewritten the entire section considering whether trajectories passed over highly populated regions.

Q24. L242: How is the value 40.5 km/h arrived at? Is it estimated at the dust source region? How many dust storms were studied to derive this value? More explanation is needed.

Reply: According to Asian dust observations in China and Mongolia(He et al., 2008; Li et al., 2006; Natsagdorjaet al., 2003; Zhan et al., 2009), we estimated an average wind speed threshold as 40.5±9.9 km/h during dust storms. However, according to the suggestion inQ2, we have revised the entire section and discussed the influence of transport on the concentrations of nitrate and ammonium in dust day samples.

He, Q., Wei, W., Li, X., Ali, M., and Li, S.: Profile Characteristics of Wind Velocity, Temperature and Humidity in the Surface Layer during a Sandstorm Passing Taklimakan Desert Hinterland, Desert and Oasis Meteorology, 2, 6-11, 2008.

Li, N., Du, Z. X., Liu, Z. Y., Yang, H. J., Wu, J. D., and Lei, Y.: Change of wind speed and soil moisture during occurrence of dust storms, Journal of Natural Disasters, 15, 28-32, 2006.

Natsagdorj, L., Jugder, D., and Chung, Y. S.: Analysis of dust storms observed in Mongolia during1937–1999, Atmos. Environ., 37, 1401–1411, 2003.

Zhan, K. J., Zhao, M., Fang, E., Yang, Z. H., Zhang, Y. C., Guo, S. J., Zhang, J. C., Wang, Q. Q., and Wang, D. Z.: The wind speed characteristics of near-surface vertical gradient of 50m in sandstorm process in 2006, Journal of Arid Land Resources & Environment, 23, 100-105, 2009.

Q25. L250-252 needs explanation. Once the dust storms are properly categorized and the pathways are determined the interpretation of Table 5 might change

Reply: We have reanalyzed the trajectories and rewritten this section.

Q26. L250: Less than 40.5 km/h not 42.4 km/h. Reply: We have revised this section.

Q27. L281-283: These statements need to be backed by more analysis of the dust events on a case by case basis.

Reply: We cannot discuss the contributions of dust to aerosols for each dust case because of the limited number of samples. The limited number of samples will result in an unrealistic source apportionment. Thus, we have rewritten this sentence.

Q28. L301-311: The text is very confusing. It is very difficult to follow when the authors are referring to TSP and when they are referring to IN or nitrate or ammonium.

Reply: We have rewritten these sentences. Additionally, we added the IN (now $N_{NH4++NO3}$ - in revised manuscript) definition in section 3.6 and the flux of $N_{NH4++NO3}$ - in Table 8 and revised several mistakes.

	Dry depo	sition flux						
	TSP	NO ₃ ⁻ -N	$\mathrm{NH_4}^+\text{-}\mathrm{N}$	N _{NH4++NO3} -	Fe	Cu	Pb	Zn
Category 1 ^a	8,000± 1800	65±9	24±14	90±17	533±179	2±0.3	0.3±0.3	6±2
Category 2 ^a	18000± 11,000	13±18	8±4	21±22	1300±100 0) 3±2	0.08±0.04	4 4±1
Category 3 ^a	29,000± 31,000	26±6	17±8	42±12	2100±220 0) 6±1	0.20±0.02	2 5±3
Non-dust	2,800± 700	48±33	15±8	63±39	190±110	1±1	0.09±0.1	5±4

Table 8.Dry deposition of TSP ($mg/m^2/month$), particulate inorganic nitrogen ($mg N/m^2/month$) and some toxic trace metals ($mg/m^2/month$) on dust and non-dust days.

 $^{\rm a}$ The characterization of $N_{\rm NH4++NO3}\text{-}$ concentration and sample information of the Category see in Table 3.

Technical corrections:

Q29. L260: Colors used in Figure 4 are not clear. Please indicate the dust source regions on the map.

Reply: We have redrawn Fig. 4 (now Fig. 5 in the revised version) to distinguish the trajectory of each sample collected on dust and non-dust days. The dust source regions in China are also now indicated in this figure.

Figure 5.The 72-h backward trajectories for non-dust (a) and dust (b) samples from 2008 to 2011 (the yellow domains in the maps represent the dust source regions in China).

Q30. L343-442: Not proper attention has been given to the References and needs to be corrected.

Reply: We have updated and corrected the reference citations and format.

带格式的:行距: 1.5 倍行距 The concentration, source apportionment and deposition 1 flux of atmospheric particulate inorganic nitrogen in 2 atmospheric particles at a coastal site in the northern 3 China during dust events 4 带格式的: 字体: 小四, 上标 Jianhua Qi¹, Xiaohuan Liu¹, Xiaohong Yao¹, Ruifeng Zhang¹, Xiaojing Chen¹, Xuehui 5 带格式的: 字体: 小四, 上标 Lin², Huiwang Gao¹, Ruhai Liu¹ 6 7 ¹Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China 8 ²Qingdao Institute of Marine Geology, Qingdao, 266100, China 9 10 Correspondence to: Jianhua Qi (qjianhua@ouc.edu.cn) 11 带格式的:字体:非加粗 Abstract. Asian dust has been reported to carry anthropogenic reactive nitrogen during the transport 12 带格式的:字体:非加粗 13 from its source areaszone to oceans. In this study, we attempted to characterize NH⁺ and NO₂ in 带格式的: 字体: 非加粗 带格式的: 字体: 非加粗 14 atmospheric particles collected at a coastal site in northern China during spring dust events at a coastal 带格式的: 字体: 非加粗 **带格式的:**字体: 非加粗 15 site in the norther China in every spring-from 2008 to 2011. To understand the impacts of long range 带格式的: 字体: 非加粗, 16 transport onparticulate inorganic nitrogenassociated with dust in downwind areas, aerosol samples were 带格式的: 字体: 非加粗, **带格式的:**字体: 非加粗 17 collected in the Qingdao coastal region on dust and non dust (ND) days in spring from 2008 to 2011. 带格式的: 字体: 非加粗, 18 The concentrations of water-soluble ions were measured by ion chromatography, with metal elements 带格式的: 字体: 非加粗, 带格式的: 字体: 非加粗 19 detected using inductively coupled plasma atomic emission spectroscopy (ICP AES) and inductively 带格式的:字体:非加粗 带格式的:字体:非加粗 20 coupled plasma-mass spectrometry (ICP-MS). Compared to atmospheric aerosols collected on ND days, 21 samples from dust days exhibited higher concentrations of particles and crustal elements. Total acrosol particle concentrations increased bya factor of 5.9 on averagedust days. On dust days, the average 22 23 concentrations of crustal elements (Se, Al, Fe, Ca and Mg) increased by over a factor of four relative to 带格式的: 字体: 10 磅 those on ND days. Based on the mass concentrations of NH_4^+ and NO_3 in each total suspended particle 24 **带格式的:** 字体: 10 磅 25 (TSP), the the samples can be classified into two groups: in Category 1, the concentrations of NH4+ and 带格式的: 下标 带格式的: 上标 26 NO₃ were increased by a factor of 20%-440% on higher in some dust day samples relative to samples 带格式的: 下标 带格式的: 上标 27 collected immediately before or after dust event, while in Categories 2 and 3, these concentrations 带格式的: 字体: 10 磅 28 decreased by 10-75% in other the dust day samples. For these two groups, NH4⁺in dust day samples **带格式的:** 字体: 10 磅 15

下标

上标

下标

上标

	16
57	was an uncertain source of nitrogen to the ocean.
56	events, atmospheric input of nitrogen to the oceanwasnot enhanced by dust events, and dust deposition
55	may reflect the combined effect of anthropogenic nitrogen emissions and the occurrence of natural dust
54	particulate inorganic nitrogen associated with dust events in this study relative to values in the literature
53	deposition flux varied greatly from event to event. Overall, a slight increase in dry deposition flux of
52	Category 3. orto ND levels whenstrong dilution occurredduringdust events The estimated dust
51	decreased by 46%-73% by 46%-63% in Category 2, while that of ammonium decreased by 147% in
50	dust events. Relative to the comparison samples, The the average dry deposition flux of nitrate
49	inorganic nitrogen increased by 1.19-285% to 5.8-fold under _ in Category 1theweak dilution effects of
48	non-dust comparison ND days to 16,800±15,900 on dust days. The dry deposition flux of particulate
47	The dry deposition flux of atmospheric particulates increased from 2.800±700 mg/m ² /month on
46	the contributions of local anthropogenic sources decreased inputs, especially that of secondary aerosols.
45	increased from 23% to 36%_(90% of the residuals<3.0 andr ² =0.97) on dust days_ ,with decreasing while
44	factorization (PMF) receptor model results showed that the contribution of soil dust dramatically
43	and speed but also the local emissions and reaction conditions during transportThe positive matrix
42	The concentration of atmospheric particulate inorganic nitrogenwas related to not only the transport path
41	most aerosol samples decreased compared to that of ND samples because of the strong dilution effect
40	strong dust storm. If air massestraveled fasterthan 40.5±9.9 km/h, the inorganic nitrogen content of
39	a result of the strong dilution effect of low-nutrientdust particlesarising from their rapid transport in a
38	exhibited very low concentrations (<20% of ND samples)or decreased concentrations in some cases as
37	weak or slow moving and reactionsoccurred during transport. By contrast, nitrate and ammonium
36	The inorganic nitrogen content increased 1.2 to 9.2-fold during some dust events in which storms were
35	transport
34	reception site, the mixing layer depth and the residence time across highly polluted regions during
33	concentrations of NH_4^+ and NO_3^- were apparently affected by the transport distance prior to the
32	transport from the source zone to the receptionsite. Back trajectory analysis showed that the
31	was attributed to interactions between anthropogenic air pollutants and dust particles during dust
30	incomplete reactions between ammonium salt and carbonate salts. The NO ₃ in the dust day samples
29	was present in the form of ammonium salts externally co-existing with dust aerosols or the residual of

带格式的: 字体: 10 磅

{	带格式的:	字体: 10 磅
{	带格式的:	字体: 10 磅
{	带格式的:	字体颜色: 红色
(带格式的:	字体颜色: 红色

58 Keywords: aerosols, nitrogen, dust, source apportionment, dry deposition flux

带格式的:行距: 1.5 倍行距

59 1 Introduction

60 Nitrogen is a key element for marine phytoplankton growth. Reactive nitrogen carried in dust 61 particles can be transported over a long distances, and the nitrogen deposition deposited to in oceans has 62 been recognized as an important external source of Nnitrogen to supporting phytoplankton 63 growth-across vast distances athigh wind speeds (Duce et al., 2008; Zhang et al., 2010b). Theis 64 hypothesis has been evaluated in incubation experiments, and on-sitein situ experiments, and through the use of satellite observational dataAdditionally, bioavailable nutrients, via dust particle deposition, 65 66 may enhance phytoplankton growth in some ocean areas (Shi et al., 2012; Guo et al., 2012; Liu et al., 2013; Tan and Wang, 2014). For example, Tan and Wang (2014) found that a phytoplankton bloom 67 68 with a nearly four-fold increase in chlorophyll concentration occurred 10-13 days after dust deposition 69 with an incerase of chlorophyll concentrationsincreased by four-fold, and a phytoplankton bloom occurred 10-13 days after dust deposition. In addition, Banerjee and Kumar (2014) hypothesized 70 71 that dust-induced episodic phytoplankton blooms are important to the interannual variability of 72 chlorophyll in the Arabian Sea-away from active winter convection. Dramatic changes have occurred in 73 the reactive nitrogen in anthropogenic emission in the last three decades, e.g., large increases in NH₃ 74 and NOx in emissions in China and other developing countries in Asia and a substantial decrease in 75 emissions in Europe (Grice et al., 2009; Liu et al., 2017; Ohara et al., 2007; Skjøth and Hertel, 2013). 76 These changes may greatly affect the nitrogencarried by dust particles, but few recent studies have 77 examined this issue. Asian dust is ,-one of the main components of dust worldwide, affectsnorthern China and the eastern 78 79 area of the China Sea. Asian dust has been reported to cross over the mainland and the marginal seas of 80 China and reach as far as the remote can also affect the northern Pacific Ocean (Zhang and Gao, 2007; Tan and Wang, 2014) via long range transport by west winds. During the long-range transport, the dust 81 82 storm particles may continually mix with anthropogenic gas and particles, and consequently occurresulting in complicated chemical chemical reactions (Cui et al., 2009; Wang et al., 2011; Wang 83 84 et al., 2015, Wang et al., 2017). However, the extent of these chemical reactions varies widely and

- 85 depends on the meteorological conditions, such as cloud fraction, wind speed, relative humidityand

atmospheric circulation (Yang et al., 2002; Li et al., 2014; Ma et al., 2012) from local sources along
thepathway to carry desert dust and anthropogenic aerosols to downwind areas. The physical and
chemical characteristics of atmospheric particulates downwind of dust weather are remarkably different
from those normallypresent (Yang et al., 2002; Li et al., 2014; Ma et al., 2012). Additionally, the
concentrations and characteristics of atmospheric particulate inorganic nitrogen species in downwind
areas are greatly affected by dust weather.

92 For example, a few studies have showedn that. Some researchershave found that inorganic nitrogen species in acrosols havehigh concentrationsduring Asian dust events. Tthe concentrations of 93 atmospheric particulate NO_3^- and NH_4^+ on dust storm days were 2-5 times higher larger than those on 94 those non-dust storm (ND) days prior to the events in Beijing (Liu et al., 2014; Liu and Bei, 2016). Xu 95 96 et al. (2014) also reported found that concentrations of particulate SO4²⁻ and NO3⁻ were simultaneously 97 increased in-during_dust storm_events on inalong_the northern boundary of the Tibetan Plateau-because 98 of the enriched dust including more acidic species or anthropogenic aerosols. Compared to those on 99 ND days, higher concentrations of NO₂ and NH $_4^{\pm}$ in acrosol particles were observed on dust storm in northern China, and NO, and NH, showed lower concentrations during strong dust storm 100 events than during weak dust events (Zhang et al., 2010). Fitzgerald et al. (2015) found that almost 101 102 nearly all Asian dust observed in Korea containscontained considerable amounts of nitrate and proposed that because pollution plumes mix with dust-the dust from the Gobi and Taklamakan Deserts 103 104 probably mixed and reacted with anthropogenic air pollutants during the transport and are transported 105 over the Asian continent. Although increased concentrations of NO₃⁻ and NH₄⁺ in aerosol particles were 106 observed on dust storm days in the northern China relative to Compared to those on Ndnon-dust days 107 prior to the dust storm events. 108 Zhang et al. (2010a) also found that the concentrations of the two species were associated with the 109 intensity of the dust storm, i.e., the stronger dust storms corresponded to the smaller increases. In other 110 words, lower NO₃⁻ and NH₄⁺ concentrations occurred during strong dust storm events than during weak 111 dust events (Zhang et al., 2010a). 112 higher concentrations of NO3 and NH4⁺ in aerosol particles were observed on dust storm days in 113 northern China, and NO3 and NH4⁺ showed lower concentrations during strong dust storm events than 114 during weak dust events (Zhang et al., 2010).

115 On the other hand, However, some studies reported observed that the reverse result the 18

116	concentrations of inorganic nitrogen in aerosols decreased on dust storm days. For exmapleexample,
117	<u>a</u> At Yulin, a rural site near the Asian dust source region, the concentration of NO ₃ -in atmospheric
118	aerosols on dust days was significantly significantly lower in comparison to the concentration
119	measured immediately before or after the event, as a result of the dilution effectdeereased, in
120	eomaprison to the measured immediately before or after the event, in aerosols on dust days (Wang
121	et al., 2016). Even in Shanghai, a mega city being located at a few thousands kilomterskilometers from
122	dust source zones in China, tThe absolute abundances concentrations of NO3 ⁻ and NH4 ⁺ were notably
123	lower in the oberved observed dust plumes than in a polluted air parcel immediately oberved prior to the
124	dust events (Wang et al., 2013). because dust plumesare often separated by the arrival of a cold front in
125	Shanghai, China (Wang et al., 2013). Li et al. (2014) also found that the concentrations of nitrate and
126	ammonium in downwind aerosol particles were decreased on dust storm days tother, with a decreasing
127	ratio of the total soluble inorganic ions to PM2.5 in the Yellow River Delta, China, When dust is-was
128	rapidly_transported from desert regions without passing through a-major urban areas and lingers
129	lingering_over the Yellow Sea, the concentrations and size distributions of nitrate and ammonium have
130	had no significant variation in heavy Asian dust (AD) plumes (Kang et al., 2013). Nitrate and
131	ammonium also exhibited different concentration variations in other desert regions. Jaafar et al. (2014)
132	found that nitrate was more abundant than ammonium, which showed no concentration variation in
133	non-dust aerosol particles during dust episodesoriginating from both the African and Arabian deserts
134	The contradictory results highlight the importance of investigating the concentrations of ammonium
135	and nitrate in atmospheric particles during dust events based on a larger database In this study, a effect
136	of dust events on the inorganic nitrogen concentration in downwind aerosols is complicated because it
137	involves many factors, such as the mixing state and transport pathway. The effect of AD as a nitrogen
138	source on biogeochemical cycles and marine ecology is not adequately understood. Understanding the
139	variations in the concentration and deposition flux of atmospheric particulate nitrogenon dust days is
140	essential to quantifying the impacts of nutrientson the marine environment and primary production.
141	Tounderstand the influence of dust on atmospheric nitrogen, we collected atmospheric aerosol samples
142	particles during and prior to (or postafter, when no sample was collected prior to) dust events from at a
143	coastal site in the promixtyadjacent to the coastal region of the Yellow Sea in during theevery spring
144	from 2008 to 2011, when a smaller outbreak peak there is a high frequency of _dust storms occurred ;
145	from 2008 to 2011. Then, wWe measured analyzed concentrations of the inorganic nitrogen 19

