

1 **Overview of the European framework for online integrated air 2 quality and meteorology modelling (EuMetChem)**

3 **Alexander Baklanov**

4 World Meteorological Organization, Geneva, Switzerland and Danish Meteorological
5 Institute, Copenhagen, Denmark (on leave), abaklanov@wmo.int

6 **Abstract**

7 The COST Action ES1004 - European framework for online integrated air quality and
8 meteorology modelling (EuMetChem) is focusing on a new generation of online integrated
9 Atmospheric Chemical Transport (ACT) and Meteorology (Numerical Weather Prediction
10 and Climate) models with two-way interactions between different atmospheric processes
11 including chemistry (both gases and aerosols), clouds, radiation, turbulent mixing, emissions,
12 meteorology and climate. Two major application areas of the integrated modelling are
13 considered: (i) improved numerical meteorology and weather prediction (NWP) and chemical
14 weather forecasting (CWF) with short-term feedbacks of aerosols and chemistry on
15 meteorological variables, and (ii) two-way interactions between atmospheric pollution /
16 composition and climate variability/change. The framework consists of 4 working groups
17 namely: 1) Strategy and framework for online integrated modelling; 2) Interactions,
18 parametrizations and feedback mechanisms; 3) Chemical data assimilation in integrated
19 models; and 4) Evaluation, validation, and applications. Establishment of such an European
20 framework (involving also key American experts) enables the EU to develop world class
21 capabilities in integrated ACT/NWP-Climate modelling systems, including research,
22 education and forecasting. This article provides an introduction to the EuMetChem goals and
23 outcomes for this Special Issue “Coupled chemistry–meteorology modelling: status and
24 relevance for numerical weather prediction, air quality and climate communities (SI of
25 EuMetChem COST ES1004)” which collects key scientific papers of EuMetChem and its
26 collaborators from different continents.

27

28 **COST Action ES1004 EuMetChem Overview**

29 Motivation to start the COST¹ Action ES1004 “European Framework for Online Integrated
30 Air Quality and Meteorology Modelling (EuMetChem)” arose from results of off-line
31 coupled Numerical Weather Prediction (Meteorological) and Air Quality Models and the
32 online coupled models (Figure 1). Experimental studies and research simulations have shown
33 that atmospheric processes (meteorological weather, including precipitation, thunderstorms,
34 radiation, clouds, fog, visibility and PBL structure) depend on concentrations of chemical
35 components (especially aerosols) in the atmosphere. Furthermore, meteorological data
36 assimilation (in particular assimilation of radiances) depends on the chemical composition.
37 Last not least, studies also have shown that air quality forecasts loose accuracy when ACT
38 models are run offline. However, a new generation of online integrated meteorology and
39 chemistry modelling systems is becoming available for predicting atmospheric composition,
40 meteorology and climate change.

¹ COST – European Cooperation in Science and Technology, <http://www.cost.eu/>. COST is the longest-running European framework supporting trans-national cooperation among researchers, engineers and scholars across Europe .

41

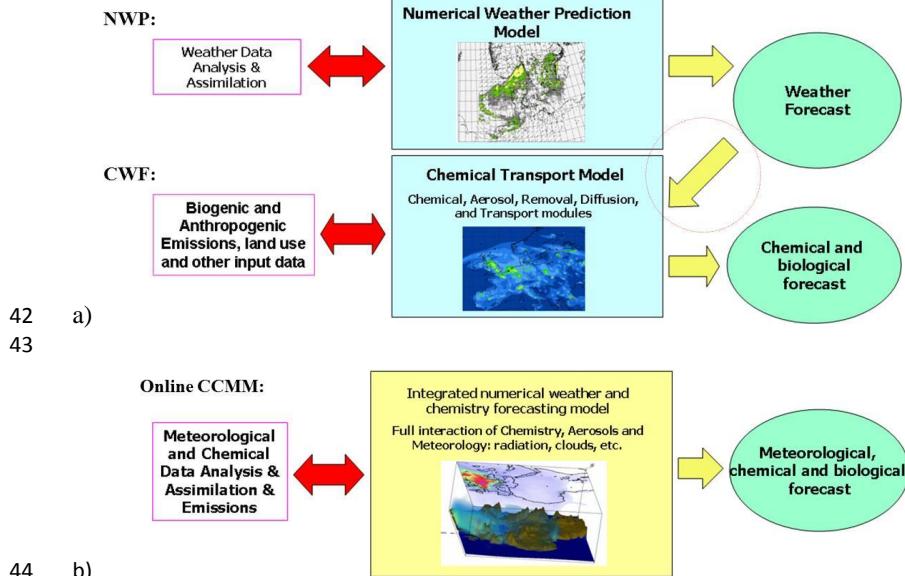


Figure 1: Schematic diagram of (a) offline and (b) online (CCMM) coupled NWP and CWF modelling approaches for atmospheric composition and meteorology simulation.

