

1 Supplement:

2 **Detailed Methodology**

3 The buoyancy flux parameter (F_B) **Equation A1** is a function of the temperature difference between the air
 4 (T_A) and the fire (T_F), the vertical motion of air (v) and the size of the fire, d (here always measured at 1km^2 in
 5 this work).

6
$$F_B = gv \frac{d^2}{4} \left(\frac{T_F - T_A}{T_A} \right) \quad (\text{A1})$$

7 The buoyancy flux parameter has been found empirically to demonstrate whether the plume rise is buoyancy or
 8 momentum dominated. Under stable atmospheric conditions [Stone and Carlson, 1979], where the atmospheric
 9 lapse rate is ($L_A = \frac{\Delta T}{\Delta Z} < -5$), for a buoyancy dominated plume, (defined as where the difference between T_A and
 10 T_F is given in **Equation A2b1**), the plume rise height (Δh) is given by **Equation A2b2**, where (U) is the
 11 horizontal wind magnitude.

12
$$(T_F - T_A) > 0.01958T_F\sqrt{v} \quad (\text{A2b1})$$

13
$$\Delta h = 2.4 \left(\frac{F_B}{0.02U} \right)^{1/3} \quad (\text{A2b2})$$

14 Whereas, for a momentum dominated plume (where the difference between T_A and T_F is less than the right hand
 15 side of **Equation A2b1**), the height rise is given by **Equation A2b3**.

16
$$\Delta h = 1.5 \left(\frac{v^2 d^2 T_A}{\frac{4}{\sqrt{0.02}} T_F} \right)^{1/3} \quad (\text{A2b3})$$

17 On the other hand, under unstable atmospheric conditions (where $L_A > -5$), and where the plume rise is
 18 buoyancy dominated, the plume rise height is given by either **Equation A2b4** when $F_B > 55$ or **Equations**
 19 **A2b5, A2b6** when $F_B < 55$ [Woodward, 2010].

20
$$X^* = 14F_B^{\frac{5}{8}} \quad (\text{A2b4})$$

21
$$X^* = 34F_B^{\frac{2}{5}} \quad (\text{A2b5})$$

22
$$\Delta h = 1.6 \frac{F_B^{\frac{1}{3}} (3.5X^*)^{\frac{2}{3}}}{U} \quad (\text{A2b6})$$