- 1	带格式的:	非突出显示
{	带格式的:	非突出显示
- 1	带格式的:	非突出显示

146	concentrations in the aerosol-samples as well as other components for facilitating analysis. We first	
147	characterized The the concentrations of inorganic nitrogen concentrations in various dust events	
148	relative to the concentrations in samples collected either prior to or after the events. We then conducted ,	
149	source apportionment to quantify their sources. Finally, we calculated and deposition flux of	
145		
150	atmospheric particulate inorganic nitrogen in-during dust events and compared the results with the	
151	values in theliterature in order to update the flux values due todynamic changes inanthropogenic	
152	emissions and other factors.	
		带格式的: 行距: 1.5 倍行距
	*	
153	2 <u>Experimental Materials and</u> methods	
154	2.1 Sampling	
155	As shown in Fig. 1 shows the sampling site, which is situated at the top of a coastal hill (Baguanshan)	
155	in Qingdao in northern China (36° 6' N, 120° 19' E, 77 m above sea level)and is approximately 1.0 km	
150	from the Yellow Sea tothe east. Ahigh-volume air sampler (Model KC-1000, Qingdao Laoshan	
157	Electronic Instrument Complex Co., Ltd.) was set up on the roof of an two-story office buildingto	
158	collect total suspended particle (TSP) sampleson quartz microfiber filtersshowed the sampling site,	
160	which is situated at the top of a coastal hill(Baguanshan) in the northern China (36° 6' N, 120° 19' E, 77	
161	m above sea level)and approximately 1.0 km from the Yellow Sea in the east., total suspended particles	
162	(TSP) were collected atthe Baguanshan site in the coastal region of the Yellow Sea. The samples were	
163	collected with quartz microfiber filters (Whatman QM-A) at a flow rate of 1 m ³ /min. Prior to the	
164	sampling, the filters were heated at 450°C for 4.5 h to remove organic compounds. Our sample	
165	collection strategy involved collecting dust samples representing long-range transported particles. We	
166	followed the definition of dust events adopted in the regulations of surface meteorological observations	
167	of China (CMA, 2004; Wang et al., 2008) and identified dust events based on the meteorological	
168	records (Weather Phenomenon) of Qingdao from Meteorological Information Comprehensive Analysis	
169	and Process System (MICAPS) of the China Meteorological Administration. Each dust sample was	
170	collected over4 hrs, and the sampling started only when the PM ₁₀ and dust mass concentration available	
171	on the website (http://www-cfors.nies.go.jp/~cfors/;http://www.qepb.gov.cn/m2/) hadincreased greatly.	
172	Thisapproach made the dust sample more representative relative to urban background. For dust events	
173	with durations of less than one day, only one sample was collected. For dust events with	
174	durationsgreater thanone day, a4-hr dust sample was collected once perday. Table 1 lists the sampling	
175	information. Based on the forecast, we also collected aerosol particle samples immediately before	
176	orafter the dust event for comparison. These comparison samples were further classified into sunny day	
177	samples, cloudy day samples and post-dust samples. The post-dust samples were collected under clear	
178	and sunny weather conditions and low PM ₁₀ mass concentrations.	
179	-usinga Ahigh volume air sampler (Model KC 1000, Qingdao Laoshan Electronic Instrument Complex	
180	$C_{0,-}$ Ltd.)with a flow rate of 1 m ³ /minwas set up on the roof of an two-story office	

 180
 Ed., Ed., with a now rate of r in minimum set up on the root of an <u>two-story</u> office

 181
 buildingforeollecting total suspended particles (TSP)on quartz microfiber filters (Whatman QM A)with

206

according to the particlemassesand the sampling volume. The sample membranes were then cut into

207 several portions for analysis._

One portion of_each aerosol sample and 0.1 g of parallel sandsample were was_ultrasonically extracted with ultra-pure water in an ice water bath, and the concentration of inorganic water-soluble ions_was determined via-using_ICS-3000 ion chromatography (Qi et al., 2011). The parallel-sand samples collected at the Zhurihe sitefrom the Hunshandake Desert were analyzed using the same procedure, We refer to dissolved inorganic nitrogen (DIN),thesum of nitrate and ammonium, in the later discussion due to the very low concentration of nitrite in the samples. 带格式的:行距: 1.5 倍行距

带格式的:字体:(默认)Times New Roman, 10 磅

214

One portion of each aerosol filter was cut into 60 cm² pieces and digested with HNO₃+HClO₄+HF 215 216 (5:2:2 in volume) at 160°C using an electric heating plate. A blank membrane was also analyzed using 217 the same procedure to ensure analytical precision. Cu, Zn, Cr, Sc and Pb were measured by using an 218 inductively coupled plasma-mass spectrometry (Thermo X Series 2), while Al, Ca, Fe, Na and Mg were 219 detected by-using an inductively coupled plasma-atomic emission spectroscopy (IRIS Intrepid II XSP). 220 The membrane blanks have been corrected for in the calculation of the. The membrane blanks have deducted to calculate the metal concentrations were determined by calibrating the measured 221 222 concentrations of samples using mfor analysis below.embrane blanks.

223

Table 1. Detection limits, precisions and recoveries of water-soluble ions and metal elements.

--- (带格式的: 行距: 1.5 倍行距

Component	Measurement	Detection limit	Precision	\mathbf{B} as a subset $(0/)$	
Component	method	(µg·L⁺)	(RSD%)	Recovery (%)	
NO ₃ -		2.72	1.5 4	97	★ 带格式的:行距: 1.5 倍行距
SO 4 ²⁻		1.62	1.55	98	← 带格式的: 行距: 1.5 倍行距
$\overline{\mathrm{NH}_4}^{\pm}$	Æ	0.4	1.10	97	← 带格式的:行距: 1.5 倍行距
Ca²⁺		0.44	0.79	94	← 带格式的:行距: 1.5 倍行距
Cu	ICP-MS (Xin et	0.006	4.0	106	◆ 带格式的: 行距: 1.5 倍行距
Zn	al., 2012)	0.009	2.5	102	◆ 带格式的: 行距: 1.5 倍行距
Cr		0.004	3.0	95	◆ 带格式的: 行距: 1.5 倍行距
Sc		0.002	2.4	97	← 带格式的:行距: 1.5 倍行距
Pb		0.008	3.9	104	← 带格式的: 行距: 1.5 倍行距

1							
	Al	ICP-AES (Lin et	7.9	0.6	103	*	带格式的: 行距: 1.5 倍行距
	Ca	al., 1998)	5.0	1.2	99	*	带格式的:行距:1.5 倍行距
	Fe		2.6	0.7	104	*	带格式的: 行距: 1.5 倍行距
	Na		3.0	0.6	99	<u>+</u>	带格式的: 行距: 1.5 倍行距
	Mg		0.6	0.6	105	<u>+</u>	带格式的: 行距: 1.5 倍行距
ĺ	Hg	CVAFS	0.0001	6.6	105	*	带格式的: 行距: 1.5 倍行距
	As	CVAFS	0.1	5.0	98	<u>+</u>	带格式的: 行距: 1.5 倍行距
224	One portior	of each aerosol sample wa	as digested by	adding with HNO3 s	olution (10% HNO ₃ , 1.0	6 M)	
225	at 160°C for 2	20 min in a microwave dige	estion system (CEM, U.S.). Hg and	As in sample extracts	were	
226	analyzed follo	wing the U.S. Environmer	ntal Protection	Agency method 163	1E (U.S. EPA, 2002) u	ising	
227	cold vapor ato	mic fluorescence spectrom	etry (CVAFS).				
228		on limits, precisions and re			metal elements are liste	ed in	
229	Table <mark>42</mark> .						
	_						带格式的: 行距: 1.5 倍行距
230	2.3 Computat	tional modeling				•	
231	The enrichr	nent factor of metal elemer	ntswas given by	Y			
232	(X_i/X_i)	$(X_{\rm Re})_{aerosols}$				(1) +	一帶格式的: 行距: 1.5 倍行距 √ 域代码已更改
252	$EFI = {(X_i)}$						1 现代码已更改
1		$X_{\rm Re}$) _{crust}					带格式的:字体:(默认)Times
233	where subs	X_{Re} _{crust}	he studied met	tal and the referenc	e metal; (Xi/XRe)aero		
		$(X_{\rm Re})_{crust}$				osols	带格式的:字体:(默认)Times
234	is the concen	$X_{\text{Re}})_{crust}$	metal Re in t	the aerosol samples	; and (Xi/XRe)crust is	<u>osols</u> s the	带格式的:字体:(默认)Times
234 235	is the concen	X_{Re} _{crust} scripts i and Re refer to the tration ratio of metal i to	<u>metal Re in t</u> th crust. For t	the aerosol samples he calculation of th	; and (Xi/XRe)crust is e enrichment factor of	<u>osols</u> <u>s the</u> <u>f the</u>	带格式的:字体:(默认)Times
234 235 236	is the concen ratio of metal metal elemen	X_{Re} _{crust} scripts i and Re refer to the tration ratio of metal i to i to metal Re in the Ear	metal Re in t th crust. For t the reference	the aerosol samples he calculation of th element (Han et al.,	; and (Xi/XRe)crust is e enrichment factor of	<u>osols</u> <u>s the</u> <u>f the</u>	带格式的:字体:(默认)Times
234 235 236 237	is the concentration of metal metal elements in of elements in the second secon	X_{Re} _{crust} scripts i and Re refer to the tration ratio of metal i to l i to metal Re in the Ear ts, scandium was used as	metal Re in t th crust. For t the reference y Taylor (1964	the aerosol samples he calculation of th element (Han et al., 1) was adopted.	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda	osols s the f the ance	带格式的:字体:(默认)Times
234 235 236 237 238	is the concentration of metal elements in of elements in To determine	X_{Re} crust scripts i and Re refer to the tration ratio of metal i to tration ratio of metal i to t i to metal Re in the Ear ts, scandium was used as the Earth'scrust given by	metal Re in t th crust. For t the reference v Taylor (1964 i r masses, t The	the aerosol samples he calculation of th element (Han et al., 1) was adopted. 2 72 h air mass back	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda- trajectories were calcul	osols s the f the ance	带格式的:字体:(默认)Times
234 235 236 237 238 239	is the concentration of metal elements in the concentration of metal elements in the concentration of elements in the theorem of the terminal for each TSP	X_{Re} crust scripts i and Re refer to the tration ratio of metal i to tration ratio of metal i to t i to metal Re in the Ear ts, scandium was used as in the Earth'scrust given by methe origins of sampled ai	metal Re in t th crust. For t the reference v Taylor (1964 r masses, t <u>T</u> he ware (Wang e	the aerosol samples he calculation of th element (Han et al., 1) was adopted. 2 72 h air mass back t al., 2009) and the	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda trajectories were calcul NOAA GDAS archive	ance lated data	带格式的:字体:(默认)Times
234 235 236 237 238 239 240	is the concentration of metal elements in the concentration of metal elements in the concentration of elements in the the concentration of elements in the concentration of the c	X_{Re} crust scripts i and Re refer to the tration ratio of metal i to the tration ratio of metal i to the team is to metal Re in the Earth is scandium was used as the the tearth is rust given by the team of the tearth is an ple using TrajStat soft	metal Re in t th crust. For t the reference v Taylor (1964 r masses, t <u>T</u> he ware (Wang e .html). The ai	the aerosol samples he calculation of th element (Han et al., 1) was adopted. 2 72 h air mass back t al., 2009) and the	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda trajectories were calcul NOAA GDAS archive	ance lated data	带格式的:字体:(默认)Times
234 235 236 237 238 239 240 241	is the concentration of metal elements in the concentration of metal elements in the concentration of elements in the the concentration of the the concentration of the concentra	X_{Re} crust scripts i and Re refer to the tration ratio of metal i to the tration ratio of metal i to the team is to metal Re in the Earth is scandium was used as the the tearth is scrust given by the team of the tearth is an the tearth is an the tearth is an team of the tearth is an team of te	metal Re in t th crust. For t the reference y Taylor (1964 ir masses, t <u>T</u> he ware (Wang e .html). The ai rigin.	the aerosol samples he calculation of the element (Han et al., b) was adopted. c 72 h air mass back t al., 2009) and the r mass back trajector	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda- trajectories were calcul NOAA GDAS archive pries were calculated a	psols s the f the ance lated data at an	带格式的: 字体: (默认) Times New Roman #格式的: 字体: 10 磅
233 234 235 236 237 238 239 240 241 241 242 243	is the concentration of metal elements in the concentration of metal elements in the concentration of elements in the concentration of	$X_{\text{Re}})_{crust}$ scripts i and Re refer to the tration ratio of metal i to the tration ratio of metal is to the tration ratio of metal is to metal Re in the Earth ts, scandium was used as in the Earth'scrust given by the the origins of sampled and sample using TrajStat soft arl.noaa.gov/ready/hysplit4	metal Re in t th crust. For t the reference y Taylor (1964 r masses, t <u>T</u> he ware (Wang e .html). The ai rigin.	the aerosol samples he calculation of th element (Han et al., t) was adopted. e 72 h air mass back t al., 2009) and the r mass back trajector ly used receptor mo	; and (Xi/XRe)crust is e enrichment factor of 2012), and the abunda- trajectories were calcul NOAA GDAS archive pries were calculated a <u>deling method. This m</u>	bsols s the f the ance lated data at an bodel >><	带格式的: 字体: (默认) Times New Roman

245	by a matrix X of i by j dimensions, in which i number of samples and j chemical species were				
246	measured, with uncertaintyu. X can be factorized as a source profile matrix (F) with the number of				
247	source factors (p) and a contribution matrix (G) of each source factor to each individual sample, as				
248	shown in Equation 2. receptor modeling method (Paatero and Tapper, 1993; Paatero, 1997)		带格式的		[1]
249	$X_{ij} = \sum_{k=1}^{p} G_{ik} F_{kj} + E_{ij} $ (2)		带格式的		[2]
250	where Eij is the residual for species j of the i-th sample.				
251	The aim of the model is to minimize a objective function Q, which was calculated from the residual				
252	and uncertainty of all samples (Equation 3), to obtain the most optimal factor contributions and				
253	$\underline{\text{profiles}}_{Q} = \sum_{i=1}^{n} \sum_{j=1}^{m} (E_{jj} / u_{ji})^{2} $ (3)		带格式的		. [3]
254	EPA PMF 3.0 model was used to obtain the source apportionment of atmospheric particulates on	><〔	带格式的:字体		1 🛱
255	dust and comparisonND days. The correlation coefficient between the predicted and observed	\searrow	带格式的: 缩进符		
256	concentrations was 0.97.		带格式的		. [4])
257					
258	Dry deposition velocities were obtained using Williams' model (Williams, 1982)and by accounting	><〔	带格式的:字体		
259	for particle growth (Qi et al., 2005). Williams' model is a two-layer model to calculated the dry velocity	\sum	带格式的: 缩进符	: 自行缩进:	$ \longrightarrow$
260	of size-segregated particle over the water. At upper layer below a reference height (10 m), the		带格式的	(. [5])
261	deposition of aerosols particles is governed by turbulent transfer and gravitational settling. In the				
262	deposition layer, gravitational settling of particles is affected by particle growth due to high relative				
263	humidity. To obtain the deposition velocity of different particle size, Williams' model need many input				
264	parameters, such as the wind speed at 10m height (U10), air/water temperature, relative humidity.	// //			
265	Relative humidity, air temperature and U10 obtained from the National Centers for Environmental	/ ///			
266	Prediction (NCEP)were used in the model as the meteorological inputsthis study. Surface seawater	$\parallel \mid$			
267	temperature was collected from the European Centre for Medium-Range Weather Forecasts				
268	(ECMWF). The meteorological elimatie and seawater temperature data had a six-hour resolution.				
269	According to a previously reported method (Qi et al., 2013), the dry deposition fluxes of the particles				
270	and the nitrogen species were calculated for dust and ND comparison days.				
271	The CMAQ model (v5.0.2) was applied over the East Asia area to simulate the concentrations of				
272	PM10, NOx and NH3for 14 samples collected during11 dust events. The simulated domain contains				
273	164×97 grid cells with a 36 km spatial resolution. The vertical resolution includes 14 layers from				
274	surface to tropopause, with the first model layer height of 36m above the ground level. The				

275	meteorological fields were generated by the Weather Research and Forecasting (WRF) Model (v3.7).
276	Considering that the simulated area is connected to the Yellow Sea, the CB05Cl chemical mechanism
277	was chosen to simulate the gas-phase chemistry. The emissions of NOX and NH3over East Asia for
278	each dust event were also modeled using the CMAQ model according to the emission inventory in
279	2008, which was generated by extrapolating the 2006 activity data to the year 2008 using the method
280	described by Zhang et al.(2009). Initial conditions (ICONs)and boundary conditions were generated
281	from a global chemistry model of GEOS-CHEM. All the dust events simulations are performed
282	separately, each with a 1-week spin-up period to minimize the influence of the ICONs. Validation of
283	the application of the CMAQ model in China has been reported by Liu et al. (2010a, b). The spatial
284	distribution of PM10 concentrations for each dust event was consistent with the model results of dust
285	by the Chemical Weather Forecast System (CFORS) by Uno et al. (2003), he Chemical Weather
286	Forecast SystemCFORS
287	2.4 Statistical analysisOther data sources and Statistical analysis
288	Meteorological data were obtained from the Qingdao Meteorological Administration
289	(http://qdqx.qingdao.gov.cn/zdz/ystj.aspx) and the Meteorological Information Comprehensive
289 290	(http://qdqx.qingdao.gov.cn/zdz/ystj.aspx) and the Meteorological Information Comprehensive Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ - and air
290	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air
290 291	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau
290 291 292	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ - and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and
290 291 292 293	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological
290 291 292 293 294	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System
290 291 292 293 294 295	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System (MICAPS) he Chemical Weather Forecast SystemCFORS
290 291 292 293 294 295 296	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System (MICAPS) he Chemical Weather Forecast SystemCFORS According to the altitude, longitude and latitude of the72 h air mass back trajectoryof each dust
290 291 292 293 294 295 295 296 297	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System (MICAPS) he Chemical Weather Forecast SystemCFORS According to the altitude, longitude and latitude of the72 h air mass back trajectoryof each dust sample, thepressure level, temperature and relative humidity data along the path of theair mass were
290 291 292 293 294 295 295 296 297 298	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO2 and airquality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau(http://www.qepb.gov.en/m2/). Different weather characteristics, such as sunny days, cloudy days anddust days, were defined according to information of MICAPS informationand Qingdao MeteorologicalAdministration. The Meteorological Information Comprehensive Analysis and Process System(MICAPS) he Chemical Weather Forecast SystemCFORSAccording to the altitude, longitude and latitude of the72 h air mass back trajectoryof each dustsample, thepressure level, temperature and relative humidity data along the path of theair mass werederivedfromtheNCEP/NCARre-analysissystem
290 291 292 293 294 295 296 297 298 299	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO2 and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/)Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System (MICAPS) he Chemical Weather Forecast SystemCFORS According to the altitude, longitude and latitude of the72 h air mass back trajectoryof each dust sample, thepressure level, temperature and relative humidity data along the path of theair mass were derived from the NCEP/NCAR re-analysis system (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for each sample. The mixed
290 291 292 293 294 295 296 297 298 299 300	Analysis and Process System (MICAPS) of the Meteorological Administration of China. NO ₂ and air quality index (AQI) data were downloadedfrom the Qingdao Environmental Protection Bureau (http://www.qepb.gov.en/m2/)Different weather characteristics, such as sunny days, cloudy days and dust days, were defined according to information of MICAPS informationand Qingdao Meteorological Administration. The Meteorological Information Comprehensive Analysis and Process System (MICAPS) he Chemical Weather Forecast SystemCFORS According to the altitude, longitude and latitude of the72 h air mass back trajectoryof each dust sample, thepressure level, temperature and relative humidity data along the path of theair mass were derived from the NCEP/NCAR re-analysis system (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for each sample. The mixed layer depth during the air mass transport of dust sampleswasobtained from the HYSPLIT Trajectory