Historically Europe has not adopted a community approach to modelling and this has led to a large number of model development programmes, usually working independently. Besides AQ and NWP communities worked independently. Needed is a strategic framework that will help to provide a common goal and direction to European research in this field while having multiple models. The COST Action was initiated to integrate, streamline and harmonize the interaction between atmospheric chemistry modellers, weather modellers and end users. It will lead to strongly integrated and unified tools for a wide community of scientists and users.

The European COST Action ES1004 EuMetChem (European Framework for Online Integrated Air Quality and Meteorology Modelling; 2011-2015) aimed at developing a strategy and framework for online integrated modeling by identifying relevant interactions, parameterizations and feedback mechanisms and considering chemical data assimilation in integrated models. It considered the new generation of online models, using integrated Atmospheric Chemical Transport (ACT) and Meteorology (Numerical Weather Prediction and Climate) modelling with two-way interactions between different atmospheric processes including chemistry (both gases and aerosol), clouds, radiation, boundary layer, emissions, meteorology and climate. Overall objective was to set up a multi-disciplinary forum for online integrated air quality/meteorology modelling and elaboration of the European strategy for a new generation integrated ACT/NWP-Climate modelling capability/framework.

Main topics were:

1. Online versus offline modelling: advantages and disadvantages,
2. Analysis of priorities, particularly focusing on interaction/feedback mechanisms,
3. Chemical data assimilation in integrated models,
4. European strategy/framework/centre for online integrated modelling,

72 5. Evaluation and validation framework of online ACT/NWP-Climate models,
73 6. Collection of suitable datasets for model development and evaluation.
74
75 The EuMetChem action included experts not only from Europe but also from other continents
76 (Figure 2) to take advantage of the global expertise in this dynamic research field. It involved
77 teams from 23 European COST countries: Austria, Bulgaria, Denmark, Estonia, Finland,
78 France, Germany, Greece, Hungary, Israel, Italy, Malta, Netherlands, Norway, Poland,
79 Portugal, Serbia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom and several
80 institutions from non-COST countries (Argentina, Brazil, Canada, Egypt, Russia, Ukraine,
81 USA) and international organizations (ECMWF, EEA, JRC, WMO) contributing with their
82 expertise. The chair of the Action was Prof. Alexander Baklanov, Danish Meteorological
83 Institute (now at WMO), the vice-chars were Prof. Sylvain Joffre, Finnish Meteorological
84 Institute, and Prof. K. Heinke Schlünzen, University of Hamburg, Germany, the grant holder
85 representative was Prof. Nicolas Moussiopoulos, AUTH, Greece.
86

87
88 Figure 2: European COST countries EuMetChem members (red dots) and other institutions (yellow
89 dots) contributing with their expertise to the COST Action ES1004 EuMetChem.
90

91 EuMetChem research activities are organized within the following four Working Groups
92 (WGs names and leaders):
93 • WG1: Strategy and framework for online integrated modelling (coordinated by Dr. Peter
94 Suppan, Karlsruhe Institute of Technology and Prof. Jose M. Baldasano, Barcelona
95 Supercomputing Center, advised by Dr. Georg Grell, NOAA),
96 • WG2: Interactions, parameterizations and feedback mechanisms (coordinated by Dr.
97 Michael Gauss, met.no, Dr. Alberto Maurizi, Institute of Atmospheric Sciences and Climate,
98 Italian National Research Council and since March 2014 Dr. Renate Forkel, Karlsruher
99 Institut für Technologie, advised by Prof. Yang Zhang, North Caroline University)
100 • WG3: Chemical data assimilation in integrated models (coordinated by Prof. Christian
101 Seigneur, CEREA, Université Paris-Est, France and Dr. Hendrik Elbern, University of
102 Cologne, advised by Prof. Greg Carmichael, University of Iowa),
103 • WG4: Evaluation, validation, and applications (coordinated by Dr. Dominic Brunner,
104 Empa, Swiss Federal Laboratories for Materials Science and Technology, Dr. Stefano
105 Galmarini, JRC EC, Ispra and Prof. Heinke Schlüzen, University of Hamburg, advised by
106 Dr. S.T. Rao, US EPA).
107