	带格式的: 字体:(默认)Times New Roman, 10 磅
$\left(\right)$	带格式的: 字体:+西文正文,10 磅
(带格式的: 行距: 1.5 倍行距
2	

 带格式的:
 字体:(默认) Times

 New Roman, 10 磅

 带格式的: 字体: 10 磅

25

321	the mass concentrations of particles-TSPand as well as concentrations of crustal and anthropogenic
322	metals to compare samples collected on dust days and immediately before or after days, in aerosol
323	samples. Although metal concentrations in aerosols collected on different dust days varied, some
324	eharacterizations The comparative results are highlighted below. The concentration of atmospheric
325	particulate increased on dust days. On non-dust (ND) daysFor these comparison samples, aerosol
326	particles the TSP concentrations varied in the ranged of from 94 to-275 µg·m ⁻³ , with an average of 201
327	µg·m ⁻³ (Fig. 2). The TSP mass concentration Particle concentrationswere increased substantially
328	increased-to 501-3857µg·m ⁻³ on-in_dust day_samples, with an average of 1140.2 µg·m ⁻³ . In each dust
329	day-comparison day sample pair, the mass concentration of The-TSPs increased by concentrationon
330	dust days was 1.80-14.01303% with the median value of 537% times (mean: 5.9) higher than that on ND
331	days. The A similar increase was present in the crustal elements increased considerably with the
332	increasing particle concentrations when dust events occurredin each pair of samples. For example, the
333	mean concentrations of Sc, Al, Fe, Ca and Mg were increased by over a factor of four in dust day
334	samples relative to the comparison samples. In addition, As shown in Table 2, the enrichment factors
335	(EF) of Al, Fe, Ca, and Mg were less than three in dust day samples but lower less than ten 14on ND
336	daysin comparison samples and decreased to less than three on dust daysin each pair (Table 3). These
337	lower data values are indicative of these elements from the the primarily crustal origins of these
338	elements. We found that the mean concentrations of Sc, Al, Fe, Ca and Mgincreased by over a factor of
339	four as compared to those on ND days. Al concentrations in dust weather increased 1.7 to 21.9-fold
340	(mean: 6.9) on ND days. The Al concentration of the "geometric mean×2GSD" (where GSD is the
341	geometric standard deviation) was used as a criterion to define major AD events in areas of East Asia
342	(Hsu et al., 2008). Al concentrationswere higher than the criterion level in all dust samples, which
343	indicated that the samples we collected on dust days were truly affected by dust events. Fe was 10.3
344	times higher on dust days than on ND days. Additionally, nss-Ca, a typical dust index, increased
345	3.6 fold on dust days (Fig. 2). The EF of the anthropogenic metal elements decreased on dust days. Cu,
346	Pb, Zn, Cr, Hg and As had high EFs,much greater than 10,on ND days, which indicated that these metal
347	elements were mainly from anthropogenic sources. Although The the average mass concentrations of
348	these-anthropogenic elements <u>such as Cu, Pb, Zn, Cr, Hg and Ason-in</u> dust day sample -increased
349	1.107% to 7.2-fold22% on averagerelative compared to those in comparison samples, the EF of the
350	anthropogenic metal elements decreased in the dust day sampleson ND days. Additionally, the EFs of 27

these anthropogenic elements decreased on dust days. These data are consistent with the very low EFs
of these elements in dust particles. Thus This pattern, - indicated a decreasing relative contribution of
the influence of anthropogenic sources on atmospheric particulates decreased to the total TSP mass on
in dust day samples.

355

356

Table 2. Theaverage concentrations and EFs of metal elements on dust and non-dust days.

Element Concentration (ng/m³) EF* Non-dust days Dust days Non-dust days Dust days 13.90 Se 1.11 _ 8.53×10^{3} 6.86×10⁴ 14 Al 38 4.91×10^{3} 3.88×10^{4} 3 $\frac{12}{12}$ Fe 1.05×10^{4} 4.29×10^{4} 14.0 Ca 21 Mg 1.62×10^{3} 1.58×10⁴ 3.5 1.1 Cu 50.2 124.5 36.3 6.1 ₽b 127.9 221.0 389.4 56.1 Zn 340.0 457.7 248.9 20.6 33.8 244.0 44.0 11.1 Cr 0.26 176.0 Hg 0.36 13.8 707.2 43.9 25.5 27.4 As

357

*The EF factor was calculated using Scandium as the reference element (Han et al., 2010).

358 **3.2** Concentrationsdistribution__of inorganic nitrogen in dust eventsday samples

359 __As discussed above, the concentrations of TSP and metal elements increased on dust days
360 compared to those on ND days. However, When the mass concentrations of inorganic nitrogen species
361 NH₄⁺ and NO₃⁻in each pair of TSP samples were compared, exhibited different variations in particles
362 and crustal metal elements.Tithe concentrations of ammonium_NH₄⁺ increased by a factor of
363 1.220%-5.7470in some dust day samples (20080301, 20080315, 20090316, 20100315, 20100320,
364 20100315, 20110415 and 20110418), but slightly or greatly and decreased by 40-85% or had a very low

•		带格式的:	行距:	1.5	倍行距	
•	+	带格式的:	行距:	1.5	倍行距	
•		带格式的:	行距:	1.5	倍行距	
•	+	带格式的:	行距:	1.5	倍行距	
•	+	带格式的:	行距:	1.5	倍行距	
•		带格式的:	行距:	1.5	倍行距	

带格式的:行距:1.5 倍行距

uon <mark>senser ibutton</mark>	of morganic m	ti ogen in uust	erei

concentration (less than 20% of that on ND days) oin other dust day samples (Fig. 3, Table S2). The

379	Category 2, the reverse was true. In Category 3, the mass concentrations of NO ₃ were lower in the dust		
380	samples than in the comparison samples, whereas the reverse was true for NH_4^+ . Considering that the		
381	Yellow Sea was mainly affected by dust storms from the Hunshandake Desert (Zhang and Gao, 2007),		
382	we compared our observations with the sand particles collected from this desert (Table 5). The relative		
383	mass concentrations of nitrate and ammonium to the total mass of sand particles were very low, i.e.,		
384	less than 81µg/g, approximately three orders of magnitude less than the corresponding values in our		
385	dust samples. Moreover, the values obtained from atmospheric aerosols at Duolun (Cui, 2009) and Alxa		
386	Right Banner (NiuandZhang, 2000) were also more than one order of magnitude lower than the		
387	corresponding values in this study (Table 5). This suggested that NO_3^- and NH_4^+ observed in the dust		
388	day samples were very likely due to interactions and mixing between anthropogenic air pollutants and		
389	dust particles during transport from the source zone to the reception site (Cui et al., 2009, Wang et al.,		
390	2011; Wu et al., 2016). However, along the different transport paths of Asian dust, air pollutant		
391	emissions, meteorological conditions, chemical reactions, and other factors can affect the abundance of		
392	$\underline{NH_4^+}$ and $\underline{NO_3^-}$ in atmospheric particles. These factors canvary greatly among different dust events,		
393	hence leading to the three different categories.		
394	Considered relative values of NH_4^+ and NO3-in dust day sample against in comparison sample, these	 带格式的: 行	〕距:1.5 倍行距
395	dust day samples can be classified into three categories. When we focused on inorganic nitrogen (IN),-		
396	we found that IN concentrations could be grouped into three cases (Table 3). InN Category 1, the mass-		
397	concentrations of NH4 ⁺ and NO4 ⁻ were larger in dust day sample than in comparison sample.In	 带格式的: ↑ 带格式的: ⊥	
398	Category 2, the reverse was true. In Category 3, the massconcentration of NO, swere less in dust	带格式的: 1	
399	samplehigher on dust days than on <u>in comparison sampleND days for Case 1, while IN was loweron</u>	一带格式的: ⊥ 带格式的: ↑	
400	dust days for Case 2. For Case 3, nitrate concentrationson dust days were less than on ND days, while	带格式的:	
401	ammonium concentrationson dust days were slightly higher than those on ND days the reverse was true		
402	f or NH 4 [±]		
403	Considering that To understand the influence of dust on the nitrogen concentration, we compared the		
404	IN content in acrosols from the coastal region of the Yellow Sea with sand particles and atmospheric-		
405	aerosols from Duolun, a site very close to the Zhurihe Sand Desert. The Yellow Sea is was mainly-		
406	affected by dust storms from the Zhurihe Sand desertthis sand source (Zhang and Gao, 2007). <u>). we</u>		
407	compared our observation with those sand particles collected at the desert (Table 4). The relative mass-		
408	concentrations of nitrate and ammonium to the total mass of sand particles were much low, i.e., less		
l	30		

409	than 81µg/g, which were three orders of magnitude less than the corresponding values inherently with
410	our dust samples. Moreover, the values obtained from atmospheric aerosols at Duolun, a site very close-
411	to the Zhurihe Sand Desert, in literature (Cui et al., 2009), were also more than one order of magnitude-
412	less than the corresponding values in this study (Table 4). This suggested that NO_3^- and NH_4^+ -observed-
413	in the dust day samples were related to interactions of anthropogenic air pollutants and dust particles
414	during the transport from the source zone to the reception site (Zhang et al., 2016; Cui et al., 2014,).
415	However, along the different transport paths of Asian dust, air pollutants' emissions, meteorological
416	conditions, chemical reactions, etc., can affect the abundance of NH4 ⁺ and NO3 ⁻ in atmospheric-
417	particles. These factors could vary a lot in different dust events, leading to three different categories.
418	3.3 Theoretical analysis of three categories
410	
419	Ammonium salts are common in atmospheric particles with diameters of less than 2 µm (Yao et al.,
420	2003; Yao and Zhang, 2012). Gas-aerosol thermodynamic equilibrium is widely assumed to be fully
421	attained for inorganic ions, including ammonium salts in PM _{2.5} , in all regional air quality modeling
422	studies. Reasonably good agreements between ammonium salt modeling results and observations
423	reported in literature support the validity of this assumption (Chen et al., 2016; Penrodet al., 2014;
424	Walker et al., 2012). Assuming that thermodynamic equilibrium had been attained by the ammonium
425	salts in Category 1, the reactions between carbonate salts and ammonium salts, such as 1) (NH_{4}) ₂ SO ₄ +
426	$\underline{CaCO_3 \Rightarrow CaSO_4 + NH_3 (gas) + CO_2 (gas) + H_2O and 2) 2NH_4NO_3 + CaCO_3 \Rightarrow Ca(NO_3)_2 + 2NH_3 (gas)}$
427	+CO ₂ (gas) +H ₂ O, will release NH ₃ (gas) until CaCO ₃ has been completely used up. During dust events.
428	much high concentrations of Ca ²⁺ wereobserved, and high CaCO ₃ concentrations were therefore
429	expected. When Category 1 was considered alone and one exterior sample was excluded, a good
430	correlation however, was obtained for $[NH_4^+]_{equivalent concentration} = 0.98* [NO_3^-+SO_4^]_{equivalent}$
431	$\frac{1}{1}$ concentration(R ² =0.83, P<0.05). The good correlation together with the slope of 1 strongly indicated that
432	the NO ₃ ⁻ and SO ₄ ²⁻ were almost completely associated with NH ₄ ⁺ in these dust day samples. The
433	formation of CaSO ₄ and/or Ca(NO ₃)2 was probably negligible. Thus, ammonium salt aerosols may
434	externally co-exist with dust aerosols in these dust day samples. In the exterior sample collected on 21
435	March 2010, $[NH_4^+]$ only accounted for ~70% of the observed $[NO_3^++SO_4^{-2}]$ in equivalent.
436	concentration. This result suggested that ~30% of (NO ₃ ⁻⁺ SO ₄ ²⁻) may be associated with dust aerosols.
437	viathe formation of metal salts of the two species. The hypothesis was supported by the correlation

438	result, i.e., NO_3^- was positively correlated with NH_4^+ and Cu , and $SO_4^{-2}^-$ was correlated with K^+ , Na^+ and M_4^- and NH_4^- and $NH_4^$
439	Mg^{2+} (Fig.S4).Note that only samples in Category 1 showed NH_4^+ to be negatively correlated with
440	\underline{Ca}^{2+} (Fig.S4).
441	ForCategory 2, no correlation between [NH4 ⁺]equivalent concentration and [NO3 ⁺ +SO4 ²⁻]equivalent concentration_
442	existed. When Category 2 was considered alone and one exterior sample was excluded, the equivalent
443	ratios of NH_4^+ to $NO_3^-+SO_4^{-2}$ we regenerally much smaller than 1, suggesting that a larger fraction of
444	NO_3 + $SO_4^{2^-}$ may exist as metal salts due to reactions of their precursors with dust aerosols. NO_3^- and
445	$SO_4^{2^2}$ showed no correlations with NH_4^+ but did show significant correlations with Pb (Fig.S4).
446	implying that $NO_2^{-+}SO_4^{-2-}$ existed as metal salts. The average concentration of Ca^{2+} in Category 2
447	(0.43±0.40µg/m ³) was clearly higher than that in Category 1 (Ca ²⁺ : 0.17±0.04µg/m ³), implying the
448	probable formation of CaSO ₄ and/or Ca(NO ₃) ₂ and the release of NH ₃ (gas), resulting in a decrease in
449	<u>NH_d⁺.However, the concentration of total Ca was 1.11±0.70 μg/m³in Category 1 and 0.74±0.49μg/m³in</u>
450	Category 2.In Category 1, NO ₃ was negatively correlated with SO ₄ ² (Fig.S4), suggesting competition
451	for NH ₃ under NH ₃ -poor dust days during long-range transport. However, NO ₃ was positively
452	correlated with SO_{4}^{2} in Category 2. The latter relationship can be explained by the fact that the amount
453	of CaCO ₃ wassufficient to absorb the precursors of both $SO_4^{2^2}$ and NO_3^2 . Due to the absence of TSP
454	concentration data along the transport pathway, we compared TSP concentrations at the sampling site
455	and found that the average value of Category 2 (1391±981 µg/m ³) was substantially higher than that of
456	Category 1 (591±158 µg/m ³). This implied that dust events in Category 2 were even stronger. Note that
457	the NO ₂ concentrations in Category 2 (1.35 \pm 2.45 µg/m ³) were lower or comparable to those in
458	Category 1 (1.51±2.16 µg/m ³). The potential formation of nitrate metal salts was expected to be similar
459	between the two categories, while favorable formation conditions for ammonium nitrate greatly
460	increased the mass concentrations of nitrate and the contributions to the TSPs in Category 1.
461	Overall, the higher ammonium concentrations observed in the dust day samples in Category 1 were
462	likely associated with external co-existence of ammonium salt aerosols. However, the lower
463	concentrations in Category 2 were likely due to unfavorable conditions for forming ammonium salts.
464	The observed ammonium was just the residual of incomplete reactions between preexisting ammonium.
465	salt and carbonate salts. More discussion on this issue will be presented in Section 3.4.
466	
467	From Table 4, we found that nitrate and ammonium concentrations in the source sand particles were
1	32

带格式的:突出显示

468	very low (less than 50 μ g/g). Therefore, the dust particles in this th source area that affect the Yellow
469	Seaarenutrient poor.Although the IN content in aerosols particles_at Duolun <u>in dust days_</u> was higher
470	than that th in sand particles, the nitrate and ammonium concentrations were much lower than osein the
471	eoastal region of the Yellow Sea. Other researchers also found the nitrate concentration in dust particles
472	in downwind area higher than that at source region (Zhang et al., 2016; Cui et al., 2014). Therefore, we
473	believe that the dust particles from the source have a dilution effect on atmospheric particulate nitrogen
474	because of the low IN concentration in sand particles, if the dust particles just mixing with
475	anthropogenic particles and no effective heterogeneous reaction on dust particles during the transport.
476	When dust events occurred and no effective formation of nitrate and ammonium reaction happen, the
477	content of nitrogen per particle mass decreasedbecause of the dilution of particulate nitrogen resulting
478	from theincreasednumber of nutrient-poor dust particles rapidlyleaving the source area, . And we really
479	found some samples in Case 2, such as 20080425, 20080528, 20080529, 20110319 and 20110501, had
480	a lower IN content in aerosols particle on dust days thanthatonND.The nitrate concentration decreased
481	30-95% and ammonium decreased 16-72% for these samples. We think these dilution effect resulted by
482	mixing is related with dust intensity of dust events and the distance from the dust source. In the region
483	elose to the dust sources, the IN content was very low in aerosols in dust days due to IN poor dust
484	particlesandno effective emission or absorption and reaction occur during such short transport time.
485	However, during long range transport, the concentration of IN will increase by reacting with gas
486	emitted into the air under appropriate reaction conditions or by mixing withanthropogenic aerosol
487	particles from a local source. Therefore, IN concentrations will increase in aerosols in downwind areas
488	because of reactions on the dust surfaces or mixing with anthropogenic particles along the transport
489	path. Cui et al. (2009) observed one dust event at four sites on transport path (Duolun, Beijing, Taishan,
490	Shanghai), and found the enhancement and complex of mixing of dust with anthropogenic particles
491	during transport from source to downwind region. In addition, the dilution effect was affected by dust
492	intensity. For our samples in Case 2, Sample 200805028corresponded to a severe dust storm; 080529
493	and 110501 was related a dust storm; 110319 was a blowing dust (Table 3). IN concentration decreased
494	by 66-84%, 36-71% and 5-28% for samples collected on severe dust storm, dust storm andblowing dust,
495	respectively. The results showed The the stronger a dust storm is and the closer to the source, the
496	stronger the dilution effect is.
497	Table 34. Average concentrations of inorganic nitrogen, TSP, NOx, Relative Humidity (RH) and T for 33