108 The following key scientific questions have been formulated in COST ES1004:
109 • What are the effects of climate/meteorology on the abundance and properties (chemical,
110 microphysical, and radiative) of aerosols on urban/regional scales?
111 • What are the effects of aerosols on urban/regional climate/meteorology and their relative
112 importance (e.g., anthropogenic vs. natural)?
113 • How important are the two-way/chain feedbacks among meteorology, climate, and air
114 quality in the estimated effects?
115 • What is the relative importance of aerosol direct and indirect effects as well as of gas-
116 aerosol interactions in the estimates on different spatial and temporal scales?
117 • What are the key uncertainties associated with model predictions of mentioned effects?
118 • How to realize chemical data assimilation in integrated models for improving NWP and
119 CWF?
120 • How can simulated feedbacks be verified with available observations/datasets?
121

122 Online coupled meteorology atmospheric chemistry models have undergone a rapid evolution
123 in recent years. Developments of the coupled atmosphere-chemistry models and
124 consideration of aerosol feedbacks are realized in different research communities, first of all
125 in the air quality modelling, numerical weather prediction and climate modelling as they can
126 consider not only the effects of meteorology on air quality, but also the potentially important
127 effects of atmospheric composition on weather. Relative importance of online integration and
128 of the priorities, requirements and level of details necessary for representing different
129 processes and feedbacks can greatly vary for these related communities.
130

131 Some outcomes of the EuMetChem COST Action ES1004 are reflected in:
132 - Joint overall review paper with all participants and a wider community involved
133 (Baklanov et al., 2014);
134 - Two Summer schools on CCMM: in Odessa, Ukraine (2011) and in Aveiro, Portugal
135 (2014), the last one with more than 200 applications and 52 students from 25 countries of
136 4 continents and with publication of training materials (Miranda et al., 2014);
137 - Participation in the join AQMEII Phase2 model exercise coordinating its European
138 efforts and performing various modelling runs (Galmarini and Hogrefe, 2015);
139 - Multiple publications, workshops and short-term scientific missions (See *Publications of*
140 *EuMetChem* below and in CCMM, 2016);
141 - Action was attractive to many scientists outside the action (including overseas, Figure 2);
142 - Attraction to WMO for participation in the final EuMetChem scientific conference
143 (CCMM, 2016);
144 - Triggering of WMO initiative on seamless prediction (Chapter 12 in WWRP, 2015);
145 - This integrated Special Issue of ACP/GMD journals on “Coupled chemistry-
146 meteorology modelling: status and relevance for numerical weather prediction, air
147 quality and climate communities” (EuMetChem, 2016).
148

149 The status of integrated modeling has extensively been summarized by EuMetChem in
150 Baklanov et al. (2014) and a large number of regional model systems have been thoroughly
151 evaluated in the joint European – North American initiative AQMEII-2 (Galmarini et al.
152 2015).

153 The main findings from the COST ES1004 action with recommendations for scientists, users
154 and international organizations and suggested answers on the key scientific questions are
155 presented in many papers of this Special Issue (EuMetChem, 2016), CCMM overview article
156 (Baklanov et al., 2017) and WMO-EuMetChem report (CCMM, 2016). This Special Issue
157 and the short summary below and the conclusions and recommendations shall also help

158 scientists, experts and students interested in this quickly developing field to understand the
159 results of this action and which steps should be taken next (e.g. needed research).

160 **EuMetChem Symposium on Coupled Chemistry-Meteorology/Climate Modelling**

161 The Symposium on “Coupled Chemistry-Meteorology/Climate Modelling (CCMM): status
162 and relevance for numerical weather prediction, atmospheric pollution and climate research”,
163 was initiated/organized by EuMetChem as its final event and was strongly supported by
164 WMO. It brought together more than 100 experts (Figure 3) from three different research
165 communities interested in CCMM modeling, that is air quality (AQ), numerical weather
166 prediction (NWP) and climate change (CC), with the aim to review the current status of
167 CCMM modeling and assess the processes relevant for the interactions between atmospheric
168 physics, dynamics and composition. In addition, it highlighted scientific issues and emerging
169 challenges that require proper consideration to improve the reliability and usability of these
170 models for AQ, NWP, and CC. It presented a synthesis of scientific progress and provided
171 recommendations for future research directions and priorities in the development, application
172 and evaluation of seamless online coupled models.

173

**Symposium on: Coupled Chemistry-Meteorology/Climate Modelling (CCMM): status and relevance
for numerical weather prediction, atmospheric pollution and climate research**

Web-site: <http://www.eumetchem.info/ccmm.html>

What: More than 100 scientists and experts from 36 countries from 5 continents discussed the
current research status, main gaps and priorities in the development, application and evaluation of
CCMMs for the three communities numerical weather prediction, atmospheric pollution and climate
research.