---- **带格式的:** 行距: 1.5 倍行距

eachcaseinaerosolsamplesin the coastal region of the Yellow Sea

	Sample-	TSP	NO3	NH4 [±]	RH	Ŧ	NOx	Summary	4	- 带格式的: 段落间距段后:10 磅 行距:1.5 倍行距
	numbers	µg∙m -³	µg∙m - ⁻³	µg∙m - ³	%	° C	µg∙m⁻³			
Case 1	080301,	696	24.1	14.9	4 6.6	13.8	62.7	IN>ND	•	带格式的: 段落间距段后: 10 磅 行距: 1.5 倍行距
	080315,									
	090316,									
	100321,									
	110415,									
	110502									
Case 2	080425,-	1199	3.1	2.6	29.2	19.8	52.3	IN<nd< del=""></nd<>	•	带格式的: 段落间距段后:10 磅 行距:1.5 倍行距
	080528,									带格式的:两端对齐,段落间距目后:10磅,行距:1.5倍行距,齐到网格,边框:底端:(无框线)
	080529,									介到內格, 边框: 成端: (尤框线) 制表位: 不在 19.78 字符 + 39.55 字符
	110319,									
	110501									
Case 3	100315,	1639	4 .9	4 .7	10.1	10.1	70.7	NO3 AND	•·	 带格式的:两端对齐,段落间距距后:10磅,行距:1.5倍行距,齐到网格,边框:底端:(无框线)
	100320,							NH ₄ ⁺ ≅NÐ		制表位: 不在 19.78 字符 + 39.55 字符
	110418									
Non-dust		212	5.5	4 .6	42.2	13.7	59.7		• \ \ \ \	带格式的:两端对齐,段落间距; 后:10磅,行距:1.5倍行距, 齐到网格,边框:底端:(无框线) 制表位:不在 19.78字符 + 39.55字符

502	absorption and t	eaction occur du						
502	•	osols in the dov						
503	•				•	ed by a factor of more		
				-		t be a result of slow		
505								
506	•				· · · · ·	emperature and high		
507	-	_		-		mation of nitrate and		
508			-			n average higher than		
509			•			or that the dust might		
510	be transported q	uickly. Concentr						
511	in Case 2 beca	use the low RI	I, high tem	perature and I	ow NOxduring rapid	d transport were not		
512	advantageous to	the formation c	f IN. In Cas	e 3, the low I	N content was a resul	lt of a strong dilution		
513	effect and low R	.H						
514	In addition, th	ne transport path						
515	this influence w	ill be discussed in						
516	Table 4 <u>5</u> . Compar	ison of the IN con	n (unit: μg/g)	•	带格式的: 行距: 1.5 倍行距			
				•	带格式的:段落间距段后:10磅,			
	Sands sampled in	ı Zhurihe	Aerosols ii	n Duolun*		coastal region of the	•	行距: 1.5 倍行距
					Yellow Sea			
	NO ₃ -	$\mathrm{NH_4}^+$	NO3	$\mathrm{NH_4}^+$	NO3 ⁻	NH4 ⁺	•	带格式的: 段落间距段后:10磅, 行距:1.5倍行距
	25.46±22.87	4 <u>.21±1.03</u>	1200	900	Non-dust:	Non-dust:	•	带格式的: 段落间距段后:10磅, 行距:1.5倍行距
					28,200±24,819	24,063±21,515	•·	带格式的: 两端对齐,段落间距段 后:10磅,行距:1.5倍行距,到 齐到网格,边框:底端:(无框线), 制表位:不在 19.78字符 +
					Case 1:	Case 1:		39.55 字符
					34,892±9570	22,571±7016		
					Case 2:	Case 2:		
					5542±5117	4 758±5698		

		Case 3:	Case 3:				
		6359±4697	7059±5591				
517	* Adapted from Cui (2009)		•	[带格式的: 行距: 1.5	段落间距段后: 倍行距	10 磅,
518			+		带格式的:	行距: 1.5 倍行	 〕 〕
519	3. <u>3-4</u> Influence of transport <u>pathways</u> on particulate inorgan	nic nitrogen <u>in dust</u>	<u>samples</u>				
520	The calculated air mass trajectories of 13 out of 14	4 samplesshowed	that the air mass				
521	originatedfromInner Mongolia, China (Fig. 5), generally consi	istent with the result	s by Zhang and Gao				
522	(2007). Theremaining one originated from Northeast China. F	igs. 6 and 7 show a	few areas with high				
523	emissions of NO _x and NH ₃ , e.g., Liaoning, Beijing-Tianjin-F	Hebei, Shandong, H	enan and Jiangsu in				
524	China. The calculated trajectories showed that all the air n	nass passed over p	arts of these highly				
525	polluted regions and experienced different residence time in th	ese regions. In Fig.	5, except for the one				
526	exterior sample, all trajectories in Category 1 showed that the	air masses were tra	nsported from either				
527	the north or northwest over the continent. In Category 2, the air	ir massescrossed over	er the sea for 94-255				
528	km prior to arriving at the reception site. NH ₃ -poor conditions	in the marine atmos	sphere disfavored the				
529	formation and existence of ammonium nitrate. On the other h	and, the humid mar	ine conditions might				
530	have enhanced particle-particle coagulation and might have	led to the release of	of NH ₃ via reactions				
531	between preexisting ammonium salts and carbonate salts. More	eover, we also exam	ined the links among				
532	the measured concentrations of particulate ammonium and n	nitrate, the mixing 1	ayer along the back				
533	trajectories, and the residence time of air masses crossing over	er the highly pollute	ed zones. The results				
534	supported our hypothesis, i.e., ammonium salts mostly co-es	xisted with dust ae	rosolsexternally. For				
535	example, except for 20080425, all dust day samples mostly t	traveled at an altitud	de above the mixing				
536	layer before mixing down to ground level. For most sampling	g days in Category	the average mixing				
537	layer was less than 900 m, favoring the trapping of locally en	nitted anthropogenic	air pollutants in the				
538	mixing layer. In addition, the air massesat this elevation appar	ently moved slowly	and took over 10 hr				
539	to cross over the highly polluted area. Even lower speeds were	e expected for air ma	asses atthe bottom of				
540	the mixing layer, as wind speed decreases with height. Except	t for exterior sample	s, the sampling days				
541	in Category 2 featured a mixing layer that was, on average, h	igher than 900 m. T	he air masses at this				
542	elevation took less than 10 hr to cross over the highly polluted areas and generally had higher speeds.						
-----	--						
543	Theoretically, a lower mixing layer and a lower wind speed favored the accumulation of air pollutants						
544	and the formation of ammonium nitrate to some extent. The transport of dust air masses above the						
545	mixing layer reduced the possibility for internal mixing of ammonium salts and reactionwith dust						
546	aerosols along the long transport path. The shorter time for dust air masses mixing down to ground						
547	level before arriving at the reception site also increased the possibility for external co-existence						
548	between ammonium salt aerosols and dust aerosols in Category 1. The reverse could be argued to						
549	explain the observations for Category 2. The correlation analysis results in Table S2 indirectly						
550	support these conclusions. In fact, previous studies proposed that nitrate is rarely formed on the surface						
551	of dust particles (Zhang and Iwasaka, 1999). Therefore, much lower nitrate concentrations were						
552	observed in Category 2. Noted that the exteriors with ID of 20110415 and 20110502 have not yet been						
553	explained.						
554							
555	The reported threshold of windspeed for dust mobilization in the Gobi Desert ranges from 10-12						
556	m/s(Choi and Zhang, 2008).We estimated 40.5±9.9 km/has the average wind speed during a dust storm						
557	according to Asia dust observations (). If air masses were transported faster than40.5 km/h, we found						
558	that the INcontent in most atmospheric aerosol samples was lower on dust days than on ND						
559	daysbecause of the strong dilution effect. This effect was observed in samples 080528, 080529, 110319						
560	and 100315 (Table 5). If an air mass was transported over the ocean for some distance (ratio of oversea						
561	to totaldistance of at least 10%), no matter how fast the transport velocity, the IN content decreased						
562	because of theinput of clean marine air, such as in samples080425, 100320, 110418and110501. If the						
563	air mass was transported slowly (less than 42.4 km/h) or transported onlya short distance over the sea,						
564	with an oversea to total distance ratio of less than 10%, the IN content increased in samples collected in						
565	the downwind area, such as in samples 080301, 090316, 100321 and 110502. Therefore, the IN content						
566	is related to not only the transport path and speed but also local emissions and reaction conditions						
567	during transport.						
568	Table 56. IN content, RH, NOx, transport speed and transport distance over the sea for atmospheric aerosol						
569	samples on dust days						
570							

--- **带格式的:** 行距: 1.5 倍行距

Group	Sample-	TSP	NO3-	$\overline{\mathrm{NH}_4}^+$	Speed-	Distance over the	Ratio of the distance over	
	number	$(\mu g/m^3)$	(µg/g)	(µg/g)	(km/h)	sea (km)	the sea to the total	
							distance (%)	
	080301	527	38984	24107	35.1	θ	θ	
	080315	410	4 7611	34130	53. 4	262	6.8	
Case 1	090316	688	23050	25012	59.5	0	θ	带格式的: 行距: 1.5 倍行题
IN>ND	100321	519	317 41	18155	4 9.2	0	θ	
	110415	1225	4 1970	20390	57.0	258	6.3	
	110502	810	25995	13632	31.2	121	5.4	
	080425	256	4089	372	29.3	253	12.0	
	080528	2579	232	72	79.8	259	4.5	
Case 2	080529	231 4	26	166	78.0	229	4.1	▶ 带格式的: 行距: 1.5 倍行歸
IN≺NÐ	110319	939	13088	10067	55. 4	404	10.1	
	110501	502	892 4	10631	30.6	298	13.5	
Case 3	100315	501	10767	8515	58.7	183	4.3	带格式的: 行距: 1.5 倍行詞
NO₃⁻≪ND	100320	3857	1418	884	38.0	25 4	9.3	
NH₄ [±] ≅NÐ	110418	558	6891	11778	23.0	380	22.9	
							•	(带格式的: 行距: 1.5 倍行詞
Figure 6.The	: 72-h backv	vard trajecto	ries for ne	m-dust (a)	and dust ((b) samples from 20	08 to 2011.	

604	to the air under strong wind. Coal combustion emissions were mainly a mixture of coal combustion
605	and other pollutants emitted along the transmission path on dust days.
606	The calculation results also showed that the contribution of dust aerosol mass(the sum of nitrate and
607	ammonium associated with the dust source) to the total aerosol mass (the total nitrate and ammonium)
608	greatly increased on dust days.
609	Therefore, the sources of aerosol particles changed on dust days. Dust events had a great impact on
610	aerosol sources in the downwind area. The influence of soil dust on aerosols and IN-loaded particles
611	was greater than that on local sourceson dust days. In fact, the contribution of soil dust to acrosols was
612	related to the intensity of the dust storm and the transport path. However, we could notdetermine the
613	contributions of dust to aerosols for the different dust casesbecause of the limited number of samples.
614	

615 Table 6. Sources and source contributions (expressed as %) calculated for aerosolsamples collected during dust

带格式的: 行距: 1.5 倍行距

616 and non-dust events

Dust event		Non-dust event	
Source	% of TSP	Source	% of TSP
Soil dust	36	Soil dust	23
Industrial	21	Industrial	24
Secondary aerosol	6	Secondary aerosol	23
Oil combustion	6	Biomass burning	16
Coal combustion and	31	Coal combustion	5
other uncertain sources			
		Sea salt	9

617

3.5<u>6</u>Dry deposition fluxes of aerosol particles <u>TSP</u>, particulate inorganic nitrogen and metals

Dust events <u>are known to increased the concentration and deposition of aerosol particles during</u>
long-range transport along the transport path. <u>For example</u>. Fu et al. (2014) found that the long-range
transport of dust particles increased the dry deposition of PM₁₀ in the Yangtze River Delta region by <u>a</u>
<u>factor of approximately 239820%</u>. Some studies <u>observed</u> reported enhancements in <u>oceanic</u>
chlorophyll α_following <u>a</u>-dust storm events (Tan and Wang, 2014; Banerjee and Kumar, 2014).

623 However, The the deposition magnitude fluxes of dust varied greatly among different dust storms, and 624 only a few some dust episodes were followed by increases in chlorophyll μ (Banerjee and Kumar, 625 2014). In addition to those in high-nutrient and low-chlorophyll (HNLC)regions, the input of nitrogen 626 input and other nutrients associated with dust deposition is expected to promote the growth of 627 phytoplankton. However, the extent can vary greatly depending on the nutrient limitation conditions in 628 the oceans. A similar principle holds for the occurrence or absence of algal blooms following dust 629 events. Thus, we calculated the dry deposition fluxes of aerosols particles, N_{NH4++NO3} and metal 630 elements during dust and comparison periods using the measured component concentrations and 631 modeled dry deposition velocities (Table 8). We then compared the dry deposition flux of TSP and 632 N_{NH4++NO3}with the previous observations in literature. 633 The role of dust deposition as a nutrient source leading toan increase in algalblooms has not been 634 adequately addressed. To understand the influence of dust weather on the nitrogen deposition flux, we 635 calculated the dry deposition fluxes of aerosols particles, IN and metal elements during dust and ND 636 neriods using the measured component concentrations and modeled dry deposition 637 obtainedfrom Williams' model (Oi et al., 2005)(Table 7). 638 -The dry deposition fluxes of atmospheric particulates increased on dust days relative to comparison 639 days. All increases or decreases in this section reflected the value on dust days relative to comparison 640 days, if not specified. For example, 641 Compared to that on ND days, the dry deposition flux of atmospheric particulateincreasedon dust 642 days.On ND days, _-the dry deposition flux of particles_TSP_was 2,800±700 mg/m²/month_in the 643 coastal region of the Yellow Sea, and The particle flux varied over a wide range from 5,200-65,000 644 mg/m²/month under different dust eonditionssampling days, with an average of 1618,800-453 645 mg/m²/month. The results verified that dust eventsenhanced the dry deposition flux of atmospheric 646 particulates. However, the dry deposition flux of NNH4+NO3- did not follow this patternIN showed

带格式的:字体:倾斜

42

variations with particles. In Case Category 1, the dry deposition fluxes of NNH4++NO3-IN increased by a

factor of 1.19-5.8285%, corresponding to the increase in the TSP flux of 86-252% (Table S3)and the

flux of atmospheric particles increasedby a factor of 1.8-6.3. In Categories 2 and 3, the dry deposition

fluxes of TSP increased by 126% to 2226% compared to that on comparison days. Except for

ammonium in Category 3, the dry deposition fluxes of particulate N_{NH4++NO3}, however, decreased by 41%

(on average). A larger relative decrease was found for the concentration of nitrate, i.e., decreases of 73%

647

648

649

650

651

and 46% in Category 2 and 3, respectively. Note that the average ammonium deposition flux decreased
by 47% in Category 2 but increase in Category 3.

655 Cases 2 and 3, the dry deposition flux increased 2.3 to 23.2-fold compared to that on ND days. Except 656 for ammonium in Case 3, the dry deposition flux of particulate IN decreased by an average of 41% in 657 the case of high particle concentrations. The concentration of nitrate decreased 63% and 46% in Cases 658 2 and 3, respectively. Additionally, the ammonium flux decreased by 14% in Case 2, while in Case 3, 659 ammonium was higher thanthat on ND days.We found that dust events sometimes led to an increase 660 in the nitrogen input to the ocean relative to that during ND events, but it did not always oceur 661 depending on the chemical composition of the dust particles. As discussed, dust particles may carry 662 abundant reactive nitrogen when they travel through polluted continental atmosphere. However, the 663 relatively pure dust particles may be transported when no air pollution occurs along the dust transport

664 route to oceans.

665 The dry atmospheric deposition fluxes of Fe in atmospheric particulates increased by a factor of 666 2124-2370%5 on dust days-compared to that on ND-days. Atmospheric inputs of iron to the ocean can have been proposed to enhance primary production in high-nutrient, low-chlorophyll regions (HNLC) 667 668 areas (Jickells et al., 2005). However Moreover, except for Pb and Zn in Case Category 2, the dry 669 deposition fluxes of Cu, Pb and Zn increased with those of nitrogen and iron_on dust days. These trace 670 metals were found to have a toxic effect on marine phytoplankton and inhibit their growth (Bielmyer et 671 al., 2006; Echeveste et al., 2012). Liu et al. (2013) found that this inhibition coexisted with the 672 promotion of some phytoplankton species in incubation experiments involving the addition of Asian 673 dust samples in the southern Yellow Sea in the spring of 2011. In Case 3, dust wasdeposited in the ocean, 674 the atmospheric supply of nitrogen decreased, and the atmospheric inputs of Fe and some toxic metals 675 increased. Moreover, phytoplankton growth was affected by the addition of nutrient elements andtoxic 676 elements. The overall effect of dust deposition on primary productivity was a combination of these two 677 effects. This is likely the reason why inhibition coexisted with the promotion of some phytoplankton species in incubation experimentsusing additions of AD in the southern Yellow Sea in the spring of 678 679 2011 (Liu et al., 2013). 680 The contribution of dust eventsto marine nitrogen input and primary production will be 681 overestimated if the nutrient flux simply considers dust concentrations and a constant ratio of nutrients

682 to particles. The atmospheric input of nitrogen to the ocean on dust days depends on the 'dilution effect'

83	of a dust even	t.Dust subjec	ted to long-ra	unge transpor	tdoes not alwa	ys increa	use the atmosp	heric inpu	ıt of		
84	nitrogen Long	, term obser	vations of due	t eventsmust	be performed	to evalu	te the contrib	utions of	dust		
					•			utions of	aust		
85	to the biogeoc	hemistry of i	ntrogen and p	rimary prod i	uction in ocean	S.					
86											
87											
88											
89											
90	Table 7.Dry de	position of ae	rosol particles	(mg/m²/montl	1), particulate in	organic n	itrogen (mg N/	m²/month)	and ·	带格式的:	行距: 1.5 倍行距
591	some toxic trace	- metals (ma/n	n^2 /month) on d	ust and non-du	et dave						
51	Some toxic trace	- metals (mg/h	n /monui) on u	ust and non-ut	ist days						
ĺ		Dry depos	ition flux						_		
					_	~		_			
		Particles	NO₃⁻-N	NH4 ⁺ -N	Fe	Cu	РЬ	Zn	_		
	Case 1	9600±	87±53	25±13	650±340	2±1	0.3±0.2	6±3	4 ·	- 带格式的:	行距: 1.5 倍行距
	IN>ND	4 300									
l I										一世校学的。	行距: 1.5 倍行距
	Case 2	18000± -	13±18	5±7	1300±1000	3±2	0.08±0.04	4 ±1	* '		行距: 1.5 倍行距 行距: 1.5 倍行距
	IN<nd< del=""></nd<>	11,000							1	带格式的:	行距: 1.5 倍行距
ı İ	~ •								j.		行距: 1.5 倍行距 民中 行距: 1.5 倍
	Case 3	29,000±	26±6	17±8	2100±2200	6±1	0.20 ± 0.02	5±3		行距	居中, 行距: 1.5 倍
	NO₃⁻≪ND	31,000							1		行距: 1.5 倍行距
	NH ₄ ⁺ ≅ND										行距: 1.5 倍行距 字体: 小五
									14	带格式的:	居中,行距:1.5 倍
	Non-dust	2800 ≢	4 8±33	8±8	190±110	1±1	0.09±0.1	5±4	• iii	;;; 行距 ;; 带格式表格	k
		700								带格式的:	▪ 居中, 行距: 1.5 倍
									- 10	// 行距 // 带格式的 ·	行距: 1.5 倍行距
592									=		行距: 1.5 倍行距 行距: 1.5 倍行距
			Qingdao, coa	stal Non	-dust day	2800±700	63±39			带格式的:	居中, 行距: 1.5 倍
	This work	2008-20	egion of the Ye	ellow- Du	ıst day 10	138±159	40 <u>66±61</u>			/ 行距 / 带格式的:	字体: (中文) +中文正
	•	#								/ 文, 小五,	非加粗
			Sea								行距: 1.5 倍行距 字体: 小五
	<u>Shi et al.,</u>										
	2013	2007	The Yellow S	ea Non	-dust day	A	19_2 _	=====	===	行距	
	2015										行距: 1.5 倍行距 居中, 行距: 1.5 倍
									Ň	、 行距	
										带格式的:	字体:小五