Where: World Meteorological Organization (WMO), Geneva, Switzerland,

When: 23-25 February 2015

Initiated, organized and supported by:

- European Cooperation in Science and Technology (COST) Action ES1004 EuMetChem:
‘European Framework for Online Integrated Air Quality and Meteorology Modelling’
(<http://www.eumetchem.info/>)
- WMO Commission for Atmospheric Sciences (CAS), including Global Atmosphere Watch
(GAW) and World Weather Research Programme (WWRP), and
- World Climate Research Programme (WCRP).

174

175 Figure 3: Short summary in the CCMM symposium.

176

177 The main focus of the symposium was on aerosols and their feedbacks with weather and
178 climate. The following specific topics were covered:

179

- Coupled chemistry-meteorology (weather and climate) modeling (CCMM):
approaches and requirements;
- Key processes of chemistry-meteorology interactions and their descriptions;
- Aerosol effects on meteorological processes and numerical weather prediction;
- CCMM for air quality and atmospheric composition;
- CCMM for regional and global climate modeling;
- Model validation and evaluation;
- Data requirements, use of observations and data assimilation;
- Outlook and future challenges.

180

181

182

183

184

185

186

187

188

189 Additionally to the main oral and poster sessions, a plenary discussion session was organized
190 and seven brain storming teams reported their outcomes on the following topics: 1. Coupled
191 chemistry-meteorology systems (Greg Carmichael (chair), Georg Grell, Peter Suppan,
192 Alexander Baklanov), 2. Key processes (Bernhard Vogel (chair), Paul Makar, Renate Forkel,
193 Yang Zhang), 3. CCMMs for climate studies (Øystein Hov (chair), Michel Rixen, Michael
194 Gauss, Annica Ekman, Michaela Hegglin), 4. CCMMs for air quality and atmospheric
195 composition (Rohit Mathur (chair), Veronique Bouchet, Nicolas Moussiopoulos, Jose M
196 Baldasano, Ana Isabel Miranda), 5. CCMMs for NWP and meteorology (Saulo Freitas
197 (chair), Sylvain Joffre, Vincent-Henri Peuch, Nick Savage), 6. Model evaluation (Heinke
198 Schlünzen (chair), Dominik Brunner, S.T. Rao, Stefano Galmarini, 7. Data assimilation
199 (Christian Seigneur (chair), Johannes Flemming).

200 Reports of these groups and further symposium material and outcomes are published as the
201 WMO Report (CCMM, 2016) and selected papers presented at the conference are
202 contributing to this joint CCMM/EuMetChem special issue of ACP and GMD (EuMetChem,
203 2016). Most of the presentations of the symposium are available through the web-site of the
204 COST Action ES1004: <http://www.eumetchem.info/ccmm.html>.

205 A summary of the key issues and recommendations regarding Coupled Chemistry-
206 Meteorology / Climate Modeling: status and relevance for numerical weather prediction,
207 atmospheric pollution and climate research based on the symposium presentations,
208 discussions and conclusions of the brainstorming teams, is presented in the short BAMS
209 article by Baklanov et al. (2017).

210 **Conclusions and recommendations for future research**

211 Based on the EuMetChem WGs activities, CCMM symposium (CCMM, 2016) and further
212 discussions (e.g. WWRP, 2015; Baklanov et al., 2017), the following recommendations for
213 future research have been identified.

214 For meteorological studies and specifically NWP the following research is needed:

- 215 • Developing diagnostics and validation methodologies to more explicitly separate the
216 different effects of the intertwined feedback processes.
- 217 • More collaboration between operational centers and research communities. This needs
218 to be focused on providing schemes that have an impact that is proven to be valuable
219 enough to justify the cost of their implementation (even for relatively modest
220 increases in CPU).
- 221 • More evaluation of aerosol properties routinely, not only for the indicators PM10 and
222 PM2.5 but also for optical, chemical and microphysical properties.
- 223 • The treatment of the indirect effect of aerosols is one of the key uncertainties; ice
224 nucleation processes and parameterizations are less well defined than CCN
225 parameterizations.
- 226 • Further research is needed to better understand the importance of including more
227 accurate representation of aerosol properties in satellite retrievals.
- 228 • Research on the impact of online modeling of aerosols on visibility forecasting,
229 observational constraints on the causes of light extinction and on parameterizations
230 for calculating extinction given model parameters.

231 For air quality and atmospheric composition studies the following research needs are
232 stressed:

235 • Experiments that are specifically defined to look at chemistry-cloud-microphysics at
236 different scales.
237 • More field experimental data to evaluate online coupled models.
238 • Improved numerical and computational efficiency of the models as the complexity of
239 applications grows (e.g., scales).
240 • Intercomparisons both at global and regional/urban scale for AQ, NWP and climate
241 should continue; intercomparisons that are cutting across all 3 fields should be
242 considered.

243 For climate research the following main developments in CCMMs are needed:

244 • Improve our understanding of indirect effects (e.g. BC on clouds).
245 • Develop CCMs with prognostic aerosols to assess what is the tradeoff between a more
246 complex aerosol representation on the one side and model resolution, or the
247 atmosphere-ocean coupling, on the other side?
248 • Test model performance in terms of relevant physical, chemical, and radiative
249 processes and mechanisms (in contrast to just testing mean performance).
250 • Test model performance in terms of tropospheric dynamics/meteorology and their
251 effect on composition (and vice-versa).

252 **Acknowledgements**

253 The COST Office, which funded and supported the Action ES1004 EuMetChem, and the
254 World Meteorological Organization, which organized the CCMM Symposium, are greatly
255 acknowledged. The author thanks the EuMetChem co-chairs, WG leaders and all the
256 participants of the COST Action ES1004 EuMetChem and CCMM Symposium for joint
257 work and contributions to the EuMetChem and Symposium outcomes.

258 **References**

259 Baklanov A., Schlünzen K. H., Suppan P., Baldasano J., Brunner D., Aksoyoglu S., Carmichael G.,
260 Dourou J., Flemming J., Forkel R., Galmarini S., Gauss M., Grell G., Hirtl M., Joffre S., Jorba O.,
261 Kaas E., Kaasik M., Kallos G., Kong X., Korsholm U., Kurganskiy A., Kushta J., Lohmann U.,
262 Mahura A., Manders-Groot A., Maurizi A., Moussiopoulos N., Rao S. T., Savage N., Seigneur C.,
263 Sokhi R. S., Solazzo E., Solomos S., Sørensen B., Tsegas G., Vignati E., Vogel B., Zhang Y., 2014:
264 Online coupled regional meteorology chemistry models in Europe: current status and prospects.
265 *Atmos. Chem. Phys.*, **14**, 317-398, doi:10.5194/acp-14-317-2014.

266 Baklanov, A., D. Brunner, G. Carmichael, J. Flemming, S. Freitas, M. Gauss, Ø. Hov, R. Mathur, K.
267 H. Schlünzen, C. Seigneur, B. Vogel: Key issues for seamless integrated chemistry-meteorology
268 modeling. *Bulletin of the American Meteorological Society*. Submitted - 31 January 2016, Revised -
269 30 October 2016 (in press), 2017.

270 CCMM, 2016: *Coupled Chemistry-Meteorology/Climate Modelling (CCMM): status and relevance
271 for numerical weather prediction, atmospheric pollution and climate research (Symposium
272 materials)*. WMO GAW Report #226, WMO, Geneva, Switzerland, March 2016. Available from:
273 https://www.wmo.int/pages/prog/arep/gaw/documents/Final_GAW_226_10_May.pdf

274 EuMetChem, 2016: Coupled chemistry-meteorology modelling: status and relevance for numerical
275 weather prediction, air quality and climate communities. Baklanov, A., B. Vogel, and S. Freitas
276 (Eds.). Special issue jointly organized between *Atmospheric Chemistry and Physics* and *Geoscientific
277 Model Development*. **370**. http://www.atmos-chem-phys.net/special_issue370.html

280 Galmarini, S. and C. Hogrefe (Eds.), 2015: Evaluating Coupled Models (AQMEII P2). Special Issue
281 Section: *Atmospheric Environment*, **115**, 340-775.

282 Galmarini, S., C. Hogrefe, D. Brunner, P. Makar, A. Baklanov (2015): Evaluating Coupled Models
283 (AQMEII P2), Preface. *Atmos. Environ.*, **15**, 340-344, doi:10.1016/j.atmosenv.2015.06.009.

284 Miranda, A.I., A. Monteiro, H. Martins, A. Baklanov and K.H. Schluenzen: *Online Integrated*
285 *Modelling of Meteorological and Chemical transport Processes. EUMETCHEM Young Scientists*
286 *Summer School Education Book*. COST Action ES1004, University of Aveiro, WMO, University of
287 Hamburg, 132 p., ISBN 978-989-98673-3-8, 2014.

288 WWRP, 2015: *Seamless Prediction of the Earth System: from Minutes to Months*, WMO-No. 1156,
289 ISBN 978-92-63-11156-2. Available from: http://library.wmo.int/pmb_ged/wmo_1156_en.pdf

290