			带格式的: 文,小五,	字体:(中文)+中文正 非加粗
	Dust day ▲ 104_4		带格式的:	行距: 1.5 倍行距
			带格式的: 行距	居中, 行距: 1.5 倍
	Average of dust	, ``	带格式的:	字体: 小五
	and non-dust		带格式的:	字体:(中文)+中文正 非加粗
			带格式的:	行距: 1.5 倍行距
693	3.7 Potential impacts of nitrogen dry deposition flux associated with dust influenced by		带格式的:	居中, 行距: 1.5 倍
694	anthropogenic activity	N N	行距	
			带格式的:	字体:小五
695	Due to anthropogenic activity and economic development, inorganic nitrogen emissionsincreasedin		带格式的:	字体: 非加粗
055			带格式的:	缩进:首行缩进: 1 字
696	China from 1980 to 2010 (Fig.S5). Accordingly, the N _{NH4++NO3} dry deposition flux should have		符, 行距:	1.5 倍行距
697	theoretically increased with the increase in inorganic nitrogen emissions. However, from the limited			
698	data shown in Table 9, we did not find the expected increase in dry deposition flux of inorganic			
699	nitrogen during the dust days. Considering the uncertainty in dry deposition velocity, we normalized			
700	the dry deposition flux of N _{NH4++NO3} using the concentration of nitrate and ammonium reported in the			
701	literature and the recommended dry deposition velocity of 1 cm/s for nitrate and 0.1 m/s for ammonium			
702	in coastal areas reported by Duce et al. (1991). We then found that dry deposition fluxes of N _{NH4++NO3}			
703	over the Yellow Sea during the dust days increased greatly from 1999 to 2007. The fluxes of			
704	N _{NH4++NO3} in Qingdao, including during the dust days, varied narrowly in a range of 94.75-99.65 mg			
705	N/m ² /month from 1997 to 2011(Table 8). The complicated results may reflect the combined effects of			
706	NOx and NH ₃ emissions in northern China, the occurrence frequency and intensity of dust events and			
707	metrological conditions affecting the transport pathways and moving speeds of dust air masses and			
708	chemical reactions occurring therein. For example, dust events commonly exhibited a periodic			
709	variation from 2000 to 2011 (Fig.S5).			
			曲枚 士 仲 .	行期,15 位行明
	•		"市场文明:	行距: 1.5 倍行距

710 **4** Conclusion

711 The concentrations of nitrate and ammonium in TSP samples varied greatly from event to event on 712 dust days. Relative to non-dust day samples, the concentrations were both higher in some cases and 713 lower in others. The observed ammonium in dust day samples was explained by ammonium salt 714 aerosols co-existing externally with dust aerosols or the residual of incomplete reactions between ammonium salts and carbonate salts. NO3: in the dust day samples was partially related to mixing and 715 716 reactions between anthropogenic air pollutants and dust particles during the transport from the source 717 zone to the reception site. However, this process was generally much less effective and led to a sharp 718 decrease in nitrate in Category 2 TSP samples. The external co-existence of ammonium salt aerosols

719	with dust aerosols and the extent of the reactions between ammonium salts and carbonate salts were
720	apparently associated with the transport pathway, moving speeds and metrological conditions, among
721	other factors.

The concentration of particulate IN-nitrate and ammonium in TSP samples varied greatlyexhibited a

large variation from event to event on dust days, and a dust event did not simply increase nutrient

722

723

724

--- (**带格式的:** 行距: 1.5 倍行距

带格式的:字体:(默认) Times New Roman

725 concentrations. Relative to non-dust day samples, the concentrations were both higher in some cases 726 and lower in others. The observed ammonium in dust day samples was explained by ammonium salt 727 aerosols co-existing externally with dust aerosols or the residual of incomplete reactions between 728 ammonium salts and carbonate salts. NO3⁻ in the dust day samples was partially related to mixing and 729 reactions between anthropogenic air pollutants and dust particles during the transport from the source 730 zone to the reception site. However, this process was generally much less effective and led to a sharp 731 decrease in nitrate in Category 2 TSP samples. The external co-existence of ammonium salt aerosols 732 with dust aerosols and the extent of the reactions between ammonium salts and carbonate salts were 733 apparently associated with the transport pathway, moving speeds and metrological conditions, among 734 other factors. The effect of dust events on particulate nitrogen in the downwind region was determined by the 735 736 dilution effect of a dust event, which depends on many factors, such as the dust storm intensity, 737 transport speed and path, local sourceemissions during transport, meteorological state and atmospheric 738 reactions. Due to a sharp increase in dust loads on dust days, the contribution of soil dust to the total 739 aerosol mass was higher on dust days than on comparison days, while the contributions from local 740 anthropogenic sources were accordingly lower. 741 742 Dust events affect the source apportionment of aerosols. The contribution of soil dust to aerosols 743 increased, while local anthropogenic sources decreasedduring a dust event. The contribution of dust to

744 aerosols must be studied further under different IN conditions.-

Overall, this study strongly suggested that atmospheric deposition of N_{NH4++NO3} on dust days varied
 greatly and that no simple linear increase existed with increasing dust load. More observations at
 various locations are needed to obtain a statistical relationship between dust events and atmospheric
 deposition of N_{NH4++NO3}. A simple assumption of a linear increase inN_{NH4++NO3} with increasing dust
 load, like that in the literature, could lead to considerable overestimation of the dry deposition flux of

750	nutrientsinto the oceans and the consequent primary productionassociated with dust events.	
751	Dust events enhance the input of atmospheric particulates via dry deposition. However, the influence	
752	of dust events on the input of nitrogen to the ocean is still uncertain. The dry deposition flux of IN on	
753	dust days decreased when a strong dilution effect was present. The contribution of dust events to	
754	marine nitrogen inputs and primary production could be overestimated if the dry deposition flux of	
755	nutrients is estimated using onlyparticulateconcentrationson dust days.	
756		
757	Acknowledgments. This work was supported by the Department of Science and Technology of the P. R. China	带格式的: 行距
758	through the State Key Basic Research & Development Program under Grant No. 2014CB953701 and the National	
759	Natural Science Foundation of China (No. 41375143). We thank Prof. Yaqiang Wang and Jinhui Shi for the	
760	valuable discussion regarding this research. We also express our appreciation to Tianran Zhang for help with sand	
761	sampling and Qiang Zhang for data collection. We thank Prof. Xiaohong Yao for the valuable discussion regarding	
762	this research. We also express our appreciation to Tianran Zhang for help with sand sampling.	
763	References	
764	Banerjee, P., and Prasanna Kumar, S.: Dust-induced episodic phytoplankton blooms in the Arabian Sea	
765	during winter monsoon, Journal of Geophysical Research Oceans, 119, 7123-7138, 2014.	
766	Bielmyer, G. K., Grosell, M., and Brix, K. V.: Toxicity of silver, zinc, copper, and nickel to the copepod	
767	Acartiatonsa exposed via a phytoplankton diet, Environmental science & technology, 40, 2063-2068,	
768	2006.	
769	Choi H., Zhang Y. H. : Predicting duststorm evolution with the vorticity theory, Atmospheric Research,	
770	89, 338-350, 2008.	
771	Cui W. L.: Chemical transformation of dust components and mixing mechanisms of dust with pollution	
772	aerosols during the long range transport from north to south China,M.S. thesis, Department of	
773	Environmental Science and Engineering, Fudan University, 32–38 pp., 2009.	
774	Duce, R. A., and Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the open ocean,	
	Science 320 893 897 2008-	
775		
776	Echeveste, P., Agustí, S., and Tovar-Sánchez, A.: Toxic thresholds of cadmium and lead to oceanic	
777	phytoplankton: cell size and ocean basin-dependent effects, Environmental Toxicology and	

E: 1.5 倍行距

778	Chemistry, 31, 1887-1894, 2012.

779	EPA, U.: Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor
780	atomic fluorescence spectrometry, US Environmental Protection Agency Washington, DC, 2002.
781	Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and Prather, K. A.: Comparison of
782	the mixing state of long-range transported Asian and African mineral dust, Atmospheric
783	Environment, 115, 19-25, 2015.
784	Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J. D., and Hao, J. M.: Source, transport and
785	impacts of a heavy dust event in the Yangtze River Delta, China, in 2011, Atmospheric Chemistry &
786	Physics, 14, 1239-1254, 2014.
787	Guo, C., Yu, J., Ho, T. Y., Wang, L., Song, S., Kong, L., and Liu, H.: Dynamics of phytoplankton
788	community structure in the South China Sea in response to the East Asian aerosol input,
789	Biogeosciences, 9, 1519-1536, 2012.
790	Han, X .: Air Quality Modeling for of a Strong Dust Event in East Asia in March 2010, Aerosol & Air
791	Quality Research, 12, 615-628, 2012.
792	He Q., Wei W., Li X., Aili M., Li S.: Profile Characteristics of Wind Velocity, Temperature
793	andHumidity in the Surface Layer during a Sandstorm Passing Taklimakan Desert Hinterland, Desert
794	and Oasis Meteorology, 2(6), 6-11, 2008.
795	Hsu, S. C., Liu, S. C., Huang, Y. T., Lung, S. C. C., Tsai, F., Tu, J. Y., and Kao, S. J.: A criterion for
796	identifying Asian dust events based on Al concentration data collected from northern Taiwan
797	between 2002 and early 2007, Journal of Geophysical Research Atmospheres, 113, 1044-1044, 2008.
798	Jaafar, M., Baalbaki, R., Mrad, R., Daher, N., Shihadeh, A., Sioutas, C., and Saliba, N. A.: Dust
799	episodes in Beirut and their effect on the chemical composition of coarse and fine particulate matter,
800	Science of the Total Environment, 496C, 75-83, 2014.
801	Jiekells, T., An, Z., Andersen, K. K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce, R.,
802	and Hunter, K .: Global iron connections between desert dust, ocean biogeochemistry, and climate,
803	seience, 308, 67-71, 2005.
804	KaiZhang, ZK., and Gao, H.: The characteristics of Asian-dust storms during 2000-2002: From the
805	source to the sea, Atmospheric Environment, 41, 9136-9145, 2007.
806	Kang, E., Han, J., Lee, M., Lee, G., and Kim, J. C.: Chemical characteristics of size-resolved aerosols
807	from Asian dust and haze episode in Seoul Metropolitan City, Atmospheric Research, 127, 34 46, 48

808	2013.
809	Li N., Liu Z., Yang H., Wu J., Lei Y.: Change of wind speed and soil moisture during occurrence of
810	dust storms, Journal of Natural Disasters, 15(6), 28-32, 2006.
811	Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X., Wang, Y., and Sun, J.:
812	Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent, Journal of
813	Geophysical Research Atmospheres, 119, 1044–1059, 2014.
814	Lin, X., Liu, C., and Zhang, H.: Determination of Metal Elements in Aerosol by ICP-AES, Rock &
815	Mineral Analysis, 1998, 17(2): 143-146.
816	Liu, Q., and Bei, Y.: Impacts of crystal metal on secondary aliphatic amine aerosol formation during
817	dust storm episodes in Beijing, Atmospheric Environment, 128, 227-334, 2016.
818	Liu, Q., Liu, Y., Yin, J., Zhang, M., and Zhang, T.: Chemical characteristics and source apportionment
819	of PM 10 during Asian dust storm and non-dust storm days in Beijing, Atmospheric Environment, 91,
820	85-94, 2014.
821	Liu, Y., Zhang, T. R., Shi, J. H., Gao, H. W., and Yao, X. H.: Responses of chlorophyll a to added
822	nutrients, Asian dust, and rainwater in an oligotrophic zone of the Yellow Sea: Implications for
823	promotion and inhibition effects in an incubation experiment, Journal of Geophysical Research
824	Biogeosciences, 118, 1763–1772, 2013.
825	Ma, Q., Liu, Y., Liu, C., Ma, J., and He, H.: A case study of Asian dust storm particles: Chemical
826	composition, reactivity to SO 2 and hygroscopic properties, Journal of Environmental Sciences, 24,
827	62-71, 2012.
828	Natsagdorj L., Jugder D., Chung Y. S.: Analysis of dust storms observed in Mongolia during1937-1999,
829	Atmospherie Environment, 37, 1401–1411, 2003.
830	Paatero, P., and Tapper, U.: Analysis of different modes of factor analysis as least squares fit problems,
831	Chemometries and Intelligent Laboratory Systems, 18, 183-194, 1993.
832	Paatero, P.: Least squares formulation of robust non-negative factor analysis,
833	Chemometries&Intelligent Laboratory Systems, 37, 23-35, 1997.
834	Qi, J. H., Gao, H. W., Yu, L. M., and Qiao, J. J.: Distribution of inorganic nitrogen-containing species
835	in atmospheric particles from an island in the Yellow Sea, Atmospheric Research, 101, 938-955,
836	2011.
837	Qi, J. H., Shi, J. H., Gao, H. W., and Sun, Z.: Atmospheric dry and wet deposition of nitrogen species 49

838	and its implication for primary productivity in coastal region of the Yellow Sea, China, Atmospheric
839	Environment, 81, 600-608, 2013.
840	Qi, J., Li, P., Li, X., Feng, L., and Zhang, M.: Estimation of dry deposition fluxes of particulate species
841	to the water surface in the Qingdao area, using a model and surrogate surfaces, Atmospheric
842	Environment, 39, 2081-2088, 2005.
843	Shi, J. H., Gao, H. W., Zhang, J., Tan, S. C., Ren, J. L., Liu, C. G., Liu, Y., and Yao, X.: Examination of
844	causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China,
845	Journal of Geophysical Research Atmospheres, 117, 127-135, 2012.
846	Tan, S. C., and Wang, H .: The transport and deposition of dust and its impact on phytoplankton growth
847	in the Yellow Sea, Atmospheric Environment, 99, 491-499, 2014.
848	Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Kong, L., and Geng, F.: Consecutive
849	transport of anthropogenic air masses and dust storm plume: Two case events at Shanghai, China,
850	Atmospheric Research, 127, 22-33, 2013.
851	Wang, Q., Zhuang, G., Huang, K., Liu, T., Lin, Y., Deng, C., Fu, Q., Fu, J. S., Chen, J., and Zhang, W.:
852	Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation
853	and primary pollutants via long range transport, Atmospheric Research, 169, 86-95, 2015.
854	Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various trajectory
855	statistical analysis methods to identify potential sources from long term air pollution measurement
856	data, Environmental Modelling& Software, 24, 938-939, 2009.
857	XIN, W. e., LIN, X. h., and XU, L.: ICP MS Determination of 34 Trace Elements in Marine Sediments
858	[J], Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 4, 029, 2012.
859	Xu, J., Wang, Z., Yu, G., Qin, X., Ren, J., and Qin, D.: Characteristics of water soluble ionic species in
860	fine particles from a high altitude site on the northern boundary of Tibetan Plateau: Mixture of
861	mineral dust and anthropogenic acrosol, Atmospheric Research, 143, 43-56, 2014.
862	Yang, D., Yan, P., and Xu, X.: Characteristics of aerosols under dust and sand weather in Beijing,
863	Quarterly Journal of Applied MeteorologyMeteorlolgy, 2002S1, 185-194, 2002.
864	Zhan, K., Zhao, M., Fang, E., Yang, Z., Zhang, Y., Guo, S., Zhang, J., Wang, Q., and Wang, D.: The
865	wind speed characteristics of near surface vertical gradient of 50m in sandstorm process in 2006,
866	Journal of Arid Land Resources & Environment, 23, 100-105, 2009.
867	Zhang, W., Zhuang, G., Huang, K., Li, J., Zhang, R., Wang, Q., Sun, Y., Fu, J. S., Chen, Y., and Xu, D.: 50

868	Mixing and transformation of Asian dust with pollution in the two dust storms over the northern				
869	China in 2006, Atmospheric Environment, 44, 3394-3403, 2010.				
870	Zhang, Y., Yu, Q., Ma, W., and Chen, L.: Atmospheric deposition of inorganic nitrogen to the eastern				
871	China seas and its implications to marine biogeochemistry, Journal of Geophysical Research				
872	Atmospheres, 115, 3421-3423, 2010.				
873	Banerjee, P., and Kumar, P. S.: Dust-induced episodic phytoplankton blooms in the Arabian Sea				
874	during winter monsoon, J. Geophys. Res-Oceans., 119, 7123-7138, 2014.				
875	Bielmyer, G. K., Grosell, M., and Brix, K. V.: Toxicity of silver, zinc, copper, and nickel to the				
876	copepod Acartiatonsa exposed via a phytoplankton diet, Environ. Sci. technol., 40, 2063-2068,				
877	2006.				
878	Chen, D., Liu, Z. Q., Fast, J., and Ban, J. M.: Simulations of sulfate-nitrate-ammonium (SNA)				
879	aerosols during the extreme haze events over northern china in october 2014, Atmos. Chem.				
880	Phys., 16, 10707-10724, 2016.				
881	CMA: Regulations of Surface Meteorological Observation, China Meteorological Press, Beijing,				
882	154-156, 2004.				
883	CMA: Sand-dust weather almanac 2011, China Meteorological Press, Beijing, 36-53, 2013.				
884	Cui, W. L., Guo, R., and Zhang, H.: The Long-range Transport of Dust from MongoliaGobi to the				
885	Yangtze River Basin and itsMixing with Pollutant Aerosols, Journal of Fudan University				
886	(Natural Science), 48, 585-592, 2009a.				
887	Cui, W. L.: Chemical transformation of dust components and mixing mechanisms of dust with				
888	pollution aerosols during the long range transport from north to south China, M.S. thesis,				
889	Department of Environmental Science and Engineering, Fudan University, China, 38 pp.,				
890	<u>2009b.</u>				
891	Dai, Y.J.: Vertical distribution of characteristics of dust aerosols in the near-surface in hinterland of				
892	Taklimakan Desert, M.S. thesis, College of Resources and Environmental Science, Xinjiang				
893	University, China, 26 pp., 2016.				
894	Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell,				
895	S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., JickellsT., Kuypers, M.				
896	M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A.,				
897	Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O.,				
898	Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the				
899	open ocean, Science, 320, 893-897, 2008.				
900	Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M.,				
901	Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T.				
902	D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast,				
903	R., and Zhou, M. Y.: The atmospheric input of trace species to the world ocean, Global.				
904	Biogeochem. Cy., 5, 193-259, 1991.				
905	Echeveste, P., Agustí, S., and Tovar-Sánchez, A.: Toxic thresholds of cadmium and lead to oceanic				
906	phytoplankton: cell size and ocean basin-dependent effects, Environ. Toxicol. Chem., 31,				
907	<u>1887–1894, 2012.</u>				
908	Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and Prather, K. A.: Comparison				
909	of the mixing state of long-range transported Asian and African mineral dust, Atmos. Environ.,				

910	<u>115, 19-25, 2015.</u>				
911	Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J. D., and Hao, J. M.: Source, transport				
912	and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011, Atmos. Chem.				
913	<u>Phys., 14, 1239-1254, 2014.</u>				
914	Grice, S., Stedman, J., Kent, A., Hobson, M., Norris, J., Abbott, J., and Cooke, S.:Recent trends				
915	and projections of primary NO ₂ emissions in Europe, Atmos. Environ., 43, 2154-2167, 2009.				
916	Guo, C., Yu, J., Ho, T. Y., Wang, L., Song, S., Kong, L., and Liu, H.: Dynamics of phytoplankton				
917	community structure in the South China Sea in response to the East Asian aerosol input,				
918	Biogeosciences, 9, 1519-1536, 2012.				
919	Han, X., Ge, C., Tao, J. H., Zhang, M. G., and Zhang, R. J.: Air Quality Modeling for of a Strong				
920	Dust Event in East Asia in March 2010, Aerosol. Air. Qual. Res., 12, 615-628, 2012.				
921	Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J.,				
922	Boyd, P. W., Duce, R. A., Hunter, K., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S.,				
923	Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron				
924	connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67-71,				
925	<u>2005.</u>				
926	Kang, E., Han, J., Lee, M., Lee, G., and Kim, J. C.: Chemical characteristics of size-resolved				
927	aerosols from Asian dust and haze episode in Seoul Metropolitan City, Atmos. Res., 127, 34-46,				
928	<u>2013.</u>				
929	Li, W. J., Shao, L. Y., Shi, Z. B., Chen, J. M., Yang, L. X., Yuan, Q., Yan, C., Zhang, X. Y., Wang,				
930	Y. Q., Sun, J. Y., Zhang, Y. M., Shen, X. J., Wang, Z. F., and Wang, W. X.: Mixing state and				
931	hygroscopicity of dust and haze particles before leaving Asian continent, J. Geophys.				
932	<u>Res-Atmos, 119, 1044–1059, 2014.</u>				
933	Lin, X. H., Liu, C. L., and Zhang, H.: Determination of Metal Elements in Aerosol by ICP-AES,				
934	Rock & Mineral Analysis, 17, 143-146, 1998.				
935	Liu, L., Zhang, X. Y., Xu W., Liu, X. J., Li, Y., Lu, X. H., Zhang, Y. H., and Zhang, W. T.:				
936	Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on				
937	emission data, satellite observations and atmospheric transport modeling since 1980, Atmos.				
938	<u>Chem. Phys., 106, 1-32, 2017.</u>				
939	Liu, Q. Y., and Bei, Y. L.: Impacts of crystal metal on secondary aliphatic amine aerosol formation				
940	during dust storm episodes in Beijing, Atmos. Environ., 128, 227-334, 2016.				
941	Liu, Q. Y., Liu, Y. J., Yin, J. X., Zhang, M. G., and Zhang, T. T.: Chemical characteristics and				
942	source apportionment of PM 10 during Asian dust storm and non-dust storm days in Beijing,				
943	<u>Atmos. Environ., 91, 85-94, 2014.</u>				
944	Liu, X. H., Zhang, Y., Cheng, S. H., Xing, J., Zhang, Q., Streets, D. G., Jang, C., Wang, W. X., and				
945	Hao, J. M.: Understanding of regional air pollution over China using CMAQ, part I				
946	performance evaluation and seasonal variation, Atmos. Environ., 44, 2415-2426, 2010a.				
947	Liu, X. H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D. G., Jang, C., Wang, W. X., and Hao,				
948	J. M.: Understanding of regional air pollution over China using CMAQ, part II. Process analysis				
949	and sensitivity of ozone and particulate matter to precursor emissions, Atmos. Environ., 44,				
950	<u>3719-3727, 2010b.</u>				
951	Liu, Y., Zhang, T. R., Shi, J. H., Gao, H. W., and Yao, X. H.: Responses of chlorophyll a to added				
952	nutrients, Asian dust, and rainwater in an oligotrophic zone of the Yellow Sea: Implications for				
953	promotion and inhibition effects in an incubation experiment, J. Geophys. Res-Biogeo, 118,				

954	1763-1772, 2013.
954	1705-1772, 2015.

955	Ma, Q. X., Liu, Y. C., Liu, C., Ma, J. Z., and He, H.: A case study of Asian dust storm particles:					
956	Chemical composition, reactivity to SO2 and hygroscopic properties, J. Environ. Sci., 24, 62-71,					
957	<u>2012.</u>					
958	Mori, I., Nishikawa, M., Tanimura, T., and Quan, H.: Change in size distribution and chemical					
959	composition of kosa (Asian dust) aerosol during long-range transport, Atmos. Environ., 37,					
960	<u>4253-4263, 2003.</u>					
961	Niu, S. J., and Zhang, C. C.: Researches on Sand Aerosol Chemical Composition and Enrichment					
962	Factor in the Spring at Helan Mountain Area, Journal of Desert Research, 20, 264-268, 2000.					
963	Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian					
964	emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos.					
965	<u>Chem. Phys., 7, 4419-4444, 2007.</u>					
966	Paatero, P., and Tapper, U.: Analysis of different modes of factor analysis as least squares fit					
967	problems, Chemometr. Intell. Lab., 18, 183-194, 1993.					
968	Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometr. Intell.					
969	Lab., 37, 23-35, 1997.					
970	Penrod, A., Zhang, Y., Wang, K., Wu, S. Y. and Leung, L. R.: Impacts of future climate and					
971	emission changes on U.S. air quality, Atmos. Environ., 89, 533-547, 2014.					
972	Qi, J. H., Gao, H. W., Yu, L. M., and Qiao, J. J.: Distribution of inorganic nitrogen-containing					
973	species in atmospheric particles from an island in the Yellow Sea, Atmos. Res., 101, 938-955,					
974	<u>2011.</u>					
975	Qi, J. H., Li, P. L., Li, X. G., Feng, L. J., and Zhang, M. P.: Estimation of dry deposition fluxes of					
976	particulate species to the water surface in the Qingdao area, using a model and surrogate					
977	surfaces, Atmos. Environ., 39, 2081-2088, 2005.					
978	Qi, J. H., Shi, J. H., Gao, H. W., and Sun, Z.: Atmospheric dry and wet deposition of nitrogen					
979	species and its implication for primary productivity in coastal region of the Yellow Sea, China,					
980	<u>Atmos. Environ., 81, 600-608, 2013.</u>					
981	Sheng, Y., Yang, S., Han, Y., Zheng, Q., and Fang, X.: The concentrations and sources of nitrate in					
982	aerosol over Dolmud, Qinghai, China, Journal of Desert Research, 36, 792-797, 2016.					
983	Shi, J. H., Gao, H. W., Zhang, J., Tan, S. C., Ren, J. L., Liu, C. G., Liu, Y., and Yao, X. H.:					
984	Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in					
985	the Yellow Sea, China, J. Geophys. Res-Atmos., 117, 127-135, 2012.					
986	Shi, J. H., Zhang, J., Gao, H. W., Tan, S. C., Yao, X. H., and Ren, J. L.: Concentration, solubility					
987	and deposition flux of atmospheric particulate nutrients over the Yellow Sea, Deep-sea. Res. Pt.					
988	<u>II, 97, 43–50, 2013.</u>					
989	Skjøth C. A., and Hertel, O.: Ammonia Emissions in Europe, Urban Air Quality in Europe,					
990	Springer Berlin Heidelberg, The Handbook of Environmental Chemistry, Germany, 163 pp.,					
991	<u>2013.</u>					
992	Tan, S. C., and Wang, H.: The transport and deposition of dust and its impact on phytoplankton					
993	growth in the Yellow Sea, Atmos. Environ., 99, 491-499, 2014.					
994	Taylor, S. R.: Abundance of chemical elements in the continental crust: a new table, Geochim.					
995	Cosmochim. Ac., 28, 1273-1285, 1964.					
996	U. S., EPA.: Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold					
997	vapor atomic fluorescence spectrometry, US Environmental Protection Agency Washington, DC,					

998	2002.					
999	Uno, I., Carmichael, G. R., Streets, D. G., Tang, Y., Yienger, J. J., Satake, S., Wang, Z., Woo, J. H.,					
1000	Guttikunda, S., Uematsu, M., Matsumoto, K., Tanimoto, H., Yoshioka, K., and Iida, T.:					
1001	Regional chemical weather forecasting system CFORS: Model descriptions and analysis of					
1002	surface observations at Japanese island stations during the ACE-Asia experiment, J. Geophys.					
1003	Res-Atmos., 108, 1147-1164, 2003.					
1004	Walker, J. M., Philip, S., Martin, R. V., and Seinfeld, J. H.: Simulation of nitrate, sulfate, and					
1005	ammonium aerosols over the United States, Atmos. Chem. Phys., 12, 11213-11227, 2012.					
1006	Wang, L., Du, H. H., Chen, J. M., Zhang, M., Huang, X. Y., Tan, H. B., Kong, L. D., and Geng, F.					
1007	H.: Consecutive transport of anthropogenic air masses and dust storm plume: Two case events					
1008	at Shanghai, China, Atmos. Res., 127, 22-33, 2013.					
1009	Wang, Q. Z., Zhuang, G. S., Huang, K., Liu, T. N., Lin, Y. F., Deng, C. R., Fu, Q. Y., Fu, J. S.,					
1010	Chen, J. K., Zhang, W. J., and Yiming, M.: Evolution of particulate sulfate and nitrate along the					
1011	Asian dust pathway: Secondary transformation and primary pollutants via long-range transport,					
1012	<u>Atmos. Res., 169, 86-95, 2016.</u>					
1013	Wang, Q. Z., Zhuang, G. S., Li, J., Huang, K., Zhang, R., Jiang, Y. L., Lin, Y. F., and Fu, J. S.:					
1014	Mixing of dust with pollution on the transport path of Asian dust — Revealed from the aerosol					
1015						
1016	Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various					
1017	trajectory statistical analysis methods to identify potential sources from long-term air pollution					
1018						
1019	Wang, Y. Q., Zhang, X. Y., Gong, S. L., Zhou, C. H., Hu, X. Q., Liu, H. L., Niu, T., and Yang, Y.					
1020	Q.: Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust,					
1021	<u>Atmos. Chem. Phys., 8, 545–553, 2008.</u>					
1022	Wang, Z., Pan, X. L., Uno, I., Li, J., Wang, Z. F., Chen, X. S., Fu, P. Q., Yang, T., Kobayashi, H.,					
1023	Shimizu, A., Sugimoto, N., and Yamamoto, S.: Significant impacts of heterogeneous reactions					
1024	on the chemical composition and mixing state of dust particles: A case study during dust events					
1025	over northern China, Atmos. Environ., 159, 83-91, 2017.					
1026	Williams, R. W.: A model for the dry deposition of particles to natural water surface. Atmos.					
1027	Environ., 16, 1933-1938, 1982.					
1028	Wu, F., Zhang, D. Z., Cao, J. J., Guo, X., Xia, Y., Zhang, T., Lu, H., and Cheng, Y.: Limited					
1029	production of sulfate and nitrate on front-associated dust storm particles moving from desert to					
1030	distant populated areas in northwestern China, Atmos. Chem. Phys., 853, 1-22, 2016.					
1031	Xin, W. C., Lin, X. H., and Xu, L.: ICP-MS Determination of 34 Trace Elements in Marine					
1032	Sediments, Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 4, 29, 2012.					
1033	Xu, J. Z., Wang, Z. B., Yu, G. M., Qin, X., Ren, J. W., and Qin, D. H.: Characteristics of water					
1034	soluble ionic species in fine particles from a high altitude site on the northern boundary of					
1035	Tibetan Plateau: Mixture of mineral dust and anthropogenic aerosol, Atmos. Res., 143, 43-56,					
1036	<u>2014.</u>					
1037	Yang, D. Z., Wang, C., Wen, Y. P., Yu, X. L., and Xiu, X. B.: Ananalysis of Two Sand Storms In					
1038	Spring 1990, Quarterly Journal of Applied Meteorology, 6, 18-26, 1995.					
1039	Yang, D. Z., Yan, P., and Xu, X. D.: Characteristics of aerosols under dust and sand weather in					
1040	Beijing, Quarterly Journal of Applied Meteorology, 1, 185-194, 2002.					

40.40		
1042	atmosphere, Atmos. Chem. Phys., 12, 11165-11178, 2012.	
1043	Yao, X. H., Lau, A. S., Fang, M., Chan, C., and Hu, M.: Size Distributions and Formation of Ionic	
1044	Species in Atmospheric Particulate Pollutants in Beijing, China: 1—Inorganic Ions. Atmos.	
1045	Environ., 37, 2991-3000, 2003.	
1046	Zhang, D., and Iwasaka, Y.: Nitrate and sulfate in individual Asian dust-storm particles inBeijing,	
1047	China in spring of 1995 and 1996, Atmos. Environ.,33, 3213-3223, 1999.	
1048	Zhang, G. S., Zhang, J., and Liu, S. M.: Characterization of nutrients in the atmospheric wetand	
1049	dry deposition observed at the two monitoring sitesover Yellow Sea and East China Sea, J.	
1050	<u>Atmos. Chem., 57, 42-57, 2007.</u>	
1051 1052	Zhang, J., Zhang, G. S., Bi, Y. F., and Liu, S. M.: Nitrogen species in rainwater and aerosols of the Yellow and East China seas: Effects of the East Asian monsoon and anthropogenic emissions	
1053 1054	and relevance for the NW Pacific Ocean, Global Biogeochem. Cy., 25, 113-120, 2011.	
1054	Zhang, K., and Gao, H. W.: The characteristics of Asian-dust storms during 2000–2002: From the source to the sea, Atmos. Environ., 41, 9136-9145, 2007.	
1055	Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I.	
1050	S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions	
1057	in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131-5153, 2009.	
1050	Zhang, W. J., Zhuang, G. S., Huang, K., Li, J., Zhang, R., Wang, Q. Z., Sun, Y. L., Fu, J. S., Chen,	
1060	Y., and Xu, D. Q.: Mixing and transformation of Asian dust with pollution in the two dust	
1061	storms over the northern China in 2006, Atmos. Environ., 44, 3394-3403, 2010a.	
1062	Zhang, Y., Yu, Q., Ma, W. C., and Chen, L. M.: Atmospheric deposition of inorganic nitrogen to	
1063	the eastern China seas and its implications to marine biogeochemistry, J. Geophys. Res-Atmos,	
1064	115, 3421-3423, 2010b.	
1065		
1066	*	(带格式的: 行距: 1.5 倍行距
1000		
1067		
1068		
1069		
1070		
4074		
1071		
1072		
1072		
1073		
1074		
1075		
1075		
1076		
1077		
1078		

1081	
1082	
1083	
1084	
1085	
1086	
1087	
1088 1089	Table 1. Sampling information for the aerosol samples collected at the Baguanshan site in thecoastal region of the Yellow Sea.

Sampling	Sample category	Sampling	Sampling time Weather		
Year	<u>Sample category</u>	<u>number</u>		characteristics	
		<u>20080301</u>	From 13:22 a.m. to 17:22 p.m. on Mar. 1st	Floating dust ^a	
		20080315	From 13:21 a.m. to 17:21 p.m.on Mar. 15th	Floating dust	
	Samples on dust days	20080425	From 13:14 a.m. to 17:14 p.m. on Apr. 25th	Floating dust	
	<u></u>	20080528	From 11:38 a.m. to 15:38 p.m. on May 28th	Floating dust	
<u>2008</u>		20080529	From 10:15 a.m.to 12:15 p. m. on May 29th ^b	Floating dust	
-	<u>Samples on</u> non-dust days	<u>20080316</u>	<u>From 13:00 a.m. to 17:00</u> <u>p.m. on Mar. 16th</u>	Sunny day	
		20080424	From 13:00 a.m. to 17:00 p.m. on Apr. 24th	Sunny day	
		20080522	From 13:00 a.m. to 17:00 p.m. on May 22nd	Cloudy day with mi	
••••	Samples on dust days	20090316	From 8:25 a.m. to 12:25 p.m. on Mar. 16th	Floating dust	
<u>2009</u> -	Samples on <u>non-dust days</u>	<u>20090306</u>	<u>From 13:00 a.m.to 17:00</u> <u>p.m. on Mar. 6th</u>	<u>Sunny day</u>	
	Samples on dust_	<u>20100315</u>	<u>From 11:30 a.m.to 15:30</u> p.m. on Mar. 16th	Mist after floating dust	
<u>2010</u>		20100320	From 10:30 a.m. to 14:30 p.m. on Mar. 20th	Floating dust	
		<u>20100321</u>	<u>From 10:30 a.m. to 14:30</u> <u>p.m. on Mar. 21st</u>	Floating dust	
-	Samples on	20100324	From 11:30 a.m. to 15:30	Sunny day	

	non-dust days p.m. on Mar. 24th					
		Samples on dust days	<u>20110319</u>	From 12:00 a.m. to 16:00 p.m. on Mar. 19th	Floating dust	
			20110415	From 12:00 a.m. to 16:00 p.m. on Apr. 15th	Floating dust	
			20110418	From 12:25 a.m. to 16:25 p.m. on Apr. 18th	Floating dust ^c	
			20110501	From 12:10 a.m. to 16:10 p.m. on May 1st	Floating dust	
	<u>2011</u>		20110502	From 16:00 a.m. to 20:00 p.m. on May 2nd	Floating dust	
			<u>20110308</u>	From 12:00 a.m. to 16:00 p.m. on Mar. 8th	Sunny day	
		Samples on non-dust days	20110416	<u>From 12:00 a.m. to 16:00</u> <u>p.m. on Apr. 16th</u>	Sunny day	
			20110523	From 12:00 a.m. to 16:00 p.m. on May 23rd	Sunny day	
1090	^a Note that one exterior dust sample was collected on March 1 when no dust was recorded by the					
1091	MICAPS. H	lowever, the MICAI	PSinformation	indeed showed dust events in	China on March 1. The	
1092	modeled spa	tial distribution of the	hePM ₁₀ mass c	concentration for this dust event	on March 1 implies that	
1093	the sample s	hould be classified a	is adust sample	. The supporting figureisFig. S1	<u>l. </u>	
1094	^b The sampli	ng duration was redu	iced to only 2 l	nrs because of extremely high pa	article loads.	
1095	Note that of	one exterior dust sa	mple was col	lected on April 18when no du	ist was recorded by the	
1096	MICAPS. H	lowever, blowing du	ist occurred ar	nd was recorded on April 17 b	y the Sand-dust weather	
1097	almanac 201	<u>11 (CMA, 2013). Th</u>	e modeled spa	tial distribution of the PM10 ma	ass concentration for this	
1098	dust eventor	n April 18implies th	nat the sample	should be classified as adust	sample. The supporting	
1099	figure is Fig	<u>. 82.</u>				
1100						
1101						
1102						
1103						
1104						
1105						
1106						
1107						
1108						
1109						
1110						
1111						
1112						
1113						
1114						
1115						
1116						

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

 Table 2.Detection limits, precisions and recoveries of water-soluble ions and metal elements.

Component	Measurement	Detection limit	Precision	Recovery (%)
Component	method	<u>(μg·L⁻¹)</u>	<u>(RSD%)</u>	<u>Recovery (76)</u>
<u>NO₃=</u>		<u>2.72</u>	<u>1.54</u>	<u>97</u>
<u>SO4</u> 2-	IC	<u>1.62</u>	<u>1.55</u>	<u>98</u>
\underline{NH}_{4}^{\pm}	<u>IC</u>	<u>0.4</u>	<u>1.10</u>	<u>97</u>
$\frac{SO_4^{2-}}{NH_4^{\pm}}$ $\frac{Ca^{2+}}{Ca^{2+}}$		<u>0.44</u>	<u>0.79</u>	<u>94</u>
<u>Cu</u>	ICP-MS (Xin et	<u>0.006</u>	<u>4.0</u>	<u>106</u>
<u>Zn</u>	<u>al., 2012)</u>	<u>0.009</u>	<u>2.5</u>	<u>102</u>
<u>Cr</u>		<u>0.004</u>	<u>3.0</u>	<u>95</u>
<u>Sc</u>		<u>0.002</u>	<u>2.4</u>	<u>97</u>
<u>Pb</u>		<u>0.008</u>	<u>3.9</u>	<u>104</u>
<u>A1</u>	ICP-AES (Lin et	<u>7.9</u>	<u>0.6</u>	<u>103</u>
<u>Ca</u>	<u>al., 1998)</u>	<u>5.0</u>	<u>1.2</u>	<u>99</u>
<u>Fe</u>		<u>2.6</u>	<u>0.7</u>	<u>104</u>
<u>Na</u>		<u>3.0</u>	<u>0.6</u>	<u>99</u>
<u>Mg</u>		<u>0.6</u>	<u>0.6</u>	<u>105</u>
<u>Hg</u>	<u>CVAFS</u>	<u>0.0001</u>	<u>6.6</u>	<u>105</u>
As	<u>CVAFS</u>	<u>0.1</u>	<u>5.0</u>	<u>98</u>

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

Table 3. Theaverage	concentrations and	EFs of metal elements	on dust and non-dust days.

<u>Element</u>	Concentratio	on (ng/m^3)	EF	*
	Non-dust days	Dust days	<u>Non-dust days</u>	Dust days
<u>Sc</u>	<u>1.11</u>	<u>13.90</u>		=
<u>Al</u>	8.53×10^{3}	<u>6.86×10⁴</u>	<u>3.8</u>	<u>1.4</u>
Fe	4.91×10^{3}	<u>3.88×10⁴</u>	<u>3.</u>	<u>1.2</u>
<u>Ca</u>	1.05×10^{4}	4.29×10^{4}	<u>14.0</u>	<u>2.1</u>
<u>Mg</u>	1.62×10^{3}	1.58×10^{4}	<u>3.5</u>	<u>1.1</u>
Cu	<u>50.2</u>	<u>124.5</u>	<u>36.3</u>	<u>6.1</u>
<u>Pb</u>	<u>127.9</u>	<u>221.0</u>	<u>389.4</u>	<u>56.1</u>
<u>Zn</u>	<u>340.0</u>	<u>457.7</u>	<u>248.9</u>	<u>20.6</u>
<u>Cr</u>	<u>33.8</u>	<u>244.0</u>	<u>44.0</u>	<u>11.1</u>
<u>Hg</u>	<u>0.26</u>	<u>0.36</u>	<u>176.0</u>	<u>13.8</u>
As	<u>25.5</u>	<u>27.4</u>	<u>707.2</u>	<u>43.9</u>

1157 *EF valuesless than 10 indicate that the studied element is derived mainly from crustal
1158 sources,whereasEF valuesmuch higher than 10 indicate anthropogenic source.

Table 4. Average concentrations of inorganic nitrogen (DIN), TSP, NOx, relative humidity (RH) and air
 temperature for each aerosol samplecategoryin Qingdao.

	Sample number	<u>TSP</u> μg·m ⁻³	<u>NO3⁼</u> µg·m ⁻³	$\frac{\mathrm{NH}_4^{\pm}}{\mu \mathrm{g} \cdot \mathrm{m}^{-3}}$	<u>RH</u> <u>%</u>	<u>Т</u> <u>°С</u>	<u>NOx</u> μg·m ⁻³	<u>Summary</u>
	<u>20080301</u>	<u>527</u>	<u>20.5</u>	<u>12.7</u>	<u>57</u>	<u>7.0</u>	<u>36</u>	
	<u>20080315</u>	<u>410</u>	<u>19. 5</u>	<u>29.9</u>	<u>62</u>	<u>11.0</u>	<u>59</u>	DIN concentrationon
Category 1	<u>20090316</u>	<u>688</u>	<u>15.9</u>	<u>17.2</u>	<u>27</u>	<u>16.0</u>	<u>75</u>	dust days higher than
	<u>20100321</u>	<u>519</u>	<u>16.5</u>	<u>9.4</u>	<u>51</u>	<u>8.8</u>	<u>76</u>	that on non-dustdays
	<u>20110502</u>	<u>810</u>	<u>21.0</u>	<u>11.0</u>	<u>49</u>	<u>17.7</u>	<u>62</u>	
	<u>20080425</u>	<u>622</u>	<u>6.8</u>	<u>2.0</u>	<u>30</u>	<u>18.0</u>	<u>40</u>	
	<u>20080528</u>	<u>2579</u>	<u>9.2</u>	<u>2.7</u>	<u>17</u>	<u>27.0</u>	<u>34</u>	DIN concentrationon
Category 2	<u>20080529</u>	<u>2314</u>	<u>17.5</u>	<u>4.8</u>	<u>60</u>	<u>20.0</u>	<u>29</u>	dust days lower than that on non-dust days
	<u>20110319</u>	<u>939</u>	<u>12.3</u>	<u>9.4</u>	<u>16</u>	<u>12.6</u>	<u>93</u>	<u>that on non-dust days</u>
	<u>20110501</u>	<u>502</u>	<u>4.5</u>	<u>5.3</u>	<u>23</u>	<u>21.6</u>	<u>66</u>	
	<u>20100315</u>	<u>501</u>	<u>5.4</u>	<u>4.3</u>	<u>30</u>	<u>7.2</u>	<u>73</u>	$\underline{NO_3}$ concentration
Category 3	<u>20100320</u>	<u>3857</u>	<u>5.5</u>	<u>3.4</u>	<u>35</u>	<u>10.6</u>	<u>92</u>	on dust days lower than that on non-dust
	<u>20110418</u>	<u>558</u>	<u>3.8</u>	<u>6.6</u>	<u>33</u>	<u>12.6</u>	<u>47</u>	<u>days;NH₄⁺close to</u> <u>that on non-dust days</u>
	<u>20080316</u>	<u>225</u>	<u>12.6</u>	<u>8.4</u>	<u>28</u>	<u>11.0</u>	<u>60</u>	
<u>Non-dust^a</u>	<u>20080424</u>	<u>137</u>	<u>21.7</u>	<u>7.2</u>	<u>49</u>	<u>18.0</u>	<u>53</u>	
 	<u>20080522</u>	<u>206</u>	<u>27.4</u>	<u>16.6</u>	<u>78</u>	<u>20.0</u>	<u>60</u>	

		20090306	<u>94</u>	<u>2.9</u>	<u>3.0</u>	<u>29</u>	<u>7.00</u>	<u>51</u>
		<u>20100324</u>	<u>275</u>	<u>7.2</u>	<u>2.4</u>	<u>23</u>	<u>9.0</u>	<u>82</u>
		<u>20110308</u>	<u>194</u>	<u>13.0</u>	<u>13.1</u>	<u>20</u>	<u>11.5</u>	<u>111</u>
		<u>20110416</u>	<u>252</u>	<u>5.6</u>	<u>5.4</u>	<u>26</u>	<u>14.1</u>	<u>55</u>
		<u>20110523</u>	<u>224</u>	<u>15.2</u>	<u>10.2</u>	<u>42</u>	<u>20.6</u>	<u>49</u>
9	^a For the corresp	onding non-dust	day for eac	h dust eve	nt, see Ta	ble 1.		

Table 5. Comparison of the inorganic nitrogen (DIN) content in sandand aerosol particles on dust daysor close to the dust source region (unit: $\mu g/g$)

Sands sampled	<u>in dust sou</u>	rce regions	Aerosols in or cl region on dust day		<u>ist source</u>	Aerosols in the coastal region		
Study region and	Relative co	oncentration ^a	Study region and	<u>Relative</u> concentration ^a		of the Yellow Sea		
data source	<u>NO3</u> =	\underline{NH}_{4}^{\pm}	data source	<u>NO3</u> =	$\underline{NH_4}^{\pm}$	<u>NO3</u> ⁼	\underline{NH}_{4}^{\pm}	
<u>Zhurihe (This</u> study)	<u>25.46±</u> <u>22.87</u>	<u>4.21±</u> <u>1.03</u>	<u>Duolun (Cui,</u> 2009)	<u>1200</u>	<u>900</u>	<u>Non-dust:</u> 28,200±24,819	<u>Non-dust:</u> 24,063±21,515	
AlxaLeft Banner, Inner Mongolia (NiuandZhang, 2000)	<u>62.1±7.4</u>	<u>79.1±1.1</u>	<u>AlxaRightBanner,</u> <u>Inner Mongolia</u> (NiuandZhang, 2000)	<u>1975^b</u>	<u>4091^b</u>	<u>Category 1:</u> <u>34,892±9570</u>	<u>Category 1:</u> 22,571±7,016	
Yanchi, Ningxia (NiuandZhang, 2000)	<u>46.4±2.2</u>	<u>80.9±1.3</u>	Hinterland of theTaklimakan Desert, Xinjiang (Dai et al., 2016)	<u>142-233</u>	<u>2-15</u>	<u>Category 2:</u> <u>5,542±5,117</u>	<u>Category 2:</u> 4 <u>.758±5,698</u>	
			Average of SonidYouqi, Huade (Inner Mongolia), Zhangbei (Hebei) (Mori et al., 2003)	<u>253</u>	<u>710</u>	<u>Category 3:</u> 6,359±4,697	<u>Category 3:</u> 7.059±5,591	

				Yulin, tl	he north edg	<u>ze</u>					
				<u>of Lo</u>	ess Plateau	<u>216.4</u>	<u>80.6</u>				
				(Wang	et al., 2011)					
				<u>G</u>	olmud,						
				Qinghai	(Sheng et a	<u>I., 892.9</u>	<u></u>				
				1	<u>2016)</u>						
				Hoh	hot, Inner						
					a (Yang et a	<u>ıl., 588.1</u>	<u>No data</u>				
				-	<u>1995)</u>						
^a Relative con	centration of	f DIN per ac	erosol part	icle mass							
^b Samples col	lected on a f	floating dus	t day (Hor	izontalvis	sibility less	than 10000	m and very lov	w wind speed	<u>1)</u>		
^c The ammon	ium concent	ration was l	lower than	the detec	ction limit o	f the analyti	cal instrument	-			
Table 6.0	`oncentra	tions of	TSP N	JO₂ [±] a	nd NH_4^+	• transno	ort speed:	transport	distance	e over the	- Sf
				_			ort speed;				
transport of	distance;	air tem	perature	; RH;	average	mixed la	iyer during				
transport of polluted re	distance; egion for	air temp atmosph	perature eric aer	; RH; osol sa	average mples on	mixed la	iyer during <u>'s.</u>	transpor	t and tra	ansport ti	me
transport of	distance; egion for Sample	<u>air tem</u> atmosph <u>TSP</u>	perature eric aer <u>NO₃=</u>	; RH; osol sa <u>NH4</u> [±]	average mples on Speed	mixed la dust day Distanc	iyer during <u>'s.</u> <u>Transport</u>	transpor	t and tra	<u>ansport tin</u>	<u>me</u>
transport of polluted re	distance; egion for Sample	air temp atmosph	perature eric aer <u>NO₃=</u>	; RH; osol sa <u>NH4</u> [±]	average mples on Speed	mixed la dust day Distanc e over	yer during <u>'s.</u> <u>Transport</u> <u>altitude</u>	transpor Mixed layer	<u>t and tra</u> <u>Residenc</u> <u>e time^a</u>	ansport ti	<u>me</u>
transport of polluted re	distance; egion for Sample	<u>air tem</u> atmosph <u>TSP</u>	perature eric aer <u>NO₃=</u>	; RH; osol sa <u>NH4</u> [±]	average mples on Speed	mixed la dust day Distanc e over the sea	iyer during <u>'s.</u> <u>Transport</u>	<u>Mixed</u> layer depth	t and tra	<u>ansport tin</u>	<u>me</u>
transport of polluted re	distance; egion for Sample	<u>air tem</u> atmosph <u>TSP</u>	perature eric aer <u>NO₃=</u>	; RH; osol sa <u>NH4</u> [±]	average mples on Speed	mixed la dust day Distanc e over	yer during <u>'s.</u> <u>Transport</u> <u>altitude</u>	transpor Mixed layer	<u>t and tra</u> <u>Residenc</u> <u>e time^a</u>	<u>ansport tin</u>	<u>me</u>
transport of polluted re	distance; egion for Sample	<u>air tem</u> atmosph <u>TSP</u>	perature eric aer <u>NO3⁻</u> (μg/g)	; RH; osol sa <u>NH4</u> [±]	average mples on Speed	mixed la dust day Distanc e over the sea	yer during <u>'s.</u> <u>Transport</u> <u>altitude</u>	<u>Mixed</u> layer depth	<u>t and tra</u> <u>Residenc</u> <u>e time^a</u>	<u>ansport tin</u>	<u>R</u>
transport of polluted re	distance; egion for Sample number	air temp atmosph TSP (µg/m ³)	<u>eric aer</u> <u>NO3⁻</u> (μg/g) <u>38,984</u>	; RH; osol sa <u>NH4[±]</u> (µg/g)	average mples on Speed (km/h) <u>40.1</u>	mixed la dust day Distanc e over the sea (km) <u>0</u>	yer during <u>S.</u> <u>Transport</u> <u>altitude</u> (m)	transpor Mixed layer depth (m) 864±745	rt and tra Residenc e time ^a (h) <u>39</u>	<u>T^b</u> (°C)	<u>R</u> (? 29)
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315	air temp atmosph TSP (µg/m ³) 527 410	<u>eric aer</u> <u>NO₃⁻</u> (μg/g) <u>38,984</u> <u>47,611</u>	; RH; osol sa <u>NH4[±]</u> (µg/g) 24,107 <u>34,130</u>	average mples on Speed (km/h) 40.1 79.1	mixed la dust day Distanc e over the sea (km) <u>0</u>	yer during <u>Transport</u> <u>altitude</u> (m) <u>1,160±702</u> <u>4,921±1,870</u>	Mixed layer depth (m) 864±745 950±525	t and tra <u>Residenc</u> <u>e time^a</u> (h) <u>39</u> <u>13</u>	<u>T^b</u> (°C) -2.9±11.7	<u>R</u> (? 29)
transport of polluted re Group	distance; egion for Sample number	air temp atmosph TSP (µg/m ³) 527	<u>eric aer</u> <u>NO₃⁻</u> (μg/g) <u>38,984</u> <u>47,611</u>	; RH; <u>osol sa</u> <u>NH4</u> [±] (μg/g) 24,107	average mples on Speed (km/h) <u>40.1</u>	mixed la dust day Distanc e over the sea (km) <u>0</u>	yer during <u>Transport</u> <u>altitude</u> (m) <u>1.160±702</u>	Mixed layer depth (m) 864±745 950±525	rt and tra Residenc e time ^a (h) <u>39</u>	<u>T^b</u> (°C) -2.9±11.7	<u>R</u> (<u>0</u> <u>29</u> <u>34</u>
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315	air temp atmosph TSP (µg/m ³) 527 410	<u>NO3[±]</u> (μg/g) <u>38,984</u> <u>47,611</u> <u>23,050</u>	; RH; osol sa <u>NH4[±]</u> (µg/g) 24,107 <u>34,130</u>	average mples on Speed (km/h) 40.1 79.1	mixed la dust day Distanc e over the sea (km) <u>0</u>	yer during <u>Transport</u> <u>altitude</u> (m) <u>1,160±702</u> <u>4,921±1,870</u>	transpor Mixed layer depth (m) 864±745 950±525 702±665	t and tra <u>Residenc</u> <u>e time^a</u> (h) <u>39</u> <u>13</u>	<u>T^b</u> (°C) -2.9±11.7 -32.5± 16.4	<u>R</u> (? <u>29</u> : <u>34:</u> 42:
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315 090316 100321	air temp atmosph TSP (µg/m ³) 527 410 688 519	<u>NO3[±]</u> (μg/g) <u>38,984</u> <u>47,611</u> <u>23,050</u> <u>31,741</u>	; RH; osol sa <u>NH4</u> [±] (μg/g) 24,107 34,130 25,012 18,155	average mples on Speed (km/h) 40.1 79.1 86.2 87.2	mixed la dust day Distanc e over the sea (km) 0 0 0 0	yer during (<u>s.</u> Transport altitude (m) 1,160±702 4,921±1,870 3,739±1083 3,407±1,249	x transport	t and tra Residenc e time ^a (h) 39 13 11 19	<u>T^b</u> (°C) -2.9±11.7 -32.5± 16.4 -19.1±11.7 -23.0±13.6	<u>R</u> (?) <u>29</u> <u>34</u> : <u>42</u> :
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315 090316	air temp atmosph TSP (µg/m ³) 527 410 688	<u>NO3[±]</u> (μg/g) <u>38,984</u> <u>47,611</u> <u>23,050</u> <u>31,741</u>	; RH; osol sa NH ₄ [±] (µg/g) 24,107 34,130 25,012	average mples on Speed (km/h) 40.1 79.1 86.2	mixed la dust day Distanc e over the sea (km) 0 0 0	yer during (<u>s.</u> Transport altitude (m) 1,160±702 4,921±1,870 3,739±1083	x transport	t and tra Residenc e time ^a (h) 32 13 11	<u>T^b</u> (°C) -2.9±11.7 -32.5± 16.4 -19.1±11.7	<u>R</u> (?) <u>29</u> <u>34</u> : <u>42</u> :
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315 090316 100321	air temp atmosph TSP (µg/m ³) 527 410 688 519	<u>NO3[±]</u> (μg/g) <u>38,984</u> <u>47,611</u> <u>23,050</u> <u>31,741</u>	; RH; osol sa <u>NH4</u> [±] (μg/g) 24,107 34,130 25,012 18,155	average mples on Speed (km/h) 40.1 79.1 86.2 87.2	mixed la dust day Distanc e over the sea (km) 0 0 0 0	yer during <u>Transport</u> <u>altitude</u> (m) <u>1,160±702</u> <u>4,921±1,870</u> <u>3,739±1083</u> <u>3,407±1,249</u> <u>3,666±1,371</u>	x transport	t and tra Residence e time ^a (h) 39 13 11 19 26	<u>T^b</u> <u>(°C)</u> -2.9±11.7 -32.5± 16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8	me R (? 29) 34 42: 42: 31:
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315 090316 100321 110502	air temp atmosph TSP (µg/m ³) 527 410 688 519 810	NO3 [±] μg/g) 38,984 47,611 23,050 31,741 25,995	; RH; osol sa <u>NH4</u> [±] (μg/g) 24,107 34,130 25,012 18,155 13,632	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2	mixed la dust day Distanc e over the sea (km) 0 0 0 0 0 177	yer during (<u>s.</u> Transport altitude (m) 1,160±702 4,921±1,870 3,739±1083 3,407±1,249	x transport Mixed layer depth (m) 864±745 950±525 702±665 1.113±760 747±957	t and tra Residenc e time ^a (h) 39 13 11 19	<u>T^b</u> (°C) -2.9±11.7 -32.5± 16.4 -19.1±11.7 -23.0±13.6	me R (? 29 34 42 42 31
transport of polluted re Group Category 1	distance; egion for Sample number 080301 080315 090316 100321 110502 080425	air tem atmosph TSP (µg/m ³) 527 410 688 519 810 256	NO3 [±] μg/g) 38.984 47.611 23.050 31.741 25.995 4.089	; RH; osol sa NH ₄ [±] (μg/g) 24,107 34,130 25,012 18,155 13,632 372	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2 29.6	mixed la dust day Distanc e over the sea (km) 0 0 0 0 177 0 0	yer during (<u>s.</u> Transport. altitude (m) 1,160±702 4,921±1,870 3,739±1083 3,407±1,249 3,666±1,371 <u>887±656</u>	transpor Mixed layer depth (m) <u>864±745</u> <u>950±525</u> 702±665 1,113±760 747±957 1,161±1,04 <u>0</u>	t and tra Residenc e time ^a (h) 39 13 11 19 26 10	Tb (°C) -2.9±11.7 -32.5±16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8 -2.7±6.1	me <u>R</u> (1) <u>29</u> <u>34</u> <u>42</u> <u>31</u> <u>66</u>
transport of polluted re Group Category 1	distance; egion for Number 080301 080301 080315 090316 100321 110502 080425 080425	air temp atmosph TSP (µg/m ³) 527 410 688 519 810	NO3 [±] μg/g) 38,984 47,611 23,050 31,741 25,995	; RH; osol sa <u>NH4</u> [±] (μg/g) 24,107 34,130 25,012 18,155 13,632	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2	mixed la dust day Distanc e over the sea (km) 0 0 0 0 0 177	yer during <u>Transport</u> <u>altitude</u> (m) <u>1,160±702</u> <u>4,921±1,870</u> <u>3,739±1083</u> <u>3,407±1,249</u> <u>3,666±1,371</u>	transpor Mixed layer depth (m) <u>864±745</u> <u>950±525</u> 702±665 1,113±760 747±957 1,161±1,04 <u>0</u>	t and tra Residence e time ^a (h) 39 13 11 19 26	<u>T^b</u> <u>(°C)</u> -2.9±11.7 -32.5± 16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8	me <u>R</u> (1) <u>29</u> <u>34</u> <u>42</u> <u>31</u> <u>66</u>
transport of polluted re Group Category 1 IN>ND	distance; egion for Number 080301 080301 080315 090316 100321 110502 080425 080425	air tem atmosph TSP (µg/m ³) 527 410 688 519 810 256	NO3 [±] μg/g) 38.984 47.611 23.050 31.741 25.995 4.089	; RH; osol sa NH ₄ [±] (μg/g) 24,107 34,130 25,012 18,155 13,632 372	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2 29.6	mixed la dust day Distanc e over the sea (km) 0 0 0 0 177 0 0	yer during (<u>s.</u> Transport. altitude (m) 1,160±702 4,921±1,870 3,739±1083 3,407±1,249 3,666±1,371 <u>887±656</u>	transpor Mixed layer depth (m) <u>864±745</u> <u>950±525</u> 702±665 1,113±760 747±957 1,161±1,04 0 1,064±830	t and tra Residenc e time ^a (h) 39 13 11 19 26 10	Tb (°C) -2.9±11.7 -32.5±16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8 -2.7±6.1	me <u>R</u> (? <u>29-</u> <u>34-</u> <u>42-</u> <u>42-</u> <u>42-</u> <u>31-</u> <u>66-</u> <u>31-</u> <u>31-</u>
transport of polluted re Group Category 1 IN>ND	distance; egion for Sample number 080301 080315 090316 100321 110502 080425 080528 080529	air temp atmosph (µg/m ³) 527 410 688 519 810 256 2579 2314	NO3 [±] NO3 [±] (μg/g) 38,984 47,611 23,050 31,741 25,995 4,089 232 26	; RH; osol sa NH ₄ [±] (μg/g) 24,107 34,130 25,012 18,155 13,632 372 372 72 166	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2 29.6 88.2 63.7	mixed la dust day Distanc e over the sea (km) 0 0 0 0 0 177 0 177 0 244 94	yer during (<u>s.</u> Transport altitude (m) 1.160±702 4.921±1.870 3.739±1083 3.407±1.249 3.666±1.371 887±656 4.336±1461 2.148±1.725	transpor Mixed layer depth (m) <u>864±745</u> <u>950±525</u> 702±665 1.113±760 747±957 1.161±1.04 0 1.064±830 1.194±816	t and tra Residenc e time ^a (h) 39 13 11 19 26 10 8 43	Tb C°C) -2.9±11.7 -32.5±16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8 -2.7±6.1 -15.5±13.6 3.6±18.4	me <u>R</u> (2) <u>29</u> <u>34</u> : <u>42</u> : <u>31</u> : <u>31</u> : <u>25</u> : <u>25</u> :
transport of polluted re Group Category 1 IN>ND	distance; egion for Sample number 080301 080315 090316 100321 110502 080425 080528 080528	air temp atmosph TSP (µg/m ³) 527 410 688 519 810 256 2579	NO3 [±] NO3 [±] (μg/g) 38,984 47,611 23,050 31,741 25,995 4,089 232 26	; RH; osol sa NH ₄ [±] (μg/g) 24,107 34,130 25,012 18,155 13,632 372 72	average mples on Speed (km/h) 40.1 79.1 86.2 87.2 30.2 29.6 88.2	mixed la dust day Distanc e over the sea (km) 0 0 0 0 0 177 0 177 0 244	yer during (<u>s.</u> Transport. altitude (m) 1,160±702 4,921±1,870 3,739±1083 3,407±1,249 3,666±1,371 887±656 4,336±1461	transpor Mixed layer depth (m) <u>864±745</u> <u>950±525</u> 702±665 1.113±760 747±957 1.161±1.04 0 1.064±830 1.194±816	t and tra Residenc e time ^a (h) 39 13 11 19 26 10 <u>8</u>	Tb C°C) -2.9±11.7 -32.5±16.4 -19.1±11.7 -23.0±13.6 -13.2±15.8 -2.7±6.1 -15.5±13.6	me <u>R</u> (¹) <u>29</u> <u>34</u> <u>42</u> <u>42</u> <u>31</u> <u>66</u> <u>31</u> <u>25</u>

	<u>100315</u>	<u>501</u>	<u>10,767</u>	<u>8,515</u>	<u>57.3</u>	<u>0</u>	<u>5,009±1410</u>	<u>1,110±365</u>	<u>7</u>	-40.4±13.3	45:
Category 3 NO ₃ ⁻ <nd< td=""><td><u>100320</u></td><td><u>3857</u></td><td>1 410</td><td><u>884</u></td><td><u>76.9</u></td><td>0</td><td>1 284 401</td><td>505 271</td><td>10</td><td>12.216.2</td><td>(1</td></nd<>	<u>100320</u>	<u>3857</u>	1 410	<u>884</u>	<u>76.9</u>	0	1 284 401	505 271	10	12.216.2	(1
<u>NH₄</u> ⁺≅ND	<u>110418</u>	<u>558</u>	<u>1,418</u>	<u>884</u>	<u>35.6</u>	<u>0</u> <u>931</u>	<u>1,284±401</u> <u>1,344±780</u>	<u>525±371</u> <u>695±672</u>	<u>10</u> <u>2</u>	<u>-12.2±6.3</u> <u>-0.1±8.2</u>	<u>52</u>
Table 7. S	Sources an	nd sour	rce cont	ribution	s (expre	essed in	%) calculat	ted for ae	rosolsa	amples col	lec
Table 7. S				ribution	<u>s (expre</u>	essed in	%) calculat	ted for ae	rosolsa	amples col	<u>lec</u>
	t and non-			ribution		essed in parison d		ted for ae	rosolsa	amples col	<u>lec</u>
during dus	t and non-	dust ev				oarison d		ted for ae		amples col	<u>lec</u>
during dus	<u>t and non-</u>	dust ev	<u>vents</u>		Comp	<u>arison d</u> <u>e</u>				amples col	<u>lec</u>
during dus Dust even Source	<u>t and non-</u> n <u>t</u>	dust ev	<u>vents</u> <u>% of TS</u>		Comp Sourc	oarison d <u>e</u> ust		<u>% of TS</u>		amples col	<u>lec</u>
during dus Dust even Source Soil dust	<u>t and non-</u> <u>nt</u> <u>l</u>	dust ev	<u>vents</u> <u>% of TS</u> <u>36</u>		Comp Sourc Soil d Indust	oarison d <u>e</u> ust	lays	<u>% of TSI</u> 23		amples col	<u>lec</u>
during dus Dust even Source Soil dust Industria	<u>t and non-</u> nt <u>l</u> y aerosol	dust ev	<u>vents</u> <u>% of TS</u> <u>36</u> <u>21</u>		Comp Sourc Soil d Indust Secon	<u>arison d</u> <u>e</u> ust trial	lays rosol	<u>% of TSI</u> 23 24		amples col	<u>lec</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	<u>t and non-</u> nt <u>l</u> y aerosol	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u>		Comp Sourc Soil d Indust Secon Bioma	oarison d e ust trial dary aei	lays rosol ing	% of TSI 23 24 23		amples col	lec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Sourc Soil d Indust Secon Bioma	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	% of TSI 23 24 23 16		amples col	llec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	lec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	<u>llec</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	<u>lec</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		<u>-</u> -	<u>le</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	<u>le</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	<u>le</u>
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	llec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	llec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	llec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	lec
during dus Dust even Source Soil dust Industria Secondar Oil comb	t and non- nt L y aerosol ustion mbustion	dust ev	<u>% of TS</u> <u>36</u> <u>21</u> <u>6</u> <u>6</u>		Comp Source Soil d Indust Secon Bioma Coal d	e <u>e</u> ust trial idary aei ass burn combust	lays rosol ing	<u>% of TSI</u> 23 24 23 16 5		amples col	lec

						itrogen	(mg N/m ² /1	nonth) and
some toxic trace	metals (mg	<u>/m²/month</u>) on dust a	nd non-dust	<u>days.</u>			
				Dry deposit	<u>ion flux</u>			
	<u>TSP</u>	<u>NO3⁻-N</u>	<u>NH4</u> ⁺ -N	<u>N_{NH4++NO3}-</u>	Fe	<u>Cu</u>	<u>Pb</u>	<u>Zn</u>
Category 1 ^a	<u>8,000±</u> 1800	<u>65±9</u>	<u>24±14</u>	<u>90±17</u>	<u>533±179</u>	<u>2±0.3</u>	<u>0.3±0.3</u>	<u>6±2</u>
	some toxic trace	some toxic trace metals (mg	$\frac{\text{some toxic trace metals (mg/m²/month}}{\text{TSP} NO_3 - N}$ $\frac{\text{Category 1}^a}{8,000\pm} \frac{65\pm9}{5\pm9}$	$\text{some toxic trace metals (mg/m2/month) on dust and the second sec$	some toxic trace metals (mg/m²/month) on dust and non-dust Dry deposit TSP NO3 ⁻ -N NH4 ⁺ -N NIH4++NO3 ⁻ Category 1 ^a 8,000± 65±9 24±14 90±17	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Dry deposition flux TSP NO3 ⁻ -N NH4 ⁺ -N N _{NH4++NO3⁻} Fe Cu Pb Category 1 ^a 8,000± 65±9 24±14 90±17 533±179 2±0.3 0.3±0.3

<u>1300±100</u> <u>3±2</u> <u>0.08±0.04</u>

<u>2100±220</u> <u>6±1</u> <u>0.20±0.02</u>

<u>190±110</u> <u>1±1</u> <u>0.09±0.1</u>

<u>0</u>

<u>0</u>

<u>4±1</u>

<u>5±3</u>

<u>5±4</u>

<u>Category 2^a</u> $18000\pm$

Category 3^a

Non-dust

11,000

<u>29,000±</u>

<u>31,000</u>

<u>2,800±</u>

<u>700</u>

<u>13±18</u>

<u>26±6</u>

<u>48±33</u>

<u>8±4</u>

<u>17±8</u>

<u>15±8</u>

 a For the characterization of $N_{NH4++NO3}$ - concentration and sample information of the category, see in Table 3.

<u>21±22</u>

<u>42±12</u>

<u>63±39</u>

1269 1270

Table 9. Comparison of dry deposition flux and normalized flux of TSP (mg/m²/month) and N_{NH4++NO3}-(mg N/m²/month) with observations from other studies(mg N/m²/month)

	Source	Year	<u>Area</u>		<u>TSP</u>	<u>N_{NH4++NO3}</u>	- Normalized
							<u>average</u> <u>flux of</u> N ^a
			Qingdao, coastal	Non-dust day	<u>2,800±700</u>	<u>63±39</u>	<u>N_{NH4++NO3}-^a</u> <u>93.90</u>
	This work	<u>2008-</u>	region of the Yellow	Dust day	<u>10,138±15,940</u>	<u>58±36</u>	<u>101.39</u>
		<u>2011</u>	<u>Sea</u>	Average of dust and non-dust			<u>97.64</u>
	Qi et al., 2013	<u>2005-</u> 2006	Qingdao, coastal region of the Yellow Sea	Average of nine months samples	<u>159.2 - 3,172.9</u>	<u>1.8-24.5</u>	<u>94.75</u>
	<u>Zhang et al.,</u> <u>2011</u>	<u>1997-</u> <u>2005</u>	Qingdao	<u>Average of</u> annual samples		<u>132</u>	<u>99.65</u>
	<u>Zhang et al.,</u> 2007	<u>1999-</u> <u>2003</u>	The Yellow Sea			<u>11.43</u>	<u>9.91</u>
	<u>Shi et al.,</u>	2007	The Yellow Sea	<u>Non-dust day</u>		<u>19.2</u>	<u>132.17</u>
	<u>2013</u>	2007	<u>- 110 TOHON SUU</u>	<u>Dust day</u>		<u>104.4</u>	<u>227.07</u>

Figure 2.Modeleddust concentrations over East Asia by CFORSmodel during each dust sampling day
 from 2008 to 2011(http://www-cfors.nies.go.jp/). (The figures showthe modeled dust concentration

1336 inthe middle of each sampling duration). Nodata are available forMar.19, 2011, because of the

---- **带格式的:** 行距: 1.5 倍行距

页 24: [1] 带格式的	微软用户	2017/6/19 15:53:00
字体: 10 磅		
页 24: [1] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00

页 24: [2]	带格式的	微软用户	2017/6/19	15:5

字体:10 磅

页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [2] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00

字体:10 磅

页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体:10 磅		
〒 04、「0] 世故 予始	御故田白	9017/6/10 15.59.00
页 24: [3] 带格式的	微软用户	2017/6/19 15:53:00
字体: 10 磅		
页 24: [4] 带格式的	微软用户	2017/7/11 13:17:00
字体: (默认) Times New Roman, 10 磅		
页 24: [4] 带格式的	微软用户	2017/7/11 13:17:00
字体: (默认) Times New Roman, 10 磅		
页 24: [4] 带格式的	微软用户	2017/7/11 13:17:00
字体: (默认) Times New Roman, 10 磅		
页 24: [4] 带格式的	微软用户	2017/7/11 13:17:00
字体: (默认) Times New Roman, 10 磅		
页 24: [4] 带格式的	微软用户	2017/7/11 13:17:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00

字体: (默认) Times New Roman, 10 磅

页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
デ 。/ 「=1 ##予 #	/#L+L ITI ->-	0015/5/11 10 10 00
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00
字体: (默认) Times New Roman, 10 磅		
页 24: [5] 带格式的	微软用户	2017/7/11 13:19:00

字体: (默认) Times New Roman, 10 磅